MAT4450-Spring 2024-Solutions of exercises - Set 9

Exercise 37 [= Exercise 4.1.3 in Pedersen's book]
Let a and b be elements in a complex, unital Banach algebra \mathcal{A}. Then we have that

$$
\operatorname{sp}(a b) \backslash\{0\}=\operatorname{sp}(b a) \backslash\{0\}
$$

Let $\lambda \in \operatorname{sp}(a b) \backslash\{0\}$. Set $c:=\lambda^{-1}\left(1_{\mathcal{A}}+b\left(\lambda 1_{\mathcal{A}}-a b\right)^{-1} a\right) \in \mathcal{A}$. Then

$$
\begin{aligned}
\left(\lambda 1_{\mathcal{A}}-b a\right) c & =\left(\lambda 1_{\mathcal{A}}-b a\right) \lambda^{-1}\left(1_{\mathcal{A}}+b\left(\lambda 1_{\mathcal{A}}-a b\right)^{-1} a\right) \\
& =1_{\mathcal{A}}+b\left(\lambda 1_{\mathcal{A}}-a b\right)^{-1} a-\lambda^{-1} b a-\lambda^{-1} b a b\left(\lambda 1_{\mathcal{A}}-a b\right)^{-1} a
\end{aligned}
$$

Now

$$
\begin{aligned}
a b\left(\lambda 1_{\mathcal{A}}-a b\right)^{-1} & =\left(\lambda 1_{\mathcal{A}}-\left(\lambda 1_{\mathcal{A}}-a b\right)\right)\left(\lambda 1_{\mathcal{A}}-a b\right)^{-1} \\
& =\lambda\left(\lambda 1_{\mathcal{A}}-a b\right)^{-1}-1_{\mathcal{A}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\lambda 1_{\mathcal{A}}-b a\right) c & =1_{\mathcal{A}}+b\left(\lambda 1_{\mathcal{A}}-a b\right)^{-1} a-\lambda^{-1} b a-\lambda^{-1} b\left(\lambda\left(\lambda 1_{\mathcal{A}}-a b\right)^{-1}-1_{\mathcal{A}}\right) a \\
& =1_{\mathcal{A}}+b\left(\lambda 1_{\mathcal{A}}-a b\right)^{-1} a-\lambda^{-1} b a-b\left(\lambda 1_{\mathcal{A}}-a b\right)^{-1} a+\lambda^{-1} b a \\
& =1_{\mathcal{A}}
\end{aligned}
$$

Similarly, we get that $c\left(\lambda 1_{\mathcal{A}}-b a\right)=1_{\mathcal{A}}$. Thus, $\lambda 1_{\mathcal{A}}-b a \in \operatorname{GL}(\mathcal{A})$, i.e., $\lambda \in \operatorname{sp}(b a) \backslash\{0\}$.
This shows that $\operatorname{sp}(a b) \backslash\{0\} \subseteq \operatorname{sp}(b a) \backslash\{0\}$. By symmetry, the reverse inclusion also holds, so the desired equality follows.

Exercise 38

Let X be a complex Banach space and consider the Banach algebra $\mathcal{A}:=\mathcal{B}(X)$. Let $T \in \mathcal{A}$. The adjoint operator T^{*} belongs then to the Banach algebra $\mathcal{B}:=\mathcal{B}\left(X^{*}\right)$.
We have that $s p_{\mathcal{B}}\left(T^{*}\right)=s p_{\mathcal{A}}(T)$:
We will first show that

$$
\begin{equation*}
T \in \operatorname{GL}(\mathcal{B}(X)) \Leftrightarrow T^{*} \in \operatorname{GL}\left(\mathcal{B}\left(X^{*}\right)\right) \tag{1}
\end{equation*}
$$

Assume $T \in \operatorname{GL}(\mathcal{B}(X))$ and set $S=T^{-1} \in \mathcal{B}(X)$. Then we get that

$$
T^{*} S^{*}=(S T)^{*}=\left(I_{X}\right)^{*}=I_{X^{*}}
$$

Similarly, $S^{*} T^{*}=I_{X^{*}}$. Thus, $T^{*} \in \operatorname{GL}\left(\mathcal{B}\left(X^{*}\right)\right.$. This shows the forward implication.
Conversely, assume $T^{*} \in \operatorname{GL}\left(\mathcal{B}\left(X^{*}\right)\right)$. Using what we just have shown to T^{*}, we get that $T^{* *} \in \operatorname{GL}\left(\mathcal{B}\left(X^{* *}\right)\right)$. Let $x \rightarrow j_{x}$ denote the canonical isometry from X into $X^{* *}$. Note that for $x \in X$ and $\varphi \in X^{*}$, we have

$$
\left[T^{* *}\left(j_{x}\right)\right](\varphi)=\left(j_{x} \circ T^{*}\right)(\varphi)=j_{x} \circ \varphi \circ T=(\varphi \circ T)(x)=j_{T(x)}(\varphi)
$$

Thus, $T^{* *}\left(j_{x}\right)=j_{T(x)}$ for every $x \in X$. This shows that if we identify X with its isometric copy inside $X^{* *}$, then the restriction of $T^{* *}$ to X is equal to T. Since $T^{* *}$ is injective, we get that T is injective.

To show that T is surjective, we first observe that $T(X)$ is dense in X. Indeed, assume (for contradiction) that there exists some $x \in X \backslash \overline{T(X)}$. By a corollary to the second Hahn-Banach separation theorem, we can find some $\psi \in X^{*}$ such that $\psi(x) \neq 0$ while $\psi=0$ on $\overline{T(X)}$. We then have $T^{*}(\psi)=\psi \circ T=0$, which implies that $\psi=0$ since T^{*} is invertible in $\mathcal{B}\left(X^{*}\right)$, giving a contradiction.
Next, we observe that $T(X)$ is closed in X. Indeed, let $\left\{x_{n}\right\}$ be a sequence in X such that $T\left(x_{n}\right) \rightarrow y$ for some $y \in X$. For any $m, n \in \mathbb{N}$, we then have

$$
\left\|x_{n}-x_{m}\right\|=\left\|\left(T^{* *}\right)^{-1}\left(T\left(x_{n}-x_{m}\right)\right)\right\| \leq\left\|\left(T^{* *}\right)^{-1}\right\|\left\|T\left(x_{n}\right)-T\left(x_{m}\right)\right\|
$$

Since $\left\{T\left(x_{n}\right)\right\}$ is Cauchy, we get that $\left\{x_{n}\right\}$ i Cauchy. As X is complete, $x_{n} \rightarrow x$ for some $x \in X$, and we then get that $y=\lim _{n} T\left(x_{n}\right)=T(x)$, i.e., $y \in T(X)$, as desired.
Altogether, we get $T(X)=\overline{T(X)}=X$, i.e., T is surjective. Thus we have shown that T is bijective. By the open mapping theorem, we get that $T \in \operatorname{GL}(\mathcal{B}(X))$. This finishes the proof that (1) holds.

Let now $\lambda \in \mathbb{F}$. Using (1) we get

$$
\begin{aligned}
\lambda \in \operatorname{sp}_{\mathcal{A}}(T) \Leftrightarrow & \left(\lambda I_{X}-T\right) \in \operatorname{GL}(\mathcal{B}(X)) \Leftrightarrow\left(\lambda I_{X}-T\right)^{*} \in \operatorname{GL}\left(\mathcal{B}\left(X^{*}\right)\right) \\
& \Leftrightarrow\left(\lambda I_{X_{*}}-T^{*}\right) \in \operatorname{GL}\left(\mathcal{B}\left(X^{*}\right)\right) \Leftrightarrow \lambda \in \operatorname{sp}_{\mathcal{B}}\left(T^{*}\right)
\end{aligned}
$$

which shows that $\operatorname{sp}_{\mathcal{A}}(T)=\operatorname{sp}_{\mathcal{B}}\left(T^{*}\right)$.
Note: If H is a complex Hilbert space, $T \in \mathcal{B}(H)$, and T^{*} denotes the Hilbert space adjoint of T, then, using that the adjoint operation is conjugate-linear in this case, a similar, but simpler argument gives that

$$
\operatorname{sp}\left(T^{*}\right)=\overline{\operatorname{sp}(T)}=\{\bar{\lambda} \mid \lambda \in \operatorname{sp}(T)\}
$$

Exercise 39

Let H denote a nontrivial complex Hilbert space and consider $\mathcal{A}:=\mathcal{B}(H)$ as a Banach algebra.
Let $\mathcal{B}=\left\{e_{j}\right\}_{j \in J}$ be an orthonormal basis for H and $f \in \ell^{\infty}(J)$. Set $\lambda_{j}:=f(j) \in \mathbb{C}$ for each $j \in J$. Let $D \in \mathcal{A}$ denote the associated "diagonal" operator satisfying that $D\left(e_{j}\right)=\lambda_{j} e_{j}$ for every $j \in J$. We have seen in a lecture that

$$
\operatorname{sp}_{\mathcal{A}}(D)=\overline{\left\{\lambda_{j} \mid j \in J\right\}}=\overline{f(J)}
$$

It follows that $r_{\mathcal{A}}(D)=\|D\|=\|f\|_{\infty}$:
The fact that $\|D\|=\|f\|_{\infty}$ should be known from a previous course (and is easy to show). The equality $r_{\mathcal{A}}(D)=\|f\|_{\infty}$ could be deduced from Exercise 35 , but a direct poof goes like this. Using that $\operatorname{sp}_{\mathcal{A}}(D)=\overline{\left\{\lambda_{j} \mid j \in J\right\}}$ we get

$$
\|f\|_{\infty}=\sup \{|f(j)|: j \in J\}=\sup \left\{\left|\lambda_{j}\right|: j \in J\right\}=\sup \left\{|\lambda|: \lambda \in \operatorname{sp}_{\mathcal{A}}(D)\right\}=r_{\mathcal{A}}(D) \leq\|D\|=\|f\|_{\infty}
$$

and the asserted equality follows.

Exercise 40

Consider the Banach algebra $\mathcal{A}=M_{2}(\mathbb{C}) \simeq \mathcal{B}\left(\mathbb{C}^{2}\right)$. An example of a matrix $A \in \mathcal{A}$ satisfying that $r_{\mathcal{A}}(A)<\|A\|$ is as follows:
Set $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. Then one easily checks that $\operatorname{sp}(A)=\{0\}$ and $\|A\|=1$. So we get that

$$
r_{\mathcal{A}}(A)=0<1=\|A\|
$$

Exercise 42

Let \mathcal{A} denote a complex unital Banach algebra with unit $1_{\mathcal{A}}$ satisfying $\left\|1_{\mathcal{A}}\right\|=1$. Let $a \in \mathcal{A}$ and let f be a complex polynomial given by $f(z)=\sum_{k=0}^{n} c_{k} z^{k}$ for some $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{C}$.

We can then define $f(a) \in \mathcal{A}$ by $f(a):=\sum_{k=0}^{n} c_{k} a^{k}$. It follows from a lemma proved in a lecture that

$$
f\left(\operatorname{sp}_{\mathcal{A}}(a)\right) \subseteq \operatorname{sp}_{\mathcal{A}}(f(a))
$$

We also have that $\operatorname{sp}_{\mathcal{A}}(f(a)) \subseteq f\left(\operatorname{sp}_{\mathcal{A}}(a)\right)$, hence that $f\left(\operatorname{sp}_{\mathcal{A}}(a)\right)=\operatorname{sp}_{\mathcal{A}}(f(a))$:
If $n=0$, i.e., $f(z)=c_{0}$ for all $z \in \mathbb{C}$, then we have $f(a)=c_{0} 1_{A}$, so

$$
f\left(\operatorname{sp}_{\mathcal{A}}(a)\right)=c_{0}=\operatorname{sp}_{\mathcal{A}}(f(a))
$$

Suppose now that $n \geq 1$. We may also suppose that $c_{n} \neq 0$.
Assume that $\lambda \in \mathbb{C} \backslash f\left(\operatorname{sp}_{\mathcal{A}}(a)\right)$. It suffices to show that $\lambda \in \mathbb{C} \backslash \operatorname{sp}_{\mathcal{A}}(f(a))$.
Consider the polynomial q of order n given by $q(z)=\lambda-f(z)$ for all $z \in \mathbb{C}$. By the fundamental theorem of algebra, we may then write $q(z)=\alpha\left(\alpha_{1}-z\right) \cdots\left(\alpha_{n}-z\right)$ for some $\alpha, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ with $\alpha \neq 0$. We note that

$$
\text { (*) } \quad \lambda 1_{\mathcal{A}}-f(a)=q(a)=\alpha\left(\alpha_{1} 1_{A}-a\right) \cdots\left(\alpha_{n} 1_{\mathcal{A}}-a\right) .
$$

Let $j \in\{1, \ldots, n\}$. Since $q\left(\alpha_{j}\right)=0$, we have that $f\left(\alpha_{j}\right)=\lambda \notin f\left(\operatorname{sp}_{\mathcal{A}}(a)\right)$. This implies that $\alpha_{j} \notin \operatorname{sp}_{\mathcal{A}}(a)$, i.e., $\left(\alpha_{j} 1_{\mathcal{A}}-a\right) \in \operatorname{GL}(\mathcal{A})$. Since $\operatorname{GL}(\mathcal{A})$ is a group w.r.t. multiplication, and $\alpha \neq 0$, we obtain that $\alpha\left(\alpha_{1} 1_{\mathcal{A}}-a\right) \cdots\left(\alpha_{n} 1_{\mathcal{A}}-a\right) \in \operatorname{GL}(\mathcal{A})$.
Using $(*)$, we can now conclude that $\lambda 1_{\mathcal{A}}-f(a) \in \mathrm{GL}(\mathcal{A})$, i.e., $\lambda \in \mathbb{C} \backslash \mathrm{sp}_{\mathcal{A}}(f(a))$, as desired.

