
MAT4450 - Spring 2024 - Solutions of exercises - Set 8

Exercise 32

Consider the commutative Banach algebra A = C(Ω,F), where Ω is a compact Hausdorff space.
Let ω0 ∈ Ω and define ϕ : A → F by ϕ(f) = f(ω0) for f ∈ A.

a) Then ϕ is a continuous algebra-homomorphism from A into F (considered as a Banach
algebra) satisfying ‖ϕ‖ = 1:

It is clear that ϕ is linear. It is also multiplicative. Indeed, let f, g ∈ A. Then

ϕ(fg) = (fg)(ω0) = f(ω0) g(ω0) = ϕ(f)ϕ(g).

Thus, ϕ is an algebra-homomorphism. Moreover, ϕ is continuous (= bounded), with ‖ϕ‖ ≤ 1,
since |ϕ(f)] = |f(ω0)| ≤ ‖f‖∞ for all f ∈ A. As ‖1Ω‖∞ = 1 and |ϕ(1Ω)| = 1Ω(ω0) = 1, we get that
‖ϕ‖ = 1.

b) Consider the closed ideal of A given by J = ker(ϕ). Then the Banach algebra A/J is
isometrically isomorphic to F:

Since the range of ϕ is F, we get that the map ϕ̃ : A/J → F given by ϕ̃(f + J ) = ϕ(f) for each
f ∈ A is a bounded algebra-isomorphism (with ‖ϕ̃‖ = ‖ϕ‖ = 1).

Let f ∈ A. To show that ϕ̃ is isometric, we have to show that |ϕ̃(f + J )| = ‖f + J ‖. Since
|ϕ̃(f + J )| = |ϕ(f)| = |f(ω0)| and ‖f + J ‖ = inf{‖f − g‖∞ : g ∈ J }, we have to show that

|f(ω0)| = inf{‖f − g‖∞ : g ∈ J }.

Since J = {g ∈ A | g(ω0) = 0}, we have that

|f(ω0)| = |(f − g)(ω0)| ≤ ‖f − g‖∞ for all g ∈ J ,

Hence, |f(ω0)| is a lower bound of {‖f − g‖∞ : g ∈ J }.
Let now ε > 0. Since f is continuous at ω0, we can find an open neighborhood U of ω0 such

that |f(ω)− f(ω0)| < ε for all ω ∈ U . This gives that∣∣∣|f(ω)| − |f(ω0)|
∣∣∣ ≤ |f(ω)− f(ω0)| < ε for all ω ∈ U,

hence that |f(ω)| < |f(ω0)|+ ε for all ω ∈ U .
Set E := Ω \ U . Then E and {ω0} are disjoint closed subsets of Ω, so, by Urysohn’s lemma, we

can find h ∈ A such that 0 ≤ h ≤ 1, h = 1 on E, and h(ω0) = 0.
Set k := fh. Then k ∈ J , f − k = 0 on E, and

|(f − k)(ω)| = |f(ω)|(1− h(ω)) ≤ |f(ω)| < |f(ω0)|+ ε for all ω ∈ U.

Thus we get that
‖f − k‖∞ ≤ |f(ω0)|+ ε.

Since k ∈ J , it follows that |f(ω0)| is the greatest lower bound of {‖f − g‖∞ : g ∈ J }, as desired.
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Exercise 33

Let A be a non-unital Banach algebra over F. Set Ã =
{

(a, α) | a ∈ A, α ∈ F
}

and define
addition, multiplication by scalars and product by

(a, α) + (b, β) = (a+ b, α+ β),

λ (a, α) = (λa, λα),

(a, α)(a, β) = (ab+ αb+ βa, αβ)

for (a, α), (b, β) ∈ Ã and λ ∈ F. As you can check for yourself, Ã becomes a unital algebra with
unit e := (0, 1), and that the map (a, α) 7→ α is an algebra-homomorphism from Ã into F, with
kernel equal to A0 := {(a, 0) | a ∈ A}.
We identify A with the ideal A0 and write a+ α e instead of (a, α).

For a+ αẽ ∈ Ã, set ‖a+ αe‖ := ‖a‖+ |α|.

Then Ã is a unital Banach algebra w.r.t. ‖ · ‖, which contains A as a closed ideal :

Let a+ αe, b+ βe ∈ Ã and λ ∈ C. Then ‖a+ αe‖ = ‖a‖+ |α| ≥ 0,

‖λ(a+ αe)‖ = ‖λa+ λαe‖ = ‖λa‖+ |λα| = |λ|(‖a‖+ |α|) = |λ|‖a+ αe‖,

‖a+ αe‖ = 0 ⇔ ‖a‖ = 0 and |α| = 0 ⇔ a = 0 and α = 0 ⇔ a+ αe = 0,

‖(a+ αe) + (b+ βe)‖ = ‖a+ b+ (α+ β)e‖ = ‖a+ b‖+ |α+ β|
≤ ‖a‖+ ‖b‖+ |α|+ |β| = (‖a‖+ |α|) + (‖b‖+ |β|)
= ‖a+ αe‖+ ‖b+ βe‖,

‖(a+ αe)(b+ βe)‖ = ‖ab+ αb+ βa+ αβe‖
= ‖ab+ αb+ βa‖ + |αβ|
≤ ‖ab‖+ ‖αb‖+ ‖βa‖+ |α||β|
≤ ‖a‖‖b‖+ |α| ‖b‖+ |β|‖a‖+ |α||β|
= (‖a‖+ |α|)(‖b‖+ |β|)
= ‖a+ αe‖‖b+ βe‖.

This shows that ‖ · ‖ is a norm on Ã which is submultiplicative, i.e., Ã is a normed algebra.
Further, (A, ‖ · ‖) is complete. Indeed, let {an + αne} be a Cauchy sequence in Ã. As

‖ (an + αne)− (am + αme)‖ = ‖an − am‖ + |αn − αm|

for all n,m ∈ N, we see that {an} and {αn} are both Cauchy sequences, in A and in F,
respectively. So there exist a ∈ A and α ∈ F such that an → a and αn → α as n→∞, and it
follows then readily that an + αne→ a+ αe as n→∞. This shows that Ã is complete as a
normed space, hence that Ã is a Banach algebra.

As the map A+ αe 7→ α clearly gives a bounded algebra-homomorphism π from Ã into F, having
A as its kernel, we get that A is closed ideal of Ã.

Moreover, the quotient Ã/A is isometrically isomorphic to F:

Let π : Ã → F be the algebra-homomorphism given by π(a+ αe) := α. Since the range of π is F,
we get that the map π̃ : Ã/A → F given by

π̃((a+ αe) +A)) := π(a+ αe) = α
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is an algebra-isomorphism. For each a+ αe ∈ Ã, we have that

‖(a+αe)+A‖ = inf{‖a+αe− b‖ : b ∈ A} = inf{‖a− b‖+ |α| : b ∈ A} = |α| = ‖π̃((a+αe)+A))‖,

so π̃ is isometric.

From now on, a unital Banach algebra A will always mean a (complex) Banach algebra having a
unit 1A which satisfies that ‖1A‖ = 1.

Exercise 34

Let A be a unital Banach algebra.

a) Let a ∈ GL(A) and note that 0 6∈ spA(a). We have that spA(a−1) =
{
λ−1 | λ ∈ spA(a)

}
:

Let λ ∈ C \ {0}. Since λ−1I − a−1 = −λ−1a−1(λI − a), and λ−1a−1 ∈ GL(A), we get that

λ ∈ spA(a) ⇔ λ−1 ∈ spA(a−1)

This implies that {
λ−1 | λ ∈ spA(a)

}
⊆ spA(a−1).

On the other hand, let µ ∈ spA(a−1). Then µ 6= 0, and with λ := µ−1, we have that
λ−1 = µ ∈ spA(a−1). As pointed out above, this implies that λ ∈ spA(a). Thus, µ = λ−1 for some
λ ∈ spA(a), which shows that the reverse inclusion also holds.

b) Let B be unital Banach algebra and assume that φ : A → B is an algebra-isomorphism such
that φ(1A) = φ(1B).

Then we have that spA(a) = spB(φ(a)) for all a ∈ A:

Let a ∈ A. Since φ(1A) = 1B, it follows readily that if a′ ∈ A, then a′ ∈ GL(A) ⇔ φ(a′) ∈ GL(B).
So for λ ∈ C we get that

λ ∈ spA(a)⇔ λ1A − a 6∈ GL(A)⇔ φ(λ1A − a) 6∈ GL(B)⇔ λ1B − φ(a) 6∈ GL(B)⇔ λ ∈ spB(φ(a)),

which shows the assertion.

Note that we don’t need to assume that φ(1A) = 1B, because thi is automatically satisfied for any
algebra-isomorphism φ : A → B. Indeed, φ(1A) is then a unit for φ(A) = B, so it must be equal to
1B, by uniqueness of the unit in B.

Exercise 34
Consider the complex Hilbert space H = L2([0, 1],B[0,1], µ), where µ denotes the Lebesgue
measure on the Borel σ-algebraen B[0,1].

Set A := B(H), and let M ∈ A denote the multiplication operator given by

[M(g)](t) = tg(t) for all g ∈ H and t ∈ [0, 1].

Then spA(M) = [0, 1]:

We first show that spA(M) ⊆ [0, 1]:

Let λ ∈ C \ [0, 1]. Then the function g : [0, 1]→ C defined by g(t) = (λ− t)−1 is continuous, so the
multiplication operator G : H → H associated to g is bounded. As we clearly have that
(λI −M)G = G(λI −M) = IH , we get that λ 6∈ spA(M). This shows that the inclusion above
holds.
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To show the reverse inclusion, let λ ∈ [0, 1]. We will show that there exists a sequence {ξn} of unit
vectors in H such that

‖(λIH −M)ξn‖2 → 0 as n→∞.

This will imply that λ ∈ spA(M), because, otherwise, we would get that

1 = ‖ξn‖2 = ‖(λIH −M)−1(λIH −M)ξn‖2 ≤ ‖(λIH −M)−1‖ ‖(λIH −M)ξn‖2 −→ 0 as n→∞,

giving a contradiction.
Assume first that 0 < λ < 1 and choose N ∈ N such that [λ, λ+ 1/N ] ⊆ [0, 1]. For each n ≥ N ,

define ξn : [0, 1]→ C by ξn = n1/2 1[λ, λ+1/n]. Then for each n ≥ N we have ‖ξn‖2 = 1 and

‖(λIH −M)ξn‖22 =
1

n

∫ λ+1/n

λ
(λ− t)2 dt = n

[1

3
(t− λ)3

]t=λ+1/n

t=λ
=

1

3n2
−→ 0 as n→∞.

We can clearly proceed similarly when λ = 1 by considering ξn = n1/2 1[λ−1/n, λ]. Thus, in both
cases, we can conclude that λ ∈ spA(M).

This shows that [0, 1] ⊆ spA(M). Altogether, the desired equality follows.

The operator M has no eigenvalues:

Assume λ ∈ C satisfies that Mξ = λξ for some ξ ∈ H. Then we have that tξ(t) = λξ(t) for almost
all t ∈ [0, 1], i.e., for all t belonging to some Borel set A ⊆ [0, 1] satisfying that µ(A) = 1. This
implies that ξ(t) = 0 for every t ∈ A \ {λ}. Since µ(A \ {λ}) = 1, this means that ξ = 0 (µ-almost
everywhere). This shows that no λ ∈ C can be an eigenvalue of M .

Exercise 35

Let S be a nonempty set and consider the unital Banach algebra A = `∞(S). Let f ∈ A.

Then spA(f) = f(S):

We show below that this assertion holds when Ω is a topological space and A = Cb(Ω) (= all
bounded continuous complex functions on Ω) is equipped with the uniform norm ‖ · ‖∞.
(If S is a set, we can consider it as a topological space w.r.t. the discrete topology, and we then
have `∞(S) = Cb(S)).

If λ = f(ω) for some ω ∈ Ω, then (λ1Ω − f)(ω) = 0, so λ1Ω − f 6∈ GL(A), i.e., λ ∈ spA(f).
This shows that f(Ω) ⊆ spA(f). Since spA(f) is closed in C, we get that f(Ω) ⊆ spA(f).

On the other hand, assume λ ∈ C \ f(Ω). Since K := f(Ω) is closed, we have that
d := inf |λ− z| : z ∈ K > 0.

Define g : Ω→ C by g(ω) = (λ− f(ω))−1. Then

‖g‖∞ = sup{|λ− f(ω)|−1 : ω ∈ Ω} ≤ sup{|λ− z|−1 : z ∈ K} = d−1 <∞,

so g ∈ A. Moreover, it is then clear that g is the inverse of λ1Ω − f in A, i.e., λ 6∈ spA(f). This
shows that spA(f) ⊆ f(Ω).

Altogether, we get that spA(f) = f(Ω), as desired.
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