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Exercise 37 [= Exercise 4.1.3 in Pedersen’s book]

Let a and b be elements in a complex, unital Banach algebra A. Then we have that
sp(ab) \ {0} = sp(ba) \ {0}.
Let A € sp(ab) \ {0}. Set c:= A" (14 + b(Al4 —ab)~ta) € A. Then

(Mg —ba)e = (Mg —ba)A" (14 + b(Al4 — ab) " ta)
=14 +bMN 4 —ab)ta—A"ba — A Tbab(AM 4 — ab) " la

Now

ab(ALa —ab) ™' = (A4 — (Ala —ab))(Al4 —ab)™!
=AAlg—ab) -1y

Hence
(Alg —ba)e=14+b(Al4—ab) 'a— A"ba — A'0(A(A1la —ab) ™' — 14)a
=14 +bANy—ab)ta—A"tba —b(A 4 —ab) o+ \"tba
Similarly, we get that ¢(A14 — ba) = 14. Thus, A1 4 — ba € GL(A), i.e., A € sp(ba) \ {0}.

This shows that sp(ab) \ {0} C sp(ba) \ {0}. By symmetry, the reverse inclusion also holds, so the
desired equality follows.

Exercise 38

Let X be a complex Banach space and consider the Banach algebra A := B(X). Let T' € A. The
adjoint operator T* belongs then to the Banach algebra B := B(X*).

We have that spp(T*) = spa(T):
We will first show that
T € GL(B(X)) & T* € GL(B(X™)). (1)

Assume T € GL(B(X)) and set S =T~! € B(X). Then we get that
T*S* = (ST)" = (Ix)* = Ix~,

Similarly, S*T™* = Ix+. Thus, T* € GL(B(X™). This shows the forward implication.

Conversely, assume T € GL(B(X™)). Using what we just have shown to 7%, we get that
T** € GL(B(X**)). Let # — j, denote the canonical isometry from X into X**. Note that for
x € X and ¢ € X*, we have

[T (Ga)l(0) = (Ja 0 T*)(p) = w0 po T = (¢ 0 T)(x) = j1(z)()-

Thus, T**(jz) = jr(s) for every x € X. This shows that if we identify X with its isometric copy
inside X™**, then the restriction of 7** to X is equal to T'. Since T™* is injective, we get that T is
injective.



To show that T is surjective, we first observe that T'(X) is dense in X. Indeed, assume (for
contradiction) that there exists some x € X \ T'(X). By a corollary to the second Hahn-Banach
separation theorem, we can find some 1 € X* such that ¢ (z) # 0 while ¢» = 0 on W We then
have T* (1)) = ¢ o T'= 0, which implies that 1) = 0 since T is invertible in B(X*), giving a
contradiction.

Next, we observe that T'(X) is closed in X. Indeed, let {z,,} be a sequence in X such that

T(z,) — y for some y € X. For any m,n € N, we then have

lzn = zmll = 1T T (@ =z < T IT (20) = T(@m)ll-

Since {T'(zy)} is Cauchy, we get that {z,} i Cauchy. As X is complete, z,, — x for some z € X,
and we then get that y = lim, T'(x,) = T(x), i.e., y € T(X), as desired.

Altogether, we get T'(X) = T(X) = X, i.e., T is surjective. Thus we have shown that T is
bijective. By the open mapping theorem, we get that 7" € GL(B(X)). This finishes the proof that
(1) holds.

Let now A € F. Using (1) we get

A€ spa(T) & (Mx —T) € GL(B(X)) & (Mx — T)* € GL(B(X™))

< My, —T") € GL(B(X™)) < X € spp(T™),
which shows that sp 4(T") = spg(T™).

Note: If H is a complex Hilbert space, T' € B(H), and T* denotes the Hilbert space adjoint of T,
then, using that the adjoint operation is conjugate-linear in this case, a similar, but simpler
argument gives that

sp(T%) = sp(T) = {X | A € sp(T)}.

Exercise 39

Let H denote a nontrivial complex Hilbert space and consider A4 := B(H) as a Banach algebra.
Let B = {e;};es be an orthonormal basis for H and f € £°°(J). Set A; := f(j) € C for each j € J.
Let D € A denote the associated “diagonal” operator satisfying that D(e;) = A;e; for every

j € J. We have seen in a lecture that

spa(D) = {Xj | j € J} = f(J).
It follows that r4(D) = ||D|| = || f]lco:

The fact that || D|| = || f|lco should be known from a previous course (and is easy to show). The
equality r4(D) = || f]loo could be deduced from Exercise 35, but a direct poof goes like this.
Using that sp 4(D) = {)\; | j € J} we get

[flloc = sup{|f()] - 5 € T} = sup{[Aj] : j € J} = sup{|A| : A € sp4(D)} = ra(D) <[ID]| = [ floo;

and the asserted equality follows.

Exercise 40

Consider the Banach algebra A = Ms(C) ~ B(C?). An example of a matriz A € A satisfying that
ra(A) < ||A]l is as follows:

00

SetA:[1 0

]. Then one easily checks that sp(A) = {0} and [|A|| = 1. So we get that

ra(A) =0<1=|A]|.



Exercise 42

Let A denote a complex unital Banach algebra with unit 14 satisfying ||[14|| = 1. Let a € A and
let f be a complex polynomial given by f(z) = > }_, cp" for some cg, ¢, ..., cn € C.

We can then define f(a) € A by f(a) := > j_, cxa®. It follows from a lemma proved in a lecture
that

f(spala)) C spa(f(a)).
We also have that sp4(f(a)) C f(spa(a)), hence that f(sp4(a)) =sp4(f(a)):

If n =0, ie., f(z) = for all z € C, then we have f(a) = co1la, so

f(spala)) = co =sp4(f(a)).
Suppose now that n > 1. We may also suppose that ¢, # 0.

Assume that A € C\ f(sp4(a)). It suffices to show that A € C\ sp4(f(a)).

Consider the polynomial ¢ of order n given by ¢(z) = A — f(z) for all z € C. By the fundamental
theorem of algebra, we may then write ¢(z) = a(a; — 2) - - - (ay, — 2) for some o, aq,...,a, € C
with a # 0. We note that

(x) AMa— f(a) =q(a) =a(alg—a)- - (apla —a).

Let j € {1,...,n}. Since ¢(a;) = 0, we have that f(a;) = A & f(sp4(a)). This implies that

a; € spyla), ie., (ajlg —a) € GL(A). Since GL(A) is a group w.r.t. multiplication, and o # 0,
we obtain that a(a1lg —a) - (aplg —a) € GL(A).

Using (*), we can now conclude that A1 4 — f(a) € GL(A), i.e., A € C\ spy(f(a)), as desired.



