MAT4450 - Spring 2024 - Solutions of exercises - Set 8

Exercise 32

Consider the commutative Banach algebra $\mathcal{A} = C(\Omega, \mathbb{F})$, where Ω is a compact Hausdorff space. Let $\omega_0 \in \Omega$ and define $\varphi : \mathcal{A} \to \mathbb{F}$ by $\varphi(f) = f(\omega_0)$ for $f \in \mathcal{A}$.

a) Then φ is a continuous algebra-homomorphism from \mathcal{A} into \mathbb{F} (considered as a Banach algebra) satisfying $\|\varphi\| = 1$:

It is clear that φ is linear. It is also multiplicative. Indeed, let $f, g \in \mathcal{A}$. Then

$$\varphi(fg) = (fg)(\omega_0) = f(\omega_0) g(\omega_0) = \varphi(f)\varphi(g).$$

Thus, φ is an algebra-homomorphism. Moreover, φ is continuous (= bounded), with $\|\varphi\| \leq 1$, since $|\varphi(f)] = |f(\omega_0)| \leq \|f\|_{\infty}$ for all $f \in \mathcal{A}$. As $\|1_{\Omega}\|_{\infty} = 1$ and $|\varphi(1_{\Omega})| = 1_{\Omega}(\omega_0) = 1$, we get that $\|\varphi\| = 1$.

b) Consider the closed ideal of \mathcal{A} given by $\mathcal{J} = \ker(\varphi)$. Then the Banach algebra \mathcal{A}/\mathcal{J} is isometrically isomorphic to \mathbb{F} :

Since the range of φ is \mathbb{F} , we get that the map $\widetilde{\varphi} : \mathcal{A}/\mathcal{J} \to \mathbb{F}$ given by $\widetilde{\varphi}(f + \mathcal{J}) = \varphi(f)$ for each $f \in \mathcal{A}$ is a bounded algebra-isomorphism (with $\|\widetilde{\varphi}\| = \|\varphi\| = 1$).

Let $f \in \mathcal{A}$. To show that $\widetilde{\varphi}$ is isometric, we have to show that $|\widetilde{\varphi}(f + \mathcal{J})| = ||f + \mathcal{J}||$. Since $|\widetilde{\varphi}(f + \mathcal{J})| = |\varphi(f)| = |f(\omega_0)|$ and $||f + \mathcal{J}|| = \inf\{||f - g||_{\infty} : g \in \mathcal{J}\}$, we have to show that

$$|f(\omega_0)| = \inf\{\|f - g\|_{\infty} : g \in \mathcal{J}\}.$$

Since $\mathcal{J} = \{g \in \mathcal{A} \mid g(\omega_0) = 0\}$, we have that

$$|f(\omega_0)| = |(f-g)(\omega_0)| \le ||f-g||_{\infty} \quad \text{for all } g \in \mathcal{J},$$

Hence, $|f(\omega_0)|$ is a lower bound of $\{||f - g||_{\infty} : g \in \mathcal{J}\}.$

Let now $\varepsilon > 0$. Since f is continuous at ω_0 , we can find an open neighborhood U of ω_0 such that $|f(\omega) - f(\omega_0)| < \varepsilon$ for all $\omega \in U$. This gives that

$$||f(\omega)| - |f(\omega_0)|| \le |f(\omega) - f(\omega_0)| < \varepsilon \text{ for all } \omega \in U,$$

hence that $|f(\omega)| < |f(\omega_0)| + \varepsilon$ for all $\omega \in U$.

Set $E := \Omega \setminus U$. Then E and $\{\omega_0\}$ are disjoint closed subsets of Ω , so, by Urysohn's lemma, we can find $h \in \mathcal{A}$ such that $0 \le h \le 1$, h = 1 on E, and $h(\omega_0) = 0$.

Set k := fh. Then $k \in \mathcal{J}$, f - k = 0 on E, and

$$|(f-k)(\omega)| = |f(\omega)|(1-h(\omega)) \le |f(\omega)| < |f(\omega_0)| + \varepsilon \quad \text{for all } \omega \in U.$$

Thus we get that

$$||f - k||_{\infty} \le |f(\omega_0)| + \varepsilon$$

Since $k \in \mathcal{J}$, it follows that $|f(\omega_0)|$ is the greatest lower bound of $\{||f - g||_{\infty} : g \in \mathcal{J}\}$, as desired.

Exercise 33

Let \mathcal{A} be a non-unital Banach algebra over \mathbb{F} . Set $\widetilde{\mathcal{A}} = \{(a, \alpha) \mid a \in \mathcal{A}, \alpha \in \mathbb{F}\}$ and define addition, multiplication by scalars and product by

$$(a, \alpha) + (b, \beta) = (a + b, \alpha + \beta),$$
$$\lambda (a, \alpha) = (\lambda a, \lambda \alpha),$$
$$(a, \alpha)(a, \beta) = (ab + \alpha b + \beta a, \alpha \beta)$$

for $(a, \alpha), (b, \beta) \in \widetilde{\mathcal{A}}$ and $\lambda \in \mathbb{F}$. As you can check for yourself, $\widetilde{\mathcal{A}}$ becomes a unital algebra with unit e := (0, 1), and that the map $(a, \alpha) \mapsto \alpha$ is an algebra-homomorphism from $\widetilde{\mathcal{A}}$ into \mathbb{F} , with kernel equal to $\mathcal{A}_0 := \{(a, 0) \mid a \in \mathcal{A}\}.$

We identify \mathcal{A} with the ideal \mathcal{A}_0 and write $a + \alpha e$ instead of (a, α) .

For $a + \alpha \tilde{e} \in \widetilde{\mathcal{A}}$, set $||a + \alpha e|| := ||a|| + |\alpha|$.

Then $\widetilde{\mathcal{A}}$ is a unital Banach algebra w.r.t. $\|\cdot\|$, which contains \mathcal{A} as a closed ideal:

Let $a + \alpha e, b + \beta e \in \widetilde{\mathcal{A}}$ and $\lambda \in \mathbb{C}$. Then $||a + \alpha e|| = ||a|| + |\alpha| \ge 0$,

$$\|\lambda(a+\alpha e)\| = \|\lambda a+\lambda \alpha e\| = \|\lambda a\| + |\lambda \alpha| = |\lambda|(\|a\|+|\alpha|) = |\lambda|\|a+\alpha e\|,$$

 $\|a + \alpha e\| = 0 \Leftrightarrow \|a\| = 0 \text{ and } |\alpha| = 0 \Leftrightarrow a = 0 \text{ and } \alpha = 0 \Leftrightarrow a + \alpha e = 0,$

$$\begin{aligned} \|(a + \alpha e) + (b + \beta e)\| &= \|a + b + (\alpha + \beta)e\| = \|a + b\| + |\alpha + \beta| \\ &\leq \|a\| + \|b\| + |\alpha| + |\beta| = (\|a\| + |\alpha|) + (\|b\| + |\beta|) \\ &= \|a + \alpha e\| + \|b + \beta e\|, \end{aligned}$$

$$\begin{aligned} \|(a + \alpha e)(b + \beta e)\| &= \|ab + \alpha b + \beta a + \alpha \beta e\| \\ &= \|ab + \alpha b + \beta a\| + |\alpha\beta| \\ &\leq \|ab\| + \|\alpha b\| + \|\beta a\| + |\alpha||\beta| \\ &\leq \|a\|\|b\| + |\alpha\|\|b\| + |\beta\|\|a\| + |\alpha||\beta| \\ &= (\|a\| + |\alpha|)(\|b\| + |\beta|) \\ &= \|a + \alpha e\|\|b + \beta e\|. \end{aligned}$$

This shows that $\|\cdot\|$ is a norm on $\widetilde{\mathcal{A}}$ which is submultiplicative, i.e., $\widetilde{\mathcal{A}}$ is a normed algebra. Further, $(\mathcal{A}, \|\cdot\|)$ is complete. Indeed, let $\{a_n + \alpha_n e\}$ be a Cauchy sequence in $\widetilde{\mathcal{A}}$. As

$$|| (a_n + \alpha_n e) - (a_m + \alpha_m e)|| = ||a_n - a_m|| + |\alpha_n - \alpha_m|$$

for all $n, m \in \mathbb{N}$, we see that $\{a_n\}$ and $\{\alpha_n\}$ are both Cauchy sequences, in \mathcal{A} and in \mathbb{F} , respectively. So there exist $a \in \mathcal{A}$ and $\alpha \in \mathbb{F}$ such that $a_n \to a$ and $\alpha_n \to \alpha$ as $n \to \infty$, and it follows then readily that $a_n + \alpha_n e \to a + \alpha e$ as $n \to \infty$. This shows that $\widetilde{\mathcal{A}}$ is complete as a normed space, hence that $\widetilde{\mathcal{A}}$ is a Banach algebra.

As the map $A + \alpha e \mapsto \alpha$ clearly gives a bounded algebra-homomorphism π from $\widetilde{\mathcal{A}}$ into \mathbb{F} , having \mathcal{A} as its kernel, we get that \mathcal{A} is closed ideal of $\widetilde{\mathcal{A}}$.

Moreover, the quotient $\widetilde{\mathcal{A}}/\mathcal{A}$ is isometrically isomorphic to \mathbb{F} :

Let $\pi : \widetilde{\mathcal{A}} \to \mathbb{F}$ be the algebra-homomorphism given by $\pi(a + \alpha e) := \alpha$. Since the range of π is \mathbb{F} , we get that the map $\widetilde{\pi} : \widetilde{\mathcal{A}}/\mathcal{A} \to \mathbb{F}$ given by

$$\widetilde{\pi}((a + \alpha e) + \mathcal{A})) := \pi(a + \alpha e) = \alpha$$

is an algebra-isomorphism. For each $a + \alpha e \in \widetilde{\mathcal{A}}$, we have that

 $\|(a+\alpha e)+\mathcal{A}\| = \inf\{\|a+\alpha e-b\|: b \in \mathcal{A}\} = \inf\{\|a-b\|+|\alpha|: b \in \mathcal{A}\} = |\alpha| = \|\widetilde{\pi}((a+\alpha e)+\mathcal{A}))\|,$ so $\widetilde{\pi}$ is isometric.

From now on, a unital Banach algebra \mathcal{A} will always mean a (complex) Banach algebra having a unit $1_{\mathcal{A}}$ which satisfies that $||1_{\mathcal{A}}|| = 1$.

Exercise 34

Let \mathcal{A} be a unital Banach algebra.

a) Let $a \in \operatorname{GL}(\mathcal{A})$ and note that $0 \notin \operatorname{sp}_{\mathcal{A}}(a)$. We have that $\operatorname{sp}_{\mathcal{A}}(a^{-1}) = \{\lambda^{-1} \mid \lambda \in \operatorname{sp}_{\mathcal{A}}(a)\}$: Let $\lambda \in \mathbb{C} \setminus \{0\}$. Since $\lambda^{-1}I - a^{-1} = -\lambda^{-1}a^{-1}(\lambda I - a)$, and $\lambda^{-1}a^{-1} \in \operatorname{GL}(\mathcal{A})$, we get that

$$\lambda \in \operatorname{sp}_{\mathcal{A}}(a) \Leftrightarrow \lambda^{-1} \in \operatorname{sp}_{\mathcal{A}}(a^{-1})$$

This implies that

$$\left\{ \lambda^{-1} \mid \lambda \in \operatorname{sp}_{\mathcal{A}}(a) \right\} \subseteq \operatorname{sp}_{\mathcal{A}}(a^{-1}).$$

On the other hand, let $\mu \in \operatorname{sp}_{\mathcal{A}}(a^{-1})$. Then $\mu \neq 0$, and with $\lambda := \mu^{-1}$, we have that $\lambda^{-1} = \mu \in \operatorname{sp}_{\mathcal{A}}(a^{-1})$. As pointed out above, this implies that $\lambda \in \operatorname{sp}_{\mathcal{A}}(a)$. Thus, $\mu = \lambda^{-1}$ for some $\lambda \in \operatorname{sp}_{\mathcal{A}}(a)$, which shows that the reverse inclusion also holds.

b) Let \mathcal{B} be unital Banach algebra and assume that $\phi : \mathcal{A} \to \mathcal{B}$ is an algebra-isomorphism such that $\phi(1_{\mathcal{A}}) = \phi(1_{\mathcal{B}})$.

Then we have that $\operatorname{sp}_{\mathcal{A}}(a) = \operatorname{sp}_{\mathcal{B}}(\phi(a))$ for all $a \in \mathcal{A}$:

Let $a \in \mathcal{A}$. Since $\phi(1_{\mathcal{A}}) = 1_{\mathcal{B}}$, it follows readily that if $a' \in \mathcal{A}$, then $a' \in \operatorname{GL}(\mathcal{A}) \Leftrightarrow \phi(a') \in \operatorname{GL}(\mathcal{B})$. So for $\lambda \in \mathbb{C}$ we get that

$$\lambda \in \operatorname{sp}_{\mathcal{A}}(a) \Leftrightarrow \lambda 1_{\mathcal{A}} - a \notin \operatorname{GL}(\mathcal{A}) \Leftrightarrow \phi(\lambda 1_{\mathcal{A}} - a) \notin \operatorname{GL}(\mathcal{B}) \Leftrightarrow \lambda 1_{\mathcal{B}} - \phi(a) \notin \operatorname{GL}(\mathcal{B}) \Leftrightarrow \lambda \in \operatorname{sp}_{\mathcal{B}}(\phi(a)),$$

which shows the assertion.

Note that we don't need to assume that $\phi(1_{\mathcal{A}}) = 1_{\mathcal{B}}$, because thi is automatically satisfied for any algebra-isomorphism $\phi : \mathcal{A} \to \mathcal{B}$. Indeed, $\phi(1_{\mathcal{A}})$ is then a unit for $\phi(\mathcal{A}) = \mathcal{B}$, so it must be equal to $1_{\mathcal{B}}$, by uniqueness of the unit in \mathcal{B} .

Exercise 34

Consider the complex Hilbert space $H = L^2([0, 1], \mathcal{B}_{[0,1]}, \mu)$, where μ denotes the Lebesgue measure on the Borel σ -algebraen $\mathcal{B}_{[0,1]}$.

Set $\mathcal{A} := \mathcal{B}(H)$, and let $M \in \mathcal{A}$ denote the multiplication operator given by

$$[M(g)](t) = tg(t)$$
 for all $g \in H$ and $t \in [0, 1]$.

Then $sp_A(M) = [0, 1]$:

We first show that $\operatorname{sp}_{\mathcal{A}}(M) \subseteq [0, 1]$:

Let $\lambda \in \mathbb{C} \setminus [0, 1]$. Then the function $g : [0, 1] \to \mathbb{C}$ defined by $g(t) = (\lambda - t)^{-1}$ is continuous, so the multiplication operator $G : H \to H$ associated to g is bounded. As we clearly have that $(\lambda I - M)G = G(\lambda I - M) = I_H$, we get that $\lambda \notin \operatorname{sp}_{\mathcal{A}}(M)$. This shows that the inclusion above holds.

To show the reverse inclusion, let $\lambda \in [0, 1]$. We will show that there exists a sequence $\{\xi_n\}$ of *unit* vectors in H such that

$$\|(\lambda I_H - M)\xi_n\|_2 \to 0 \quad \text{as } n \to \infty$$

This will imply that $\lambda \in \operatorname{sp}_{\mathcal{A}}(M)$, because, otherwise, we would get that

$$1 = \|\xi_n\|_2 = \|(\lambda I_H - M)^{-1}(\lambda I_H - M)\xi_n\|_2 \le \|(\lambda I_H - M)^{-1}\| \|(\lambda I_H - M)\xi_n\|_2 \longrightarrow 0 \quad \text{as } n \to \infty,$$

giving a contradiction.

Assume first that $0 < \lambda < 1$ and choose $N \in \mathbb{N}$ such that $[\lambda, \lambda + 1/N] \subseteq [0, 1]$. For each $n \ge N$, define $\xi_n : [0, 1] \to \mathbb{C}$ by $\xi_n = n^{1/2} \mathbf{1}_{[\lambda, \lambda + 1/n]}$. Then for each $n \ge N$ we have $\|\xi_n\|_2 = 1$ and

$$\|(\lambda I_H - M)\xi_n\|_2^2 = \frac{1}{n} \int_{\lambda}^{\lambda + 1/n} (\lambda - t)^2 dt = n \left[\frac{1}{3}(t - \lambda)^3\right]_{t=\lambda}^{t=\lambda + 1/n} = \frac{1}{3n^2} \longrightarrow 0 \quad \text{as } n \to \infty.$$

We can clearly proceed similarly when $\lambda = 1$ by considering $\xi_n = n^{1/2} \mathbf{1}_{[\lambda - 1/n, \lambda]}$. Thus, in both cases, we can conclude that $\lambda \in \operatorname{sp}_{\mathcal{A}}(M)$.

This shows that $[0,1] \subseteq \operatorname{sp}_{\mathcal{A}}(M)$. Altogether, the desired equality follows.

The operator M has no eigenvalues:

Assume $\lambda \in \mathbb{C}$ satisfies that $M\xi = \lambda\xi$ for some $\xi \in H$. Then we have that $t\xi(t) = \lambda\xi(t)$ for almost all $t \in [0, 1]$, i.e., for all t belonging to some Borel set $A \subseteq [0, 1]$ satisfying that $\mu(A) = 1$. This implies that $\xi(t) = 0$ for every $t \in A \setminus \{\lambda\}$. Since $\mu(A \setminus \{\lambda\}) = 1$, this means that $\xi = 0$ (μ -almost everywhere). This shows that no $\lambda \in \mathbb{C}$ can be an eigenvalue of M.

Exercise 35

Let S be a nonempty set and consider the unital Banach algebra $\mathcal{A} = \ell^{\infty}(S)$. Let $f \in \mathcal{A}$.

Then
$$\operatorname{sp}_{\mathcal{A}}(f) = \overline{f(S)}$$
:

We show below that this assertion holds when Ω is a topological space and $\mathcal{A} = C_b(\Omega)$ (= all bounded continuous complex functions on Ω) is equipped with the uniform norm $\|\cdot\|_{\infty}$. (If S is a set, we can consider it as a topological space w.r.t. the discrete topology, and we then have $\ell^{\infty}(S) = C_b(S)$).

If $\lambda = f(\omega)$ for some $\omega \in \Omega$, then $(\lambda 1_{\Omega} - f)(\omega) = 0$, so $\lambda 1_{\Omega} - f \notin \operatorname{GL}(\mathcal{A})$, i.e., $\lambda \in \operatorname{sp}_{\mathcal{A}}(f)$. This shows that $f(\Omega) \subseteq \operatorname{sp}_{\mathcal{A}}(f)$. Since $\operatorname{sp}_{\mathcal{A}}(f)$ is closed in \mathbb{C} , we get that $\overline{f(\Omega)} \subseteq \operatorname{sp}_{\mathcal{A}}(f)$.

On the other hand, assume $\lambda \in \mathbb{C} \setminus \overline{f(\Omega)}$. Since $K := \overline{f(\Omega)}$ is closed, we have that $d := \inf |\lambda - z| : z \in K > 0$.

Define $g: \Omega \to \mathbb{C}$ by $g(\omega) = (\lambda - f(\omega))^{-1}$. Then

$$||g||_{\infty} = \sup\{|\lambda - f(\omega)|^{-1} : \omega \in \Omega\} \le \sup\{|\lambda - z|^{-1} : z \in K\} = d^{-1} < \infty,$$

so $g \in \mathcal{A}$. Moreover, it is then clear that g is the inverse of $\lambda 1_{\Omega} - f$ in \mathcal{A} , i.e., $\lambda \notin \operatorname{sp}_{\mathcal{A}}(f)$. This shows that $\operatorname{sp}_{\mathcal{A}}(f) \subseteq \overline{f(\Omega)}$.

Altogether, we get that $\operatorname{sp}_{\mathcal{A}}(f) = \overline{f(\Omega)}$, as desired.