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Exercise 32

Consider the commutative Banach algebra A = C(Q,F), where Q is a compact Hausdorff space.
Let wg € Q and define p : A —TF by o(f) = f(wo) for f € A.
a) Then ¢ is a continuous algebra-homomorphism from A into F (considered as a Banach

algebra) satisfying ||¢|| = 1:
It is clear that ¢ is linear. It is also multiplicative. Indeed, let f,g € A. Then

p(fg) = (f9)(wo) = f(wo) g(wo) = (f)e(g)-

Thus, ¢ is an algebra-homomorphism. Moreover, ¢ is continuous (= bounded), with [|¢]|| < 1,
since |[o(f)] = | f(wo)| < || flloo for all f € A. As ||1a|lec = 1 and |¢(1q)| = 1la(wo) = 1, we get that
el = 1.

b) Consider the closed ideal of A given by J = ker(p). Then the Banach algebra A/J is

isometrically isomorphic to F:

Since the range of ¢ is F, we get that the map ¢ : A/J — F given by o(f + J) = ¢(f) for each
f € Ais a bounded algebra-isomorphism (with ||@] = [|¢] = 1).

Let f € A. To show that @ is isometric, we have to show that |p(f + J)| = ||f + J||. Since
[o(f + TN = le(f)] = [f(wo)| and [|f + T || = inf{[[f — glloc : g € T}, we have to show that

|[f(wo)| = nf{|[f —glloc : g € T}

Since J = {g € A| g(wo) = 0}, we have that

[f(wo)| = |(f = g)(wo)| < |[f = gllo forallgeJ,

Hence, |f(wo)| is a lower bound of {||f — ¢g|lcc : g € T}
Let now € > 0. Since f is continuous at wg, we can find an open neighborhood U of wy such
that |f(w) — f(wo)| < € for all w € U. This gives that

[f (@) = [f(wo)l| < [f(w) = flwo)| <& forallweUl,

hence that | f(w)| < |f(wo)| + ¢ for all w € U.

Set £ :=Q\ U. Then E and {wp} are disjoint closed subsets of 2, so, by Urysohn’s lemma, we
can find h € A such that 0 < h <1, h=1on E, and h(wp) = 0.

Set k:= fh. Then ke J, f —k=0on E, and

[(f = F) (W) = [f(W)[(1 = h(w)) < |f()] <|f(w)|+& forallwel.

Thus we get that
If = Klloo < [f(wo)| +&.

Since k € J, it follows that |f(wp)| is the greatest lower bound of {||f — ¢g||cc : ¢ € T}, as desired.



Exercise 33

Let A be a non-unital Banach algebra over F. Set A = {(a,a) | a € A, € F} and define
addition, multiplication by scalars and product by

(a,a) + (b,8) = (a+b,a+ B),
A(a, ) = (Aa, \a),
(a,a)(a, B) = (ab + ab + Ba,af)

for (a,a), (b,B) € A and \ € F. As you can check for yourself, A becomes a unital algebra with
unit e := (0, 1), and that the map (a, @) — « is an algebra-homomorphism from A into F, with
kernel equal to Ap := {(a,0) | a € A}.

We identify A with the ideal A4y and write a + « e instead of (a, @).
For a + aé € A, set |la+ ael|| := |jal| + |a].
Then A is a unital Banach algebra w.r.t. || - ||, which contains A as a closed ideal:

Let a + ae,b+ Be € A and A € C. Then ||la + ael| = ||a]| + |a| > 0,
[Ma + ae)|| = [[Aa + dae| = [[Aal| + |Aa| = [Al([[a] + |af) = [Allla + ael],

la+ae|| =0 < |ja|| =0and |o| =0 & a=0and a=0 < a+ae=0,

(@ +ae) + (b+ Be)|| = lla+b+ (a+ Bel| = [la+ bl +|a+ f]
< lall + [l + laf + 8] = (lall + [al) + (ol + 181)
= [la + ael| + [|b + Bell;

(a4 ae)(b+ Be)| = ||ab+ ab+ Ba + afbe||
= |lab+ ab+ Ba|| + |af]
< llabl| + [[ad]| + [|Bal| + [al|B]
< llalllioll + lal [|oll + |B[llall + | 5]
= (lall + | (lloll + [B])
= [la + ael|[|b+ Be].

This shows that | - || is a norm on A which is submultiplicative, i.c., A is a normed algebra.
Further, (A, || - ||) is complete. Indeed, let {a,, + a,e} be a Cauchy sequence in A. As

|| (an + ane) — (am + ame)|| = |lan — am|| + |an — amn

for all n,m € N, we see that {a,} and {a,} are both Cauchy sequences, in A and in F,
respectively. So there exist a € A and « € F such that a,, = a and a, — « as n — oo, and it
follows then readily that a,, + ape — a + ae as n — oo. This shows that A is complete as a
normed space, hence that A is a Banach algebra.

As the map A + ae — « clearly gives a bounded algebra-homomorphism 7 from A into F, having
A as its kernel, we get that A is closed ideal of A.

Moreover, the quotient fT/A is isometrically isomorphic to IF:

Let 7 : A — F be the algebra-homomorphism given by 7(a + ae) := a. Since the range of 7 is F,
we get that the map 7 : A/ A — F given by

T((a+ ae) + A)) :=7(a+ ae) =«



is an algebra-isomorphism. For each a + ae € .Z, we have that
l(a+ae)+ Al = inf{|la+ae—0b| : be A} =inf{|la—b||+]|a|:be€ A} = |a] = [|[T((a+ae)+.A))],

so T is isometric.

From now on, a unital Banach algebra A will always mean a (complex) Banach algebra having a
unit 14 which satisfies that ||1 4] = 1.

Exercise 34

Let A be a unital Banach algebra.

a) Let a € GL(A) and note that 0 & sp4(a). We have that sp(a™') = {A\71 | X € sp4(a) }:
Let A € C\ {0}. Since \™'T —a~! = —A"1a (A — a), and A\"ta~! € GL(A), we get that

AeEspyla) & X espyla™)

This implies that
{A A espala)} € spala™),

On the other hand, let u € sp 4(a™1). Then pu # 0, and with \ := p~!, we have that
A=y espy(at). As pointed out above, this implies that A € sp 4(a). Thus, p = A~! for some
A € sp 4(a), which shows that the reverse inclusion also holds.

b) Let B be unital Banach algebra and assume that ¢ : A — B is an algebra-isomorphism such
that ¢(14) = 6(1s).
Then we have that sp 4(a) = spg(¢P(a)) for all a € A:

Let a € A. Since ¢(14) = 1p, it follows readily that if ’ € A, then o’ € GL(A) < ¢(a’) € GL(B).
So for A € C we get that

Aespyla) & Ag—a g GL(A) & ¢(Ala —a) € GL(B) & A\ — ¢(a) € GL(B) < X € spg(¢d(a)),

which shows the assertion.

Note that we don’t need to assume that ¢(14) = 15, because thi is automatically satisfied for any
algebra-isomorphism ¢ : A — B. Indeed, ¢(14) is then a unit for ¢(A) = B, so it must be equal to
15, by uniqueness of the unit in B.

Exercise 34
Consider the complex Hilbert space H = L*([0, 1], Bio 1), 1), where p denotes the Lebesgue
measure on the Borel o-algebraen B ;).

Set A:= B(H), and let M € A denote the multiplication operator given by

[M(g)](t) =tg(t) forallge H andt € [0,1].

Then sp 4(M) = [0, 1]:
We first show that sp 4(M) C [0, 1]:

Let A € C\ [0,1]. Then the function g : [0, 1] — C defined by g(t) = (A —t)~! is continuous, so the
multiplication operator G : H — H associated to g is bounded. As we clearly have that

(M —M)G =G\ — M) = Iy, we get that A\ & sp 4(M). This shows that the inclusion above
holds.



To show the reverse inclusion, let A € [0,1]. We will show that there exists a sequence {&,} of unit
vectors in H such that
(Mg — M)Eplla — 0 as n — oo.

This will imply that A € sp4(M), because, otherwise, we would get that
L= &ullz = [[(Mu = M) (M = M)&ul2 < [|(Ma = M)7H|(Ma = M)&all2 — 0 as n — oo,

giving a contradiction.
Assume first that 0 < A < 1 and choose N € N such that [\, A+ 1/N] C [0, 1]. For each n > N,
define &, : [0,1] = C by &, = n2 1}, y;1/,. Then for each n > N we have [|¢, ]2 = 1 and

1 [A1l/n 1 t=A+1/n 1
2 _ 2 _ 3 _
H(MH—M)gn\Q_nA (A — 1) dt_n[g(t—A)]t:A =23 —0 asn— oo

We can clearly proceed similarly when A = 1 by considering &, = nl/2 1{x—1/n,»- Thus, in both
cases, we can conclude that A € sp 4(M).

This shows that [0, 1] C sp 4(M). Altogether, the desired equality follows.

The operator M has no eigenvalues:

Assume \ € C satisfies that ME = A for some £ € H. Then we have that t£(t) = A{(¢) for almost
all t € [0, 1], i.e., for all ¢ belonging to some Borel set A C [0, 1] satisfying that u(A) = 1. This
implies that £(t) = 0 for every t € A\ {A}. Since u(A\ {A}) = 1, this means that £ = 0 (u-almost
everywhere). This shows that no A € C can be an eigenvalue of M.

Exercise 35
Let S be a nonempty set and consider the unital Banach algebra A = £>*(S). Let f € A.

Then spa(f) = f(S):

We show below that this assertion holds when (2 is a topological space and A = Cp(Q2) (= all
bounded continuous complex functions on ) is equipped with the uniform norm || - |-

(If S is a set, we can consider it as a topological space w.r.t. the discrete topology, and we then
have £>°(S) = C(9)).

If A= f(w) for some w € Q, then (A1q — f)(w) =0, so Alg — f & GL(A), i.e., A € sp4(f).
This shows that f(€2) C sp4(f). Since sp 4(f) is closed in C, we get that f(£2) C sp4(f).

On the other hand, assume A € C\ f(€). Since K := f(2) is closed, we have that
d:=inf[]A\—z|:z2€ K >0.

Define g : 2 — C by g(w) = (A — f(w))~!. Then

lg]lco = sup{|X — f(w)|_1 tw € Q) <sup{|\— z|_1 ze K} = d~! < o,

so g € A. Moreover, it is then clear that g is the inverse of A1 — f in A, i.e., A & sp4(f). This
shows that sp 4(f) C f(2).

Altogether, we get that sp 4(f) = f(€2), as desired.



