MAT4450-Spring 2024-Solutions of exercises - Set 8

Exercise 32

Consider the commutative Banach algebra $\mathcal{A}=C(\Omega, \mathbb{F})$, where Ω is a compact Hausdorff space. Let $\omega_{0} \in \Omega$ and define $\varphi: \mathcal{A} \rightarrow \mathbb{F}$ by $\varphi(f)=f\left(\omega_{0}\right)$ for $f \in \mathcal{A}$.
a) Then φ is a continuous algebra-homomorphism from \mathcal{A} into \mathbb{F} (considered as a Banach algebra) satisfying $\|\varphi\|=1$:
It is clear that φ is linear. It is also multiplicative. Indeed, let $f, g \in \mathcal{A}$. Then

$$
\varphi(f g)=(f g)\left(\omega_{0}\right)=f\left(\omega_{0}\right) g\left(\omega_{0}\right)=\varphi(f) \varphi(g) .
$$

Thus, φ is an algebra-homomorphism. Moreover, φ is continuous (= bounded), with $\|\varphi\| \leq 1$, since $\mid \varphi(f)]=\left|f\left(\omega_{0}\right)\right| \leq\|f\|_{\infty}$ for all $f \in \mathcal{A}$. As $\left\|1_{\Omega}\right\|_{\infty}=1$ and $\left|\varphi\left(1_{\Omega}\right)\right|=1_{\Omega}\left(\omega_{0}\right)=1$, we get that $\|\varphi\|=1$.
b) Consider the closed ideal of \mathcal{A} given by $\mathcal{J}=\operatorname{ker}(\varphi)$. Then the Banach algebra $\mathcal{A} / \mathcal{J}$ is isometrically isomorphic to \mathbb{F} :
Since the range of φ is \mathbb{F}, we get that the map $\widetilde{\varphi}: \mathcal{A} / \mathcal{J} \rightarrow \mathbb{F}$ given by $\widetilde{\varphi}(f+\mathcal{J})=\varphi(f)$ for each $f \in \mathcal{A}$ is a bounded algebra-isomorphism (with $\|\widetilde{\varphi}\|=\|\varphi\|=1$).
Let $f \in \mathcal{A}$. To show that $\widetilde{\varphi}$ is isometric, we have to show that $|\widetilde{\varphi}(f+\mathcal{J})|=\|f+\mathcal{J}\|$. Since $|\widetilde{\varphi}(f+\mathcal{J})|=|\varphi(f)|=\left|f\left(\omega_{0}\right)\right|$ and $\|f+\mathcal{J}\|=\inf \left\{\|f-g\|_{\infty}: g \in \mathcal{J}\right\}$, we have to show that

$$
\left|f\left(\omega_{0}\right)\right|=\inf \left\{\|f-g\|_{\infty}: g \in \mathcal{J}\right\} .
$$

Since $\mathcal{J}=\left\{g \in \mathcal{A} \mid g\left(\omega_{0}\right)=0\right\}$, we have that

$$
\left|f\left(\omega_{0}\right)\right|=\left|(f-g)\left(\omega_{0}\right)\right| \leq\|f-g\|_{\infty} \quad \text { for all } g \in \mathcal{J},
$$

Hence, $\left|f\left(\omega_{0}\right)\right|$ is a lower bound of $\left\{\|f-g\|_{\infty}: g \in \mathcal{J}\right\}$.
Let now $\varepsilon>0$. Since f is continuous at ω_{0}, we can find an open neighborhood U of ω_{0} such that $\left|f(\omega)-f\left(\omega_{0}\right)\right|<\varepsilon$ for all $\omega \in U$. This gives that

$$
\left||f(\omega)|-\left|f\left(\omega_{0}\right)\right|\right| \leq\left|f(\omega)-f\left(\omega_{0}\right)\right|<\varepsilon \quad \text { for all } \omega \in U,
$$

hence that $|f(\omega)|<\left|f\left(\omega_{0}\right)\right|+\varepsilon$ for all $\omega \in U$.
Set $E:=\Omega \backslash U$. Then E and $\left\{\omega_{0}\right\}$ are disjoint closed subsets of Ω, so, by Urysohn's lemma, we can find $h \in \mathcal{A}$ such that $0 \leq h \leq 1, h=1$ on E, and $h\left(\omega_{0}\right)=0$.

Set $k:=f h$. Then $k \in \mathcal{J}, f-k=0$ on E, and

$$
|(f-k)(\omega)|=|f(\omega)|(1-h(\omega)) \leq|f(\omega)|<\left|f\left(\omega_{0}\right)\right|+\varepsilon \quad \text { for all } \omega \in U .
$$

Thus we get that

$$
\|f-k\|_{\infty} \leq\left|f\left(\omega_{0}\right)\right|+\varepsilon .
$$

Since $k \in \mathcal{J}$, it follows that $\left|f\left(\omega_{0}\right)\right|$ is the greatest lower bound of $\left\{\|f-g\|_{\infty}: g \in \mathcal{J}\right\}$, as desired.

Exercise 33

Let \mathcal{A} be a non-unital Banach algebra over \mathbb{F}. Set $\widetilde{\mathcal{A}}=\{(a, \alpha) \mid a \in \mathcal{A}, \alpha \in \mathbb{F}\}$ and define addition, multiplication by scalars and product by

$$
\begin{aligned}
(a, \alpha)+(b, \beta) & =(a+b, \alpha+\beta) \\
\lambda(a, \alpha) & =(\lambda a, \lambda \alpha) \\
(a, \alpha)(a, \beta) & =(a b+\alpha b+\beta a, \alpha \beta)
\end{aligned}
$$

for $(a, \alpha),(b, \beta) \in \widetilde{\mathcal{A}}$ and $\lambda \in \mathbb{F}$. As you can check for yourself, $\widetilde{\mathcal{A}}$ becomes a unital algebra with unit $e:=(0,1)$, and that the $\operatorname{map}(a, \alpha) \mapsto \alpha$ is an algebra-homomorphism from $\widetilde{\mathcal{A}}$ into \mathbb{F}, with kernel equal to $\mathcal{A}_{0}:=\{(a, 0) \mid a \in \mathcal{A}\}$.
We identify \mathcal{A} with the ideal \mathcal{A}_{0} and write $a+\alpha e$ instead of (a, α).
For $a+\alpha \tilde{e} \in \widetilde{\mathcal{A}}$, set $\|a+\alpha e\|:=\|a\|+|\alpha|$.
Then $\widetilde{\mathcal{A}}$ is a unital Banach algebra w.r.t. $\|\cdot\|$, which contains \mathcal{A} as a closed ideal:
Let $a+\alpha e, b+\beta e \in \widetilde{\mathcal{A}}$ and $\lambda \in \mathbb{C}$. Then $\|a+\alpha e\|=\|a\|+|\alpha| \geq 0$,

$$
\begin{aligned}
& \|\lambda(a+\alpha e)\|=\|\lambda a+\lambda \alpha e\|
\end{aligned} \begin{aligned}
&\|a+\alpha e\|=0 \Leftrightarrow\|a\|+|\lambda \alpha|=|\lambda|(\|a\|+|\alpha|)=|\lambda|\|a+\alpha e\| \\
&\|(a+\alpha e)+(b+\beta e)\|=\| a \\
& \leq \| a n d \\
& \leq \| \alpha \mid=0 \Leftrightarrow a=0 \text { and } \alpha=0 \Leftrightarrow a+\alpha e=0 \\
&=\|a+\alpha e\|+\|b+\beta e\|, \\
& \begin{aligned}
\|(a+\alpha e)(b+\beta e)\| & =\|a b+\alpha b+\beta a+\alpha \beta e\| \\
& =\|a b+\alpha b+\beta a\|+|\alpha \beta| \\
& \leq\|a b\|+\|\alpha b\|+\|\beta a\|+|\alpha \| \beta| \\
& \leq\|a\|\|b\|+|\alpha|\|b\|+|\beta|\|a\|+|\alpha \| \beta| \\
& =(\|a\|+|\alpha|)(\|b\|+|\beta|) \\
& =\|a+\alpha e\|\|b+\beta e\| .
\end{aligned}
\end{aligned}
$$

This shows that $\|\cdot\|$ is a norm on $\widetilde{\mathcal{A}}$ which is submultiplicative, i.e., $\widetilde{\mathcal{A}}$ is a normed algebra. Further, $(\mathcal{A},\|\cdot\|)$ is complete. Indeed, let $\left\{a_{n}+\alpha_{n} e\right\}$ be a Cauchy sequence in $\widetilde{\mathcal{A}}$. As

$$
\left\|\left(a_{n}+\alpha_{n} e\right)-\left(a_{m}+\alpha_{m} e\right)\right\|=\left\|a_{n}-a_{m}\right\|+\left|\alpha_{n}-\alpha_{m}\right|
$$

for all $n, m \in \mathbb{N}$, we see that $\left\{a_{n}\right\}$ and $\left\{\alpha_{n}\right\}$ are both Cauchy sequences, in \mathcal{A} and in \mathbb{F}, respectively. So there exist $a \in \mathcal{A}$ and $\alpha \in \mathbb{F}$ such that $a_{n} \rightarrow a$ and $\alpha_{n} \rightarrow \alpha$ as $n \rightarrow \infty$, and it follows then readily that $a_{n}+\alpha_{n} e \rightarrow a+\alpha e$ as $n \rightarrow \infty$. This shows that $\widetilde{\mathcal{A}}$ is complete as a normed space, hence that $\widetilde{\mathcal{A}}$ is a Banach algebra.
As the map $A+\alpha e \mapsto \alpha$ clearly gives a bounded algebra-homomorphism π from $\widetilde{\mathcal{A}}$ into \mathbb{F}, having \mathcal{A} as its kernel, we get that \mathcal{A} is closed ideal of $\widetilde{\mathcal{A}}$.
Moreover, the quotient $\widetilde{\mathcal{A}} / \mathcal{A}$ is isometrically isomorphic to \mathbb{F} :
Let $\pi: \widetilde{\mathcal{A}} \rightarrow \mathbb{F}$ be the algebra-homomorphism given by $\pi(a+\alpha e):=\alpha$. Since the range of π is \mathbb{F}, we get that the map $\widetilde{\pi}: \widetilde{\mathcal{A}} / \mathcal{A} \rightarrow \mathbb{F}$ given by

$$
\widetilde{\pi}((a+\alpha e)+\mathcal{A})):=\pi(a+\alpha e)=\alpha
$$

is an algebra-isomorphism. For each $a+\alpha e \in \widetilde{\mathcal{A}}$, we have that
$\|(a+\alpha e)+\mathcal{A}\|=\inf \{\|a+\alpha e-b\|: b \in \mathcal{A}\}=\inf \{\|a-b\|+|\alpha|: b \in \mathcal{A}\}=|\alpha|=\| \widetilde{\pi}((a+\alpha e)+\mathcal{A})) \|$,
so $\widetilde{\pi}$ is isometric.

From now on, a unital Banach algebra \mathcal{A} will always mean a (complex) Banach algebra having a unit $1_{\mathcal{A}}$ which satisfies that $\left\|1_{\mathcal{A}}\right\|=1$.

Exercise 34

Let \mathcal{A} be a unital Banach algebra.
a) Let $a \in \operatorname{GL}(\mathcal{A})$ and note that $0 \notin \operatorname{sp}_{\mathcal{A}}(a)$. We have that $\operatorname{sp}_{\mathcal{A}}\left(a^{-1}\right)=\left\{\lambda^{-1} \mid \lambda \in \operatorname{sp}_{\mathcal{A}}(a)\right\}$:

Let $\lambda \in \mathbb{C} \backslash\{0\}$. Since $\lambda^{-1} I-a^{-1}=-\lambda^{-1} a^{-1}(\lambda I-a)$, and $\lambda^{-1} a^{-1} \in \operatorname{GL}(\mathcal{A})$, we get that

$$
\lambda \in \operatorname{sp}_{\mathcal{A}}(a) \Leftrightarrow \lambda^{-1} \in \operatorname{sp}_{\mathcal{A}}\left(a^{-1}\right)
$$

This implies that

$$
\left\{\lambda^{-1} \mid \lambda \in \operatorname{sp}_{\mathcal{A}}(a)\right\} \subseteq \operatorname{sp}_{\mathcal{A}}\left(a^{-1}\right)
$$

On the other hand, let $\mu \in \operatorname{sp}_{\mathcal{A}}\left(a^{-1}\right)$. Then $\mu \neq 0$, and with $\lambda:=\mu^{-1}$, we have that $\lambda^{-1}=\mu \in \operatorname{sp}_{\mathcal{A}}\left(a^{-1}\right)$. As pointed out above, this implies that $\lambda \in \operatorname{sp}_{\mathcal{A}}(a)$. Thus, $\mu=\lambda^{-1}$ for some $\lambda \in \operatorname{sp}_{\mathcal{A}}(a)$, which shows that the reverse inclusion also holds.
b) Let \mathcal{B} be unital Banach algebra and assume that $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is an algebra-isomorphism such that $\phi\left(1_{\mathcal{A}}\right)=\phi\left(1_{\mathcal{B}}\right)$.
Then we have that $\operatorname{sp}_{\mathcal{A}}(a)=\operatorname{sp}_{\mathcal{B}}(\phi(a))$ for all $a \in \mathcal{A}$:
Let $a \in \mathcal{A}$. Since $\phi\left(1_{\mathcal{A}}\right)=1_{\mathcal{B}}$, it follows readily that if $a^{\prime} \in \mathcal{A}$, then $a^{\prime} \in \mathrm{GL}(\mathcal{A}) \Leftrightarrow \phi\left(a^{\prime}\right) \in \mathrm{GL}(\mathcal{B})$. So for $\lambda \in \mathbb{C}$ we get that
$\lambda \in \operatorname{sp}_{\mathcal{A}}(a) \Leftrightarrow \lambda 1_{\mathcal{A}}-a \notin \mathrm{GL}(\mathcal{A}) \Leftrightarrow \phi\left(\lambda 1_{\mathcal{A}}-a\right) \notin \mathrm{GL}(\mathcal{B}) \Leftrightarrow \lambda 1_{\mathcal{B}}-\phi(a) \notin \mathrm{GL}(\mathcal{B}) \Leftrightarrow \lambda \in \operatorname{sp}_{\mathcal{B}}(\phi(a))$,
which shows the assertion.
Note that we don't need to assume that $\phi\left(1_{\mathcal{A}}\right)=1_{\mathcal{B}}$, because thi is automatically satisfied for any algebra-isomorphism $\phi: \mathcal{A} \rightarrow \mathcal{B}$. Indeed, $\phi\left(1_{\mathcal{A}}\right)$ is then a unit for $\phi(\mathcal{A})=\mathcal{B}$, so it must be equal to $1_{\mathcal{B}}$, by uniqueness of the unit in \mathcal{B}.

Exercise 34

Consider the complex Hilbert space $H=L^{2}\left([0,1], \mathcal{B}_{[0,1]}, \mu\right)$, where μ denotes the Lebesgue measure on the Borel σ-algebraen $\mathcal{B}_{[0,1]}$.
Set $\mathcal{A}:=\mathcal{B}(H)$, and let $M \in \mathcal{A}$ denote the multiplication operator given by

$$
[M(g)](t)=t g(t) \quad \text { for all } g \in H \text { and } t \in[0,1]
$$

Then $\operatorname{sp}_{\mathcal{A}}(M)=[0,1]$:
We first show that $\operatorname{sp}_{\mathcal{A}}(M) \subseteq[0,1]$:
Let $\lambda \in \mathbb{C} \backslash[0,1]$. Then the function $g:[0,1] \rightarrow \mathbb{C}$ defined by $g(t)=(\lambda-t)^{-1}$ is continuous, so the multiplication operator $G: H \rightarrow H$ associated to g is bounded. As we clearly have that $(\lambda I-M) G=G(\lambda I-M)=I_{H}$, we get that $\lambda \notin \operatorname{sp}_{\mathcal{A}}(M)$. This shows that the inclusion above holds.

To show the reverse inclusion, let $\lambda \in[0,1]$. We will show that there exists a sequence $\left\{\xi_{n}\right\}$ of unit vectors in H such that

$$
\left\|\left(\lambda I_{H}-M\right) \xi_{n}\right\|_{2} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

This will imply that $\lambda \in \operatorname{sp}_{\mathcal{A}}(M)$, because, otherwise, we would get that
$1=\left\|\xi_{n}\right\|_{2}=\left\|\left(\lambda I_{H}-M\right)^{-1}\left(\lambda I_{H}-M\right) \xi_{n}\right\|_{2} \leq\left\|\left(\lambda I_{H}-M\right)^{-1}\right\|\left\|\left(\lambda I_{H}-M\right) \xi_{n}\right\|_{2} \longrightarrow 0 \quad$ as $n \rightarrow \infty$, giving a contradiction.

Assume first that $0<\lambda<1$ and choose $N \in \mathbb{N}$ such that $[\lambda, \lambda+1 / N] \subseteq[0,1]$. For each $n \geq N$, define $\xi_{n}:[0,1] \rightarrow \mathbb{C}$ by $\xi_{n}=n^{1 / 2} \mathbf{1}_{[\lambda, \lambda+1 / n]}$. Then for each $n \geq N$ we have $\left\|\xi_{n}\right\|_{2}=1$ and

$$
\left\|\left(\lambda I_{H}-M\right) \xi_{n}\right\|_{2}^{2}=\frac{1}{n} \int_{\lambda}^{\lambda+1 / n}(\lambda-t)^{2} d t=n\left[\frac{1}{3}(t-\lambda)^{3}\right]_{t=\lambda}^{t=\lambda+1 / n}=\frac{1}{3 n^{2}} \longrightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

We can clearly proceed similarly when $\lambda=1$ by considering $\xi_{n}=n^{1 / 2} \mathbf{1}_{[\lambda-1 / n, \lambda]}$. Thus, in both cases, we can conclude that $\lambda \in \operatorname{sp}_{\mathcal{A}}(M)$.

This shows that $[0,1] \subseteq \operatorname{sp}_{\mathcal{A}}(M)$. Altogether, the desired equality follows.
The operator M has no eigenvalues:
Assume $\lambda \in \mathbb{C}$ satisfies that $M \xi=\lambda \xi$ for some $\xi \in H$. Then we have that $t \xi(t)=\lambda \xi(t)$ for almost all $t \in[0,1]$, i.e., for all t belonging to some Borel set $A \subseteq[0,1]$ satisfying that $\mu(A)=1$. This implies that $\xi(t)=0$ for every $t \in A \backslash\{\lambda\}$. Since $\mu(A \backslash\{\lambda\})=1$, this means that $\xi=0$ (μ-almost everywhere). This shows that no $\lambda \in \mathbb{C}$ can be an eigenvalue of M.

Exercise 35

Let S be a nonempty set and consider the unital Banach algebra $\mathcal{A}=\ell^{\infty}(S)$. Let $f \in \mathcal{A}$.
Then $\operatorname{sp}_{\mathcal{A}}(f)=\overline{f(S)}$:
We show below that this assertion holds when Ω is a topological space and $\mathcal{A}=C_{b}(\Omega)(=$ all bounded continuous complex functions on Ω) is equipped with the uniform norm $\|\cdot\|_{\infty}$. (If S is a set, we can consider it as a topological space w.r.t. the discrete topology, and we then have $\left.\ell^{\infty}(S)=C_{b}(S)\right)$.
If $\lambda=f(\omega)$ for some $\omega \in \Omega$, then $\left(\lambda 1_{\Omega}-f\right)(\omega)=0$, so $\lambda 1_{\Omega}-f \notin \mathrm{GL}(\mathcal{A})$, i.e., $\lambda \in \operatorname{sp}_{\mathcal{A}}(f)$.
This shows that $f(\Omega) \subseteq \operatorname{sp}_{\mathcal{A}}(f)$. Since $\mathrm{sp}_{\mathcal{A}}(f)$ is closed in \mathbb{C}, we get that $\overline{f(\Omega)} \subseteq \operatorname{sp}_{\mathcal{A}}(f)$.
On the other hand, assume $\lambda \in \mathbb{C} \backslash \overline{f(\Omega)}$. Since $K:=\overline{f(\Omega)}$ is closed, we have that $d:=\inf |\lambda-z|: z \in K>0$.
Define $g: \Omega \rightarrow \mathbb{C}$ by $g(\omega)=(\lambda-f(\omega))^{-1}$. Then

$$
\|g\|_{\infty}=\sup \left\{|\lambda-f(\omega)|^{-1}: \omega \in \Omega\right\} \leq \sup \left\{|\lambda-z|^{-1}: z \in K\right\}=d^{-1}<\infty,
$$

so $g \in \mathcal{A}$. Moreover, it is then clear that g is the inverse of $\lambda 1_{\Omega}-f$ in \mathcal{A}, i.e., $\lambda \notin \operatorname{sp}_{\mathcal{A}}(f)$. This shows that $\mathrm{sp}_{\mathcal{A}}(f) \subseteq \overline{f(\Omega)}$.
Altogether, we get that $\mathrm{sp}_{\mathcal{A}}(f)=\overline{f(\Omega)}$, as desired.

