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Chapter 1

Topological preliminaries

1.1 Neighborhood bases

Let X be a topological space and let x ∈ X. Recall that an open neighborhood of x is an open
set in X that contains x. A neighborhood of x is a set that contains an open neighborhood of
x. We denote by Nx the set of all neighborhoods of x and call it the neighborhood filter of x.
We also denote by Ux the set of all open neighborhoods of x.

The following proposition, which we will take for granted, shows that one can define topol-
ogy on a set starting from suitable candidates Nx for neighborhood filters.

Proposition 1.1.1. Let X be a set. Suppose that we are given a topology T on X, and denote
by N (T ) = (Nx)x∈X the collection of neighborhood filters associated to T . Then the following
properties are satisfied for all x ∈ X:

(a) X ∈ Nx.

(b) If N ∈ Nx then x ∈ N .

(c) If N ∈ Nx and N ⊆ N ′ ⊆ X then N ′ ∈ Nx.

(d) If N,N ′ ∈ Nx then N ∩N ′ ∈ Nx.

(e) If N ∈ Nx then there exists U ∈ Nx such that U ⊆ N and U ∈ Ny for every y ∈ U .

Conversely, if we are given a collection N = (Nx)x∈X of subsets of P(X) such that the above
five axioms are satisfied, then

T (N ) = {U ⊆ X : U ∈ Nx for all x ∈ U}

defines a topology on X.
These two procedures are mutually inverse: That is, if T is a topology on X then T (N (T )) =

T and if N = (Nx)x∈X is a collection of subsets of P(X) satisfying the above five axioms then
N = N (T (N )).

If X and Y are topological spaces and f : X → Y is a function, then the continuity of f
can be expressed in terms of neighborhood filters as follows: We have that f is continuous at
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4 CHAPTER 1. TOPOLOGICAL PRELIMINARIES

x if and only if f−1(N) ∈ Nx for every N ∈ Nf(x). An equivalent statement is that for every
N ∈ Nf(x) there exists N ′ ∈ Nx such that f(N ′) ⊆ N .

A useful way to describe a topology on a set is by means of a basis. The following is a
similar concept for neighborhood filters:

Definition 1.1.2. Let X be a topological space and let x ∈ X. A set Bx ⊆ Nx is called a
neighborhood basis at x if for every N ∈ Nx there exists B ∈ Bx such that B ⊆ N .

Example 1.1.3. (a) For any point x in a topological space X, both Nx and Ux are neigh-
borhood bases at x.

(b) Let X be a metric space and let x ∈ X. Then the set Bx of all open balls

Br(x) = {y ∈ X : |x− y| < r} for r > 0,

forms a neighborhood basis at x.

Observation 1.1.4. If x is a point in a topological space X and Bx is a neighborhood basis
at x, then the neighborhood filter Nx can be recovered from Bx as follows:

Nx = {N ⊆ X : there exists B ∈ Bx such that B ⊆ N}.

If we have neighborhood bases Bx at every point x ∈ X, then it follows from Proposition 1.1.1
that the topology on X can be recovered as

T = {U ⊆ X : for every x ∈ U there exists B ∈ Bx such that B ⊆ U}.

When we define the topology induced by the metric on a metric space, we do it in terms
of open balls: We declare a set N containing x to be a neighborhood of x if it contains an
open ball centered at x. This only works because open balls have certain properties. The
following proposition generalizes this procedure of defining a topology in terms of candidates
for neighborhood bases:

Proposition 1.1.5. Let X be a set. Suppose we are given a topology T on X and for every
x ∈ X a neighborhood basis Bx at x. Then the following hold for every x ∈ X:

(a) Bx is nonempty.

(b) If B ∈ Bx then x ∈ B.

(c) If B,B′ ∈ Bx then there exists B′′ ∈ Bx such that B′′ ⊆ B ∩B′.

(d) If B ∈ Bx then there exists a set U ⊆ B containing x with the following property: For
every y ∈ U there exists B′ ∈ By such that B′ ⊆ U .

Conversely, suppose we have for every x ∈ X a collection Bx of subsets of X that satisfies the
above axioms. Then there exists a unique topology on X such Bx is a neighborhood basis at x
with respect to the topology for every x ∈ X.
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Proof. We begin by assuming a topology on T with neighborhood bases Bx at every x ∈ X.
We need to show that the above axioms hold, so let x ∈ X.

(a): Since X ∈ Nx we have that there exists some B ∈ Bx with B ⊆ X. Hence Bx is
nonempty.

(b): Follows from the fact that Bx ⊆ Nx.
(c): Suppose that B,B′ ∈ Bx. Then since B and B′ are neighborhoods of x, B ∩B′ must

be a neighborhood of x. Thus, by definition of neighborhood basis, there exists B′′ ∈ Bx such
that B′′ ⊆ B ∩B′.

(d): Let B ∈ Bx. Then B contains an open neighborhood U of x. If y ∈ U then U is a
neighborhood of y so there exists B′ ∈ By such that B′ ⊆ U .

Now, suppose we are given collections Bx that satisfy the above axioms. Define

Nx = {N ⊆ X : there exists B ∈ Bx such that B ⊆ N}.

We will show that the sets (Nx)x∈X satisfy the properties in Proposition 1.1.1. Let us call
them (a′)−(e′) to distinguish them from the properties in the current proposition. Let x ∈ X.

(a′): Since Bx ̸= ∅ by (a), there exists some B ∈ Bx. But then B ⊆ X so X ∈ Nx.
(b′): Let N ∈ Nx. Then there exists B ∈ Bx with B ⊆ N . Since x ∈ B by (b) we have

that x ∈ N .
(c′): Let N ∈ Nx and N ⊆ N ′ ⊆ X. Then there exists B ∈ Bx such that B ⊆ N . But

then B ⊆ N ′ as well, so N ′ ∈ Nx.
(d′): Let N,N ′ ∈ Nx. Then we can find B,B′ ∈ Bx with B ⊆ N and B′ ⊆ N ′. By

assumption we can find B′′ ∈ Bx such that B′′ ⊆ B ∩ B′. But then B′′ ⊆ N ∩ N ′, so
N ∩N ′ ∈ Nx.

(e′) Let N ∈ Nx. Then there exists some B ∈ Bx with B ⊆ N . By assumption we can find
U ⊆ B containing x such that for all y ∈ U there exists B′ ∈ By with B′ ⊆ U . Then U ⊆ N .
Now if y ∈ U then we can find B′ ∈ By such that B′ ⊆ U , i.e. U ∈ Ny. In particular this
applies to y = x, so U ∈ Nx.

We have now verified the axioms of Proposition 1.1.1, so we can conclude that the sets
(Nx)x∈X are the neighborhood filters for a topology on X. It follows straight from the defini-
tion of Nx that Bx is a neighborhood basis at x. From Observation 1.1.4 we see that this is
the unique topology on X with Bx as neighborhood basis at x for each x ∈ X. ■

Recall that if T1 and T2 are topologies on a set X, we say that T1 is finer or stronger than
T2 if T1 ⊇ T2. We also say that T2 is coarser or weaker than T1.

Note that given any collection B of subsets of X, there exists a weakest topology T on X
such that B ⊆ T : That is, for any other topology T ′ on X with B ⊆ T ′ we have that T ⊆ T ′.
The topology T can be defined simply as the intersection of all topologies on X that contain
B (here it is vital that the intersection of a collection of topologies is again a topology). The
set B becomes a subbasis for the topology T , i.e. the collection of all finite intersections of sets
from B, together with X itself, forms a basis for T .

Definition 1.1.6. Let X be a set, let (Yi)i∈I be a collection of topological spaces and let
(fi)i∈I be a collection of functions fi : X → Yi. The weakest topology on X that makes every
function fi (i ∈ I) continuous is called the initial topology on X with respect to (fi)i∈I .
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Remark. In the setting of Definition 1.1.6, consider the collection

B = {f−1
i (U) : i ∈ I and U is open in Yi}. (1.1)

Then the initial topology on X is the weakest topology that contains B, so B is a subbasis
for this topology. It follows that a basis for the topology is given by finite intersections of
elements from B, and that any open set can be written as a union of sets from this basis.

Example 1.1.7. (a) Let X be a topological space and let S be a subset of X. Then the
initial topology on S with respect to the inclusion map i : S ↪→ X is the subspace
topology: It is the weakest topology on S that contains the sets i−1(U) = U ∩ S for
every open set U in X. In this case this collection is already a topology.

(b) Let (Xi)i∈I be a collection of topological spaces and set X =
∏

i∈I Xi. Then the weakest
topology on X such that all the projections X → Xi, (xj)j∈I 7→ xi are continuous is the
product topology on X.

Proposition 1.1.8. Let X be equipped with the initial topology with respect to a collection
(fi)i∈I of maps fi : X → Yi. Suppose we are given for each i ∈ I and y ∈ Yi a neighborhood
basis By for y. Then a neighborhood basis at x ∈ X is given by

Bx =
{ ⋂

i∈I0

f−1
i (Bi) : I0 ⊆ I is finite and Bi ∈ Bfi(x) for each i ∈ I0

}
.

Proof. Let N ∈ Nx. Then there exists an open set U ⊆ N with x ∈ U . Since the collection
B from (1.1) is a subbasis for the topology, we can find finitely many elements from B that
all contain x such that their intersection is contained in U . Thus we have a finite set I0 ⊆ I
and open sets Ui ⊆ Yi for each i ∈ I0 such that x ∈

⋂
i∈I0 f

−1
i (Ui) ⊆ U . By definition of

neighborhood basis we can for each i ∈ I0 find Bi ∈ Bfi(x) such that fi(x) ∈ Bi ⊆ Ui. But
then x ∈

⋂
i∈I0 f

−1
i (Bi) ⊆ U . This finishes the proof. ■

Note that in particular, we can choose By = Ny for every y ∈ Yi in Proposition 1.1.8.

Example 1.1.9. Let (Xi)i∈I be a collection of topological spaces. Set X =
∏

i∈I Xi and let
x = (xi)i∈I ∈ X. Denote by pi : X → Xi the projection onto Xi (i ∈ I). By Proposition 1.1.8
we can describe a neighborhood basis at x as follows: As I0 ranges over finite subsets of I and
Ni is a neighborhood of xi for each i ∈ I0, the sets⋂

i∈I0

p−1
i (Ni) =

∏
i∈I

Bi where Bi = Ni if i ∈ I0 and Bi = Xi otherwise

form a neighborhood basis at x.

1.2 Nets

Recall that a preorder on a set X is a relation ≤ on X which is reflexive (x ≤ x for all x ∈ X)
and transitive (x ≤ y and y ≤ z implies x ≤ z for all x, y, z ∈ X).

Definition 1.2.1. A directed set is a nonempty set Λ together with a preorder ≤ on X such
that the following holds: For every x, y ∈ Λ there exists z ∈ Λ such that x ≤ z and y ≤ z.
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Example 1.2.2. (a) Every totally ordered set is a directed set. In particular N, Z, Q and
R are directed sets with their usual ordering.

(b) Let X be a topological space and fix a point x ∈ X. Let Bx be a neighborhood basis at
x. Then Bx is a directed set with respect to reverse inclusion by Proposition 1.1.5 (a).
This applies in particular to Nx, the neighborhood filter at x.

(c) Let [a, b] be an interval. Recall that a tagged partition P = ((xi)
n
i=0, (ti)

n−1
i=0 ) of [a, b]

is a finite sequence of the form a = x0 < x1 < · · · < xn = b together with points
ti ∈ [xi, xi+1] for each 0 ≤ i ≤ n − 1. The mesh of P is the maximum of the numbers
xi+1 − xi for 0 ≤ i ≤ n − 1. Let P be the set of all tagged partitions of [a, b]. We
introduce an ordering on Λ as follows: ((xi)

m
i=0, (ti)

m−1
i=0 ) ≤ ((yi)

n
i=0, (si)

n−1
i=0 ) if and only

if for every 0 ≤ i ≤ n there exists an integer r(i) such that xi = yr(i) and ti = sj for
some r(i) ≤ j ≤ r(i + 1). One can check that Λ is a directed set with respect to this
ordering. This comes from the fact that every pair of tagged partitions have a common
refinement.

Definition 1.2.3. Let X be a topological space. A net in X is a collection of elements (xλ)λ∈Λ
in X indexed by some directed set Λ.

Let (xλ)λ∈Λ be a net in X and let S ⊆ X. We say that (xλ)λ∈Λ is frequently in S if for
every λ0 ∈ Λ there exists λ ≥ λ0 such that xλ ∈ S. We say that (xλ)λ∈Λ is eventually in S if
there exists λ0 ∈ Λ such that for all λ ≥ λ0 we have xλ ∈ S. We say that (xλ)λ∈Λ converges
to x if (xλ)λ∈Λ is eventually in N for every N ∈ Nx. We call x an cluster point for (xλ)λ∈Λ if
(xλ)λ∈Λ is frequently in N for every N ∈ Nx.

Remark. Note that in the definition of convergence and cluster point we can interchange Nx

with any other neighborhood basis Bx at x and get an equivalent definition. In particular it
can be convenient to use the neighborhood basis Ux of open neighborhoods of x.

Example 1.2.4. (a) A net in X indexed by the directed set N is the same as a sequence in
X, and the definition of convergence in this case is exactly the same as the definition of
convergence of a sequence.

(b) Let x be a point in a topological space X and let Bx be a neighborhood basis at x.
Consider Λ = Bx as a directed set with respect to reverse inclusion. Let (xB)B∈Λ be a
net in X with the property that xB ∈ B for every B ∈ Λ. Then the net (xB)B converges
to x and the proof is almost tautological: For every neighborhood N of x we simply
take some B0 ∈ Bx with B0 ⊆ N . Then whenever B ⊆ B0 (remember that we are using
reverse inclusion as the order relation on Λ) we have that xB ∈ B ⊆ B0 ⊆ N .

(c) Let Λ be the directed set from Example 1.2.2 (c). Given a bounded function f : [a, b] → R
we construct a net of real numbers indexed by Λ as follows: Given P = ((xi)

n
i=0, (ti)

n−1
i=0 ) ∈

Λ set

IP =

n−1∑
i=0

f(ti)(xi+1 − xi).

If the net (IP )P∈Λ converges, we say that f is Riemann integrable, and denote the limit
of (IP )P by

∫ b
a f(x) dx.
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Proposition 1.2.5. Let X and Y be topological spaces, let f : X → Y be a function and let
x ∈ X. Then the following are equivalent:

(a) f is continuous at x.

(b) For every net (xλ)λ∈Λ in X converging to x, the net (f(xλ))λ∈Λ converges to f(x).

Proof. (a) ⇒ (b): Suppose that f is continuous at x. Let (xλ)λ∈Λ be a net in X converging
to x ∈ X. Let N be a neighborhood of f(x). Then f−1(N) is a neighborhood of x, so by
assumption there exists λ0 with

λ ≥ λ0 =⇒ xλ ∈ f−1(N).

But if xλ ∈ f−1(N) then f(xλ) ∈ N . Hence the net (f(xλ))λ∈Λ converges to f(x).
(b) ⇒ (a): We do a contrapositive proof. Suppose f is not continuous at x. Then we can

find some neighborhood N ′ of f(x) such that no neighborhood N of x has the property that
f(N) ⊆ N ′. In other words, for every N ∈ Nx there exists xN ∈ N with f(xN ) /∈ N ′. Consider
Λ = Nx as a directed set with respect to reverse inclusion and consider the net (xN )N∈Λ. As
we saw in Example 1.2.4 (b), (xN )N converges to x. However, (f(xN ))N∈Λ cannot converge
to f(x) since the neighborhood N ′ of f(x) has the property that f(xN ) /∈ N ′ for all N ∈ Λ.
This finishes the contrapositive proof. ■

Proposition 1.2.6. Let X be a topological space. Then the following are equivalent:

(a) X is Hausdorff.

(b) Limits of nets are unique: That is, whenever (xλ)λ∈Λ is a net and both x and y are limits
of (xλ)λ∈Λ, then x = y.

Proof. Left as an exercise. ■

If X is Hausdorff and (xλ)λ∈Λ is a convergent net, we can thus speak of the limit of (xλ)λ
and write x = limλ∈Λ xλ.

Proposition 1.2.7. Let X be a topological space, let S be a subset of X and let x ∈ X. Then
the following are equivalent:

(a) x is in ClS, the closure of S.

(b) There exists a net (xλ)λ∈Λ in S that converges to x.

Proof. (a) ⇒ (b): Suppose x ∈ ClS. Let Λ = Nx with respect to reverse inclusion. Then for
every N ∈ Nx we have that N ∩ S ̸= ∅ so we can pick some xN ∈ N ∩ S. By Example 1.2.4
the net (xN )N∈Λ converges to x.

(b) ⇒ (a): Suppose that (xλ)λ∈Λ is a net in S that converges to x. For a contradiction,
suppose x /∈ ClS. Then there exists a closed subset C ⊇ S such that x /∈ C. But then Cc is
an open neighborhood of x, so there exists λ0 ∈ Λ for which xλ ∈ Cc whenever λ ≥ λ0. But
then we have both xλ0 ∈ S and xλ0 ∈ Cc ⊆ Sc which is a contradiction. We conclude that
x ∈ ClS. ■
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Proposition 1.2.8. Let X be equipped with the initial topology with respect to a family of
functions fi : X → Yi (i ∈ I). Let (xλ)λ∈Λ be a net in X and let x ∈ X. Then the following
are equivalent:

(a) (xλ)λ∈Λ converges to x.

(b) For every i ∈ I the net (fi(xλ))λ∈Λ converges to fi(x).

Proof. Exercise.
■

1.3 Subnets and compactness

Recall that a sequence (yn)n∈N is said to be a subsequence of a sequence (xn)n∈N if there exists
a monotone injective function ι : N → N such that yn = xι(n) for all n ∈ N. Usually one writes
nk = ι(k) for k ∈ N so that (yn)n becomes (xnk

)k∈N. The right generalization to nets turns
out to be somewhat more complicated.

Definition 1.3.1. Let (xλ)λ∈Λ be a net in a topological space X. A subnet of (xλ)λ∈Λ is a
net (yγ)γ∈Γ together with a function ι : Γ → Λ such that the following properties are satisfied:

(a) ι is monotone, i.e. γ ≤ γ′ implies ι(γ) ≤ ι(γ′) for all γ, γ′ ∈ Γ.

(b) ι is cofinal, i.e. for every λ ∈ Λ there exists γ ∈ Γ such that ι(γ) ≥ λ.

(c) yγ = xι(γ) for all γ ∈ Γ.

We often use the more compact notation (xι(γ))γ∈Γ for a subnet of (xλ)λ∈Λ.

Example 1.3.2. Let (xn)n∈N be a sequence in a topological space X. Consider R as a directed
set with its usual ordering. Define a map ι : R+ → N by ι(x) = ⌊x⌋, the floor function. Then
ι satisfies (a) and (b) in Definition 1.3.1. Set yr = xι(r) for every r ∈ R+. Then (yr)r∈R+

becomes a subnet of (xn)n∈N, but it is not a subsequence of (xn)n∈N.

Proposition 1.3.3. Let X be a topological space and let x ∈ X. If (xλ)λ∈Λ is a net in X that
converges to x, then every subnet of (xλ)λ∈Λ also converges to x.

Proof. Let (yγ)γ∈Γ be a subnet of (xλ)λ∈Λ with associated function ι : Γ → Λ and let N be
a neighborhood of x. Since (xλ)λ∈Λ converges to x, we can find λ0 ∈ Λ such that xλ ∈ N
whenever λ ≥ λ0. By cofinality of ι we can find γ0 ∈ Γ such that ι(γ0) ≥ λ0. Now if γ ≥ γ0
then ι(γ) ≥ ι(γ0) ≥ λ0 by monotonicity. Thus γ ≥ γ0 implies that yγ = xι(γ) ∈ N . Since N
was arbitrary, we conclude that (yγ)γ∈Γ converges to x. ■

Proposition 1.3.4. Let B be a nonempty set of subsets of X which is a directed set with
respect to reverse inclusion. If (xλ)λ∈Λ is a net that is frequently in every B ∈ B, then there
exists a subnet of (xλ)λ∈Λ that is eventually in every B ∈ B.
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Proof. Consider the set

Γ = {(λ,B) ∈ Λ×B : xλ ∈ B} ⊆ Λ×B

equipped with the order where we declare (λ,B) ≤ (λ′, B′) iff both λ ≤ λ′ and B ⊇ B′.
We claim that Γ is a directed set: Suppose (λ,B), (λ′, B′) ∈ Γ. Let B′′ ∈ B be such that

B′′ ⊆ B ∩ B′. Since (xλ)λ∈Λ is frequently in B′′ by assumption we can find λ′′ ∈ Λ with
λ′′ ≥ λ, λ′′ ≥ λ′ such that xλ′′ ∈ B′′. Thus (λ′′, B′′) ≥ (λ,B) and (λ′′, B′′) ≥ (λ′, B′) which
shows that Γ is a directed set.

Define a map ι : Γ → Λ by ι(λ,B) = λ. Then ι is obviously monotone. It is also cofinal:
If λ ∈ Λ, then pick some B ∈ B. By the assumption on (xλ)λ∈Λ there exists λ′ ∈ Λ such that
λ′ ≥ λ and xλ′ ∈ B. Hence (λ′, B) ∈ Γ and ι(λ′, B) = λ′ ≥ λ. Thus, we have proved that
(xι(λ,B))(λ,B)∈Γ is a subnet of (xλ)λ∈Λ. Furthermore, if B0 ∈ B then pick any λ0 ∈ Λ such
that xλ0 ∈ B0. Then (λ0, B0) ∈ Γ, and if (λ,B) ∈ Γ with (λ,B) ≥ (λ0, B0) then λ ≥ λ0 and
xι(λ,B) = xλ ∈ B ⊆ B0. This shows that the net (xι(λ,B))(λ,B)∈Γ is eventually in B0. ■

Corollary 1.3.5. Let X be a topological space, let (xλ)λ∈Λ be a net in X and let x ∈ X. The
following are equivalent:

(a) x is an cluster point for (xλ)λ∈Λ.

(b) (xλ)λ∈Λ has a subnet that converges to x.

Proof. (a) ⇒ (b): Use Proposition 1.3.4 on B = Nx.
(b) ⇒ (a): Let (xι(γ))γ∈Γ be a subnet that converges to x. Let N ∈ Nx and λ0 ∈ Λ. By

cofinality we can find γ0 ∈ Γ such that ι(γ0) ≥ λ0, and by convergence we can find γ1 ∈ Γ
such that xι(γ) ∈ N whenever γ ≥ γ1. Let γ ∈ Γ satisfy γ ≥ γ0 and γ ≥ γ1 and set λ = ι(γ).
Then λ ≥ λ0 and xλ ∈ N , which shows that x is a cluster point for (xλ)λ∈Λ. ■

Recall that a topological space X is compact if every open cover of X admits a finite
subcover: That is, whenever X =

⋃
i∈I Ui for a collection (Ui)i∈I of open sets in X, then

there exists a finite subset I0 ⊆ I such that X =
⋃

i∈I0 Ui. The equivalent contrapositive
formulation of this definition is called the finite intersection property : Whenever (Ci)i∈I is a
collection of closed subsets of X with the property that

⋂
i∈I0 Ci ̸= ∅ for all finite subsets I0

of I, then
⋂

i∈I Ci ̸= ∅.

Lemma 1.3.6. If (xλ)λ∈Λ is a net in a topological space X, then its set of cluster points
coincides with ⋂

λ∈Λ
Cl{xλ′ : λ′ ≥ λ}.

Proof. Note that x is a cluster point of (xλ)λ if and only if the following holds for all λ ∈ Λ:
Every neighborhood N of x intersects the set {xλ′ : λ′ ≥ λ}. This is equivalent to x being in
the closure of {xλ′ : λ′ ≥ λ} for every λ ∈ Λ, which proves the lemma. ■

Proposition 1.3.7. Let X be a topological space. The following are equivalent:

(a) X is compact.

(b) Every net in X has a cluster point.
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(c) Every net in X has a convergent subnet.

Proof. (a) ⇒ (b): Suppose X is compact and let (xλ)λ∈Λ be a net in X. For each λ ∈ Λ set
Cλ = Cl{xλ′ : λ′ ≥ λ}. Then (Cλ)λ∈Λ is a collection of nonempty closed sets with the finite
intersection property: Indeed, if Λ0 ⊆ Λ is finite then we can find λ′ ∈ Λ such that λ′ ≥ λ for
every λ ∈ Λ0, in which case

∅ ≠ Cλ′ ⊆
⋂

λ∈Λ0

Cλ.

Since X is compact we have that the intersection
⋂

λ∈ΛCλ is nonempty. By Lemma 1.3.6 this
implies that (xλ)λ has a cluster point.

(b) ⇔ (c): By Corollary 1.3.5, a given net has a cluster point if and only if it has a
convergent subnet. Thus, the statement that all nets have cluster points is equivalent to the
statement that all nets have convergent subnets.

(b) ⇒ (a): We prove the contrapositive statement. Let (Ui)i∈I be an open cover of X and
assume for a contradiction that it does not have a finite subcover. Let Λ be the set of all finite
subsets of I ordered by inclusion. Then Λ is a directed set. If J ∈ Λ then by assumption we
can pick some xJ ∈ X \

⋃
i∈J Ui. Thus we have a net (xJ)J∈Λ. Let x ∈ X be arbitrary. We

claim that x cannot be a cluster point for (xJ)J∈Λ: Indeed, since (Ui)i∈I covers X there exists
some i ∈ I such that x ∈ Ui. Thus Ui is a neighborhood of x, yet when J ⊇ {i} we have that
xJ /∈ Ui. ■

We have now come to our first theorem, namely Tychonoff’s theorem:

Theorem 1.3.8 (Tychonoff’s Theorem). Let (Xi)i∈I be a collection of compact topological
spaces. Then the product space

∏
i∈I Xi is compact (when equipped with the product topology).

To prove Tychonoff’s theorem we will need the following lemma:

Lemma 1.3.9. Let X and Y be topological spaces, and let (zλ)λ∈Λ be a net in the product
space X × Y . Denote by pX : X × Y → X and pY : X × Y → Y the coordinate projections. If
both of the nets (pX(zλ))λ∈Λ and (pY (zλ))λ∈Λ have cluster points, then (zλ)λ∈Λ has a cluster
point.

Proof. Let x ∈ X (resp. y ∈ Y ) be a cluster point for (pX(zλ))λ∈Λ (resp. (pY (zλ))λ∈Λ).
By Proposition 1.3.7, there exists a subsequence (zι(γ))γ∈Γ of (zλ)λ such that (pX(zι(γ)))γ
converges to x. For the same reason there exists a subsequence (zκ(ι(α)))α∈A of (zλ)λ such that
(pY (zκ(ι(α)))α converges to y. Since (pX(zκ(ι(α)))α is a subsequence of (pX(zι(γ)))γ , it must
also converge to x by Proposition 1.3.3.

We now claim that (zκ(ι(α)))α converges to (x, y): Indeed, let N be a neighborhood of
(x, y). By definition of the product topology, we can assume that N = N1 × N2 where N1

is a neighborhood of x and N2 is a neighborhood of y. Thus, we can find α1, α2 ∈ A such
that pX(zκ(ι(α))) ∈ N1 when α ≥ α1 and pY (zκ(ι(α))) ∈ N2 when α ≥ α2. Picking α0 ∈ A
with α0 ≥ α1 and α0 ≥ α2, we have that zκ(ι(α)) ∈ N1 × N2 when α ≥ α0. Thus (zκ(ι(α)))α
converges to (x, y). We have shown that (zλ)λ has a convergent subsequence, and therefore a
cluster point by Proposition 1.3.7. ■

Proof of Theorem 1.3.8. Let (zλ)λ∈Λ be a net in X :=
∏

i∈I Xi. We will show that (zλ)λ∈Λ
has a cluster point. It will then follow from Proposition 1.3.7 that X is compact.
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Given subsets J and K of I with J ⊇ K, we denote by pJ,K the projection from
∏

i∈J Xi

to
∏

i∈K Xi. We consider the set M of pairs (J, x) where J is a subset of I and x ∈
∏

i∈J Xi

is a cluster point of the net (pI,J(zλ))λ∈Λ. Define a relation ≤ on M via

(J, x) ≤ (K, y) if and only if J ⊆ K and pK,J(y) = x.

We leave it as an exercise to check that this defines a partial order on M. Our strategy is
now to employ Zorn’s lemma. We must therefore show that every chain in M has an upper
bound.

Let C be a chain in M, that is, a totally ordered subset. Set K =
⋃

(J,x)∈C J . Define an
element y = (yi)i∈K ∈

∏
i∈K Xi as follows: For i ∈ K we have that there exists some (J, x) ∈ C

such that i ∈ J . Set yi = xi. We show that this is well-defined: Suppose (J ′, x′) ∈ C is also
such that i ∈ J ′. Since C is a chain we have either (J, x) ≤ (J ′, x′) or (J ′, x′) ≤ (J, x). If the
former is the case then J ⊆ J ′ and pJ ′,J(x

′) = x which implies that xi = x′i since i ∈ J ∩ J ′.
A similar argument holds for the case (J ′, x′) ≤ (J, x). Hence (J, y) is well-defined.

We must now show that (K, y) is an element of M, i.e. that y is a cluster point of
(pI,K(zλ))λ∈Λ. Let N ∈ Ny and let λ0 ∈ Λ. By Proposition 1.1.8 we can assume without
loss of generality that N =

∏
i∈K Ni where Ni ∈ Nyi for each i ∈ K and there exists a finite

subset K0 of K such that Ni = Xi when i /∈ K0. Now every i ∈ K0 belongs to some Ji ⊆ K
such that (Ji, yi) ∈ C for some yi ∈

∏
j∈Ji Xj . Since C is a chain and K0 is finite, we can

pick a maximum among these (Ji, yi) as i runs through K0. Call it (K ′, y′). Then K0 ⊆ K ′.
Now y′ is a cluster point of (pI,K′(zλ))λ∈Λ by definition. Thus pK′,K0(y

′) is a cluster point
of the net (pI,K0(zλ))λ = (pK′,K0(pI,K′(zλ)))λ. Consequently we can find λ ≥ λ0 such that
pI,K0(zλ) ∈

∏
i∈K0

Ni. But then pI,K(zλ) ∈ N since Ni = Xi for all i /∈ K0. Hence y is a
cluster point of (pI,K(zλ))λ∈Λ.

By Zorn’s lemma, we conclude that M has a maximal element, say (I ′, x). We want to
show that I ′ = I, from which it will follows that x is a cluster point for (zλ)λ∈Λ = (pI,I(zλ))λ∈Λ.
Assume for a contradiction that there exists j ∈ I \ I ′. Then by compactness of Xj the net
(pI,{j}(zλ))λ has a cluster point. Since (pI,I′(zλ))λ also has a cluster point, it follows from
Lemma 1.3.9 that the net (pI,I′∪{j}(zλ))λ has a cluster point. This contradicts the maximality
of (I ′, x). Thus I = I ′, and the proof is finished. ■



Chapter 2

Topological vector spaces

2.1 Convex sets and semi-norms

Throughout this chapter, F will denote either the field R of real numbers or the field C of
complex numbers. All vector spaces will be over F unless stated otherwise.

Definition 2.1.1. Let X be a vector space and let x, y ∈ X. The line segment between x and
y is the set

[x, y] = {(1− t)x+ ty : 0 ≤ t ≤ 1} ⊆ X.

A subset C of X is called convex if for every pair x, y ∈ C, the line segment between x and y
is contained in C.

By induction one verifies that a convex set C contains every element of the form

n∑
i=1

λixi

where x1, . . . , xn ∈ C and λ1, · · ·λn are nonnegative numbers such that
∑n

i=1 λi = 1. Such a
sum

∑
i λixi is called a convex combination of x1, . . . , xn.

It can be readily verified that the intersection of a collection of convex sets is convex.
Given a subset S of X, we define the convex hull of S to be the intersection of all convex sets
containing S, i.e. the smallest convex set in X that contains S. We denote the convex hull of
S by coS.

Proposition 2.1.2. Let X be a vector space and let S be a subset of X. Then the convex hull
of S consists precisely of all convex combinations of elements from S.

Proof. Denote by C the convex hull of S and by C ′ the set of all convex combinations of
elements from S. Then S ⊆ C ′ (for any x ∈ S pick n = 1, x1 = x and λ1 = 1). We will show
that C ′ is convex: Let x, y ∈ C ′ and t ∈ [0, 1]. Then x =

∑m
i=1 λixi and y =

∑n
j=1 µjyj for

some xi, yj ∈ S and λi, µj ≥ 0 with
∑

i λi =
∑

j µj = 1. Since

m∑
i=1

(1− t)λi +
n∑

j=1

tµj = t · 1 + (1− t) · 1 = 1

13
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we have that (1− t)x+ ty =
∑

i(1− t)λixi+
∑

j tµjyj is a convex combination of the elements
xi, yj ∈ S, hence (1− t)x+ ty ∈ C ′.

Since C ′ is convex and contains S this shows that C ⊆ C ′. On the other hand, every convex
set that contains S must contain all convex combinations of elements from S, so C ′ ⊆ C. ■

Definition 2.1.3. Let X be a vector space. A subset S of X is called

(a) balanced if for all x ∈ S and λ ∈ F with |λ| ≤ 1 we have that λx ∈ S,

(b) absorbing if for all x ∈ X there exists ϵ > 0 such that λx ∈ S for all λ ∈ F with |λ| < ϵ.

Note that absorbing sets contain the zero vector. The same holds for nonempty balanced
sets. Furthermore, any intersection of balanced sets is balanced. However, only finite inter-
sections of absorbing sets are absorbing in general. On the other hand, any union of absorbing
sets is absorbing.

For subsets S and T of a vector space X and λ ∈ F we define

S + T = {x+ y : x ∈ S, y ∈ T},
λS = {λx : x ∈ S}.

In particular −S = {−x : x ∈ S} and S − T = S + (−T ). We also set x + S = {x} + S for
x ∈ X and call it the translate of S by x.

Remark. It is not true in general that e.g. S + S = 2S. The former consists of all possible
sums x+ y for x, y ∈ S while the latter is just all multiples 2x where x ∈ S. However, if K is
a convex set and λ, µ ≥ 0 then (λ+ µ)K = λK + µK.

Proposition 2.1.4. Let S and T be subsets of a vector space X and let λ ∈ F. Then the
following hold:

(a) If S and T are convex then S + T and λS are convex.

(b) If S is absorbing and λ ̸= 0 then λS is absorbing.

(c) If S is balanced then λS is balanced.

Proof. Exercise. ■

A standard example of a set that is convex, balanced and absorbing is the open or closed
unit ball in a normed space. More generally, we shall see that semi-norms give natural examples
of such sets.

Definition 2.1.5. Let X be a vector space. A semi-norm on X is a function σ : X → R that
satisfies the following properties:

(a) For every x, y ∈ X we have σ(x+ y) ≤ σ(x) + σ(y).

(b) For every x ∈ X and λ ∈ F we have that σ(λx) = |λ|σ(x).

Example 2.1.6. (a) A norm σ on a vector space X is a semi-norm with the extra property
that σ(x) = 0 implies x = 0 for all x ∈ X.
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(b) Let X be a vector space and let ϕ : X → F be a linear functional. Then |ϕ| : X → [0,∞)
given by |ϕ|(x) = |ϕ(x)| defines a semi-norm on X.

Remark. Note that σ(0) = σ(0x) = |0|σ(x) = 0 and 0 = σ(x−x) ≤ σ(x)+ |−1|σ(x) = 2σ(x),
so semi-norms are nonnegative. If σ satisfies (a) above but instead of (b) only the weaker
property σ(λx) = λσ(x) for all λ ≥ 0, then σ is called a sublinear functional. In contrast to
semi-norms, sublinear functionals may take negative values. Also, if p is a sublinear functional
then σ(x) = max{p(x), p(−x)} is a semi-norm.

Just like norms, a semi-norm σ on a vector space satisfies the reverse triangle inequality:

|σ(x)− σ(y)| ≤ σ(x− y) for all x, y ∈ X. (2.1)

Given a semi-norm σ on X, x0 ∈ X and r > 0 we define the open and closed σ-ball of
radius r and center x0 respectively as

Bσ
r (x0) = {x ∈ X : σ(x− x0) < r},

B̄σ
r (x0) = {x ∈ X : σ(x− x0) ≤ r}.

We also set Bσ
r = Bσ

r (0) and B̄σ
r = B̄σ

r (0). In particular we set Bσ = Bσ
1 and B̄σ = B̄σ

1 . Note
that Bσ

r (x0) = x0 + rBσ and B̄σ
r (x0) = x0 + rB̄σ.

Proposition 2.1.7. Let σ be a semi-norm on a vector space X. Then the sets Bσ and B̄σ

are convex, balanced and absorbing.

Proof. We show that Bσ is convex: Indeed, if x, y ∈ Bσ and t ∈ [0, 1] then

σ((1− t)x+ ty) ≤ (1− t)σ(x) + tσ(y) < (1− t) · 1 + t · 1 = 1.

Moreover, Bσ is balanced: If x ∈ Bσ and |λ| ≤ 1 then σ(λx) = |λ|σ(x) < 1 · 1 = 1. Finally,
Bσ is absorbing: If x ∈ X and σ(x) ̸= 0 then provided that |λ| < σ(x)−1 we have σ(λx) < 1,
so λx ∈ Bσ. The proofs for B̄σ are analogous. ■

Definition 2.1.8. Let X be a vector space and let S be an absorbing subset X. The gauge
associated to S is the function mS : X → [0,∞) via

mS(x) = inf{λ > 0 : λ−1x ∈ S}.

Remark. Note that for absorbing sets S we have that for every x ∈ X there exists some r > 0
such that λ−1x ∈ S when |λ| > r. Thus mS(x) ≤ r so the gauge of mS does in fact take values
in [0,∞).

Another term for gauge used in the literature is Minkowski functional, although it is not
a functional in the usual sense.

The following proposition describes some fundamental properties of gauges:

Proposition 2.1.9. Let X be a vector space and let S be an absorbing subset of X. Then the
following hold:

(a) For every x ∈ X and λ ∈ [0,∞) we have that

mS(λx) = λmS(x).
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(b) If S is balanced then for every x ∈ X and λ ∈ F we have that

mS(λx) = |λ|mS(x).

(c) If S is convex then for every x, y ∈ X we have that

mS(x+ y) ≤ mS(x) +mS(y).

(d) If S is convex then
BmS ⊆ S ⊆ B̄mS .

Proof. (a): Let x ∈ X and λ ≥ 0 and note that

{r > 0 : r−1λx ∈ S} = {λr : r > 0, r−1x ∈ S} = λ{r > 0 : r−1x ∈ S}.

Taking infima we obtain mS(λx) = λmS(x).
(b): Let x ∈ X and λ ∈ F. Since S is balanced we have that µx ∈ S if and only if |µ|x ∈ S

for all µ ∈ F. Hence

{r > 0 : r−1λx ∈ S} = {r > 0 : r−1|λ|x ∈ S} = |λ|{r > 0 : r−1x ∈ S}.

Taking infima, the desired conclusion follows.
(c): Let x, y ∈ X. Suppose r, s > 0 with r−1x, s−1y ∈ X. Since S is convex we have that

1

r + s
(x+ y) =

r

r + s
(r−1x) +

s

r + s
(s−1y) ∈ S.

This shows that mS(x + y) ≤ r + s. Since r and s were arbitrary we can take the infimum
over all r and then over all s to obtain mS(x+ y) ≤ mS(x) +mS(y).

(d): If x ∈ S then since 1−1x ∈ S we have that mS(x) ≤ 1. Suppose that mS(x) < 1. Then
we can find some λ ∈ F with 0 < λ < 1 such that λ−1x ∈ S. But then x = λ(λ−1x)+(1−λ)0 ∈
S. ■

Corollary 2.1.10. Let X be a vector space and let C be a convex, absorbing subset of X.
Then the gauge mC is a sublinear functional on X. If C is balanced as well, then mC is a
semi-norm on X.

Proposition 2.1.9 (d) shows that we cannot recover a general convex absorbing set com-
pletely from its gauge; that is, if C and D are convex absorbing sets with mC = mD then
we cannot necessarily conclude that C = D. Starting with a semi-norm however, we can
completely recover it from its open or closed ball as the following proposition shows:

Proposition 2.1.11. Let σ be a semi-norm on a vector space X. Let C be any convex,
balanced and absorbing set such that

Bσ ⊆ C ⊆ B̄σ.

Then mC = σ, that is, σ equals the gauge associated to C.

Proof. Exercise. ■
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2.2 Neighborhood bases at zero

Definition 2.2.1. Let X be a vector space over F. A topology T on X is said to be linear if
vector addition and scalar multiplication are continuous maps with respect to T . That is, the
maps

X ×X → X, (x, y) 7→ x+ y,

F×X → X, (λ, x) 7→ λx,

are continuous when X is equipped with the topology T and X ×X and F ×X is equipped
with the corresponding product topologies coming from T and the natural topology on F. A
vector space equipped with a linear topology is called a topological vector space.

Example 2.2.2. Let X be a normed vector space. Then X is a topological vector space when
equipped with the topology induced by its norm. In particular, the finite-dimensional vector
space Fn is a topological vector space with respect to the usual topology on Fn, since this is
the topology induced by any norm on Fn.

Let X be a topological vector space. For each x ∈ X define a map hx : X → X by

hx(y) = x+ y.

Then by continuity of vector addition it follows that hx is a continuous map. In fact, since hx
is invertible with h−1

x = h−x, each hx is a homeomorphism. Since x+ S = {x+ y : y ∈ S} is
the image of S under the homeomorphism hx, it follows that x + U is open when U is open.
Similar statements hold for closed sets, compact sets, and so on.

In particular, if B0 is a neighborhood basis for the zero vector and x ∈ X, then Bx := B0+x
is a neighborhood basis for x. Thus a linear topology is uniquely determined by a neighborhood
basis of the zero vector.

Proposition 2.2.3. Let X be a topological vector space and let N0 be the neighborhood filter
at 0. Then the following hold:

(a) For every N ∈ N0 there exists N ′ ∈ N0 such that N ′ +N ′ ⊆ N .

(b) Every N ∈ N0 is absorbing.

(c) For every N ∈ N0 there exists a balanced N ′ ∈ N0 such that N ′ ⊆ N .

Proof. (a): Let N ∈ N0. Since vector multiplication is continuous at (0, 0) and 0 + 0 = 0, the
inverse image of N under addition, i.e. M = {(x, y) ∈ X×X : x+y ∈ N} is a neighborhood of
(0, 0). By definition of product topology we can find N1, N2 ∈ N0 such that N1×N2 ⊆M , i.e.
N1 +N2 ⊆ N . Choosing N ′ ∈ N0 such that N ′ ⊆ N1 and N ′ ⊆ N2 we obtain N ′ +N ′ ⊆ N .

(b): Let N ∈ N0 and x ∈ X. Since scalar multiplication is continuous at (0, x) ∈ F ×X
and 0x = 0, it follows that M = {(λ, y) ∈ F ×X : λy ∈ N} is a neighborhood of (0, x). By
definition of product topology we can find r > 0 and N ′ ∈ Nx such that Br(0) × N ′ ⊆ M .
But then λx ∈ N whenever |λ| < r.

(c): Let N ∈ N0. By continuity of scalar multiplication at (0, 0) ∈ F×X there exists r > 0
and N ′ ∈ N0 such that Br(0)N

′ ⊆ N . Now Br(0)N
′ is a neighborhood of 0 (show this!) and

if λ ∈ F and |λ| ≤ 1 then λBr(0) ⊆ Br(0) so λBr(0)N
′ ⊆ Br(0)N

′. This shows that Br(0)N
′

is balanced. ■
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Corollary 2.2.4. Let X be a topological vector space. Then X has a neighborhood basis at
zero consisting of balanced, absorbing sets.

Proof. Let B0 be the collection of balanced neighborhoods of 0. By Proposition 2.2.3 (b) every
set in B0 is also absorbing. If N ∈ N0 then by Proposition 2.2.3 (c) there exists B ∈ B0 such
that B ⊆ N . Thus B0 is a neighborhood basis at 0. ■

The following proposition gives conditions ensuring that a collection B0 of subsets of a
vector space X is a neighborhood basis at zero for a (necessarily unique) linear topology on
X.

Proposition 2.2.5. Let X be a vector space and let B0 be a nonempty collection of subsets of
X with the following properties:

(a) Every B ∈ B0 is balanced and absorbing.

(b) For every B,B′ ∈ B0 there exists B′′ ∈ B0 such that B′′ ⊆ B ∩B′.

(c) For every B ∈ B0 there exists B′ ∈ B0 such that B′ +B′ ⊆ B.

Then B0 is a neighborhood basis at zero for a unique linear topology on X.

Proof. For every x ∈ X, set Bx = B0 + x. We will first use Proposition 1.1.5 to show that
the collections Bx for x ∈ X give rise to a topology on X. Let us denote the properties from
Proposition 1.1.5 by (a′)− (d′).

(a′): Since B0 is assumed to be nonempty, it follows that each Bx is nonempty.
(b′): Every set in B0 is absorbing, hence contains 0. It follows that every set in Bx = B0+x

contains x.
(c′): If B,B′ ∈ B0 then by (b) we can find B′′ ∈ B0 such that B′′ ⊆ B ∩ B′. Hence

(B + x) ∩ (B′ + x) = B ∩B′ + x for all x ∈ X.
(d′): Let B ∈ B0 and set

U = {y ∈ B : there exists B′ ∈ B0 such that y +B′ ⊆ B}.

Then 0 ∈ U since 0 ∈ B and 0 + B = B. Suppose y ∈ U , so that there exists some B′ ∈ B0

such that y+B′ ⊆ B. By (c) we can find B′′ ∈ B0 such that B′′+B′′ ⊆ B′. Hence y+B′′ ∈ By

has the property that y +B′′ ⊆ U , since if z ∈ y +B′′ then z +B′′ ⊆ y +B′′ +B′′ ⊆ y +B′.
This proves (d′) for x = 0, and for general x we can do the same argument with x + B and
x+ U instead of B and U .

Proposition 1.1.5 now implies that the sets Bx are neighborhood bases for a (necessarily
unique) topology on X. We must show that this topology is linear. First we show continuity
of vector addition at (x0, y0) ∈ X×X. Let B ∈ B0. By (c) from Proposition 2.2.5 we can find
B′ ∈ B0 such that B′+B′ ⊆ B. If x ∈ x0+B

′ and y ∈ y0+B
′ then x+y ∈ x0+y0+B

′+B′ ⊆
x0 + y0 +B, so vector addition is continuous at (x0, y0).

Next we show continuity of scalar multiplication. Let (λ0, x0) ∈ F × X and B ∈ B0.
Pick B′ ∈ B0 such that B′ + B′ ⊆ B. Since B′ is absorbing we can find ϵ > 0 such that
λx0 ∈ B′ when |λ| < ϵ. Now pick n ∈ N with |λ0| + ϵ < n. Thus, if |λ − λ0| < ϵ then
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|λ/n| ≤ (|λ0|+ ϵ)/n < 1. Assume that |λ−λ0| < ϵ and x ∈ x0+(1/n)B′. Since B′ is balanced
we have that

λx = λ0x0 + (λ− λ0)x0 + λ(x− x0) ∈ λ0x0 +B′ +
λ

n
B′ ⊆ λ0x0 +B′ +B′ ⊆ λ0x0 +B.

This shows that scalar multiplication is continuous. ■

Definition 2.2.6. A linear topology on a vector space X is called locally convex if the zero
vector has a neighborhood basis consisting of convex sets. A vector space equipped with a
locally convex linear topology is called a locally convex topological vector space.

Remark. Note that every point in a locally convex topological vector space has a neighborhood
basis consisting of convex sets, since if B0 is a neighborhood basis of 0 consisting of convex
sets then Bx = x+ B0 is a neighborhood basis at x consisting of convex sets.

Proposition 2.2.7. Let X be a locally convex topological vector space. Then X has a neigh-
borhood basis at zero consisting of sets that are convex, balanced and absorbing. One can
furthermore choose the neighborhoods to be open.

Proof. Left as an exercise. ■

Proposition 2.2.8. Let X be a vector space and let B0 be a nonempty collection of subsets of
X with the following properties:

(a) Every B ∈ B0 is convex, balanced and absorbing.

(b) For every B,B′ ∈ B0 there exists B′′ ∈ B0 such that B′′ ⊆ B ∩B′.

(c) For every B ∈ B0 there exists λ ∈ (0, 1/2] such that λB ∈ B0.

Then B0 is a neighborhood basis at zero for a unique linear topology on X, and this topology
is locally convex.

Proof. To show that B0 is a neighborhood basis at zero for a unique linear topology on X, it
suffices to show that (c) from Proposition 2.2.5 is satisfied. Let B ∈ B0. By (c) above we can
find λ ∈ (0, 1/2] such that λB ∈ B0. Since B is convex we have that λB + λB = 2λB. Since
B is balanced and 2λ ≤ 1 we get 2λB ⊆ B.

It immediately follows that the topology determined by B0 is locally convex as the sets in
B0 are convex by assumption. ■

2.3 Topologies via semi-norms

In this section we look at semi-norms on topological vector spaces. The first result characterizes
the continuity of a semi-norm in terms of its open and closed balls:

Proposition 2.3.1. Let X be a topological vector space and let σ be a semi-norm on X. Then
the following are equivalent:

(a) σ is continuous.
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(b) σ is continuous at 0.

(c) The set Bσ = {x ∈ X : σ(x) < 1} is open in X.

(d) The set B̄σ = {x ∈ X : σ(x) ≤ 1} is a closed neighborhood of 0.

Proof. Exercise. ■

The following proposition concerns the continuity of gauges associated to sets in a topo-
logical vector space.

Proposition 2.3.2. Let X be a topological vector space and let C be a convex and absorbing
subset of X. Then the following hold:

(a) The gauge mC of C is continuous if and only if C is a neighborhood of 0.

(b) We have that
IntC ⊆ BmC ⊆ C ⊆ B̄mC ⊆ ClC.

Moreover, if C is a neighborhood of 0 then IntC = BmC and ClC = B̄mC .

Proof. (a): Suppose first that C is a neighborhood of 0. Let ϵ > 0. Then ϵC is a neighborhood
of 0, and if x ∈ ϵC then m(x) = inf{λ > 0 : x ∈ λC} ≤ ϵ. Thus mC(ϵC) ⊆ B̄ϵ(0) which shows
that mC is continuous at 0, hence everywhere by Proposition 2.3.1. Conversely, suppose mC

is continuous. Then BmC = m−1
C ([0, 1)) is open and BmC ⊆ C by Proposition 2.1.9, so C is a

neighborhood of 0.
(b): Because of what we already know from Proposition 2.1.9 (d) it suffices to prove

that IntC ⊆ BmC and B̄mC ⊆ ClC. If x ∈ IntC then there exists an open set U ⊆ C
with x ∈ U . Thus we can find some n ∈ N such that (1 + 1/n)x ∈ U ⊆ C. But then
mC((1+ 1/n)x) ≤ 1 by Proposition 2.1.9 (d) so mC(x) ≤ 1/(1+ 1/n) = n/(n+1) < 1. Next,
suppose x ∈ B̄mC . If mC(x) < 1 then x ∈ BmC ⊆ C ⊆ ClC so suppose mC(x) = 1. Let U
be an open neighborhood of x. By continuity of scalar multiplication we can find δ > 0 such
that Bδ(1)x ⊆ U . Since mC(x) = 1 we can find λ > 1 such that x ∈ λC and |λ− 1| < δ. But
then |λ−1 − 1| = |1− λ|/|λ| < δ/|λ| < δ. Thus λ−1 ∈ Bδ(1) and since λ−1x ∈ C we have that
Bδ(1)x ∩ C ̸= ∅. Hence U ∩ C ̸= ∅. Since U was an arbitrary neighborhood of x we conclude
that x ∈ ClC.

Finally, if C is a neighborhood of 0 then by (a) the gauge mC is continuous. By Proposi-
tion 2.3.1 it follows that BmC is open and B̄mC is closed. By the inclusions IntC ⊆ BmC ⊆
C ⊆ B̄mC ⊆ ClC it the follows that IntC = BmC and ClC = B̄mC . ■

Corollary 2.3.3. In a topological vector space X, there is a one-to-one correspondence between
(1) open, convex, balanced neighborhoods of 0, (2) closed, convex, balanced neighborhood of 0
and (3) continuous semi-norms on X.

Proof. If C is an open (resp. closed), convex, absorbing, balanced subset of X then mC is a
semi-norm and BmC = IntC = C (resp. B̄mC = ClC = C) by Proposition 2.3.2 (b). If σ is
a continuous semi-norm on X then Bσ (resp. B̄σ) is an open (resp. closed), convex, balanced
and absorbing set, and mBσ = mB̄σ = σ by Proposition 2.1.11. ■

The following proposition will be our main way of obtaining locally convex topological
vector spaces:
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Proposition 2.3.4. Let X be a vector space and let (σi)i∈I be a collection of semi-norms on
X. For each finite subset I0 of I and each r > 0 define

NI0,r =
⋂
i∈I0

Bσi
r = {x ∈ X : σi(x) < r for each i ∈ I0}. (2.2)

Then the collection B0 = {NI0,r : I0 ⊆ I finite, r > 0} defines an open neighborhood basis at
zero for a locally convex linear topology on X. It is the initial topology determined by the
family (σyi )(i,y)∈I×X where

σyi (x) = σi(x− y) for x ∈ X, i ∈ I and y ∈ Y

and the weakest linear topology on X for which σi is continuous for every i ∈ I.

Proof. We must check that the axioms of Proposition 2.2.8 are satisfied. For (a), we know
that each Bσi

r = rBσi is convex, balanced and absorbing from Proposition 2.1.7. Since NI0,r

is a finite intersection of such sets, it is also convex, balanced and absorbing. For (b), we note
that NI0,r ∩NI1,s ⊇ NI0∪I1,min{r,s} for finite subsets I0, I1 of I and r, s > 0. For (c) we observe
that λNI0,r = NI0,λr for λ > 0. Thus we obtain a locally convex linear topology T on X such
that B0 is a neighborhood basis at zero for T .

We demonstrate that each set in B0 is open: If x ∈ Bσi then let σi(x) < r < 1. Now
x+Bσi

1−r is a neighborhood of x and if y ∈ Bσi
1−r then σi(x+ y) < r+ (1− r) = 1. This shows

that x+Bσi
1−r ⊆ Bσi , so Bσi is open. Since NI0,r is a finite intersection of scalar multiples of

Bσi ’s, it is open as well.
Note that each σi is continuous in T by Proposition 2.3.1 since Bσi is open. Moreover each

map σyi is continuous, being the composition of the translation map x 7→ x− y with σi.
Suppose T ′ is any topology on X such that σyi is continuous in T ′ for all (i, y) ∈ I ×X.

Let N ′
y be the neighborhood filter of T ′ at y. By continuity of the σyi ’s, N ′

y contains all sets
of the form

y +NI0,r = {x ∈ X : σi(x− y) < r for all i ∈ I0} =
⋂
i∈I0

(σyi )
−1([0, r))

for I0 ⊆ I finite and r > 0. Thus By = y+B0 ⊆ N ′
y, so since By is a neighborhood basis for T

at y it follows that T ⊆ T ′. Thus T is the initial topology on X determined by (σyi )(i,y)∈I×X .
Finally, suppose T ′ is any linear topology on X such that σi is continuous in T ′ for every

i ∈ I. Then every set in B0 is a neighborhood of zero in T ′, so we have T ⊆ T ′ since linear
topologies are determined by a neighborhood basis at zero. It follows that T is the weakest
linear topology on X in which every σi is continuous. ■

Definition 2.3.5. Given a vector space X and a family (σi)i∈I of semi-norms on X, we call
the topology constructed in Proposition 2.3.4 the weak topology determined by (σi)i∈I .

Remark. Let X be a vector space equipped with the weak topology determined by a family
of semi-norms (σi)i∈I . Suppose (xλ)λ∈Λ is a net in X and let x ∈ X. By Proposition 1.2.8 we
have that (xλ)λ∈Λ → x if and only if (σyi (xλ))λ∈Λ → σyi (x) for all y ∈ X and i ∈ I. For y = x
this gives (σi(xλ − x))λ → σi(0) = 0 for all i ∈ I. On the other hand, if the convergence holds
for y = x then the reverse triangly inequality gives

|σyi (xλ)− σyi (x)| = |σi(xλ − y)− σi(x− y)| ≤ σi(xλ − y − (x− y)) = σi(xλ − x) → 0.

We conclude that (xλ)λ → x if and only if (σi(xλ − x))λ → 0 for all i ∈ I.
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Example 2.3.6. Let Ω be a topological space and let X = C(Ω) be the F-vector space of
continuous, F-valued functions on Ω.

(a) Given t ∈ Ω we can define a semi-norm σt on X by σt(f) = |f(t)|. Then we can consider
the weak topology induced by the family (σt)t∈Ω. A net (fλ)λ∈Λ in X converges to f if
and only if (|fλ(t)− f(t)|)λ∈Λ converges to 0 for every t ∈ Ω, i.e. (fλ(t))λ∈Λ → f(t) for
all t ∈ Ω. Thus we call this topology the topology of pointwise convergence.

(b) Given a compact set K ⊆ Ω we can define a semi-norm σK by σK(f) = supt∈K |f(t)|.
A net (fλ)λ∈Λ converges to f in this topology if and only if supt∈K |fλ(t) − f(t)| goes
to zero for every compact set K in Ω. For this reason the topology determined by the
family (σK)K is called the topology of uniform convergence on compact subsets.

Proposition 2.3.7. Let X be a vector space with the weak topology induced by a family of
semi-norms (σi)i∈I . Then the following are equivalent:

(a) X is Hausdorff.

(b) The family (σi)i∈I is separating, i.e. whenever x ∈ X and σi(x) = 0 for all i ∈ I then
x = 0.

Proof. Note that σi(x) = 0 for all i ∈ I if and only if σi(x) < r for all r > 0 and i ∈ I if
and only if x ∈ NI0,r for all finite subsets I0 of I and r > 0. Since the latter family is a
neighborhood basis at zero we have that σi(x) = 0 for all i ∈ I if and only if x is in every
neighborhood of zero. By an exercise we have that X is Hausdorff if and only if x ∈ N for all
N ∈ N0 implies x = 0. Hence X is Hausdorff if and only if (σi)i∈I is separating. ■

The following proposition tells us that every locally convex linear topology on a vector
space comes from a family of semi-norms. Thus, defining a topology on a vector space via a
neighborhood basis of convex sets or via semi-norms are equivalent.

Proposition 2.3.8. Every locally convex linear topology T on a vector space X is induced
by a family of semi-norms. In fact, if B0 is a neighborhood basis at zero for T consisting of
open, convex, balanced and absorbing sets as in Proposition 2.2.7, then T is the weak topology
induced by the family (mU )U∈B0 of semi-norms.

Proof. The topology on X induced by (mU )U∈B0 has neighborhood basis at zero B′
0 consisting

of the sets NI0,r = {x ∈ X : mU (x) < r for all B ∈ I0} where r ranges over positive numbers
and I0 ranges over finite subsets of B0. We must show that B0 and B′

0 determine the same
topology. By Proposition 2.3.2 we have that

NI0,r =
⋂
U∈I0

BmU
r =

⋂
U∈I0

rBmU = r
⋂
U∈I0

U.

for finite I0 ⊆ B0 and r > 0. By setting I0 = {U} and r = 1 we have that NI0,r = U , which
shows that B0 ⊆ B′

0. Conversely, since every set of the form r
⋂

U∈I0 U is a neighborhood of
0 in the topology on X determined by B0, there exists a neighborhood U ′ ∈ B0 such that
U ′ ⊆ r

⋂
U∈I0 U . Hence B0 is a refinement of B′

0, so the two topologies are equal. ■
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2.4 The Hahn–Banach separation theorems

If T : X → Y is a linear map between normed spaces, continuity of T is equivalent to T being
bounded, that is, there exists K ≥ 0 such that ∥T (x)∥ ≤ K∥x∥ for all x ∈ X. The following
proposition is a generalization of this characterization of continuity to the setting of a linear
map between locally convex topological vector spaces.

Proposition 2.4.1. Let X and Y be locally convex topological vector spaces. Suppose the
topology of X (resp. Y ) is induced by a family of semi-norms (σi)i∈I on X (resp. (ρj)j∈J on
Y ). Then the following are equivalent:

(a) T is continuous.

(b) T is continuous at 0.

(c) For every continuous semi-norm ρ on Y there exists a continuous semi-norm σ on X
such that

ρ(T (x)) ≤ σ(x) for all x ∈ X.

(d) For every j ∈ J there exists a finite subset I0 of I and K ≥ 0 such that

ρj(T (x)) ≤ Kmax
i∈I0

σi(x) for all x ∈ X.

Proof. (a) ⇔ (b): Exactly the same proof as for normed spaces.
(a) ⇒ (c): If T is continuous and ρ is a continuous semi-norm on Y then σ(x) = ρ(T (x))

is a continuous semi-norm on X.
(c) ⇒ (d): Let j ∈ J . Then by (c) there exists a continuous semi-norm σ on X such that

ρj(T (x)) ≤ σ(x) for all x ∈ X. Since σ is continuous it follows from Proposition 2.3.1 that
Bσ is an open neighborhood of 0. Thus, by Proposition 2.3.4, there exists a finite subset I0 of
I and r > 0 such that NI0,r ⊆ Bσ. Let x ∈ X and set m = maxi∈I0 σi(x). Then for all i ∈ I0
we have

σi((r/2)m
−1x) = (r/2)σi(x)/m ≤ r/2 < r

so σ(((r/2)m−1x) < 1, or, σ(x) ≤ Kmaxi∈I0 σi(x) whereK = r/2. Combined with ρj(T (x)) ≤
σ(x) we have arrived at (d).

(d) ⇒ (b). Assume that (d) holds. Let (xλ)λ∈Λ be a net in X that converges to 0.
Then (σi(xλ))λ∈Λ converges to 0 for every i ∈ I. Let j ∈ J . By the assumption, the net
(ρj(T (xλ)))λ converges to 0. Since j was arbitrary, we conclude by Proposition 2.3.4 that
(T (xλ))λ∈Λ converges to 0. Exercise. ■

Corollary 2.4.2. Let ϕ : X → F be a linear functional on a topological vector space. Then ϕ is
continuous if and only if there exists a continuous semi-norm σ on X such that |ϕ(x)| ≤ σ(x)
for all x ∈ X.

Proof. If ϕ is continuous then σ = |ϕ| does the trick. Conversely, suppose there exists a semi-
norm σ on X such that |ϕ(x)| ≤ σ(x) for all x ∈ X. Every semi-norm on F is a nonnegative
multiple of the absolute value on F (prove this!). For every r ≥ 0 we have that r|ϕ(x)| ≤ rσ(x)
so (c) of Proposition 2.4.1 is verified. Thus ϕ is continuous. ■
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Recall the following fundamental result from MAT4410:

Theorem 2.4.3 (Hahn–Banach Theorem). Let X be a real vector space and let p be a sublinear
functional on X. Let X0 be a linear subspace of X and let ϕ0 be a linear functional on X0.
Suppose that

ϕ0(x) ≤ p(x) for all x ∈ X0.

Then there exists a linear functional ϕ on X such that ϕ|X0 = ϕ0 and

ϕ(x) ≤ p(x) for all x ∈ X.

LetX be a vector space over R. By a hyperplane inX we mean a set of the formH = ϕ−1(c)
for some linear functional on X and some c ∈ R. A hyperplane defines two half-spaces

L = {x ∈ X : ϕ(x) ≤ c}, U = {x ∈ X : ϕ(x) ≥ c}.

Given two disjoint subsets A and B of X, we are interested in whether we can separate the two
by a hyperplane: That is, to which extent we can find a hyperplane H such that A sits inside
L and B sits inside U as above. We will consider the following two degress of separation:

(a) Strict separation: We can find a linear functional ϕ on X such that ϕ(x) < c < ϕ(y) for
all x ∈ A and y ∈ B.

(b) Strong separation: We can find a linear functional ϕ on X and r > 0 such that ϕ(x) <
c− r < c+ r < ϕ(y) for all x ∈ A and y ∈ B. Equivalently supx∈A ϕ(x) < infy∈B ϕ(y).

For complex vector spaces we can ask the same questions if we consider only the real part
of a linear functional.

The following important theorem gives conditions on A and B in a topological vector space
that guarantee both strict separation and strong separation:

Theorem 2.4.4 (Hahn–Banach Separation Theorem). Let X be a topological vector space and
let A and B be nonempty, convex subsets of X with A ∩B = ∅.

(a) Suppose A is open. Then there exists a continuous linear functional ϕ on X and c ∈ R
such that

Reϕ(x) < c ≤ Reϕ(y) for all x ∈ A and y ∈ B.

If B is open as well, then both of the inequalities above are strict.

(b) Suppose X is locally convex and suppose that A is closed and B is compact. Then there
exists a continuous linear functional ϕ on X and c, r ∈ R such that

Reϕ(x) ≤ c− r < c+ r ≤ Reϕ(y) for all x ∈ A and y ∈ B.

To prove Theorem 2.4.4 we need a couple of following lemmas as preparation.

Lemma 2.4.5. Every nontrivial linear functional ϕ on a topological vector space X is an open
map.
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Proof. Let U ⊆ X be open and nonempty. Since ϕ is nontrivial we can find x0 ∈ X with
ϕ(x0) = 1. Let µ ∈ ϕ(U) and pick some x ∈ U with ϕ(x) = µ. Then U − x is absorbing
by Proposition 2.2.3 (b) so we can find ϵ > 0 such that λx0 ∈ U − x when |λ| < ϵ. Thus
x+ λx0 ∈ U so µ+ λ = ϕ(x+ λx0) ∈ ϕ(U) when |λ| < ϵ. This shows that Bϵ(µ) ⊆ ϕ(U), so
ϕ(U) is open. ■

Lemma 2.4.6. Let X be a topological vector space. Let U be an open, convex subset of X that
does not contain 0. Then there exists a continuous linear functional ϕ on X such that Reϕ is
positive on U .

Proof. Assume first that F = R. Let x0 ∈ −U . Then U + x0 is a convex, open neighborhood
of 0 so by Proposition 2.3.2 (b) we can write we can write U +x0 = Bp where p is the gauge of
U + x0. Since 0 /∈ U we have that x0 ̸= 0 and x0 /∈ x0 + U , so p(x0) ≥ 1. Set X0 = span{x0}
and define ϕ0 : X0 → R by ϕ0(λx0) = λ. Then ϕ0 is a linear functional on X0. If λ ≥ 0 then
ϕ0(λx0) = λ ≤ λp(x0) = p(λx0). If λ < 0 then ϕ0(λx0) = λ < 0 ≤ p(λx0). In any case p is a
sublinear functional that dominates ϕ0 on X0, so by Theorem 2.4.3 there exists an extension
ϕ of ϕ0 to X with ϕ(x) ≤ p(x) for all x ∈ X. Now σ(x) = max{p(x), p(−x)} is a semi-norm
and |ϕ(x)| ≤ σ(x) for all x ∈ X, so by Corollary 2.4.2 ϕ is continuous.

Now if ϕ(x) = 0 then 1 = ϕ(x) + ϕ(x0) = ϕ(x + x0) ≤ p(x + x0). Thus x + x0 /∈ U + x0,
so x /∈ U . This shows that if x ∈ U then either ϕ(x) > 0 or ϕ(x) < 0. Since U is connected it
follows that ϕ is either positive or negative on the whole of U . Thus, possibly interchanging
ϕ with −ϕ, we have a linear functional as desired.

Let now F = C. We can still view X as a real vector space, and the the notion of convexity
does not change. Thus, by what we already proved we can find a continuous R-linear functional
ψ : X → R such that ψ is positive on U . Define ϕ : X → C by

ϕ(x) = ψ(x)− iψ(ix) for x ∈ C.

Then ϕ is obviously continuous and R-linear, but it is also C-linear, as

ϕ(ix) = ψ(ix)− iψ(i2x) = ψ(ix) + iψ(x) = i(ψ(x)− iψ(ix)) = iϕ(x).

Since Reϕ = ψ we have Reϕ > 0 on U . ■

Proof of Theorem 2.4.4. (a): Set U = B − A. Then U is open (U =
⋃

y∈B(b − A)) and
convex (Proposition 2.1.4). Moreover, 0 /∈ U since A ∩ B = ∅. By Lemma 2.4.6 there
exists a continuous linear functional ϕ on X such that Reϕ is positive on B − A. Hence
Reϕ(x) < Reϕ(y) for all x ∈ A and y ∈ B. Thus Reϕ(A) and Reϕ(B) are connected, disjoint
subsets of R. If A is open then ϕ is open by Lemma 2.4.5, so Reϕ must be open (Re: C → R
is a coordinate projection, hence an open map). It follows that Reϕ(A) is an open interval,
thus bounded away from its right endpoint c. This gives Reϕ(x) < c ≤ Reϕ(y) for all x ∈ A
and y ∈ B. If B is open as well then we get strict inequalities for the same reason.

(b): By the assumptions, B is a compact subset of the open set Ac, so we can find a
convex open neighborhood V of zero such that B+V ⊆ Ac (exercise!). Now B+V and A are
nonempty, convex sets that are disjoint and B + V is open. By (a) we can find a continuous
linear functional ϕ on X and c ∈ R such that Reϕ(x) ≤ c < Reϕ(y) for all x ∈ A and
y ∈ B + V . Again, since V is open neighborhood of 0 and Reϕ is an open map, we can
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fit an interval of the form (−r, r) for some r > 0 inside Reϕ(V ). Consequently there exists
x0 ∈ Reϕ(V ) with Reϕ(x0) < 0. It follows that for every x ∈ A and y ∈ B we have

Reϕ(x) ≤ c < Reϕ(y + x0) = Reϕ(y) + Reϕ(x0).

Thus we have that supx∈AReϕ(x) ≤ infy∈B Reϕ(y) + Reϕ(x0) < infy∈B Reϕ(y). ■

2.5 The weak and weak* topologies

Given a topological vector space X, we denote by X∗ the (continuous) dual space, that is, the
vector space of continuous linear functionals on X.

Given ϕ ∈ X∗, we have already noted that the map |ϕ| : X → [0,∞) given by |ϕ|(x) =
|ϕ(x)| for x ∈ X is a semi-norm on X.

Definition 2.5.1. Let X be a topological vector space. The topology on X determined by
the family (|ϕ|)ϕ∈X∗ of semi-norms on X is called the weak topology on X.

Note that by Proposition 2.3.4 we have that a net (xλ)λ∈Λ in X converges to x in the weak
topology if and only if (ϕ(xλ))λ∈Λ converges to ϕ(x) for every ϕ ∈ X∗. Therefore the weak
topology on X is weaker than the original topology on X.

Observation 2.5.2. Suppose X is a nontrivial Hausdorff locally convex topological vector
space. Let x ∈ X be nonzero. Then {0} and {x} are nonempy, convex, compact subsets of X
that are disjoint, so by Theorem 2.4.4 we can find ϕ ∈ X∗ such that 0 = Reϕ(0) < Reϕ(x).
In particular ϕ(x) ̸= 0. This shows not only that the dual space X∗ is nontrivial, but also
that the family (|ϕ|)ϕ∈X∗ of semi-norms is separating. Consequently the weak topology on X
is Hausdorff by Proposition 2.3.7.

The following example shows that the weak topology might be strictly weaker than the
original topology on a topological vector space.

Example 2.5.3. Let H be a Hilbert space. Then by the Riesz’ representation theorem, every
linear functional on H is of the form x 7→ ⟨x, y⟩ for some y ∈ H. Hence, a sequence (xn)n∈N
in H converges weakly to x if and only if (⟨xn, y⟩)n converges to ⟨x, y⟩ for every y ∈ H. Let
us look at a particular example. Suppose H is infinite-dimensional and let (en)n∈N be an
orthonormal sequence in H. Then for m,n ∈ N with m ̸= n we have

∥em − en∥2 = ∥em∥2 − 2Re⟨em, en⟩+ ∥en∥2 = 2.

This shows that (en)n∈N does not converge in norm. However, if y ∈ H then by Bessel’s
inequality we have that

∑
n |⟨y, en⟩|2 ≤ ∥y∥2 so the sequence (|⟨y, en⟩|2)n must go to zero for

every y ∈ H. Thus (en)n converges weakly to 0.

In fact, one can show that the weak topology on X never agrees with the original topology
on X when X is an infinite-dimensional locally convex topological vector space.

Proposition 2.5.4. Let C be a convex subset of a locally convex topological vector space X.
Then C is closed if and only if it is weakly closed.
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Proof. Since the weak topology on X is weaker than the original topology on X, weakly closed
sets are closed (in the original topology). Suppose that C is closed. Let (xλ)λ∈Λ be a net in C
that converges weakly to x ∈ X. Assume for a contradiction that x /∈ C. Since Cc is an open
neighborhood of x and X is locally convex we can find an open convex neighborhood U ⊆ Cc

of x. By Theorem 2.4.4 (a) we can find ϕ ∈ X∗ such that Reϕ(x′) < c ≤ Reϕ(y) for all x′ ∈ U
and y ∈ C. In particular Reϕ(x) < inf{ϕ(y) : y ∈ C}. But then Reϕ(x) < inf{Reϕ(xλ) : λ ∈
Λ} which contradicts that (ϕ(xλ))λ → ϕ(x). Hence C is weakly closed. ■

When X is a normed space we can always equip X∗ with the operator norm, turning it
into a normed space as well. When X is only a topological vector space, the operator norm is
lacking. However, we can always equip X∗ with the following topology:

Definition 2.5.5. Let X be a topological vector space. For each x ∈ X let σx denote the
semi-norm on the dual space X∗ given by

σx(ϕ) = |ϕ(x)| for ϕ ∈ X∗.

The topology on X∗ determined by the family (σx)x∈X is called the weak* topology on X∗.

By Proposition 2.3.4 a net (ϕλ)λ∈Λ in X∗ converges weak*ly to ϕ if and only if for every
x ∈ X the net (ϕλ(x))λ∈Λ converges to ϕ(x). Thus, the weak* topology on X∗ is the topology
of pointwise convergence of continuous linear functionals.

Example 2.5.6. Let (Ω,A, µ) be a σ-finite measure space and consider the Banach space
X = L1(Ω,A, µ). Then X∗ is isomorphic to L∞(Ω,A, µ), where a function g ∈ L∞ is mapped
to the linear functional on X given by f 7→

∫
Ω fg dµ. A net (gλ)λ∈Λ of functions in L∞

converges to g in the weak* topology if and only if
∫
Ω fgλ dµ→

∫
Ω fg dµ for all f ∈ L1.

Theorem 2.5.7 (The Banach–Alaoglu Theorem). Let X be a normed and space and denote
by B̄∗ the closed unit ball of X∗, i.e.

B̄∗ = {ϕ ∈ X∗ : ∥ϕ∥ ≤ 1}.

Then B̄∗ is compact in the weak* topology.

Proof. Let K be the product space K =
∏

x∈X B∥x∥(0) where B∥x∥(0) is the closed ball of
radius ∥x∥ centered at 0 in F. Each of the sets B∥x∥(0) is a closed and bounded subset of F,
hence compact by the Heine–Borel Theorem. It follows that the product space K is compact
by Tychonoff’s Theorem (Theorem 1.3.8). An element of K is a function ϕ : X → F such that
|ϕ(x)| ≤ ∥x∥ for every x ∈ X. Thus, we can identify B̄∗ with the subset of K consisting of
linear functions. The subspace topology on B̄∗ coming from the product topology on K is
exactly the weak* topology. Hence, to show that B̄∗ is compact, it suffices to show that B̄∗

is closed in K. Let (ϕγ)γ∈Γ be a net in B̄∗ that converges to ϕ ∈ K. Letting x, y ∈ X and
λ, µ ∈ F, we have that

ϕ(λx+ µy) = lim
γ
ϕγ(λx+ µy) = λ lim

γ
ϕγ(x) + µ lim

γ
ϕγ(y) = λϕ(x) + µϕ(y).

This shows that B̄∗ is closed in K which finishes the proof. ■
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Let X be a normed space. Denote by X∗ its dual space, which is again a normed space
with respect to the operator norm ∥ϕ∥ = sup∥x∥=1 |ϕ(x)| for ϕ ∈ X∗. Considering X∗ as a
nomed vector space in this way, we can form its continuous dual X∗∗ = (X∗)∗, which is again
a normed space. This space is called the bidual of X.

Proposition 2.5.8. Let X be a normed space. Then for every x ∈ X the evaluation functional
evx : X

∗ → F given by evx(ϕ) = ϕ(x) is an element of X∗∗. Furthermore, the map Φ: X →
X∗∗ by

Φ(x) = evx for x ∈ X

is a linear isometry.

Proof. Let x ∈ X, ϕ, ψ ∈ X∗ and λ, µ ∈ F. Then

evx(λϕ+ µψ) = (λϕ+ µψ)(x) = λϕ(x) + µψ(x) = λ evx(ϕ) + µ evx(ψ)

shows that evx is a linear functional on X∗. Furthermore

| evx(ϕ)| = |ϕ(x)| ≤ ∥ϕ∥∥x∥

which shows that evx is bounded, with ∥ evx ∥ ≤ ∥x∥. By a well-known corollary of the
Hahn–Banach theorem there exists ϕ0 ∈ X∗ with ϕ0(x) = ∥x∥ so we actually have that

∥ evx ∥ = sup
∥ϕ∥=1

|ϕ(x)| ≥ |ϕ0(x)| = 1

so ∥ evx ∥ = ∥x∥. Now let x, y ∈ X, λ, µ ∈ F and ϕ ∈ X∗. Using the linearity of ϕ we have
that

Φ(λx+ µy)(ϕ) = ϕ(λx+ µy) = λϕ(x) + µϕ(y) = λΦ(x)(ϕ) + µΦ(y)(ϕ).

Finally ∥Φ(x)∥ = ∥ evx ∥ = ∥x∥ which shows that Φ is an isometry. ■

Note that Φ is injective since it is an isometry, but not surjective in general.

Definition 2.5.9. A normed space X is called reflexive if the isometry Φ: X → X∗∗ in
Proposition 2.5.8 is surjective.

Example 2.5.10. (a) For any normed space X we know that the dual space X∗ is a Banach
space even if X is not. Thus, the bidual X∗∗ of any normed space is a Banach space, so
for X to be reflexive, X must be a Banach space.

(b) Hilbert spaces are reflexive: Recall that for a Hilbert spaceH, every ϕ ∈ H∗ is of the form
ϕy for some unique y ∈ H where ϕy(x) = ⟨x, y⟩ for x ∈ H. Moreover, ⟨ϕy, ϕz⟩ = ⟨z, y⟩
defines an inner product on H∗. If α ∈ H∗∗ we can for the same reason find ψ ∈ H∗

such that α(ϕ) = ⟨ϕ, ψ⟩ for ϕ ∈ H∗, and we must have ψ = ϕz for some z ∈ H. But
then

Φ(z)(ϕy) = ϕy(z) = ⟨z, y⟩ = ⟨ϕy, ϕz⟩ = α(ϕy)

for all y ∈ H. Hence Φ(z) = α which shows that Φ is surjective.

(c) Let (Ω,A, µ) be a σ-finite measure space, let 1 < p <∞ and set X = Lp(X,A, µ). Then
X is reflexive since X∗ ∼= Lq where 1/p + 1/q = 1, and repeating the procedure gives
X∗∗ ∼= Lp. As in the previous example one can check that this isomorphism is given
by Φ. However, if p = 1 then the bidual of L1 can be in general much bigger than L1.
Hence L1 is not reflexive in general.
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2.6 The Krein–Milman theorem

Let x and y be points in a vector space X. The open line segment between x and y is the set

(x, y) = {(1− t)x+ ty : 0 < t < 1}.

We say that z ∈ X lies strictly between x and y if z ∈ (x, y).

Definition 2.6.1. Let C be a nonempty convex subset of a vector space X. We say that a
nonempty convex subset F of C is a face of C if whenever x, y ∈ C and some point in F lies
strictly between x and y, then x, y ∈ F . That is, whenever x, y ∈ C and (1− t)x+ ty ∈ F for
some t ∈ (0, 1), then x, y ∈ F .

Notice that if F ′, F and C are convex sets such that F ′ is a face of F and F is a face of
C then F ′ is also a face of C.

Definition 2.6.2. Let X be a vector space and let C be a convex subset of X. We say that
y ∈ C is an extreme point for C if y does not lie strictly between any two distinct points in
C. That is, whenever y = (1− t)x1 + tx2 for some t ∈ (0, 1) and x1, x2 ∈ C then x1 = x2. We
denote by ex(C) the set of extreme points of C.

Note that an extreme point for C is precisely the same as a singleton face: That is, {x} is
a face for C if and only if x is an extreme point for C.

Example 2.6.3. Let X be a nonzero normed space and suppose x is an extreme point for the
closed unit ball B̄ of X. Then ∥x∥ = 1, which we can see using a proof by contradiction: If
x = 0 then x lies strictly between −y and y for any y ∈ X with ∥y∥ = 1. If 0 < ∥x∥ < 1 then
x lies strictly between 0 and x/∥x∥. Thus the only option is that ∥x∥ = 1.

The converse does not hold in general (take e.g. R2 with the ∞-norm) , although it holds
e.g. whenX is a Hilbert space. To see this, suppose ∥x∥ = 1 and assume that x = (1−t)x1+tx2
for 0 < t < 1, and ∥x1∥ ≤ 1, ∥x2∥ ≤ 1. Then

1 = ∥x∥ ≤ (1− t)∥x1∥+ t∥x2∥.

If ∥x1∥ < 1 then we get 1 < (1− t) ·1+ t∥x2∥ ≤ (1− t)+ t ·1 = 1, a contradiction, so ∥x1∥ = 1.
Similarly we also need ∥x2∥ = 1. Now

1 = ∥x∥2 = (1− t)2∥x1∥2+ t2∥x2∥2+2(1− t)tRe⟨x1, x2⟩ = (1− t)2+ t2+2(1− t)tRe⟨x1, x2⟩.

Solving for Re⟨x1, x2⟩ we obtain

Re⟨x1, x2⟩ =
1− (1− t)2 − t2

t(1− t)
= 1.

Thus 1 = Re⟨x1, x2⟩ ≤ |⟨x1, x2⟩| ≤ ∥x1∥∥x2∥ = 1. Thus we have equality in the Cauchy–
Schwarz inequality for x1 and x2 which means that they are parallel, say x1 = cx2. But then
1 = ∥x1∥ = |c|∥x2∥ = |c|, and by the above, 1 = Re⟨x1, x2⟩ = Re(c∥x2∥2) = Re c, so we must
have c = 1. Thus x1 = x2. This shows that x is an extreme point for B̄.

The present section is dedicated to proving and exploring the consequences of the following
theorem:
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Theorem 2.6.4 (The Krein–Milman Theorem). Let X be a Hausdorff locally convex topolog-
ical vector space. Let K be a compact convex subset of X. Then

Cl(co(ex(K))) = K.

Before we present the proof we need some preparation.

Lemma 2.6.5. Let K be a nonempty compact convex subset of a topological vector space X.
Let ϕ ∈ X∗ and set m = inf{Reϕ(x) : x ∈ K}. Then F = {x ∈ K : Reϕ(x) = m} is a
compact face of K.

Proof. Let f = Reϕ : K → R. Then the continuity of f implies that f(K) is a compact subset
of R, so m is a well-defined real number and f attains m at least once. Thus F is nonempty.
Moreover F is convex (being the inverse image under a linear map of a point) and closed
(F = f−1({m})), hence compact.

Finally we show that F is a face of K: Suppose x, y ∈ K and (1− t)x+ ty ∈ F for some
0 < t < 1. Then m = f((1− t)x+ ty) = (1− t)f(x) + tf(y). Since f(x) ≥ m and f(y) ≥ m
this implies f(x) = f(y) = m, so x, y ∈ F . ■

An important part of the proof of the Krein–Milman Theorem involves showing that a
nonempty compact convex set has at least one extreme point. We present this argument in
the following separate lemma:

Lemma 2.6.6. Let K be a nonempty compact convex subset of a Hausdorff locally convex
topological vector space. Then ex(K) ̸= ∅.

Proof. Let F be the set of compact faces of K. Then F ≠ ∅ since K ∈ F . We equip F with
the partial order of reverse inclusion, and our goal is to employ Zorn’s lemma. Assume that C
is a nonempty chain in F . Whenever C0 is a finite subset of C then

⋂
F∈C0 F is nonempty. By

compactness of K we have that F0 :=
⋂

F∈C F ̸= ∅. Thus F0 is a face of K and F0 is compact,
being an intersection of compact sets. This means that F0 ∈ F and since F0 ⊆ F for all F ∈ C
Zorn’s lemma gives us the existence of a maximal element E of F .

We claim that E must be a singleton. Suppose otherwise, i.e. that we can find x0, y0 ∈
E with x0 ̸= y0. Since X is Hausdorff {x0} and {y0} are closed (and compact), so by
Theorem 2.4.4 (b) we can find ϕ ∈ X∗ such that Reϕ(x0) < Reϕ(y0). By Lemma 2.6.5
we can find m ∈ R such that F = {x ∈ E : Reϕ(x) = m} is a compact face of E. Thus F
is a compact face of K so F ∈ F . Since F ⊆ E, maximality of E gives F = E. But then
x0, y0 ∈ F so Reϕ(x0) = m = Reϕ(y0), a contradiction. Hence E is singleton, and its element
must be an extreme point of K. ■

We are now ready to prove the Krein–Milman Theorem:

Proof of Theorem 2.6.4. If K = ∅ there is nothing to prove, so assume that K ̸= ∅. Note that
since ex(K) ⊆ K we have that co(ex(K)) ⊆ K (since K is convex) and thus Cl(co(ex(K))) ⊆
K (since K is closed). It remains to show the reverse inclusion.

Suppose for a contradiction that there exists x0 ∈ K with x0 /∈ Cl(co(ex(K))). By Theo-
rem 2.4.4 (b) we can find ϕ ∈ X∗ and t ∈ R such that

Reϕ(x0) < t < Reϕ(y) for all y ∈ Cl(co(ex(K))).
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Set m = inf{Reϕ(x) : x ∈ K} and F = {x ∈ K : Reϕ(x) = m}. By Lemma 2.6.5
F is a compact face of K. Since Reϕ(x0) ≥ m, the above inequality implies that F ∩
Cl(co(ex(K))) = ∅. Since F is a nonempty compact convex subset of K, it has an extreme
point x1 by Lemma 2.6.6. Since F is a face of K it follows that x1 is an extreme point for
K as well. But then x1 ∈ F ∩ Cl(co(ex(K)) which is a contradiction. We conclude that
K = Cl(co(ex(K))) which finishes the proof.

■





Chapter 3

Banach algebras

3.1 Basic definitions and examples

For the moment, F denotes R or C, although we will eventually work exlusively over the
complex numbers.

Definition 3.1.1. An F-algebra is an F-vector space A which is also a ring, in such a way that
the vector space structure and the ring structure satisfy the following compatibility condition
for all a, b ∈ A and λ ∈ F:

λ(ab) = (λa)b = a(λb).

If ab = ba for all a, b ∈ A then A is called commutative.

Remark. We do not require rings to be unital. We call an algebra A unital if its underlying
ring is unital, i.e. there exists a (necessarily unique) element 1A ∈ A such that a1A = 1Aa = a
for all a ∈ A.

Example 3.1.2. Let V be an F-vector space and consider EndV , the set of all linear maps
from V to V . Then EndV is an F-algebra where the multiplication is composition of maps.
In particular, if V = Fn then EndV ∼= Matn(F), the algebra of n× n matrices over F.

Definition 3.1.3. A normed algebra is an algebra A which is normed as a vector space in
such a way that the norm is submultiplicative, i.e.

∥ab∥ ≤ ∥a∥∥b∥ for all a, b ∈ A.

If A is unital and nonzero, we require additionally that ∥1A∥ = 1. We call A a Banach algebra
if A is complete with respect to its norm.

Example 3.1.4. Let X be a normed space and consider B(X), the vector space of all bounded
linear operators on X. This is a unital normed algebra where multiplication is given by
composition of operators and the norm is the operator norm. If X is a Banach space then
B(X) is a Banach algebra. As a special case, consider X = F. Then B(X) ∼= F which is the
most basic example of a Banach algebra.

33
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Example 3.1.5. Let X be a normed space. The space K(X) of compact operators on X is a
closed subspace of B(X). We know that the composition of two compact operators is compact,
so K(X) is a normed algebra. If X is a Banach space then K(X) is a Banach algebra since
it is a closed subspace of the Banach algebra B(X). However, K(X) is not unital unless X is
finite-dimensional, in which case K(X) = B(X).

Remark. A consequence of submultiplicativity is that

∥an∥ = ∥a · · · a∥ ≤ ∥a∥ · · · ∥a∥ = ∥a∥n.

Example 3.1.6. Let (X,A, µ) be a measure space. Then A = L∞(X,A, µ) is a Banach
algebra with respect to pointwise multiplication (this works both if we consider real-valued or
complex-valued functions). We leave this as an exercise.

Example 3.1.7. Let G be a countable group and set A = ℓ1(G) (either as a real or complex
vector space). We define the convolution of a, b ∈ A to be the function a ∗ b : G→ F by

(a ∗ b)(g) =
∑
h∈G

a(h)b(h−1g) for g ∈ G.

We show that this is well-defined: Consider the function F : G × G → F given by (g, h) 7→
a(h)b(h−1g). We claim that this function is in ℓ1(G × G). Indeed, by Tonelli’s theorem we
can compute

∑
(g,h)∈G×G |F (g, h)| as∑

g,h∈G
|F (g, h)| =

∑
h∈G

∑
g∈G

|a(h)b(h−1g)|

=
∑
h∈G

∑
g∈G

|a(h)||b(g)|

=
(∑

h∈G
|a(h)|

)(∑
h∈G

|b(g)|
)

= ∥a∥1∥b∥1 <∞.

Since this is finite, we have by Fubini’s theorem that the function g 7→
∑

h∈G F (g, h) is
everywhere defined, i.e. (a ∗ b)(g) is defined everywhere. Moreover, we can interchange the
sums in the following computation

∥a ∗ b∥1 ≤
∑
g∈G

∑
h∈H

|a(h)b(h−1g)| =
∑
h∈G

∑
g∈H

|a(h)b(h−1g)| = ∥a∥1∥b∥1.

This shows that the ℓ1-norm is submultiplicative with respect to convolution. It is a straight-
forward exercise to check the rest of the algebra axioms. Thus, ℓ1(G) is a Banach algebra with
respect to convolution, and we will always view ℓ1(G) as a Banach algebra in this way.

Remark. Let G be a topological group, that is, a group equipped with a topology in which
the group multiplication and inversion are continuous maps. Let µ be a Radon measure on G
which is left translation-invariant, i.e. µ(gS) = µ(S) for all g ∈ G and Borel sets S. Then one
can define convolution on L1(G) via the formula

(a ∗ b)(g) =
∫
G
a(h)b(h−1g) dµ(h) for a, b ∈ L1(G).
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One can then show that L1(G) becomes a Banach algebra. Haar’s theorem states that such
a measure µ always exists if the group is locally compact Hausdorff, and that the measure is
unique up to a positive constant. However, that goes beyond the scope of this course.

Definition 3.1.8. Let A and B be algebras. A map ϕ : A → B is called an (algebra) ho-
momorphism if it is linear with respect to the underlying vector space structure of A and B
and

ϕ(aa′) = ϕ(a)ϕ(a′) for all a, a′ ∈ A.

If A and B are unital with multiplicative identities 1A and 1B respectively, then we call ϕ
unital if in addition ϕ(1A) = 1B. If A and B are normed algebras, we call ϕ norm-decreasing
if

∥ϕ(a)∥ ≤ ∥a∥ for all a ∈ A.

Note that norm-decreasing homomorphisms of normed algebras are continuous.

Example 3.1.9. Let A be a nonzero unital algebra. Then the map F → A given by λ 7→ λ1A
is an injective unital algebra homomorphism. Thus F is embedded into A.

A subalgebra of an algebra A is a subspace B of A which is closed under multiplication:
That is, if a, b ∈ B then ab ∈ B. If A is unital with multiplicative identity 1A, we call B a
unital subalgebra if 1A ∈ B. Note that this is stronger than just requiring B to be unital as
an algebra in itself.

Definition 3.1.10. Let A be an algebra. A subspace I of A is called a left ideal if ab ∈ I
whenever a ∈ A and b ∈ I. It is called a right ideal if ab ∈ I whenever a ∈ I and b ∈ A. It is
called a (two-sided) ideal if it is both left and right (often we will omit the word two-sided).

Recall that if X is a normed space and Y is a closed subspace, then the quotient space
X/Y is a normed space with respect to the quotient norm

∥x+ Y ∥ = inf
y∈Y

∥x+ y∥.

If X is a Banach space then X/Y is a Banach space as well.

Proposition 3.1.11. Let A be a normed algebra and let I be a closed ideal in A. Then the
quotient space A/I becomes a normed algebra with respect to the quotient norm. Furthermore,
if A is a Banach algebra then A/I is a Banach algebra.

Proof. From the basics of ring theory we know that A/I is an algebra since I is an ideal in A.
It remains to check that the quotient norm is submultiplicative. Let a, b ∈ A and let c, c′ ∈ I.
Then ac′ + bc+ cc′ ∈ I since I is an ideal, so

∥(a+ I)(b+ I)∥ = ∥ab+ I∥
≤ inf

c,c′∈I
∥ab+ ac+ bc′ + cc′∥

= inf
c,c′∈I

∥(a+ c)(b+ c′)∥

≤ inf
c,c′∈I

∥a+ c∥∥b+ c′∥

= ∥a+ I∥∥b+ I∥.

This shows submultiplicativity. ■
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Example 3.1.12. Let X be a Banach space. The Calkin algebra of X is the Banach algebra
A = B(X)/K(X). Note that when X is finite-dimensional, then A = {0}.

3.2 Algebras of continuous functions

Throughout this section Ω denotes a locally compact Hausdorff topological space. This section
concerns the F-vector space C(Ω,F) of F-valued, continuous functions on Ω, where F is either
R or C. However, we shall eventually be interested in the complex-valued case, and will use
C(Ω) to mean C(Ω,C) unless stated otherwise.

By Cb(Ω,F) we mean the subspace of C(Ω,F) consisting of bounded functions. Both
C(Ω,F) and Cb(Ω,F) are algebras with respect to pointwise multiplication of functions. Fur-
thermore, Cb(Ω,F) is complete with respect to the norm

∥f∥∞ = sup{|f(t)| : t ∈ Ω} for f ∈ Cb(Ω),

and is thus a Banach algebra.

Definition 3.2.1. Let Ω be a locally compact Hausdorff space. A continuous function f : Ω →
F is said to vanish at infinity if for every ϵ > 0 there exists a compact set K ⊆ Ω such that
|f(t)| < ϵ for all t ∈ Ω\K. We denote by C0(Ω,F) the subset of C(Ω,F) consisting of functions
that vanish at infinity.

Remark. Note that C0(Ω,F) ⊆ Cb(Ω,F): Letting ϵ = 1, we can find a compact set K ⊆ Ω
such that |f(t)| < 1 for t ∈ Ω\K. Now f is continuous and K is compact, hence f is bounded
on K, say by c. But then |f(t)| ≤ c′ for all t ∈ Ω, where c′ = max{1, c}.

Furthermore, when Ω is compact every continuous function vanishes at infinity trivially,
so C0(Ω,F) = C(Ω,F).

Example 3.2.2. Let Ω = R. A function f ∈ C(R,F) vanishes at infinity if and only if
limt→∞ |f(t)| = limt→−∞ |f(t)| = 0.

Proposition 3.2.3. Let Ω be a locally compact Hausdorff space. Then C0(Ω,F) is a closed
subalgebra of Cb(Ω,F), hence a Banach algebra (with respect to pointwise multiplication).

Proof. We need to show that C0(Ω,F) is a subspace of Cb(Ω,F). Let f, g ∈ C0(Ω,F) and
λ, µ ∈ F. Let ϵ > 0. Assume first that λ ̸= 0 and µ ̸= 0. Then there exist compact sets
K1,K2 ⊆ Ω such that |f(x)| < ϵ/(2|λ|) for x ∈ Ω \K1 and |g(x)| < ϵ/(2|µ|) for x ∈ Ω \K2.
Thus, for x ∈ Ω \ (K1 ∪K2) we have that

|(λf + µg)(x)| ≤ |λ||f(x)|+ |µ||g(x)| < |λ| · ϵ

2|λ|
+ |µ| · ϵ

2|µ|
= ϵ.

If λ = 0 then it suffices to look at x ∈ Ω \K1 and if µ = 0 it suffices to look at x ∈ Ω \K2.
The proof that C0(Ω,F) is closed under multiplication is similar, so we leave it as an exercise.

We now show that C0(Ω,F) is closed in Cb(Ω,F). Let (fn)n∈N be a sequence in C0(Ω,F)
that converges in the ∞-norm to a function f ∈ Cb(Ω,F). Let ϵ > 0. Then there exists n ∈ N
such that ∥f − fn∥∞ < ϵ/2. Since fn vanishes at infinity, we can find a compact set K ⊆ Ω
such that |fn(t)| < ϵ/2 for t ∈ Ω \K. Hence, for all t ∈ Ω \K we have that

|f(t)| ≤ |f(t)− fn(t)|+ |fn(t)| ≤ ∥f − fn∥∞ + |fn(t)| ≤
ϵ

2
+
ϵ

2
= ϵ.
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Hence f vanishes at infinity, so C0(Ω,F) is closed in Cb(Ω,F). This finishes the proof. ■

Remark. The Banach algebra C0(Ω,F) is unital if and only if Ω is compact. This will be left
as an exercise.

We will now spend some time recalling the description of the dual space of C0(Ω,F) in
terms of Radon measures. This material is covered in MAT4410, so we omit proofs.

Let B denote the Borel σ-algebra of Ω. Recall that a Radon measure on Ω is a measure µ
defined on B such that

(a) µ(U) = sup{µ(K) : K ⊆ U compact} for all open sets U (inner regularity),

(b) µ(B) = inf{µ(U) : B ⊆ U open } for all Borel sets B (outer regularity),

(c) µ(K) <∞ for all compact sets K.

We will only be concerned with finite Radon measures in this section, hence the last condition
above is redundant.

Let µ be a real (also called signed) measure on the Borel σ-algebra B of Ω. Such a measure
has a Jordan decomposition of the form µ = µ+−µ− where µ+ and µ− are finite (nonnegative)
measures on B. The decomposition satisfies a certain uniqueness property. We say that µ is
a Radon measure if both µ+ and µ− are Radon measures. Finally, if µ is a finite complex
measure µ on the Borel σ-algebra of Ω then we can write µ = Reµ + i Imµ for finite real
measures Reµ and Imµ. We then call µ a Radon measure if both Reµ and Imµ are Radon
measures. By an F-valued measure we mean a real measure if F = R and a complex measure
if F = C.

The total variation measure of an F-valued Radon measure µ on Ω is a (nonnegative)
Radon measure on Ω defined by

|µ|(S) = sup
{ ∞∑

j=1

|µ(Ej)| : (Ej)
∞
j=1 is a countable partition of S into Borel sets

}
for a Borel set S ⊆ Ω. The total variation of µ is the number

∥µ∥ = |µ|(Ω).

Example 3.2.4. Let µ be a finite F-valued Radon measure on Ω and let g ∈ C0(Ω,F). Then
the measure gµ on the Borel σ-algebra B of Ω given by

(gµ)(S) =

∫
S
g dµ for S ∈ B

is a finite F-valued Radon measure on Ω, and the total variation of gµ is given by |gµ| = |g||µ|.

Denote by M(Ω,F) the F-vector space of F-valued finite Radon measures on Ω. Then
M(Ω,F) is a Banach space with respect to the total variation norm. Moreover, the map
Φ: M(Ω,F) → C0(Ω,F)∗ given by

Φ(µ)(f) =

∫
Ω
f dµ for µ ∈M(Ω,F), f ∈ C0(Ω,F),

is a surjective isometry (this is the Riesz–Markov–Kakutani theorem).
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Definition 3.2.5. Let µ be a finite F-valued Radon measure on Ω. The support of µ is the
set supp(µ) consisting of those t ∈ Ω such that |µ|(U) > 0 for every open neighborhood U of
t.

Example 3.2.6. (a) Note that if µ is a finite F-valued Radon measure on Ω, then supp(µ) =
Ω if and only if |µ|(U) > 0 for all nonempty open sets U ⊆ Ω. In particular, the Lebesgue
measure on [0, 1] has support equal to all of [0, 1].

(b) Recall that given t ∈ Ω, the Dirac measure δt is given by

δt(S) =

{
1 if t ∈ S,
0 otherwise.

In particular, δt(U) = 1 > 0 for all open neighborhoods U of t, so t ∈ supp(δt). On the
other hand, if s ∈ Ω and s ̸= t, then since Ω is assumed to be Hausdorff we can find an
open set U with s ∈ U and t /∈ U . Thus δt(U) = 0 so s /∈ supp(δt). We conclude that
supp(δt) = {t}.

Proposition 3.2.7. Let µ be a finite F-valued Radon measure on a locally compact Hausdorff
space Ω, and let t ∈ Ω. Then supp(µ) = {t} if and only if µ = cδt for some c ∈ F \ {0}.

Proof. As we saw in Example 3.2.6 (b), the Dirac measure δt has support equal to {t}. Con-
sequently the support of cδt for c ∈ F \ {0} is also equal to {t}.

Conversely, suppose that supp(µ) = {t}. LetK be a compact set not containing t. Then for
every s ∈ K, s /∈ supp(µ), so there exists an open neighborhood Vs of s such that |µ|(Vs) = 0.
But then the sets Vs for s ∈ K cover K, so we can find finitely s1, . . . , sn ∈ K such that
Vs1 , . . . , Vsn cover K. It follows that

|µ|(K) ≤
n∑

i=1

|µ|(Vsi) = 0.

By inner regularity of µ, it follows that |µ|(Ω \ {t}) = 0 since Ω \ {t} is an open set. Hence
|µ|(B) = 0 for all Borel sets B that do not contain t. This implies |µ(B)| = 0 for these B
(since we can partition B into just the single set U itself in the definition of the total variation
measure), so µ(B) = 0.

Assume now that B is a Borel set and t ∈ B. By what we already proved, 0 = µ(B \{t}) =
µ(B) − µ({t}), so µ(B) = µ({t}). Setting c = µ({t}), we have that µ(B) = cδt(B) for all
Borel sets B. We now have that µ = cδt. Since |c| = |µ|(Ω) > 0, it follows that c ̸= 0. This
finishes the proof. ■

Theorem 3.2.8 (The Stone–Weierstrass Theorem, real case). Let Ω be a compact Hausdorff
space. Let A be a closed unital subalgebra of C(Ω,R) that separates points: That is, whenever
s, t ∈ Ω and s ̸= t, there exists f ∈ A such that f(s) ̸= f(t). Then A = C(Ω,R).

Before we proceed with the proof of Theorem 3.2.8, we need the following lemma:

Lemma 3.2.9. Let µ be a real Radon measure on Ω and let g ∈ C(Ω,R) have the property
that gµ = cµ for some c ∈ R. Then g(t) = c for all t ∈ supp(µ).
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Proof. Assume first that g and c are nonnegative. Suppose for a contradiction that t ∈ supp(µ)
and g(t) ̸= c, say g(t) > c. By continuity of g we can find an open neighborhood of t and
n ∈ N such that g(t′) > c+ 1/n for all t′ ∈ U . But then

c|µ|(U) = |gµ|(U) =

∫
U
g d|µ| ≥

∫
U
(c+ 1/n) d|µ| ≥ (c+ 1/n)|µ|(U).

Since t ∈ supp(µ), we have that |µ|(U) > 0, so the above equation gives c ≥ c + 1/n, a
contradiction. Hence g(t) = c for all t ∈ supp(µ). The proof in the case g(t) < c is analogous.

If g is real-valued then gµ = cµ implies that |g||µ| = |gµ| = |cµ| = |c||µ|. We can therefore
apply the above proof to the nonnegative function |g| and |c| ≥ 0. ■

Proof of Theorem 3.2.8. We identify C(Ω,R)∗ withM(Ω,R) using the Riesz–Markov–Kakutani
Theorem. Consider the annihilator

A⊥ = {µ ∈M(Ω,R) :
∫
Ω
f dµ = 0 for all f ∈ A}.

Suppose for a contradiction that A is a proper subset of C(Ω,R).
Let K = A⊥ ∩ B̄∗, where B̄∗ is the closed unit ball of M(Ω,R). In other words, K is

the closed unit ball of the Banach space A⊥. Thus, K is convex, and weak* compact by the
Banach–Alaoglu Theorem (Theorem 2.5.7). By the Krein–Milman Theorem (strictly speaking
by Lemma 2.6.6), K has an extreme point µ. It follows from an exercise A⊥ is nonzero since
A is proper, so by Example 2.6.3 we must have ∥µ∥ = 1.

Since A is an algebra we have that fg ∈ A whenever f, g ∈ A. Thus, for g ∈ A, we have

0 =

∫
Ω
fg dµ =

∫
Ω
f d(gµ) for all f ∈ A.

In other words gµ ∈ A⊥ whenever g ∈ A.
We claim that the support of µ consists of exactly one point. For a contradiction, suppose

we can find s, s′ ∈ supp(µ) with s ̸= s′. Since A separates points, we can find h ∈ A such that
h(s) ̸= h(s′). Since A is unital, it contains the function constantly equal to 1. Scaling 1 by
any scalar and using that A is closed under scalar multiplication, we have that all constant
functions on Ω are in A. Using that A is closed under addition, we can add a large enough
positive constant function to h to get a positive function which is still in A (remember that h
is bounded). After dividing by another constant, we get a function g ∈ A with g(s) ̸= g(s′)
and 0 < g(t) < 1 for all t ∈ Ω. Note also that 1− g ∈ A.

Set
c = ∥gµ∥ = |gµ|(Ω) =

∫
Ω
d|gµ| =

∫
Ω
d(|g||µ|) =

∫
Ω
g d|µ|.

Likewise, set d = ∥(1− g)µ∥ =
∫
Ω(1− g) d|µ|. Since g and 1− g are both positive on Ω, c and

d are positive numbers. Moreover,

c+ d =

∫
Ω
g d|µ|+

∫
Ω
(1− g) dµ = 1.

As we have seen, both gµ and (1 − g)µ are elements of A⊥ since g, (1 − g) ∈ A. Thus
gµ/c, (1− g)µ/d ∈ K. Since µ is an extreme point of K, the equation

µ = gµ+ (1− g)µ = c
gµ

c
+ d

(1− g)µ

d
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implies that µ = gµ/c. Using Lemma 3.2.9, we conclude that g is constant on supp(µ). But
then g(s) = g(s′) since s, s′ ∈ supp(µ), a contradiction. We conclude that supp(µ) = t for
some t ∈ Ω.

By Proposition 3.2.7, µ = cδt for some c ∈ R \ {0}. Since 1 = ∥µ∥ = |c|∥δt∥ = |c|, we
have that c = ±1. Possibly multiplying by −1, we can assume that µ = δt. Integrating the
constant function 1 ∈ A with respect to δt ∈ A⊥, we obtain

1 = δt(Ω) =

∫
Ω
1 dδt = 0,

a contradiction. This finishes the proof. ■

Corollary 3.2.10 (The Stone–Weierstrass Theorem, complex case). Let Ω be a compact Haus-
dorff space. Let A be a closed unital subalgebra of C(Ω,C) that separates points and has the
property that the complex conjugate f is in A for all f ∈ A. Then A = C(Ω,C).

Proof. Let A be as in the statement of the corollary. B = {Re(f) : f ∈ A}. Then B ⊆ C(Ω,F)
and B is closed in C(Ω,R). Moreover, B ⊆ A, since if f ∈ A then Re(f) = (f + f)/2 ∈ A.
Finally, if f, g ∈ A then Re(f) · Re(g) is a real-valued function in A, hence Re(f) · Re(g) =
Re(Re(f) ·Re(g)+ i ·0), so Re(f) ·Re(g) ∈ B. Similar arguments for linear combinations show
that B is a subalgebra of C(Ω,R).

Now if f ∈ A then −if ∈ A so Re(−if) = Im(f) ∈ B. We show that B separates
points: If s, t ∈ Ω and s ̸= t then we can find f ∈ A such that f(s) ̸= f(t). But then either
Re(f(s)) ̸= Re(f(t)) or Im(f(s)) ̸= Im(f(t)), which shows that B separates points. We can
now apply the real version of the Stone–Weierstrass Theorem (Theorem 3.2.8) to conclude
that B = C(Ω,R). Hence, if f ∈ C(Ω,C), then Re(f), Im(f) ∈ B ⊆ A, so

f = Re(f) + i Im(f) ∈ A.

■

We mention the following result for locally compact Hausdorff spaces, which we will not
prove (although it is not so tedious to prove using the Stone–Weierstrass Theorem for compact
spaces).

Proposition 3.2.11 (The Stone–Weierstrass Theorem, locally compact version). Let Ω be a
locally compact Hausdorff space. Then the following hold:

(a) Let A be a closed subalgebra of C0(Ω,R) that separates points and vanishes nowhere, i.e.
for all t ∈ Ω there exists f ∈ A such that f(t) ̸= 0. Then A = C0(Ω,R).

(b) Let A be a closed subalgebra of C0(Ω,C) that separates points, vanishes nowhere, and is
closed under complex conjugation. Then A = C0(Ω,C).

3.3 The spectrum

From now on, we assume that all algebras are complex.
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Definition 3.3.1. Let A be a unital algebra. An element a ∈ A is called invertible if there
exists a (necessarily unique) b ∈ A such that ab = ba = 1A. We write b = a−1 and denote by
GL(A) the set of all invertible elements of A.

If a, b ∈ GL(A) then (ab)(b−1a−1) = (b−1a−1)(ab) = 1, so ab ∈ GL(A) with (ab)−1 =
b−1a−1. Hence GL(A) is a group under multiplication.

Example 3.3.2. (a) Consider B(X) where X is a Banach space. Then T ∈ B(X) is in-
vertible if and only if there exists another bounded linear operator S on X such that
ST = TS = I. By the Open Mapping Theorem, we know that if T is a bounded bijection
then its inverse is bounded, hence it suffices to check that T is a bijection to conclude
that T ∈ GL(B(X)).

(b) Consider C(Ω) = C(Ω,C) where Ω is a compact Hausdorff space. If f ∈ C(Ω) then f
is invertible if there exists g ∈ C(Ω) such that fg = 1, the function constantly equal to
1. In other words f(t)g(t) = 1 for all t ∈ Ω. For this to be possible, it is necessary that
f is nonvanishing, i.e. f(t) ̸= 0 for all t ∈ Ω. In that case we set g(t) = 1/f(t) which is
continuous and hence an element of C(Ω). We conclude that f is invertible if and only
if it is nonvanishing.

Proposition 3.3.3 (Neumann series). Let A be a Banach algebra. If a ∈ A with ∥a∥ < 1,
then 1− a is invertible, and the inverse is given by

(1− a)−1 =
∞∑
n=0

an.

Furthermore ∥(1− a)−1∥ ≤ (1− ∥a∥)−1.

Proof. Note that since ∥a∥ < 1 we can use the geometric series formula as follows:

∞∑
n=0

∥an∥ ≤
∞∑
n=0

∥a∥n =
1

1− ∥a∥

Thus b =
∑∞

n=0 a
n is an absolutely convergent sequence so it converges by completeness of A.

Now

ab =

∞∑
n=0

aan =

∞∑
n=0

an+1 =

∞∑
n=1

an = b− 1

and similarly ba = b− 1. Hence (1−a)b = b(1−a) = 1, so 1−a ∈ GL(A), with b = (1−a)−1.
From the first estimate we also see that ∥b∥ ≤ (1− ∥a∥)−1. ■

As an application of Proposition 3.3.3 we have the following important proposition:

Proposition 3.3.4. Let A be a Banach algebra. Then the following hold:

(a) The set GL(A) of invertible elements is an open subset of A.

(b) The inversion map GL(A) → GL(A) given by a 7→ a−1 is a homeomorphism.
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Proof. (a): Let a ∈ GL(A). We claim that the open ball centered at a with radius ∥a−1∥−1 is
contained in GL(A). Indeed, suppose ∥a− b∥ < ∥a−1∥−1. Then

∥1− a−1b∥ = ∥a−1(a− b)∥ ≤ ∥a−1∥∥a− b∥ < 1.

By Proposition 3.3.3 we have that a−1b = 1 − (1 − a−1b) ∈ GL(A). But then b = a(a−1b) ∈
GL(A).

(b): We show continuity at a ∈ GL(A). Let ϵ > 0. If b ∈ GL(A) satisfies ∥a − b∥ <
1/(2∥a−1∥) then

∥1− a−1b∥ = ∥a−1(a− b)∥ ≤ ∥a−1∥∥a− b∥ < 1

2
.

By Proposition 3.3.3 we have that a−1b is invertible, with

∥b−1a∥ = ∥(a−1b)−1∥ ≤ 1

1− ∥1− a−1b∥
< 2.

Thus
∥b−1∥ = ∥b−1aa−1∥ ≤ ∥b−1a∥∥a−1∥ < 2∥a−1∥.

Now for any b ∈ GL(A) we have that

∥a−1 − b−1∥ = ∥a−1(b− a)b−1∥ ≤ ∥a−1∥∥b− a∥∥b−1∥.

Hence, if ∥a− b∥ < δ := min{1/(2∥a−1∥), ϵ/(2∥a−1∥2)}, then ∥a−1 − b−1∥ < ϵ. ■

Definition 3.3.5. Let A be a unital algebra and let a ∈ A. The spectrum of a is the subset

sp(a) = {z ∈ C : z1− a /∈ GL(A)}

of the complex plane.

Example 3.3.6. (a) Consider B(X) for a normed space X. Then spectrum of an operator
T ∈ A is exactly the spectrum in the usual sense: That is, the set of λ ∈ C for which
the operator λI − T is not invertible. In particular, if X is finite-dimensional then the
spectrum of T is exactly the eigenvalues of T .

(b) Consider C(Ω) = C(Ω,C), where Ω is a compact Hausdorff space. Let f ∈ C(Ω). Then
λ ∈ sp(f) if and only if λ − f is not invertible. From Example 3.3.2 (b) we know that
this is equivalent to λ− f having a zero, i.e. there exists t ∈ Ω such that f(t) = λ. But
this is equivalent to λ ∈ f(Ω), the range of f . Thus sp(f) = f(Ω).

Proposition 3.3.7. Let A be a unital Banach algebra and let a ∈ A. Then sp(a) is a compact
subset of C, and |λ| ≤ ∥a∥ for all λ ∈ sp(a).

Proof. We have that the maps ι : C → A and Ta : A→ A given by ι(λ) = λ1 and Ta(b) = b−a,
respectively, are continuous. Since C \ sp(a) = ι−1(T−1

a (GL(A))) and GL(A) is open by
Proposition 3.3.4 (a), it follows that C \ sp(a) is open. Hence sp(a) is closed.

Furthermore, if |z| > ∥a∥ then ∥z−1a∥ < 1 so 1− z−1a ∈ GL(A) by Proposition 3.3.3. But
then z1 − a = z(1 − z−1a) is also in GL(A), so λ /∈ sp(a). This shows that |λ| ≤ ∥a∥ for all
λ ∈ sp(a). In particular, sp(a) is bounded, and since it is also closed it must be compact by
the Heine–Borel Theorem. ■
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Consider for a moment the Banach algebra B(X) of linear maps on an n-dimensional
normed space X. After identifying X with Cn, we have that B(X) ∼= Matn(C), the alge-
bra of complex n × n matrices. In this setting we know that the spectrum of a matrix M
consists exactly of its eigenvalues, which are the roots of its characteristic polynomial. By
the fundamental theorem of algebra we know that this polynomial has a root; hence M has
an eigenvalue. We will prove a vast generalization of this theorem to the setting of Banach
algebras. First we need the following lemma.

Lemma 3.3.8. Let A be a unital Banach algebra, let a ∈ A and let ϕ ∈ A∗. Then the
complex-valued function

f(z) = ϕ((z1− a)−1)

is holomorphic on the open set C \ sp(a).

Proof. Note first that C \ sp(a) is in fact open, since sp(a) is closed by Proposition 3.3.7.
Let z, z0 ∈ C \ sp(a) with z ̸= z0. We then have that

f(z)− f(z0)

z − z0
=
ϕ((z1− a)−1 − (z01− a)−1)

z − z0

=
ϕ((z1− a)−1((z01− a)− (z1− a))(z01− a)−1)

z − z0
= −ϕ((z1− a)−1(z01− a)−1).

Letting z → z0 and using the continuity of ϕ we see that f ′(z0) exists, with f ′(z0) = −ϕ((a1−
z0)

−2). This shows that f is holomorphic at z0. ■

Theorem 3.3.9. Let A be a unital Banach algebra and let a ∈ A. Then sp(a) is nonempty.

Proof. Suppose for a contradiction that sp(a) is empty. Let ϕ be a bounded linear functional
on A. Then the function f(z) = ϕ((z1 − a)−1) for z ∈ C is holomorphic on all of C by
Lemma 3.3.8.

If |z| > ∥a∥ then we know from Proposition 3.3.7 that z /∈ sp(a). Using the estimate from
Proposition 3.3.3, we have that

∥(z1− a)−1∥ = |z|−1∥(1− z−1a)−1∥ ≤ 1

|z|(1− ∥z−1a∥)
=

1

|z| − ∥a∥
. (3.1)

Thus, when |z| > ∥a∥ we have that

|f(z)| = |ϕ((z − a)−1)| ≤ ∥ϕ∥∥(z − a)−1∥ ≤ ∥ϕ∥
|z| − ∥a∥

. (3.2)

Since f is continuous, it is bounded on the compact set {z ∈ C : |z| ≤ ∥a∥+ 1}. On the other
hand, (3.2) shows that |f(z)| ≤ ∥ϕ∥ for z in the set {z ∈ C : |z| > ∥a∥+1} as well. Thus, f is
holomorphic and bounded on all of C. By Liouville’s theorem from complex analysis it follows
that f is constant. Hence ϕ((z − a)−1) = ϕ((w − a)−1) for all z, w ∈ C. Since ϕ ∈ A∗ was
arbitrary, it follows from a corollary of the Hahn–Banach Theorem that (z−a)−1 = (w−a)−1

for all z, w ∈ C. But this leads to a contradiction, as we can set e.g. z = 0 and w = 1 to
obtain −a = 1− a or 0 = 1. ■
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Corollary 3.3.10 (Gelfand–Mazur Theorem). Let A be a unital Banach algebra in which very
nonzero element is invertible. Then A ∼= C.

Proof. Let a ∈ A. If λ ∈ sp(a) then a − λ1A is not invertible. But then it must be zero,
so a = λ1A. Thus A consists only of complex scalar multiples of the multiplicative identity
1A, so the isometric homomorphism C → A given by λ 7→ λ1A is surjective. It follows that
A ∼= C. ■

Let a be an element of an algebra A and let p(z) be a complex polynomial in the variable
z, say p(z) =

∑n
k=0 λkz

k for λ0, . . . , λk ∈ C. We then set

p(a) :=
n∑

k=0

λka
k.

Proposition 3.3.11 (Spectral Mapping Theorem for polynomials). Let A be a normed, unital
algebra and let a ∈ A. Let p(z) be a complex polynomial in the variable z. Then

sp(p(a)) = p(sp(a)) := {p(λ) : λ ∈ sp(a)}.

Proof. If p(z) is the zero polynomial then sp(p(a)) = sp(0) = {λ ∈ C : λ1 − 0 /∈ GL(A)} =
{0} = p(sp(a)), so assume that p(z) is nonzero.

First we show that p(sp(a)) ⊆ sp(p(a)). Let λ ∈ C and suppose that p(λ) /∈ sp(p(a)). Then
p(a) − p(λ)1 has an inverse b. Since λ is a root of the polynomial p(z) − p(λ), there exists a
polynomial q(z) such that p(z) − p(λ) = q(z)(z − λ). But then p(a) − p(λ)1 = q(a)(a − λ1),
so bq(a) is an inverse of a− λ1. Hence λ /∈ sp(a).

We now show that sp(p(a)) ⊆ p(sp(a)). Let µ ∈ sp(p(a)). By the Fundamental Theorem
of Algebra, we can write the polynomial p(z)− µ as a product of linear factors

p(z)− µ = c(z − λ1) · · · (z − λn)

where c, λ1, . . . , λn ∈ C. Since p(z) is assumed nonzero, c must be nonzero. But then we have

p(a)− µ1 = c(a− λ11) · · · (a− λn1).

Since p(a) − µ1 is not invertible, at least one of the terms a − λk1 cannot be invertible. But
then λk ∈ sp(a), and

p(λk) = (p(λk)− µ) + µ = µ,

which shows that µ ∈ p(sp(a)). This finishes the proof. ■

Definition 3.3.12. Let A be a unital Banach algebra, and let a ∈ A. Then the spectral radius
of a is the number

r(a) = sup{|λ| : λ ∈ sp(a)}.

Remark. By Theorem 3.3.9 and Proposition 3.3.7, the spectrum is compact and nonempty, so
the supremum in the definition of r(a) is well-defined. It also follows from Proposition 3.3.7
that

r(a) ≤ ∥a∥ for all a ∈ A.
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Theorem 3.3.13 (The Spectral Radius Formula). Let A be a unital Banach algebra and let
a ∈ A. Then

r(a) = lim
n→∞

∥an∥1/n.

Proof. Let a ∈ A. We will show that

lim sup
n→∞

∥an∥1/n ≤ r(a) ≤ lim inf
n→∞

∥an∥1/n.

By Proposition 3.3.11 we have that λn ∈ sp(an) for all λ ∈ sp(a) and n ∈ N. Hence,
using Proposition 3.3.7, we have that |λ|n = |λn| ≤ ∥an∥ whenever λ ∈ sp(a). This gives
|λ| ≤ lim infn→∞ ∥an∥1/n, and thus

r(a) ≤ lim inf
n→∞

∥an∥1/n.

We will now show the other inequality. Let ϕ ∈ A∗ and consider the function f(z) = ϕ((z1−
a)−1), which is holomorphic on C \ sp(a) by Lemma 3.3.8. Consider the annulus S = {z ∈ C :

r(a) < |z|}. Since S ⊆ C \ sp(a), f is holomorphic on S.
Now if z belongs to the annulus S′ = {z ∈ C : ∥a∥ < |z|}, so that ∥z−1a∥ < 1, then by

Proposition 3.3.3 we have that

(z1− a)−1 =
1

z
(1− z−1a)−1 =

1

z

∞∑
n=0

(z−1a)n =

∞∑
n=0

1

zn+1
an.

It follows that

f(z) = ϕ
( ∞∑

n=0

1

zn+1
an

)
=

∞∑
n=0

ϕ(an)

zn+1
(3.3)

for z ∈ S′. The annulus S′ is a subset of the annulus S (by Proposition 3.3.7), and f has a
Laurent series on the bigger annulus S since it is holomorphic there. By uniqueness of Laurent
series, the Laurent series (3.3) holds on the bigger annulus S. By the absolute convergence of
a Laurent series, we then have that

∞∑
n=0

∣∣∣ϕ(an)
zn+1

∣∣∣ <∞

whenever |z| > r(a), so the sequence (|ϕ(an)/zn+1|)∞n=0 is bounded for all z ∈ C with |z| > r(a).
This holds for all ϕ ∈ A∗.

Consider now the linear isometry Φ: A→ A∗∗ of A into its bidual. We have shown that

sup
n≥0

|Φ(an/zn+1)(ϕ)| <∞ for all ϕ ∈ A∗ and z ∈ C with |z| > r(a).

By the Uniform Boundedness Principle, we conclude that for every z ∈ C with |z| > r(a),
there exists Mz > 0 such that

∥an/zn+1∥ = ∥Φ(an/zn+1)∥ ≤Mz for all n ≥ 0.

But then ∥an∥ ≤Mz|z|n+1, so ∥an∥1/n ≤M
1/n
z |z|1+1/n. Taking the limit superior, we obtain

lim sup
n→∞

∥an∥1/n ≤ lim sup
n→∞

M1/n
z |z|1+1/n = lim

n→∞
M1/n

z |z|1+1/n = |z|,
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which holds provided |z| > r(a). Taking the infimum over all z ∈ C with |z| > r(a) in the
above inequality, we obtain

lim sup
n→∞

∥an∥1/n ≤ r(a).

This finishes the proof. ■

3.4 The Gelfand transform

Definition 3.4.1. Let A be a unital Banach algebra. A proper ideal I in A is called maximal
if it is maximal among all the proper ideals of A ordered with respect to inclusion, i.e. if
whenever J is a proper ideal of A and I ⊆ J , then I = J .

Proposition 3.4.2. Let A be a unital Banach algebra. Then the following hold:

(a) If I is an ideal of A, then Cl(I) is an ideal of A. If I is a proper ideal of A, then Cl(I)
is a proper ideal of A.

(b) If I is a maximal ideal of A, then I is closed.

(c) If A is commutative, then every proper ideal is contained in a maximal ideal.

Proof. (a): Suppose I is an ideal of A. Then Cl(I) is a linear subspace, being the closure of a
linear subspace. Let a ∈ Cl(I). Then we can find a sequence (an)n∈N in I that converges to a.
Let b ∈ A. Then ab = limn→∞ anb. Since anb ∈ I for each n ∈ N, it follows that ab ∈ Cl(I).
This shows that Cl(I) is an ideal of A. Suppose that Cl(I) = A. Then 1 ∈ Cl(I), so we
can find a ∈ I with ∥1 − a∥ < 1. By Proposition 3.3.3 we have that a ∈ GL(A). But then
a−1a = 1 ∈ I, so b = b1 ∈ I for all b ∈ A. Thus I = A. This shows that if I is proper, then
Cl(I) must be proper as well.

(b): Suppose I is a maximal ideal. From (a) we know that Cl(I) is an ideal of A as well.
Since I ⊆ Cl I, it follows from maximality that I = Cl(I), so I must be closed.

(c): This is a common application of Zorn’s lemma which is commonly taught in a first
course in abstract algebra, so we only outline the proof here: Let I be an ideal of A and order
the set of all proper ideals that contain I with respect to inclusion. Show that every chain has
an upper bound, and apply Zorn’s lemma. ■

Example 3.4.3. Consider the commutative, unital Banach algebra C(Ω) for a compact Haus-
dorff space Ω. For a closed S of Ω, set

I(S) = {f ∈ C(Ω) : f(t) = 0 for all t ∈ S}.

It will be given as an exercise to show that the following hold:

(a) I(S) is a closed ideal of C(Ω),

(b) If S and S′ are closed subsets of Ω, then S ⊆ S′ if and only if I(S) ⊇ I(S′),

(c) Every closed ideal of C(Ω) is of the form I(S) for some closed subset S in Ω.
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Now a proper, closed ideal I of C(Ω) is maximal if and only if whenever I ⊆ J for a proper
ideal J (which we can assume is closed), then J = I. Writing I = I(S) for a closed subset S
of Ω and using the above, I is maximal if and only if S is a nonempty closed subset of Ω, and
whenever S′ ⊆ S for a nonempty closed subset S′ of S, then S = S′. This happens if and only
if S = {t} for some t ∈ Ω. We conclude that the maximal ideals of C(Ω) are exactly the sets

I({t}) = {f ∈ C(Ω) : f(t) = 0} for t ∈ Ω.

Definition 3.4.4. Let A be a unital normed algebra. A unital algebra homomorphism from
A to C is called a character on A. We denote by ∆(A) the set of all characters on A.

Remark. Requiring that an algebra homomorphism τ : A → C is unital is equivalent to re-
quiring that it is nonzero: If τ is not identically zero then τ(a) ̸= 0 for some a ∈ A, so
0 ̸= τ(a) = τ(a1) = τ(a)τ(1) which forces τ(1) = 1. Requiring that τ is unital is also equiva-
lent to surjectivity, since if τ(1) = 1 then λ = λτ(1) = τ(λ1) for all λ ∈ C. Conversely, if τ is
surjective then it is nonzero.

Example 3.4.5. Consider C(Ω) for a compact Hausdorff space Ω. Given t ∈ Ω, we define
a function evt : A → C by evt(f) = f(t) for f ∈ C(Ω). We know already that evt is a
bounded linear functional on C(Ω) (it corresponds to the dirac measure δt). However, evt is
also multiplicative, as

evt(fg) = (fg)(t) = f(t)g(t) = evt(f) evt(g) for all f, g ∈ C(Ω).

We also have that evt(1) = 1(t) = 1, so evt is a character on C(Ω).

Proposition 3.4.6. Let A be a nonzero unital Banach algebra. Then ∆(A) is a weak* closed
subset of the closed unit ball of A∗, hence compact in the weak* topology.

Proof. We claim that if a ∈ A and τ ∈ ∆(A), then τ(a) ∈ sp(a). Indeed, since τ is a unital
algebra homomorphism, it maps invertible elements to invertible elements. But τ(τ(a)1−a) =
τ(a)τ(1)− τ(a) = 0 which is not invertible, hence τ(a)1− a /∈ GL(A). Thus τ(a) ∈ sp(a).

It follows from Proposition 3.3.7 that |τ(a)| ≤ ∥a∥ for all a ∈ A, so τ is bounded, with
∥τ∥ ≤ 1. Since |τ(1)| = 1 and ∥1∥ = 1, it follows that ∥τ∥ = 1, so we have shown that ∆(A)
is a subset of the closed unit ball of A∗.

Finally, suppose (τλ)λ∈Λ is a net in ∆(A) that converges weak* to ϕ in the closed unit ball
of A∗. If a, b ∈ A, then

ϕ(ab) = lim
λ
τλ(ab) = lim

λ
τλ(a)τλ(b) = (lim

λ
τλ(a))(lim

λ
τλ(b)) = ϕ(a)ϕ(b).

Furthermore, ϕ(1) = limλ τλ(1) = limλ 1 = 1. This shows that ϕ ∈ ∆(A), so ∆(A) is a weak*
closed subset of the closed unit ball of A∗. The weak* compactness of ∆(A) now follows from
the Banach–Alaoglu Theorem (Theorem 2.5.7). ■

From now on, we will consider ∆(A) as a topological space with the weak* topology. By
Proposition 3.4.6, ∆(A) is a compact Hausdorff space. We call ∆(A) the character space of
A.

Lemma 3.4.7. Let A be a nonzero unital commutative Banach algebra, and let I be a maximal
ideal of A. Then A/I is isomorphic to C.
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Proof. Pick a0 ∈ A \ I and set

J = {aa0 + b : a ∈ A, b ∈ I}.

We claim that J is an ideal of A: For a, a′ ∈ A, b, b′ ∈ I and λ, µ ∈ C we have that

λ(aa0 + b) + µ(a′a0 + b′) = (λa+ µa′)a0 + (λb+ µb′) ∈ J.

Furthermore, if c ∈ A then
c(aa0 + b) = (ca)a0 + (cb)

which is in J since cb ∈ I. We also have that I ⊆ J , since elements of the form 0 ·a0+b = b are
in J for b ∈ I. However, a0 /∈ I but a0 = 1a0 +0 ∈ J . It follows that I ⊊ J , so by maximality
of J we conclude that J = A. We can then find a ∈ A and b ∈ I such that 1 = aa0 + b.
Thus 1 + I = aa0 + I = (a + I)(a0 + I), so a0 + I is invertible in A/I. We have thus shown
that every nonzero element in A/I is invertible, so A/I ∼= C by the Gelfand–Mazur Theorem
(Corollary 3.3.10). ■

Proposition 3.4.8. Let A be a nonzero, commutative, unital Banach algebra. Then the
following hold:

(a) The map τ 7→ Ker(τ) is a bijection between ∆(A) and the set of maximal ideals of A.

(b) An element a ∈ A is invertible if and only if τ(a) ̸= 0 for all τ ∈ ∆(A), and

sp(a) = {τ(a) : τ ∈ ∆(A)} for all a ∈ A.

Proof. (a): Let τ ∈ ∆(A). We must show that Ker(τ) is a maximal ideal of A. Since 1 /∈ Ker τ ,
we know that Ker(τ) is a proper ideal of A. Let Ker(τ) ⊆ I for an ideal I of A. Assuming that
Ker(τ) ̸= I, we can let a ∈ I \Ker(τ). Then τ(a) ̸= 0, while τ(1−τ(a)−1a) = 1−τ(a)−1τ(a) =
0. Thus 1 − τ(a)−1a ∈ Ker(τ) ⊆ I, so 1 = (1 − τ(a)−1a) + τ(a)−1a ∈ I. This shows that
I = A, so Ker(τ) must be maximal.

We show injectivity of the map: Suppose that τ1, τ2 ∈ ∆(A) satisfy Ker(τ1) = Ker(τ2).
Let a ∈ A. Then a− τ1(a)1 ∈ Ker(τ1), so by assumption a− τ1(a)1 ∈ Ker(τ2). But then

0 = τ2(a− τ1(a)1) = τ2(a)− τ1(a)τ2(1) = τ2(a)− τ1(a),

so τ1(a) = τ2(a). Since a ∈ A was arbitrary, we conclude that τ1 = τ2.
Finally, we show surjectivity: Let I be a maximal ideal of A. By Lemma 3.4.7, the

quotient A/I is isomorphic to C. Moreover, the quotient map A → A/I is a unital algebra
homomorphism. We then have a unital algebra homomorphism τ : A → A/I ∼= C, i.e. a
character on A, and Ker(τ) = I. This shows that ∆(A) is in bijection with the maximal ideals
of A.

(b): If a is invertible and τ ∈ ∆(A), then τ(a) must be invertible in C, so τ(a) ̸= 0.
Conversely, suppose a is not invertible. Consider the set I = {ab : b ∈ A}, which is an ideal
since A is commutative. Furthermore, a = a1 ∈ I, and I is proper since 1 /∈ I (otherwise
we would have 1 = ab for some b ∈ A, which contradicts that a is not invertible). By
Proposition 3.4.2, I is contained in a maximal ideal J . By (a), there exists τ ∈ ∆(A) such
that Ker(τ) = J . Since a ∈ I ⊆ J , we have that τ(a) = 0.

We already saw that τ(a) ∈ sp(a) for all a ∈ A, since τ(a)1− a ∈ Ker(τ). Conversely, let
λ ∈ sp(a). Then λ1− a is not invertible, so by (b) there exists τ ∈ ∆(A) with τ(λ1− a) = 0.
But then τ(a) = λ, which finishes the proof. ■
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We can now determine the character space of the Banach algebra C(Ω): It is simply the
space Ω itself.

Proposition 3.4.9. Let Ω be a compact Hausdorff space. Define a map Ψ: Ω → ∆(C(Ω)) by

Ψ(t) = evt for t ∈ Ω.

Then Ψ is a homeomorphism.

Proof. We begin by showing injectivity of Ψ: Let s, t ∈ Ω and suppose that s ̸= t. Since Ω
is compact Hausdorff, it is normal. By Urysohn’s lemma, we can find a continuous function
f : Ω → C such that f(s) = 1 and f(t) = 0. But then Ψ(s)(f) = f(s) ̸= f(t) = Ψ(t)(f), so
Ψ(s) ̸= Ψ(t).

Next, we show surjectivity of Ψ: Let τ ∈ ∆(C(A)). Then Ker(τ) is a maximal ideal by
Proposition 3.4.8 (a), so by Example 3.4.3 we must have Ker(τ) = I({t}) for some t ∈ Ω. But
I({t}) = Ker(evt), so again by Proposition 3.4.8 we conclude that τ = evt.

The proof of continuity of Ψ goes as follows: If (tλ)λ∈Λ is a net in Ω that converges to
t ∈ Ω, then Ψ(tλ)(f) = f(tλ) → f(t) = Ψ(t)(f) for all f ∈ C(Ω). Hence Ψ(tλ) → Ψ(t) in the
weak* topology.

Now since Ψ is a continuous bijection from a compact space to a Hausdorff space, it follows
from general topology that Ψ is a homeomorphism.

■

As before, let A be a commutative unital Banach algebra. Given a ∈ A, we define
â : ∆(A) → C by

â(τ) = τ(a) for all τ ∈ ∆(A).

Note that â is continuous: Indeed, if (τλ)λ∈Λ is a net in ∆(A) that converges weak* to
a ∈ ∆(A), then â(τλ) = τλ(a) → τ(a) = â(τ). This shows that â ∈ C(∆(A)).

Definition 3.4.10. Let A be a commutative, unital Banach algebra. We define the Gelfand
transform of A to be the map

Γ: A→ C(∆(A))

given by
Γ(a) = â for a ∈ A.

Theorem 3.4.11. Let A be a commutative, unital Banach algebra. Then the following hold:

(a) The Gelfand transform of A is a unital algebra homomorphism.

(b) For all a ∈ A we have that
sp(Γ(a)) = sp(a).

In particular, ∥Γ(a)∥∞ = r(a), so that Γ is norm-decreasing, with ∥Γ∥ = 1.

Proof. (a): It is straightforward to check that Γ is a unital algebra homomorphism: Let
a, b ∈ A and λ, µ ∈ C. For τ ∈ ∆(A) we have that

Γ(λa+ µb)(τ) = τ(λa+ µb) = λτ(a) + µτ(b) = λΓ(a)(τ) + µΓ(b)(τ) = Γ(λa+ µb)(τ).
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This shows that Γ is linear. Furthermore,

Γ(ab)(τ) = τ(ab) = τ(a)τ(b) = Γ(a)(τ)Γ(b)(τ)

shows that Γ preserves multiplication. Finally, Γ(1)(τ) = τ(1) = 1, so Γ(1) is the function on
∆(A) constantly equal to 1. This shows that Γ is unital.

(b): Using Proposition 3.4.8 (b) we have that

sp(Γ(a)) = {Γ(a)(τ) : τ ∈ ∆(A)} = {τ(a) : τ ∈ ∆(A)} = sp(a).

Consequently ∥Γ(a)∥∞ = r(Γ(a)) = r(a). Since r(a) ≤ ∥a∥, this shows that Γ is norm-
decreasing, so ∥Γ∥ ≤ 1. Since Γ is unital, it follows that ∥Γ∥ = 1. ■

Remark. The Gelfand transform is neither injective or surjective in general.

3.5 Convolution algebras of abelian groups

Let G be a countable group. Recall that ℓ1(G) is a unital Banach algebra with respect to
convolution, and that ℓ1(G) is commutative if and only if G is abelian. Thus, if G is abelian,
we might ask what the character space ∆(ℓ1(G)) looks like, and what the Gelfand transform
Γ: ℓ1(G) → C(∆(ℓ1(G))) does.

We denote by T the circle group, which can be thought of as the multiplicative subgroup

T = {z ∈ C : |z| = 1}

of the complex numbers (with the subspace topology), or the quotient group R/Z (with the
quotient topology). The isomorphism between the two comes from the map R → C given by
t 7→ e2πit, which has image equal to {z ∈ C : |z| = 1} and kernel equal to Z. Note that T is
compact, being a closed and bounded subset of C.

Definition 3.5.1. Let G be an abelian countable group. A group homomorphism G → T is
called a character on G. The set Ĝ of all characters of G is called the Pontryagin dual of G.

The Pontryagin dual Ĝ of an abelian group G is a group itself with respect to pointwise
multiplication. The inverse of a character ω : G→ T is given by the pointwise conjugate ω.

Proposition 3.5.2. Let G be an abelian countable group, and equip CG, the vector space of all
functions G → C, with the topology of pointwise convergence, i.e. the locally convex topology
induced by the family of semi-norms (σg)g∈G, where

σg(ω) = |ω(g)| for ω ∈ Ĝ.

Then Ĝ is a compact subspace of CG, and the group multiplication and group inversion of Ĝ
become continuous maps.

Proof. Since T is compact, the product space TG is compact by Tychonoff’s Theorem (Theo-
rem 1.3.8), and Ĝ ⊆ TG. Therefore, it suffices to show that Ĝ is closed in TG.

Let (ωλ)λ∈Λ be a net in Ĝ that converges pointwise to ω ∈ TG. If g, h ∈ G, then

ω(gh) = lim
λ
ωλ(gh) = lim

λ
ωλ(g)ωλ(h) = (lim

λ
ωλ(g))(lim

λ
ωλ(h)) = ω(g)ω(h).
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This shows that ω ∈ Ĝ, so Ĝ is a closed subspace of TG, hence compact.
We now show that group multiplication is continuous: Suppose (ωλ)λ and (χλ)λ are nets

in Ĝ that converge pointwise to ω and χ, respectively. If g ∈ G we get

lim
λ
(ωλχλ)(g) = lim

λ
ωλ(g)χλ(g) = (lim

λ
ωλ(g))(lim

λ
χλ(g)) = ω(g)χ(g) = (ωχ)(g).

This shows that the net (ωλχλ)λ converges pointwise to ωχ, which proves continuity of group
multiplication. We also get for g ∈ G that

lim
λ
ω−1
λ (g) = lim

λ
ωλ(g) = lim

λ
ωλ(g) = ω(g) = ω−1(g).

Hence group inversion is continuous as well. ■

In light of the above results, we will always view the Pontryagin dual as a compact topo-
logical space with the topology of pointwise convergence.

Example 3.5.3. (a) Let G = Z, the additive group of integers. We can obtain characters
on Z as follows: For any z ∈ T, define ωz : Z → T by ωz(k) = zk. Then ωz is easily seen
to be a character on Z. Moreover, note that if ω ∈ Ẑ the ω(k) = ω(1)k for all k ∈ Z,
so the characters ωz for z ∈ T are in fact all the characters on Z. Moreover, the map
Ẑ → T given by ω 7→ ω(1) is a continuous group homomorphism, which is actually a
bijection by the preceding discussion. This shows that Ẑ ∼= T.

(b) Let G = Zn, the finite cyclic group of order n. We write its elements as [k] for k ∈ Z,
where [k] = [l] if and only if k − l ∈ nZ. As in (a), if ω ∈ Ẑn then ω([k]) = ω([1])k for
all [k] ∈ Zn. However, since [n] = [0], we need ω([1])n = 1, i.e. it has to be an nth root
of unity. Thus Ẑn

∼= {z ∈ T : zn = 1} which is isomorphic to Zn.

We have that Ĝ ⊆ ℓ∞(G), since |ω(g)| = 1 for all ω ∈ Ĝ. Thus, every ω ∈ Ĝ defines a
bounded linear functional on ℓ1(G) via

ϕω(a) =
∑
g∈G

a(g)ω(g) for a ∈ ℓ1(G).

It turns out that these linear functionals belong to ∆(ℓ1(G)), and that the map ω 7→ ϕω
implements a homeomorphism between Ĝ and ∆(ℓ1(G)):

Theorem 3.5.4. Let G be an abelian countable group. Then the map f : Ĝ→ ∆(ℓ1(G)) given
by

f(ω)(a) =
∑
g∈G

a(g)ω(g) for ω ∈ Ĝ and a ∈ ℓ1(G)

is a homeomorphism.

Proof. Let ω ∈ Ĝ. We must show that f(ω) is an element of ∆(ℓ1(G)). We know that it is
a bounded linear functional on ℓ1(G) since ω ∈ ℓ∞(G), but we must check that it preserves
multiplication and is unital. Let a, b ∈ ℓ1(G). Since∑
h∈G

∑
g∈G

|a(h)b(h−1g)ω(g)| =
∑
h∈G

∑
g∈G

|a(h)b(g)| =
(∑

h∈G
|a(h)|

)(∑
g∈G

|b(g)|
)
= ∥a∥1∥b∥1 <∞,
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the interchanging of sums in the following computation is justified by Fubini’s Theorem:

f(ω)(a ∗ b) =
∑
g∈G

(a ∗ b)(g)ω(g)

=
∑
g∈G

∑
h∈G

a(h)b(h−1g)ω(g)

=
∑
h∈G

∑
g∈G

a(h)b(h−1g)ω(g)

=
∑
h∈G

∑
g∈G

a(h)b(g)ω(hg)

=
∑
h∈G

∑
g∈G

a(h)b(g)ω(h)ω(g)

=
(∑

h∈G
a(h)ω(h)

)(∑
g∈G

b(g)ω(g)
)

= f(ω)(a)f(ω)(b).

This shows that f(ω) preserves multiplication. Also,

f(ω)(δe) =
∑
g∈G

δe(g)ω(g) = ω(e) = 1,

which shows that f(ω) is unital. We have now shown that f(ω) ∈ ∆(ℓ1(G)) for every ω ∈ Ĝ.
Next, we show continuity of f . Suppose (ωλ)λ∈Λ is a net in Ĝ that converges to ω ∈ Ĝ.

We must show that the net (f(ωλ))λ converges to f(ω). Since the topology on ∆(ℓ1(G)) is
that of pointwise convergence, we must show that (f(ωλ)(a))λ converges to f(ω)(a) for every
a ∈ ℓ1(G), so let a ∈ ℓ1(G) and ϵ > 0. Then we can find a finite subset F of G such that∑

g∈G\F |a(g)| < ϵ/4.
Set C = max{|a(g)| : g ∈ F}. Since (ωλ)λ converges to ω pointwise, we can find λ0 ∈ Λ

such that
|ωλ(g)− ω(g)| < ϵ

2|F |(C + 1)
for all g ∈ F and λ ≥ λ0.

Now if λ ≥ λ0 then

|f(ωλ)(a)− f(ω)(a)| =
∣∣∣∑
g∈G

a(g)ωλ(g)−
∑
g∈G

a(g)ω(g)
∣∣∣

≤
∑
g∈G

|a(g)||ωλ(g)− ω(g)|

=
∑
g∈F

|a(g)||ωλ(g)− ω(g)|+
∑

g∈G\F

|a(g)||ωλ(g)− ω(g)|

≤
∑
g∈F

C · ϵ

2|F |(C + 1)
+

∑
g∈G\F

|a(g)|(|ωλ(g)|+ |ω(g)|)

≤ ϵ

2
+ 2

∑
g∈G\F

|a(g)|
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<
ϵ

2
+ 2 · ϵ

4
= ϵ.

This shows that f is continuous.
We show that f is injective. Let ω, χ ∈ Ĝ and suppose that f(ω) = f(χ). Then for every

h ∈ G, we have that

ω(h) =
∑
g∈G

δh(g)ω(g) = f(ω)(δh) = f(χ)(δh) =
∑
g∈G

δh(g)χ(g) = χ(h).

Hence ω = χ.
Surjectivity of f goes as follows: Let τ ∈ ∆(ℓ1(G)). Then in particular τ ∈ ℓ1(G)∗, so we

know that τ is given by τ(a) =
∑

g∈G a(g)b(g) for some b ∈ ℓ∞(G). Using the multiplicativity
of τ , we obtain for every g, h ∈ G that

b(g)b(h) =
(∑

k∈G
b(k)δg(k)

)(∑
k∈G

δh(k)b(k)
)

= τ(δg)τ(δh)

= τ(δg ∗ δh)
= τ(δgh)

=
∑
k∈G

δgh(k)b(k) = b(gh).

This shows that b must be multiplicative. Similarly

b(1) =
∑
k∈G

δe(k)b(k) = τ(δe),

which shows that b is unital. We know have that b ∈ Ĝ and f(b) = τ , which proves surjectivity.
We have now established that f is a continuous bijection from Ĝ to ∆(ℓ1(G)). Since Ĝ is

compact and ∆(ℓ1(G)) is Hausdorff, it must be a homeomorphism. ■

In view of Theorem 3.5.4, let us consider the Gelfand transform of ℓ1(G). It is the map
Γ: ℓ1(G) → C(∆(ℓ1(G))) given by Γ(a)(τ) = τ(a) for all a ∈ ℓ1(G) and τ ∈ ∆(ℓ1(G)).
Identifying ∆(ℓ1(G)) with Ĝ using the homeomorphism f from Theorem 3.5.4, the Gelfand
transform is the map

Γ: ℓ1(G) → C(Ĝ)

given by
Γ(a)(ω) =

∑
g∈G

a(g)ω(g) for a ∈ ℓ1(G) and ω ∈ Ĝ.

This map is known as the Fourier transform associated with G. As an example, let us look at
G = Z. We saw that Ẑ ∼= T in Example 3.5.3 (a), where ω ∈ Ẑ can be identified with ω(1) ∈ T.
Using this identification, the Gelfand transform of ℓ1(Z) is the map Γ: ℓ1(Z) → C(T) given
by

Γ(a)(z) =
∑
k∈Z

a(k)zk for z ∈ T.
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If we write z = e2πit for t ∈ R/Z, then we get

Γ(a)(t) =
∑
k∈Z

a(k)e2πikt.

This series is the Fourier series with coefficients (a(k))k∈Z.
We identify C(T) with the continuous functions f : R → C that have period 1, i.e. f(t+k) =

f(t) for all t ∈ R and k ∈ Z. For each n ∈ Z, we let en ∈ C(T) be the function en(t) = e2πint.
We know that (en)n∈Z is an orthonormal basis for the Hilbert space L2(T), with inner product
given by ⟨f, g⟩ =

∫ 1
0 f(t)g(t) dt. The nth Fourier coefficient of a function f ∈ L2(T) is given

by

f̂(n) = ⟨f, en⟩ =
∫ 1

0
f(t)e−2πint dt.

Definition 3.5.5. The Wiener algebra is the set W (T) of functions f ∈ C(T) that have
absolutely summable Fourier coefficients, i.e.∑

n∈N
|f̂(n)| <∞.

One can show that the Wiener algebra is precisely the image Γ(ℓ1(Z)) ⊆ C(T) under the
Gelfand transform of ℓ1(Z).

Proposition 3.5.6. Let f ∈ W (T) have the property that f(t) ̸= 0 for all t ∈ T. Then
1/f ∈W (T).

Proof. Let f be as in the proposition. Then we can write f = Γ(a) for some a ∈ ℓ1(Z). Since
f(t) ̸= 0 for all t ∈ T, f is invertible as an element of C(T), so 0 /∈ sp(f) = sp(Γ(a)). From
Theorem 3.4.11 we have that sp(Γ(a)) = sp(a), so a must be invertible as an element of ℓ1(Z).
But then a ∗ a−1 = δ0, so

1 = Γ(δ0) = Γ(a ∗ a−1) = Γ(a)Γ(a−1) = f · Γ(a−1).

This shows that 1/f = Γ(a−1), so 1/f ∈W (T). ■

Remark. What we have done in this section can be generalized to locally compact Hausdorff
abelian groups G, that is, abelian groups which carry a locally compact Hausdorff topology for
which the group multiplication and group inversion are continuous maps. For these groups, one
can define the Pontryagin dual Ĝ similarly, which itself becomes a locally compact Hausdorff
abelian group.



Chapter 4

C*-algebras

4.1 Involutions

Definition 4.1.1. Let A be a (complex) algebra. An involution on A is a map A → A,
a 7→ a∗, satisfying the following properties:

(a) (λa+ µb)∗ = λa∗ + µb∗ for all a, b ∈ A.

(b) (ab)∗ = b∗a∗ for all a, b ∈ A.

(c) (a∗)∗ = a for all a ∈ A.

An algebra A equipped with an involution ∗ is called a ∗-algebra.

Remark. Suppose A is a unital algebra with involution ∗. Let a ∈ A. Then

a · 1∗ = (a∗)∗ · 1∗ = (1 · a∗)∗ = (a∗)∗ = a,

and similarly 1∗ · a = a. By uniqueness of multiplicative identities, this implies that 1∗ = 1.

A subset S of a ∗-algebra A is called ∗-closed if a∗ ∈ S whenever a ∈ S. A subalgebra B
of a ∗-algebra A is called a ∗-subalgebra if it is ∗-closed.

Definition 4.1.2. A Banach ∗-algebra is a Banach algebra A that carries an involution which
is isometric with respect to the norm on A: That is, for every a ∈ A we have that

∥a∗∥ = ∥a∥.

Example 4.1.3. (a) Consider C(Ω) for a compact Hausdorff space Ω. Then f∗ = f , i.e.
pointwise complex conjugation, is an involution on C(Ω), and C(Ω) becomes a Banach
∗-algebra with respect to this involution: For f ∈ C(Ω) we have that

∥f∗∥ = sup
t∈Ω

|f(t)| = sup
t∈Ω

|f(t)| = ∥f∥.

(b) Let (Ω,A, µ) be a measure space. Then similarly to (a), L∞(Ω,A, µ) becomes a Banach
∗-algebra with respect to the involution f∗ = f .

55
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(c) Consider B(H) for a Hilbert space H. Then the adjoint, T 7→ T ∗, defines an involution
on B(H). This is known from MAT4400.

(d) Consider ℓ1(G) for a group G. Given a ∈ ℓ1(G), define

a∗(g) = a(g−1) for g ∈ G.

We leave it as an exercise to check that this defines an involution on ℓ1(G), and that
ℓ1(G) becomes a Banach ∗-algebra with respect to this involution.

Definition 4.1.4. Let A and B be ∗-algebras. A homomorphism ϕ : A → B is called ∗-
preserving or a ∗-homomorphism if

ϕ(a∗) = ϕ(a)∗ for all a ∈ A.

If ϕ is additionally a bijection, then ϕ is called a ∗-isomorphism.

Observation 4.1.5. Let A be a unital ∗-algebra. Observe that for a ∈ A, we have that
a ∈ GL(A) if and only if a∗ ∈ GL(A), with (a∗)−1 = (a−1)∗: Indeed, if a ∈ GL(A) we have
that

a∗(a−1)∗ = (a−1a)∗ = 1∗ = 1,

and similarly (a−1)∗a∗ = 1. Conversely, if a∗ ∈ GL(A), then a = (a∗)∗ ∈ GL(A) by what we
already proved.

In particular, λ1 − a ∈ GL(A) if and only if λ1 − a∗ = (λ1 − a)∗ ∈ GL(A), which shows
that sp(a∗) = sp(a).

Definition 4.1.6. A C*-algebra is a Banach algebra equipped with an involution satisfying
the so-called C*-identity :

∥a∗a∥ = ∥a∥2 for all a ∈ A.

Remark. A C*-algebra is automatically a Banach ∗-algebra: If a ∈ A, a ̸= 0, then

∥a∥2 = ∥a∗a∥ ≤ ∥a∗∥∥a∥,

so we can cancel ∥a∥ to obtain ∥a∥ ≤ ∥a∗∥. Applying the same argument again, we get
∥a∗∥ ≤ ∥(a∗)∗∥ = ∥a∥, so ∥a∥ = ∥a∗∥ for all a ∈ A (the case a = 0 is trivial). Note also that
in any Banach ∗-algebra we have that ∥a∗a∥ ≤ ∥a∗∥∥a∥ = ∥a∥2, so it is the reverse inequality
that distinguishes Banach ∗-algebras from C*-algebras.

Remark. If A is a unital nonzero C*-algebra, then we do not have to assume that ∥1∥ = 1:
We have that

∥1∥ = ∥1∗1∥ = ∥1∥2,

so ∥1∥ = 1 since 1 ̸= 0.

Example 4.1.7. (a) Let H be a Hilbert space. Then B(H) is a C*-algebra: For x ∈ H and
T ∈ B(H) we have that

∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨T ∗Tx, x⟩ ≤ ∥T ∗Tx∥∥x∥.

Taking the supremum over all ∥x∥ = 1, we obtain ∥T∥2 ≤ ∥T ∗T∥.
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(b) If Ω is a compact Hausdorff space, then C(Ω) is a C*-algebra: For f ∈ C(Ω) we have
that

∥f∗f∥∞ = ∥ff∥∞ = ∥|f |2∥∞ = ∥f∥2∞.

(c) If G is a countable group, then the Banach ∗-algebra ℓ1(G) is not a C*-algebra in general.
A concrete counter-example will be given in an exercise.

Definition 4.1.8. Let A be a unital C*-algebra. We call a ∈ A

(a) normal if aa∗ = a∗a,

(b) self-adjoint if a∗ = a,

(c) unitary if aa∗ = a∗a = 1, i.e. a−1 = a∗.

Proposition 4.1.9. Let A be a unital C*-algebra, and let a ∈ A. Then the following hold:

(a) If a is unitary, then sp(a) ⊆ T.

(b) If a is self-adjoint, then sp(a) ⊆ R.

Proof. Exercise. ■

Lemma 4.1.10. Let A be a unital C*-algebra and let a be a normal element of A. Then

r(a) = ∥a∥.

Proof. Assume first that a is self-adjoint, i.e. a = a∗. Applying the C*-identity, we get ∥a2∥ =
∥a∗a∥ = ∥a∥2. Repeating the argument, we get ∥a4∥ = ∥(a2)∗(a2)∥ = ∥a2∥2 = ∥a∥4. By
induction, we get ∥a2n∥ = ∥a∥2n for all n ∈ N. The Spectral Radius Formula (Theorem 3.3.13)
now gives

r(a) = lim
n→∞

∥an∥1/n = lim
n→∞

∥a2n∥1/(2n) = ∥a∥.

Assume now that a is normal. Then (an)∗(an) = (a∗a)n, so

r(a) = lim
n→∞

∥an∥1/n = lim
n→∞

∥(an)∗(an)∥1/(2n) = ( lim
n→∞

∥(a∗a)n∥1/n)1/2.

However, a∗a is self-adjoint, since (a∗a)∗ = a∗(a∗)∗ = a∗a. Thus, using what we already
proved, the above limit is equal to

r(a∗a)1/2 = ∥a∗a∥1/2 = ∥a∥.

This finishes the proof. ■

Observation 4.1.11. Let A be a C*-algebra and let a ∈ A. We then define

Re(a) =
a+ a∗

2
Im(a) =

a− a∗

2i
.

One then checks that Re(a) and Im(a) are self-adjoint, and that

a = Re(a) + i Im(a).
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In fact, this representation is unique: If b+ ic = b′+ ic′ for self-adjoint elements b, c, b′, c′ ∈ A,
then b− b′ = i(c′− c). By Proposition 4.1.9 and the Spectral Mapping Theorem, the spectrum
of i(c′− c) is a subset of iR. On the other hand, the spectrum of b− b′ is a subset of R. Thus,
we must have sp(b− b′) = {0}. Since b− b′ is normal, we get ∥b− b′∥ = r(b− b′) = 0, so b = b′.
It then follows that c = c′.

Theorem 4.1.12. Let A be a unital commutative C*-algebra. Then the Gelfand transform
Γ: A→ C(∆(A)) is an isometric ∗-isomorphism.

Proof. We must show that Γ is ∗-preserving, isometric and surjective.
To show that Γ is ∗-preserving, assume first that a ∈ A is self-adjoint. Let τ ∈ ∆(A).

Since τ(a) ∈ sp(a) and sp(a) ⊆ R by Proposition 4.1.9, it follows that τ(a) = τ(a). Hence

Γ(a)∗(τ) = Γ(a)(τ) = τ(a) = τ(a) = Γ(a)(τ) = Γ(a∗)(τ).

Now let a ∈ A be general. Using Observation 4.1.11 and what we already proved, we get

Γ(a)∗ = Γ(Re(a) + i Im(a))∗

= Γ(Re(a))∗ − iΓ(Im(a))∗

= Γ(Re(a)∗)− iΓ(Im(a)∗)

= Γ(Re(a)∗ − i Im(a)∗)

= Γ(a∗).

This shows that Γ is ∗-preserving.
Next, we show that Γ is isometric. Since A is commutative, every element is normal, so

Lemma 4.1.10 gives that ∥a∥ = r(a) for all a ∈ A. Thus, using Theorem 3.4.11 (b), we get

∥Γ(a)∥∞ = r(a) = ∥a∥.

We now show surjectivity of Γ. Note that since Γ is an isometry, its range B = Γ(A) ⊆
C(∆(A)) is closed in ∆(A). Furthermore, since Γ is a unital ∗-homomorphism, B is a unital
subalgebra of C(∆(A)) which is closed under conjugation. We show that B separates points:
If τ1, τ2 ∈ ∆(A) with τ1 ̸= τ2 then there exists a ∈ A such that τ1(a) ̸= τ2(a). But then
Γ(a)(τ1) = τ1(a) ̸= τ2(a) = Γ(a)(τ2). Since Γ(a) ∈ B, this shows that B separates points. By
Corollary 3.2.10, it follows that B = C(∆(A)), so Γ is surjective. ■

Remark. Theorem 4.1.12 is a classification of unital, commutative C*-algebras: They are all
of the form C(Ω) for some compact Hausdorff space Ω. A more general result is true, although
we will not prove it here: A (possibly non-unital) commutative C*-algebra is isomorphic to
C0(Ω) for some locally compact Hausdorff space Ω.

4.2 The continuous functional calculus

Let A be a unital C*-algebra. A closed ∗-subalgebra of A is called a C*-subalgebra of A. If
we have a unital C*-subalgebra B of A (i.e. the multiplicative identity of A is contained in
B), then we may ask the following question: If b ∈ B has an inverse in A, is the inverse
necessarily in B? Although this property does not hold for algebra in general, it does hold for
C*-algebras, as we show in the following proposition:
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Proposition 4.2.1. Let A be a unital C*-algebra, and let B be a unital C*-subalgebra of A.
Then if b ∈ B is invertible as an element of A, i.e. there exists a ∈ A such that ab = ba = 1,
then a ∈ B.

Proof. For x ∈ B, denote by spB(x) the spectrum of x as an element of b, i.e. the set of λ ∈ C
such that x− λ1 does not have an inverse in B.

Assume first that b is self-adjoint. For each n ∈ N, set

bn = b− i

n
1 ∈ B.

Then by the Spectral Mapping Theorem for polynomials (Proposition 3.3.11) we get

spB(bn) = {λ− i/n : λ ∈ spB(b)}.

Since b is self-adjoint, spB(b) ⊆ R by Proposition 4.1.9. Thus, by the above equation, 0 /∈
spB(bn) for each n ∈ N, so each bn has an inverse in B. By continuity of taking inverses
(Proposition 3.3.4), we have that (b−1

n )n∈N → b−1. Since b−1
n ∈ B for each n ∈ N and B is

closed, it follows that b−1 ∈ B.
Next, let b ∈ B be a general element which has an inverse in A. Then b∗ is invertible as

well by Observation 4.1.5, so b∗b has an inverse in A. Since b∗b is self-adjoint, the inverse of
b∗b is in B by what we already proved. But then

b−1 = b−1(b∗)−1b∗ = (b∗b)−1b∗ ∈ B.

This finishes the proof. ■

Remark. As a consequence, we obtain in the setting of Proposition 4.2.1

spB(b) = spA(b)

for every b ∈ B, where spB(b) (resp. spA(b)) is the spectrum of b as an element of B (resp. of
A).

Given an element a ∈ A, we wish to consider the unital C*-subalgebra C∗(a) generated by
a, i.e. the least unital C*-subalgebra of A that contains a. We can describe this C*-subalgebra
as the intersection of all unital C*-subalgebras of A that contain a (here we use the fact that
intersections of ∗-algebras are ∗-algebras, and that intersections of closed sets are closed).

When a is normal, we can obtain a simple description of a. Note that a product of any finite
number of copies of a’s and a∗’s should be in C∗(a). Since a and a∗ commute, we can collect
powers in such a product, and represent it as am(a∗)n for positive integers m and n. Complex
linear combinations of such products are exactly of the form p(a, a∗), where p(x, y) ∈ C[x, y]
is a complex polynomial in two variables x and y. One verifies that {p(x, y) : x, y ∈ C[x, y]}
is a ∗-subalgebra of A, and that its closure is equal to C∗(a). From this it also follows that
C∗(a) is commutative.

Theorem 4.2.2 (Continuous Functional Calculus). Let A be a unital C*-algebra, and let
a ∈ A be normal. Then there exists a unique bounded unital ∗-homomorphism

C(sp(a)) → A,
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f 7→ f(a),

such that ι(a) = a, where ι is the inclusion of sp(a) into C. Moreover, the homomorphism has
the following properties:

(a) It is isometric, i.e. ∥f(a)∥ = ∥f∥∞ for every f ∈ C(sp(a)),

(b) the image of the map C(sp(a)) → A is exactly the C*-subalgebra of A generated by a.

Proof. We begin by showing existence. Let B = C∗(a), the unital C∗-subalgebra generated
by a. Since a is normal, B is commutative, so we consider the character space ∆(B). By
Proposition 3.4.8 (b), spB(a) = {τ(a) : τ ∈ ∆(B)}. By Proposition 4.2.1, spB(a) = spA(a)
(we denote the latter simply by sp(a)). Thus, we can define a map h : ∆(B) → sp(a) by
h(τ) = τ(a) which is surjective. We will show that h is a homeomorphism.

Since the topology on ∆(B) is that of pointwise convergence, h is continuous. Furthermore,
suppose h(τ1) = h(τ2) for τ1, τ2 ∈ ∆(B), then τ1(a) = τ2(a). By Theorem 4.1.12, every
character is a ∗-homomorphism, so τ1(a∗) = τ1(a) = τ2(a) = τ2(a

∗) as well. Since τ1 and τ2
agree on the generating set {a, a∗} of A, it follows that τ1 = τ2. This shows that h is injective.
We have now shown that h is a continuous bijection between compact Hausdorff spaces, so it
follows from the usual topological argument that h must be a homeomorphism.

We consider now the Gelfand transform Γ: B → C(∆(B)) of B. By Theorem 4.1.12, Γ
is an isometric ∗-isomorphism, so its inverse is also an isometric ∗-isomorphism. Denote by
ϕ : C(sp(a)) → C(∆(B)) the map given by ϕ(f) = f ◦h. By an exercise, ϕ is a unital isometric
∗-isomorphism since h is a homeomorphism. We thus have a map ψ : C(sp(a)) → B given by
the composition Γ−1 ◦ϕ which is a unital isometric ∗-isomorphism. Furthermore, the function
ι ◦ h : ∆(B) → C is given by (ι ◦ h)(τ) = ι(τ(a)) = τ(a) for τ ∈ ∆(B). Hence ι ◦ h = Γ(a), so
ψ(ι) = Γ−1(ι ◦ h) = a. This proves the existence of a unital ∗-homomorphism C(sp(a)) → A
such that ι 7→ a, and also shows that it is necessarily isometric and that its image is B.

Finally, we show uniqueness. Suppose ψ1, ψ2 : C(sp(a)) → A are two ∗-homomorphisms
such that ψ1(ι) = ψ2(ι). Since ι separates the points of sp(a), the C∗-subalgebra generated by
ι is all of C(sp(a)). Therefore, since ψ1, ψ2 are ∗-homomorphisms that agree on ι, they must
agree on all of C(sp(a)). ■

Example 4.2.3 (Diagonal operators). LetH be a separable, infinite-dimensional Hilbert space
with orthonormal basis (en)n∈N. Let (λn)n∈N be a bounded sequence of complex numbers.
Then we can define an operator D ∈ B(H) by

Den = λnen for n ∈ N.

Then each λn is an eigenvalue for D, so Cl{λn : n ∈ N} ⊆ sp(D). On the other hand, if
λ /∈ Cl{λn : n ∈ N}, then |λ− λn| ≥ c > 0 for all n ∈ N. Hence the sequence (1/(λn − λ))n∈N
is bounded, so Ren = (λn − λ)−1en defines a bounded linear operator which is the inverse of
D − λI. This shows that sp(D) = Cl{λn : n ∈ N}.

One checks that D∗ is determined by D∗en = λnen. The operator D∗D is then determined
by D∗Den = |λn|2en, which shows that D is normal. Given f ∈ C(sp(D)), we can now ask:
What is f(D)? We claim that f(D) is determined by

f(D)en = f(λn)en for n ∈ N.
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To show this, we observe first that since f is continuous and (λn)n is bounded, the sequence
(f(λn))n is also bounded, so we can define an operator Df by Dfen = f(λn)en. One now
checks that the map C(sp(D)) → B(H), f 7→ Df is a unital ∗-homomorphism. Furthermore,
Dιen = ι(λn)en = λnen = Den, so we have Df = f(D) by uniqueness of the continuous
functional calculus.

Proposition 4.2.4 (Spectral Mapping Theorem). Let a be a normal element in a unital
C*-algebra A, and let f ∈ C(sp(a)). Then

sp(f(a)) = f(sp(a)).

Proof. We use the fact that C(sp(a)) → B = C∗(a), f 7→ f(a) is an isometric ∗-isomorphism:

sp(f(a)) = spB(f(a)) = spC(sp(a))(f) = f(sp(a)).

■

Proposition 4.2.5. Let a be a normal element in a unital C*-algebra A. If f ∈ C(sp(a)) and
g ∈ C(sp(f(a))), then

(g ◦ f)(a) = g(f(a)).

Proof. Exercise. ■

Proposition 4.2.6. Let A be a unital C*-algebra, and let a ∈ A be normal. Then the following
hold:

(a) a is unitary if and only if sp(a) ⊆ T.

(b) a is self-adjoint if and only if sp(a) ⊆ R.

Proof. We have already shown the forward impliations in Proposition 4.1.9. Let a ∈ A be
normal, and let ι ∈ C(sp(a)) be the inclusion sp(a) → C. Then ι∗ is given by ι∗(z) = z for
z ∈ sp(a). Since C(sp(a)) → A, f 7→ f(a) is a ∗-homomorphism with ι(a) = a, we have that
ι∗(a) = ι(a)∗ = a∗.

(a): If sp(a) ⊆ T, then
(ι · ι∗)(z) = ι(z)ι∗(z) = zz = 1

for all z ∈ sp(a), so ι · ι∗ = 1. It follows that

aa∗ = ι(a)ι∗(a) = 1(a) = 1.

Since a is normal, we also have that a∗a = 1, so a is unitary.
(b): If sp(a) ⊆ R, then

ι∗(z) = z = z = ι(z) for all z ∈ sp(a),

so ι∗ = ι. It then follows that a∗ = ι∗(a) = ι(a) = a. ■
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Example 4.2.7. Let a be a normal element of a unital C*-algebra, and suppose sp(a) is
disconnected: Specifically, let C be a subset of sp(a) which is both open and closed, and not
equal to ∅ or sp(a). Then the indicator function 1C is continuous on sp(a), so we can define
p = 1C(a). Since 1C is real-valued, p is self-adjoint. Furthermore, 12C = 1C , so p2 = p. We
call elements satisfying p∗ = p = p2 orthogonal projections. In any C*-algebra, 0 and 1 are
orthogonal projections. Since C is neither ∅ nor sp(a), 1C is neither 0 nor 1, so p is neither 0
nor 1.

As a particular example, consider the C*-algebra Matn(C) of complex n×n matrices. Let
M ∈ Matn(C) be a normal matrix. Let sp(M) = {λ1, . . . , λk}, where k ≤ n. Here, each {λi}
is clopen, so the functions fi = 1{λi} are continuous on sp(M). Note also that

∑k
i=1 fi = 1,

fifj = 0 if i ̸= j and
∑k

i=1 λifi = ι. Now set

Pi = fi(M).

By the continuous functional calculus, we have that PiPj = 0 for i ̸= j,
∑n

i=1 Pi = I and∑n
i=1 λiPi =M .

4.3 Positivity

Definition 4.3.1. Let A be a unital C*-algebra. A self-adjoint element a ∈ A is called positive
if sp(a) ⊆ [0,∞). We write a ≥ 0 to indicate this. We write A+ for the subset of positive
elements of A.

Example 4.3.2. (a) Consider the C*-algebra C. For z ∈ C we have that sp(z) = {z}, so z
is positive if and only if z is a nonnegative number.

(b) Consider the C*-algebra C(Ω) for a compact Hausdorff space Ω, and let f ∈ C(Ω).
Since sp(f) = Im(f), we have that f is positive precisely when Im(f) ⊆ [0,∞), i.e. when
f(t) ≥ 0 for all t ∈ Ω.

Proposition 4.3.3. Let A be a unital C*-algebra and let a ∈ A. Then the following are
equivalent:

(a) a is positive.

(b) a = b2 for some self-adjoint b ∈ A.

Moreover, if a is positive, then there exists a unique positive b ∈ A such that b2 = a, and we
write b = a1/2.

Proof. (a) ⇒ (b): Suppose a is positive. Since sp(a) ⊆ [0,∞), we can define a function
f : sp(a) → C by f(z) = z1/2. Then f2(z) = f(z)2 = z = ι(z), i.e. f2 = ι. We also have
that f∗ = f . Set b = f(a) according to the continuous functional calculus. Then b is self-
adjoint, since b∗ = f(a)∗ = f∗(a) = f(a) = b. Furthermore, by the spectral mapping theorem
(Proposition 4.2.4) we get

sp(b) = f(sp(a)) = {λ1/2 : λ ∈ sp(a)} ⊆ [0,∞),
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so b is in fact positive. Finally

b2 = f(a)2 = f2(a) = ι(a) = a.

(b) ⇒ (a): Suppose a = b2 for some self-adjoint b ∈ A. Then sp(a) = sp(b2) = {λ2 : λ ∈ sp(b)}.
Since b is self-adjoint, sp(b) ⊆ R, so sp(a) ⊆ [0,∞).

As we saw above, if a is positive, we can find a positive b ∈ A such that b2 = a, namely
b = f(a). Suppose now that c is positive and c2 = a. Since c commutes with a and b ∈ C∗(a),
c must commute with b. Let B be the unital C*-algebra generated by b and c, which is
commutative. Let Γ: B → C(∆(B)) be the Gelfand transform of B. Then Γ(b)2 = Γ(b2) =
Γ(c2) = Γ(c)2. Since b and c are positive, Γ(b) and Γ(c) are functions on ∆(B) that take
nonnegative values. It follows that Γ(b) = Γ(c), so b = c by injectivity of the Gelfand
transform. ■

Proposition 4.3.4. Suppose a and b are positive elements of a unital C*-algebra A. Then
a+ b is positive.

Proof. Let a and b be positive elements of A. If λ ∈ sp(a), then λ ≥ 0, so λ ≤ ∥a∥ ≤ ∥a∥+ λ.
Hence 0 ≤ ∥a∥ − λ ≤ ∥a∥, so by normality of a− ∥a∥1 and the spectral mapping theorem for
polynomials we get

∥a− ∥a∥1∥ = r(a− ∥a∥1) = sup
λ∈sp(a)

|λ− ∥a∥| = sup
λ∈sp(a)

(∥a∥ − λ) ≤ ∥a∥.

Similarly ∥b−∥b∥1∥ ≤ ∥b∥. Now if λ ∈ sp(a+b), then λ−∥a∥−∥b∥ ∈ sp(a+b− (∥a∥+∥b∥)1),
so

|λ− ∥a∥ − ∥b∥| ≤ ∥(a+ b)− (∥a∥+ ∥b∥)1∥
≤ ∥a− ∥a∥1∥+ ∥b− ∥b∥1∥
≤ ∥a∥+ ∥b∥.

But then λ− ∥a∥ − ∥b∥ ≥ −∥a∥ − ∥b∥, so λ ≥ 0. This proves that sp(a+ b) ⊆ [0,∞), so a+ b
is positive. ■

We define two functions f+, f− : R → C by

f+(t) =

{
t if t ≥ 0,

0 if t < 0
f−(t) =

{
0 if t ≥ 0,

−t if t < 0
.

Let ι : R → C denote the function ι(t) = t for t ∈ R. Note that ι = f+ − f−, f+f− = 0 and
that abs = f+ + f−, where abs(t) = |t|.

Definition 4.3.5. Let A be a unital C*-algebra, and let a ∈ A be self-adjoint. We then define

a+ = f+(a),

a− = f−(a),

|a| = abs(a).



64 CHAPTER 4. C*-ALGEBRAS

Remark. Note that since a is self-adjoint, sp(a) ⊆ R, so the definitions in Definition 4.3.5
make sense since f+, f− and abs are defined on R. By the continuous functional calculus,
a+, a− and |a| are positive elements of A since f+, f− and the absolute value function are
nonnegative.

From the continuous functional calculus, we get the following identities for a self-adjoint:

a = a+ − a−,

|a| = a+ + a− = (a2)1/2,

a+a− = 0.

Lemma 4.3.6. Let A be a unital algebra and let a, b ∈ A. Then 1 − ab is invertible if and
only 1− ba is invertible, and consequently

sp(ab) \ {0} = sp(ba) \ {0}.

Proof. Exercise. ■

Proposition 4.3.7. An element a of a unital C*-algebra is positive if and only if a = b∗b for
some b ∈ A.

Proof. If a is positive, then by Proposition 4.3.3 we can find a self-adjoint b such that b2 = a.
Hence b∗b = b2 = a.

To prove the converse, we show first that if b ∈ A and −b∗b is positive, then b = 0. By
Lemma 4.3.6, if −b∗b is positive, then −bb∗ is positive. Write b = c + id where c and d are
self-adjoint as in Observation 4.1.11. Then b∗b+ bb∗ = 2c2 + 2d2, so

b∗b = (2c2 + 2d2) + (−bb∗)

which is positive by Proposition 4.3.3 and Proposition 4.3.4. Hence both b∗b and −b∗b are
positive, so sp(b∗b) ⊆ [0,∞)∩ (−∞, 0] = {0}. Since b∗b is normal, this implies ∥b∥2 = ∥b∗b∥ =
r(b∗b) = 0, i.e. b = 0.

Let now b ∈ A be general and set a = b∗b. Then a is self-adjoint, so we can write
a = a+ − a− where a+ and a− are positive and a+a− = a−a+ = 0 as in Definition 4.3.5. Set
c = ba−. Then

−c∗c = −a∗−b∗ba− = −a∗−(a+ − a−)a− = a3− ∈ A+.

Hence, by what we already proved, we must have c = 0. But then ba− = 0, so

0 = b∗ba− = aa− = (a+ − a−)a− = −a2−.

Thus, ∥a−∥2 = ∥a∗−a−∥ = ∥a2−∥ = 0, so a− = 0. This shows that a = a+ ∈ A+, so a is
positive. ■

Definition 4.3.8. Let a be an element of a unital C*-algebra A. We then define the absolute
value of a to be

|a| = (a∗a)1/2.

If a, b ∈ A are self-adjoint, we write a ≤ b if b− a ≥ 0, that is, b− a is a positive element.

Proposition 4.3.9. The following hold in a unital C*-algebra A:
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(a) If a, b, c ∈ A are self-adjoint and a ≤ b, then a+ c ≤ b+ c.

(b) If a, b ∈ A be self-adjoint, a ≤ b and c ∈ A, then c∗ac ≤ c∗bc.

(c) If a and b are positive and a ≤ b, then ∥a∥ ≤ ∥b∥.

(d) If a is positive, then a ≤ ∥a∥1.

(e) If a and b are positive and invertible, and a ≤ b, then b−1 ≤ a−1.

Proof. Exercise. ■

4.4 Partial isometries and polar decomposition

Proposition 4.4.1. Let u be an element of a unital C*-algebra A. Then the following are
equivalent:

(a) u = uu∗u.

(b) u∗ = u∗uu∗.

(c) u∗u is an orthogonal projection.

(d) uu∗ is an orthogonal projection.

Proof. (a) ⇔ (b): If u = uu∗u, then by conjugating both sides we get u∗ = u∗uu∗. Conversely,
if we start with u∗ = u∗uu∗, then we conjugate again and get back to u = uu∗u.

(b) ⇒ (c): If u∗ = u∗uu∗, then

(u∗u)2 = u∗uu∗u = u∗u.

Since u∗u is self-adjoint, this shows that u∗u is an orthogonal projection.
(c) ⇒ (a): Suppose that p = u∗u is an orthogonal projection. Set a = uu∗u− u. Then

a∗a = p3 − p2 − p2 + p = 0.

Hence ∥a∗a∥ = 0, so ∥a∥2 = ∥a∗a∥ = 0. This shows that uu∗u = u.
(b) ⇔ (d): This follows from the equivalence of (a) and (c) by interchanging u with u∗. ■

Definition 4.4.2. We call an element in a unital C*-algebra A satisfying any of the equivalent
conditions in Proposition 4.4.1 a partial isometry.

Note that u is a partial isometry if and only if u∗ is a partial isometry from the first two
conditions of Proposition 4.4.1.

We will now characterize partial isometries in the C*-algebra B(H), where H is a Hilbert
space. This characterization explains the name partial isometry.

Proposition 4.4.3. Let H be a Hilbert space and let U ∈ B(H). Then the following are
equivalent:

(a) U is a partial isometry in B(H).
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(b) There exists a closed subspace M of H such that U |M is an isometry and U |M⊥ = 0.

Furthermore, if U is a partial isometry, then U has closed range, the above subspace M is
uniquely determined and equals (KerU)⊥, and U∗U is the orthogonal projection onto M , while
UU∗ is the orthogonal projection onto N = U(M).

Proof. Suppose that U is a partial isometry. By Proposition 4.4.1 (c), P = U∗U is an orthog-
onal projection. Set M = ImP , which is a closed subspace of H. Let x ∈M , so that Px = x.
Then by Proposition 4.4.1 (d), we get

∥Ux∥2 = ⟨Ux,Ux⟩ = ⟨U∗Ux, x⟩ = ⟨x, x⟩ = ∥x∥2.

This shows that U |M is an isometry. On the other hand, if x ∈M⊥ = KerP , then

∥Ux∥2 = ⟨U∗Ux, x⟩ = 0,

so U |M⊥ = 0.
Conversely, suppose that there exists a closed subspace M of H such that U |M is an

isometry and U |M⊥ = 0. Let P be the orthogonal projection onto M . If x ∈M , then

⟨U∗Ux, x⟩ = ∥Ux∥2 = ∥x∥2 = ⟨Px, x⟩.

On the other hand, if x ∈M⊥, then

⟨U∗Ux, x⟩ = ⟨U∗0, x⟩ = 0 = ⟨Px, x⟩.

Thus, ⟨U∗Ux, x⟩ = ⟨Px, x⟩ for all x ∈ H, so U∗U = P . By Proposition 4.4.1 (c), this
shows that U is a partial isometry, and that U∗U is the orthogonal projection onto M . Since
KerU = KerU∗U = KerP = M⊥, we get M = (KerU)⊥, which shows that M is uniquely
determined.

We leave the proof that U has closed range as an exercise. Because of this, N = U(H) =
U(M) is closed. Set Q = UU∗. If y ∈ H, then Q(Uy) = (UU∗)Uy = (UU∗U)y = Uy, so
N ⊆ ImQ. Conversely, if x ∈ ImQ, then UU∗x = x. If y ∈ KerU∗, then

⟨x, y⟩ = ⟨UU∗x, y⟩ = ⟨U∗x, U∗y⟩ = 0.

Consequently x ∈ (KerU∗)⊥ = U(H) = N . This shows that UU∗ is the orthogonal projection
onto N . ■

Let U be a partial isometry. We callM = U∗U(H) the initial space of U , andN = UU∗(H)
the final space of U . From Proposition 4.4.3, we have that U |M is an isometry, while U |M⊥ = 0.
Thus, the restricted and corestricted map U |M : M → N is unitary. Conversely, if V : M → N
is a unitary map, we can extend it to a partial isometry Ṽ : H → H with initial space M and
final space N by setting

Ṽ (x) =

{
V x if x ∈M ,
0 if x ∈M⊥.

If U is a partial isometry on H with initial space M and final space N , then U∗ is a partial
isometry with initial space N and final space M : Indeed, the projection onto the initial space
of U∗ is (U∗)∗U∗ = UU∗, which is exactly the projection onto the final space of U , and
similarly for the final space of U∗.
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Theorem 4.4.4 (Polar decomposition). Let H be a Hilbert space, and let T ∈ B(H).

(a) There is a unique positive operator P ∈ B(H) such that

∥Tx∥ = ∥Px∥ for all x ∈ H,

and this operator is P = |T |.

(b) There is a unique partial isometry U ∈ B(H) such that

T = U |T | and KerU = KerT,

The initial space of U is (KerT )⊥ and the final space of U is Cl(ImT ).

Proof. (a): First, we note that

∥|T |x∥2 = ⟨|T |∗|T |x, x⟩ = ⟨T ∗Tx, x⟩ = ∥Tx∥2

for any x ∈ H. This shows that |T | has the required property. We now show uniqueness:
Suppose S ∈ B(H), S ≥ 0, and ∥Sx∥ = ∥Tx∥ for all x ∈ H. Then

⟨S2x, x⟩ = ∥Sx∥2 = ∥Tx∥2 = ⟨T ∗Tx, x⟩

for all x ∈ H. Thus S2 = T ∗T . Since S2 is positive, S is its unique square root, so S = |T |.
(b): To begin with, suppose x, x′ ∈ H are such that |T |x = |T |x′. Then |T |(x−x′) = 0, so

by what (a) we get ∥Tx− Tx′∥ = ∥|T |(x− x′)∥ = 0, i.e., Tx = Tx′. This shows that the map
U0 : Im |T | → ImT given by

U0(|T |x) = Tx for x ∈ H

is well-defined. We leave it as an exercise to show that U0 is linear. Furthermore,

∥U0(|T |x)∥ = ∥Tx∥ = ∥|T |x∥ for x ∈ H,

which shows that U0 is an isometry. Thus, U0 extends uniquely to a linear isometry Cl(Im |T |) → Cl(ImT ),
which we also denote by U0. Set M = Cl(Im |T |). Then M⊥ = (Im |T |)⊥ = Ker |T |∗ =
Ker |T | = KerT , where the last equality follows from (a). Hence we can define a partial
isometry U : H → H by

Ux =

{
U0x if x ∈ Cl(Im |T |),
0 if x ∈ KerT .

The initial space of U is then M = (KerT )⊥. Moreover, we get

U |T |x = U0|T |x = Tx for all x ∈ H,

so U |T | = T . Furthermore, KerU =M⊥ = KerT . The final space of U is U(M) = Cl{U |T |x :

x ∈ H} = Cl{Tx : x ∈ H} = Cl(ImT ).
Finally, we show uniqueness. Suppose V ∈ B(H) is a partial isometry that satisfies T =

V |T | and KerV = KerT . Then V |T |x = U |T |x for all x ∈ H, so V |M = U |M . Moreover,
V |M⊥ = V |KerT = V |KerV = 0. Hence V = U , which proves the uniqueness part. ■

We call the decomposition T = U |T | of T ∈ B(H) the polar decomposition of T .
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Example 4.4.5. Let H = C, so that B(H) ∼= C. If z ∈ C then |z| = (z∗z)1/2 is the usual
absolute value of z. A partial isometry is a complex number w such that w∗w = |w|2 is a
projection, i.e., w = 0 or |w| = 1. In the latter case we can write w = eiθ for some θ ∈ R.
Thus, the polar decomposition of a nonzero complex number is z = eiθ|z| for θ an argument
of z.

Example 4.4.6. LetH be a finite-dimensional Hilbert space, and let T ∈ B(H). Let T = U |T |
be the polar decomposition of T . Then U is a unitary map from (KerT )⊥ to ImT . Since
H = ImT + (ImT )⊥, we have that dimH = dim ImT + dim(ImT )⊥. By the rank-nullity
theorem, we also have dimH = dim ImT +dimKerT , so dimKerT = dim(ImT )⊥. Thus, we
can find a unitary map V : KerT → (ImT )⊥. Define Ũ ∈ B(H) by

Ũ(x) =

{
Ux if x ∈ (KerT )⊥,
V x if x ∈ KerT .

Since U is a unitary from (KerT )⊥ to ImT and V is a unitary from KerT to (ImT )⊥, it
follows that Ũ is a unitary from H to H. Moreover, Ũ |T |x = U |T |x = Tx for all x ∈ H, so
Ũ |T | = T . This is often referred to as a polar decomposition of T , but note that the unitary
map Ũ is not unique unless T is invertible.

Proposition 4.4.7. Let T ∈ B(H), and let T = U |T | be the polar decomposition of T . Then
the following identities hold:

U∗U |T | = |T |
UU∗T = T

|T ∗| = U |T |U∗

T ∗ = U∗|T ∗|.

Proof. In general, we have the identity Cl(ImT ) = Cl(ImTT ∗) for T ∈ B(H). For the operator
|T |, this gives

Cl(Im |T |) = Cl(Im |T ||T |∗) = Cl(Im |T |2) = Cl(ImT ∗T ) = Cl(ImT ∗).

Hence (KerT )⊥ = Cl(ImT ∗) = Cl(Im |T |), so the initial space of U equals Cl(Im |T |). Since
U∗U is the orthogonal projection onto the initial space, it follows that U∗U |T | = |T |.

The rest of the identities are left as an exercise. ■

4.5 Normal operators

Recall that a bounded linear operator T on a Hilbert space H is called normal if it is nor-
mal as an element of the C*-algebra B(H), i.e., TT ∗ = T ∗T . We begin with the following
characterization of normal operators.

Proposition 4.5.1. Let T ∈ B(H). Then the following are equivalent:

(a) T is normal.

(b) ∥Tx∥ = ∥T ∗x∥ for all x ∈ H.
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Proof. For x ∈ H we have that

∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨T ∗Tx, x⟩,

while
∥T ∗x∥2 = ⟨T ∗x, T ∗x⟩ = ⟨TT ∗x, x⟩.

Thus, condition (b) is equivalent to

⟨T ∗Tx, x⟩ = ⟨TT ∗x, x⟩ for all x ∈ H.

This is again equivalent to T ∗T = TT ∗, i.e., normality of T . ■

Let H be a Hilbert space. Recall that a bounded linear operator T on H is called bounded
below if there exists a constant α > 0 such that

α∥x∥ ≤ ∥Tx∥ for all x ∈ H.

Recall that T is bounded below if and only if T is injective and has closed range. Consequently,
T is invertible if and only if T is bounded below and has dense range. If both T and T ∗ are
bounded below, then ImT is closed, Ker(T ) = {0} and Im(T )⊥ = Ker(T ∗) = {0}; hence
Im(T ) = Cl(Im(T )) = H, so T is invertible.

Definition 4.5.2. Let T be a bounded, linear operator on a Hilbert space H. A number
λ ∈ C is called an approximate eigenvalue of T if there exists a sequence (xn)n∈N of unit
vectors in H such that

lim
n→∞

(T − λI)xn = 0.

Remark. (a) Every eigenvalue λ of T is an approximate eigenvalue of T : Simply take a
corresponding eigenvector x of norm 1 and consider the constant sequence (x)n∈N. Then
limn→∞(T − λI)x = 0.

(b) Every approximate eigenvalue of T belongs to the spectrum of T , as can be seen by a
contrapositive argument: If T − λI is invertible and (xn)n∈N is any sequence of unit
vectors in H, then

1 = ∥xn∥ = ∥(T − λI)−1(T − λI)xn∥ ≤ ∥(T − λI)−1∥∥(T − λI)xn∥,

which shows that (T − λI)xn cannot converge to 0 as n→ ∞.

Proposition 4.5.3. Let H be a Hilbert space, let T ∈ B(H) and let λ ∈ C. Then the following
are equivalent:

(a) λ ∈ sp(T ).

(b) λ is an approximate eigenvalue of T , or λ is an approximate eigenvalue of T ∗.
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Proof. (a) ⇒ (b): Suppose λ ∈ sp(T ), so that S = λI − T is not invertible. Then either S or
S∗ is not bounded below: If S is not bounded below, then for every n ∈ N we can find yn ∈ H
such that

1

n
∥yn∥ > ∥Syn∥.

Letting xn = ∥yn∥−1yn, we get ∥Sxn∥ < 1/n for each n ∈ N, which shows that S(xn)n → 0.
Hence λ is an approximate eigenvalue for T . Similarly, if S∗ = λI − T ∗ is not bounded below,
then λ is an approximate eigenvalue of T ∗.

(b) ⇒ (a): We have seen that an approximate eigenvalue of T is in the spectrum of T . If
λ is an approximate eigenvalue of T ∗, then λ ∈ sp(T ∗) = sp(T ), so λ ∈ sp(T ). ■

Corollary 4.5.4. Suppose T ∈ B(H) is normal. Then every λ ∈ sp(T ) is an approximate
eigenvalue of T .

Proof. If T ∈ B(H) is normal and λ ∈ C, then T − λI is normal, so by Proposition 4.5.1 we
get

∥(T − λI)x∥ = ∥(T ∗ − λI)x∥ for all x ∈ H. (4.1)

If λ ∈ sp(T ) then by Proposition 4.5.3 either λ is an approximate eigenvalue of T or λ is an
approximate eigenvalue of T ∗. If λ is an approximate eigenvalue of T ∗, then we can find a
sequence (xn)n∈N of unit vectors in H such that (T ∗ − λI)xn → 0 as n → ∞. By (4.1), this
implies that (T − λI)xn → 0 as n → ∞, so in either case, λ is an approximate eigenvalue of
T . ■

Proposition 4.5.5. Let H be a Hilbert space, and let T ∈ B(H). Then the following are
equivalent:

(a) T is positive (as an element of the C*-algebra B(H)).

(b) ⟨Tx, x⟩ ≥ 0 for all x ∈ H.

Proof. (a) ⇒ (b). Suppose that T is positive. By Proposition 4.3.7, we can write T = S∗S for
some S ∈ B(H). We then get for x ∈ H that

⟨Tx, x⟩ = ⟨S∗Sx, x⟩ = ⟨Sx, Sx⟩ = ∥Sx∥2 ≥ 0.

(b) ⇒ (a): Suppose that ⟨Tx, x⟩ ≥ 0 for all x ∈ H. Then in particular, ⟨Tx, x⟩ is real, so we
get

⟨T ∗x, x⟩ = ⟨x, Tx⟩ = ⟨Tx, x⟩ = ⟨Tx, x⟩.

Since this holds for all x ∈ H, we have that T ∗ = T , so T is in particular normal. If λ ∈ sp(T ),
then λ is an approximate eigenvalue of T by Corollary 4.5.4, so we can find a sequence (xn)n∈N
of unit vectors in H such that (T − λI)xn → 0 as n→ ∞. Then

|λ− ⟨Txn, xn⟩| = |⟨(λI − T )xn, xn⟩| ≤ ∥(λI − T )xn∥∥xn∥ = ∥(λI − T )xn∥ → 0.

Thus λ = limn→∞⟨Txn, xn⟩ ≥ 0. Since λ ∈ sp(T ) was arbitrary, we conclude that T is
positive. ■
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From the above proposition it follows that S ≤ T for self-adjoint operators S, T ∈ B(H) if
and only if ⟨Sx, x⟩ ≤ ⟨Tx, x⟩ for all x ∈ H.

Let T be a bounded, linear operator on a Hilbert space H. We say that λ ∈ sp(T ) is
isolated if there exists δ > 0 such that sp(T ) ∩ Bδ(λ) = {λ}, i.e., {λ} is a clopen subset of
sp(T ). As we saw in Example 4.2.7, the characteristic function 1{λ} is then continuous on
sp(T ), so we can form the orthogonal projection P = 1{λ}(T ).

Proposition 4.5.6. Let T ∈ B(H) be a normal operator, and suppose λ ∈ sp(T ) is isolated.
Then λ is an eigenvalue of T , and P = 1{λ}(T ) is the orthogonal projection onto the eigenspace
Ker(λI − T ) of λ.

Proof. As usual, denote by ι the inclusion of sp(T ) into C. Consider the function (λ·1−ι)·1{λ}
on sp(T ). This function is identically zero on sp(T ), which implies that (λI−T )P = 0. Thus,
if Px = x, then

(λI − T )x = (λI − T )(Px) = 0x = 0,

which shows that ImP ⊆ Ker(λI − T ). To show the reverse inclusion, we define a function
g : sp(T ) → C by

g(z) =

{
(λ− z)−1 if z ̸= λ,
0 if z = λ.

Since λ is isolated in sp(T ), g is continuous. Moreover,

g · (λ · 1− ι) = 1sp(T )\{λ} = 1− 1{λ},

so g(T )(λI − T ) = I − P . Hence, if x ∈ Ker(λI − T ), then (λI − T )x = 0, so

0 = g(T )(λI − T )x = (I − P )x = x− Px.

Hence Px = x, so x ∈ ImP . This shows that Ker(λI − T ) ⊆ ImP , so P is the orthogonal
projection onto Ker(λI −T ). Since 1{λ} ̸= 0, it follows that P ̸= 0. Hence Ker(λI −T ) is not
the zero subspace, so λ is an eigenvalue of T . ■

4.6 The Borel functional calculus

We need some results concerning sesquilinear forms.

Definition 4.6.1. Let X be a complex vector space. A sesquilinear form on X is a map
L : X ×X → C which is linear in the first argument and conjugate-linear in the second, that
is,

L(λx+ µy, z) = λL(x, z) + µL(y, z),

L(x, λy + µz) = λL(x, y) + µL(x, z).

for all x, y, z ∈ X and λ, µ ∈ C.

Example 4.6.2. (a) If X is a complex vector space, then an inner product on V is an
example of a sesquilinear form.
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(b) If L is a sesquilinear form on X, then L∗ : X ×X → C given by

L∗(x, y) = L(y, x) for x, y ∈ X,

is a sesquilinear form on L called the adjoint of L. We say that L is self-adjoint if
L∗ = L.

Observation 4.6.3. If L is a sesquilinear form on X, then the polarization identity holds for
L just as for inner products:

L(x, y) =
1

4

3∑
k=0

ikL(x+ iky, x+ iky) for all x, y ∈ X.

Consequently, if L and L′ are sesquilinear forms on X such that L(x, x) = L′(x, x) for all
x ∈ X, then L = L′.

Definition 4.6.4. We say that a sesquilinear form L on a vector space X is bounded if there
exists C ≥ 0 such that

|L(x, y)| ≤ C∥x∥∥y∥ for all x, y ∈ X.

If L is bounded, we define its norm by

∥L∥ = sup{|L(x, y)| : x, y ∈ H, ∥x∥ ≤ 1, ∥y∥ ≤ 1}.

Example 4.6.5. Let H be a Hilbert space and let T ∈ B(H). Then we can define a bounded,
sesquilinear form LT on H by

LT (x, y) = ⟨Tx, y⟩ for all x, y ∈ H .

The boundedness of L follows from the Cauchy–Schwarz inequality:

|LT (x, y)| = |⟨Tx, y⟩| ≤ ∥Tx∥∥y∥ ≤ ∥T∥∥x∥∥y∥.

This shows that ∥LT ∥ ≤ ∥T∥. On the other hand,

∥Tx∥ ≤ sup
∥y∥=1

|⟨Tx, y⟩| ≤ sup
∥y∥=1,∥x∥=1

|LT (x, y)| = ∥LT ∥.

This shows that ∥LT ∥ = ∥T∥. Note also that L∗
T = LT ∗ . Thus, LT is self-adjoint if and only

if T is self-adjoint.

Proposition 4.6.6. Let H be a Hilbert space, and let L be a bounded, sesquilinear form on
H. Then there exists a unique T ∈ B(H) such that L = LT .

Proof. Let y ∈ H. Define ϕy : H → C by

ϕy(x) = L(x, y) for x ∈ H.

Then ϕy is a bounded linear functional on H, since

|ϕy(x)| = |L(x, y)| ≤ ∥L∥∥x∥∥y∥.
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By Riesz’ representation theorem, there exists a unique vector Sy ∈ H such that

L(x, y) = ϕy(x) = ⟨x, Sy⟩ for all x ∈ H,

with ∥ϕy∥ = ∥Sy∥. We claim that the mapping H → H, y 7→ Sy, defines a bounded linear
map on H. Indeed, for x, y, y′ ∈ H and λ, µ ∈ C we get

⟨x, S(λy + µy′)⟩ = L(x, λy + µy′)

= λL(x, y) + µL(x, y′)

= λ⟨x, Sy⟩+ µ⟨x, Sy′⟩
= ⟨x, λSy + µSy′⟩.

Hence S(λy + µy′) = λS(y) + µS(y′). Boundedness follows from

∥Sy∥ = ∥ϕy∥ = sup
∥x∥≤1

|L(x, y)| ≤ ∥L∥∥y∥.

Letting T be the adjoint of S, we have that

L(x, y) = ⟨Tx, y⟩ = LT (x, y) for all x, y ∈ H.

■

Given T ∈ B(H), we denote by M(sp(T )) the complex vector space of all complex regular
Borel measures on sp(T ).

Proposition 4.6.7. Let T ∈ B(H) be normal and let x, y ∈ H. Then there exists a unique
µx,y ∈M(sp(T )) called the spectral measure of T associated with x, y such that

⟨f(T )x, y⟩ =
∫
sp(T )

f dµx,y for all f ∈ C(sp(T )).

We also have that the total variation norm of µx,y satisfies ∥µx,y∥ ≤ ∥x∥∥y∥.

Proof. Let x, y ∈ H, and define a function ϕx,y : C(sp(T )) → C by

ϕx,y(f) = ⟨f(T )x, y⟩ for x, y ∈ H.

Since f 7→ f(T ) is linear, it follows that ϕx,y is linear. We also have that

|ϕx,y(f)| ≤ ∥f(T )∥∥x∥∥y∥ = ∥f∥∞∥x∥∥y∥,

which shows that ϕx,y is a bounded linear functional on C(sp(T )), with ∥ϕx,y∥ ≤ ∥x∥∥y∥. By
the Riesz–Markov–Kakutani representation theorem for C(sp(T ))∗, it follows that there exists
a unique µx,y ∈M(sp(T )) such that

⟨f(T )x, y⟩ = ϕx,y(f) =

∫
sp(T )

f dµx,y for all f ∈ C(sp(T )).

From the same theorem we also have that

∥µx,y∥ = ∥ϕx,y∥ ≤ ∥x∥∥y∥.

■
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Proposition 4.6.8. Let T ∈ B(H) be normal. For x, y, z ∈ H and λ, γ ∈ C we have the
following relations of spectral measures of T :

(a) µλx+γy,z = λµx,z + γµy,z.

(b) µ∗x,y = µy,x, where µ∗(B) = µ(B) for Borel sets B ⊆ sp(T ).

(c) µx,x is a nonnegative measure.

(d) µx,y(sp(T )) = ⟨x, y⟩. Consequently, if µx,x = 0, then x = 0.

Proof. For all f ∈ C(sp(T )) we have that∫
sp(T )

f dµλx+γy,z = ⟨f(T )(λx+ γy), z⟩

= λ⟨f(T )x, y⟩+ γ⟨f(T )x, z⟩

= λ

∫
sp(T )

f dµx,y + γ

∫
sp(T )

f dµx,z

=

∫
sp(T )

f d(λµx,y + γµx,z).

This proves (a). For part (b), we have for f ∈ C(sp(T )) that∫
sp(T )

f dµ∗x,y =

∫
sp(T )

f dµx,y = ⟨f(T )x, y⟩

= ⟨f(T )∗x, y⟩ = ⟨x, f(T )y⟩ = ⟨f(T )y, x⟩.

To show that µx,x is nonnegative, it suffices by the Riesz–Markov–Kakutani theorem to show
that ϕx,x is a positive linear functional. If f ∈ C(sp(T )) is such that f(t) ≥ 0 for all t ∈ sp(T ),
then f(T ) is a positive operator since sp(f(T )) = f(sp(T )). Hence

ϕx,x(f) = ⟨f(T )x, x⟩ ≥ 0,

so µx,x is a nonnegative measure. Finally,

µx,y(sp(T )) =

∫
sp(T )

1 dµx,y = ⟨1(T )x, y⟩ = ⟨Ix, y⟩ = ⟨x, y⟩.

Thus, if µx,x = 0 then ∥x∥2 = µx,x(sp(T )) = 0 so x = 0. ■

Let T ∈ B(H) be a normal operator. Let Bb(sp(T )) denote the vector space of complex-
valued, bounded, Borel measurable functions on sp(T ). This becomes a unital, commutative
C*-algebra with respect to the usual pointwise operations and the supremum norm. The
C*-algebra C(sp(T )) is a unital C*-subalgebra of Bb(sp(T )).

Theorem 4.6.9 (The Borel Functional Calculus). Let T ∈ B(H) be normal. Then there
exists a unique unital ∗-homomorphism Bb(sp(T )) → B(H), f 7→ f(T ), which coincides with
the continuous functional calculus when restricted to C(sp(T )) and has the following continuity
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property: Whenever (fn)n∈N is a sequence in Bb(sp(T )) with supn∈N ∥fn∥∞ <∞ that converges
pointwise to a function f ∈ Bb(sp(T )), then

lim
n→∞

fn(T )x = f(T )x for all x ∈ H.

Moreover, the ∗-homomorphism has the following properties:

(a) It is bounded, with norm equal to one, i.e., ∥f(T )∥ ≤ ∥f∥∞ for all f ∈ Bb(sp(T )).

(b) If x, y ∈ H and f ∈ Bb(sp(T )), then

⟨f(T )x, y⟩ =
∫
sp(T )

f dµx,y.

(c) If S ∈ B(H) and ST = TS, then Sf(T ) = f(T )S for all f ∈ Bb(sp(T )).

Proof. Given f ∈ Bb(sp(T )), we define a function L : H ×H → C by

L(x, y) =

∫
sp(T )

f dµx,y for x, y ∈ H.

We will show that L is bounded, sesquilinear form. Sesquilinearity follows at once from
Proposition 4.6.8 (a) and (b). Also, by Proposition 4.6.8 (d), we get

|L(x, y)| ≤
∫
sp(T )

|f | d|µx,y| ≤ |µx,y|(sp(T ))∥f∥∞ = ∥µx,y∥∥f∥∞ ≤ ∥x∥∥y∥∥f∥∞.

Hence ∥L∥ ≤ ∥f∥∞, so L is bounded. It follows from Proposition 4.6.6 that there exists a
unique f(T ) ∈ B(H) such that

⟨f(T )x, y⟩ = L(x, y) =

∫
sp(T )

f dµx,y for all x, y ∈ H.

We also get ∥f(T )∥ = ∥L∥ ≤ ∥f∥∞. Note that by Proposition 4.6.7, the map Bb(sp(T )) →
B(H), f 7→ f(T ), extends the continuous functional calculus.

We show that the map Bb(sp(T )) → B(H), f 7→ f(T ), is a ∗-homomorphism. For linearity,
let f, g ∈ Bb(sp(T )) and λ, γ ∈ C. Then

⟨(λf + γg)(T )x, y⟩ =
∫
sp(T )

(λf + γg) dµx,y

= λ

∫
sp(T )

f dµx,y + γ

∫
sp(T )

g dµx,y

= λ⟨f(T )x, y⟩+ γ⟨g(T )x, y⟩
= ⟨(λf(T ) + γg(T ))x, y⟩.

Since this holds for all x, y ∈ H, we conclude that (λf + γg)(T ) = λf(T ) + γg(T ).
Next, we show that f 7→ f(T ) is ∗-preserving: If x, y ∈ H and f ∈ Bb(sp(T )), then

⟨f(T )x, y⟩ =
∫
sp(T )

f dµx,y
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=

∫
sp(T )

f dµy,x

= ⟨f(T )y, x⟩
= ⟨x, f(T )y⟩ = ⟨f(T )∗x, y⟩.

Since x, y ∈ H were arbitrary, we conclude that f(T ) = f(T )∗.
We now show multiplicativity, which is more involved. Let x, y ∈ H and f, g ∈ Bb(sp(T )).

If f and g are both continuous, then we know that (fg)(T ) = f(T )g(T ) since the continuous
functional calculus is multiplicative. In terms of spectral measures, we get∫

sp(T )
g d(fµx,y) =

∫
sp(T )

fg dµx,y = ⟨(fg)(T )x, y⟩

= ⟨f(T )g(T )x, y⟩ = ⟨g(T )x, f(T )∗y⟩

=

∫
sp(T )

g dµx,f(T )∗y.

Hence µx,f(T )∗y = fµx,y. But then for any g ∈ Bb(sp(T )) we get

⟨(fg)(T )x, y⟩ =
∫
sp(T )

fg dµx,y =

∫
sp(T )

g dµx,f(T )∗y = ⟨f(T )g(T )x, y⟩.

Hence (fg)(T ) = f(T )g(T ) for all f ∈ C(sp(T )) and g ∈ Bb(sp(T )). If instead f ∈ Bb(sp(T ))
and g ∈ C(sp(T )), we get

(fg)(T ) = (fg)(T )∗∗ = (fg(T ))∗ = (gf)(T )∗ = (g(T )f(T ))∗ = f(T )g(T ).

As we have already seen, this can be expressed in terms of spectral measures as fµx,y =
µx,f(T )∗y. But this time f ∈ Bb(sp(T )), so if g ∈ Bb(sp(T )) we get

⟨(fg)(T )x, y⟩ =
∫
sp(T )

g dfµx,y =

∫
sp(T )

g dµx,f(T )∗y = ⟨f(T )g(T )x, y⟩.

Hence (fg)(T ) = f(T )g(T ) for all f, g ∈ Bb(sp(T )).
To show the continuity property, let (fn)n∈N be a sequence converging to f as in the

theorem. We have that

|fn − f |2 ≤ (|fn|+ |f |)2 ≤ (sup
n∈N

∥fn∥∞ + ∥f∥∞)2 <∞.

This shows that the sequence of functions (fn − f)n∈N is uniformly bounded. Since each
measure µx,x is finite, we can use the dominated convergence theorem as follows:

lim
n→∞

∥fn(T )x− f(T )x∥2 = lim
n→∞

⟨|fn(T )− f(T )|2x, x⟩ = lim
n→∞

∫
sp(T )

|fn − f |2 dµx,x, = 0.

Hence limn→∞ fn(T )x = f(T )x for all x ∈ H.
The uniqueness and (c) will be given as an exercise. ■
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4.7 Projection-valued measures

Proposition 4.7.1. Let T ∈ B(H) be normal, and denote by B the σ-algebra of Borel sets of
sp(T ). Define a function P : B → B(H) given by

P (B) = 1B(T ) for B ∈ B.

Then P satisfies the following properties:

(a) P (B) is an orthogonal projection for all B ∈ B.

(b) P (∅) = 0 and P (sp(T )) = 1.

(c) P (B ∩B′) = P (B)P (B′) for all Borel sets B,B′ ∈ B.

(d) If (Bn)n∈N is a sequence of pairwise disjoint sets in B, then

P
( ⋃

n∈N
Bn

)
x =

∑
n∈N

P (Bn)x for all x ∈ H.

(e) ⟨P (B)x, y⟩ = µx,y(B) for all B ∈ B and x, y ∈ H, where µx,y is the spectral measure of
T associated with x and y.

Proof. (a): This follows from applying the Borel functional calculus and the identities 1∗B = 1B

and 1
2
B = 1B.

(b): Since 1∅ = 0 and 1sp(T ) = 1, we get P (∅) = 0(T ) = 0 and P (sp(T )) = 1(T ) = 1.
(c): Since 1B∩B′ = 1B1B′ , we get

P (B ∩B′) = 1B∩B′(T ) = (1B1B′)(T ) = 1B(T )1B′(T ) = P (B)P (B′).

(d): Set A =
⋃

n∈NAn and fn =
∑n

k=1 1Bk
for each n ∈ N. Then (fn)n∈N converges

pointwise to 1A. Since the sets (Bn)n are pairwise disjoint, |fn| ≤ 1 for all n ∈ N. We can
thus use the continuity property of Theorem 4.6.9 to conclude that

lim
n

n∑
k=1

1Bk
(T ) = lim

n
fn(T )x = f(T )x = 1B(T )x for all x ∈ H.

(e): If x, y ∈ H, then

⟨P (B)x, y⟩ = ⟨1B(T )x, y⟩ =
∫
sp(T )

1B dµx,y = µx,y(B).

■

Definition 4.7.2. The map P : B → B(H) in Proposition 4.7.1 is called the projection-valued
measure of T .
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Given T ∈ B(H) normal with associated projection-valued measure P , a common notation
is to write

f(T ) =

∫
sp(T )

f dP =

∫
sp(T )

f(z) dP (z) for f ∈ Bb(sp(T )).

With this notation, we get the formulas

T =

∫
sp(T )

ι dP =

∫
sp(T )

z dP (z)

I =

∫
sp(T )

1 dP.

Compare with the formulas for a normal matrix in Example 4.2.7.
We can use P to describe the spectrum and the eigenvalues of T :

Proposition 4.7.3. Let T ∈ B(H) be normal, and let P be the projection-valued measure of
T . Given λ ∈ C, the following hold:

(a) λ ∈ sp(T ) if and only if P (Bϵ(λ) ∩ sp(T )) ̸= 0 for all ϵ > 0.

(b) λ is an eigenvalue of T if and only if P ({λ}) ̸= 0.

Proof. We prove (b) and leave (a) as an exercise. Let λ be an eigenvalue of T . For each n ∈ N,
set En = {z ∈ sp(T ) : |z − λ| > 1/n}. Then⋃

n∈N
En = sp(T ) \ {λ}.

Let fn(z) = (z− λ)−1
1En(z). Then fn ∈ Bb(sp(T )) for each n ∈ N. Since fn · (ι− λ1) = 1En ,

it follows that
P (En) = 1En(T ) = fn(T )(T − λI).

Hence, if x ∈ Ker(T − λI), then P (En)x = 0. Since En ⊆ En+1 for each n and
⋃

nEn =
sp(T ) \ {λ}, continuity of measure gives

x− P ({λ})x = P (sp(T ) \ {λ})x = lim
n→∞

P (En)x = 0

for x an eigenvector of T corresponding to λ. Thus x = P ({λ})x, so P ({λ}) ̸= 0 since x ̸= 0.
Conversely, suppose P ({λ}) ̸= 0. Then there exists x ̸= 0 such that P ({λ})x = x, so

Tx = TP ({λ})x = (ι1{λ})(T )x = λ1{λ}(T )x = λP ({λ})x = λx.

Hence x is an eigenvalue of T . In fact, we have shown that P ({λ}) is the projection onto the
eigenspace of λ. ■

Proposition 4.7.4. Let H be a Hilbert space. Then the linear span of the set of all the
orthogonal projections in B(H) is dense in B(H).
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Proof. Let T ∈ B(H). We want to approximate T with a linear combination of projections.
Since we can write T = Re(T )+ i Im(T ) where Re(T ) and Im(T ) are self-adjoint (in particular
normal), it suffices to find an approximation in the case where T is normal. So we assume
that T is normal and let ϵ > 0. Let ι denote the inclusion sp(T ) → C. Since ι ∈ Bb(sp(T )),
we can find a simple function f ∈ Bb(sp(T )) such that ∥ι− f∥∞ < ϵ. We can assume that f
is of the form

f =
n∑

j=1

λj1Bj

where λj ∈ C and Bj ⊆ sp(T ) is Borel for each j, with Bj ∩Bk = ∅ for j ̸= k and
⋃n

j=1Bj =
sp(T ). Set Pj = Pj(Bj). Then

∥∥∥T −
n∑

j=1

λjPj

∥∥∥ = ∥(ι− f)(T )∥ ≤ ∥ι− f∥∞ < ϵ.

This finishes the proof. ■





Chapter 5

Operators on Hilbert spaces

5.1 The trace

For a complex n× n matrix

M =


m1,1 · · · m1,n

...
. . .

...
mn,1 · · · mn,n

 ,

the trace is defined as the sum of the diagonal entries: m1,1 + · · ·mn,n. Alternatively, we can
describe the trace as follows: Let {e1, . . . , en} be the standard basis. Then for 1 ≤ i, j ≤ n,
we have that mi,j = ⟨Mei, ej⟩. Hence

tr(M) =
n∑

j=1

⟨Mej , ej⟩.

This motivates the following definition:

Definition 5.1.1. Let H be a Hilbert space, and choose an orthonormal basis (ej)j∈J for H.
We define the trace of a positive operator T ∈ B(H) to be the number

tr(T ) =
∑
j∈J

⟨Tej , ej⟩.

Remark. Note that because T is positive, the numbers ⟨Tej , ej⟩ are nonnegative, which makes
the sum appearing in the definition of tr(T ) a well-defined, possibly infinite number. We will
eventually extend it to a suitable class of operators known as the trace class operators. We
will also very soon see that the definition does not depend on the choice of orthonormal basis.

Proposition 5.1.2. If T ∈ B(H), then

tr(T ∗T ) = tr(TT ∗).

Proof. First, using Parseval’s identity we get for all i ∈ J that

⟨T ∗Tei, ei⟩ = ∥Tei∥2 =
∑
j∈J

|⟨Tei, ej⟩|2.

81



82 CHAPTER 5. OPERATORS ON HILBERT SPACES

On the other hand, for j ∈ J we get

⟨TT ∗ej , ej⟩ = ∥T ∗ej∥2 =
∑
i∈J

|⟨T ∗ej , ei⟩|2.

Now |⟨Tei, ej⟩|2 = |⟨ei, T ∗ej⟩|2 = |⟨T ∗ej , ei⟩|2 for all i, j ∈ J . This gives us

tr(TT ∗) =
∑
j∈J

⟨TT ∗ej , ej⟩ =
∑
j∈J

∑
i∈J

|⟨T ∗ej , ei⟩|2

=
∑
i∈J

∑
j∈J

|⟨Tei, ej⟩|2 =
∑
i∈J

⟨T ∗Tei, ei⟩ = tr(T ∗T ).

■

Corollary 5.1.3. Let T ∈ B(H)+ and let U ∈ B(H) be unitary. Then

tr(UTU∗) = tr(T ).

In particular, the definition of the trace does not depend on the chosen orthonormal basis.

Proof. Using Proposition 5.1.2 and the existence of the square root of the positive operator
T , we get

tr(UTU∗) = tr(UT 1/2T 1/2U∗) = tr((UT 1/2)(UT 1/2)∗)

= tr((UT 1/2)∗(UT 1/2)) = tr(T 1/2U∗UT 1/2) = tr(T ).

Given the orthonormal basis (ej)j∈J through which the trace is defined, any other orthonormal
basis for H is of the form (Uej)j∈J for some unitary U ∈ B(H). Hence∑

j∈J
⟨T (Uej), Uej⟩ =

∑
j∈J

⟨U∗TUej , ej⟩ = tr(U∗TU) = tr(T ).

This shows that the definition of the trace is independent of the chosen orthonormal basis. ■

The class of Hilbert–Schmidt operators were introduced in MAT4400, but we state the
definition here:

Definition 5.1.4. An operator T ∈ B(H) is called Hilbert–Schmidt if

tr(T ∗T ) =
∑
j∈J

⟨T ∗Tej , ej⟩ =
∑
j∈J

∥Tej∥2 <∞.

We denote by HS(H) the set of Hilbert–Schmidt operators on H.

We denote by F(H) the finite-rank operators on H, i.e., the operators T ∈ B(H) such that
Im(T ) is finite-dimensional. Recall that Cl(F(H)) = K(H), the compact operators on H.

Proposition 5.1.5. The following hold for the Hilbert–Schmidt operators on a Hilbert space
H:

(a) HS(H) is a linear subspace of K(H) which contains F(H).
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(b) HS(H) is a Hilbert space with respect to the inner product

⟨T, S⟩ = tr(S∗T ) for S, T ∈ HS(H),

and the induced Hilbert–Schmidt norm is given by

∥T∥2 = tr(T ∗T )1/2.

(c) HS(H) is a ∗-closed (two-sided) ideal in B(H), with

∥ST∥2 ≤ ∥S∥2∥T∥, ∥TS∥2 ≤ ∥T∥∥S∥2,
∥S∗∥2 = ∥S∥2, ∥S∥ ≤ ∥S∥2

for S ∈ HS(H) and T ∈ B(H).

Proof. This was all done in MAT4400, so we leave it as an exercise to refresh on the proofs. ■

Definition 5.1.6. An operator T ∈ B(H) is called trace class if

tr(|T |) <∞.

We denote by T C(H) the set of trace class operators on H.

We need the following technical but important lemma:

Lemma 5.1.7. Let T ∈ B(H). The following are equivalent:

(a) T ∈ T C(H).

(b) There exist R,S ∈ HS(H) such that T = RS.

(c) M ′
T := sup

{∑
j |⟨Tej , fj⟩| : (ej)j , (fj)j are orthonormal sequences in H

}
<∞.

Moreover, if T ∈ T C(H), then

tr(|T |) =M ′
T =MT := inf{∥R∥2∥S∥2 : R,S ∈ HS(H) and T = RS}.

Proof. (a) ⇒ (b): Let T ∈ T C(H). Let T = U |T | be the polar decomposition of T . Set
R = U |T |1/2 and S = |T |1/2. Then S∗S = S2 = |T |, so tr(S∗S) = tr(|T |) < ∞. Thus
S ∈ HS(H), so R ∈ HS(H) as well. We also get

∥R∥2∥S∥2 = ∥U |T |1/2∥2∥|T |1/2∥2 ≤ ∥U∥∥|T |1/2∥2∥|T |1/2∥2 = ∥|T |1/2∥22 = tr(|T |).

This shows that MT ≤ tr(|T |).
(b) ⇒ (c): Write T = RS for some R,S ∈ HS(H). Let (ej)j and (fj)j be orthonormal

sequences in H. Then∑
j

|⟨Tej , fj⟩| =
∑
j

|⟨Sej , R∗fj⟩|

≤
∑
j

∥Sej∥∥R∗fj∥
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≤
(∑

j

∥Sej∥2
)1/2(∑

j

∥R∗fj∥2
)1/2

≤ ∥S∥2∥R∗∥2 = ∥S∥2∥R∥2.

Taking the supremum over all pairs of orthonormal sequences in H, we get M ′
T ≤ ∥R∥2∥S∥2.

Since R and S were general, it follows that M ′
T ≤MT .

(c) ⇒ (a): Assume that M ′
T < ∞. Let (ej)j be an orthonormal basis for Cl(Im |T |).

Let T = U |T | be the polar decomposition of T . Then |T | = U∗T by Proposition 4.4.7.
Since U is a partial isometry with initial space equal to Cl(Im |T |) and final space equal to
Cl(ImT ), it follows that (Uej)j∈J is an orthonormal basis for Cl(ImT ). Moreover, if we
enlarge (ej)j to an orthonormal basis (fk)k, then the new terms will form an orthonormal
basis for (Cl(Im |T |))⊥ = Ker |T |. Hence

∥T∥1 =
∑
k

⟨|T |fk, fk⟩ =
∑
j

⟨|T |ej , ej⟩ =
∑
j

⟨Tej , Uej⟩ ≤M ′
T .

In particular, tr(|T |) <∞.
We have now shown that (a), (b) and (c) are equivalent, and that if any of them hold, then

tr(|T |) ≤MT ≤M ′
T ≤ tr(|T |). This finishes the proof. ■

Theorem 5.1.8. T C(H) is a ∗-closed ideal of B(H), and

∥T∥1 = tr(|T |) for T ∈ T C(H)

defines a norm on T C(H) turning it into a Banach space. For T ∈ T C(H) and S ∈ B(H) we
have

∥TS∥1 ≤ ∥T∥1∥S∥, ∥ST∥1 ≤ ∥S∥∥T∥1,
∥T ∗∥1 = ∥T∥1, ∥T∥2 ≤ ∥T∥1.

Finally, we have the following inclusions:

F(H) ⊆ T C(H) ⊆ HS(H) ⊆ K(H) ⊆ B(H).

Proof. To begin with, we show that T C(H) is a linear subspace of B(H) and that ∥ · ∥1 is a
norm on T C(H). Let T, S ∈ T C(H) and λ ∈ C. Let (ej)j and (fj)j be orthonormal sequences
in H. Then ∑

j

|⟨(S + T )(ej), fj⟩| ≤
∑
j

|⟨Sej , fj⟩|+
∑
j

|⟨Tej , fj⟩| ≤M ′
S +M ′

T .

Taking the supremum over all orthonormal sequences (ej)j and (fj)j , we get by Lemma 5.1.7
that

∥S + T∥1 =M ′
S+T ≤M ′

S +M ′
T = ∥S∥1 + ∥T∥1.

In particular, S+T ∈ T C(H). It is easy to check that ∥λT∥1 = |λ|∥T∥1. Finally, if ∥T∥1 = 0,
then

0 = tr(|T |) =
∑
j

⟨|T |ej , ej⟩ =
∑
j

∥|T |1/2ej∥2.
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Hence ∥|T |1/2ej∥ = 0 for each j, so |T |1/2 = 0. This implies that T = 0. This proves that
∥ · ∥1 is a norm on T C(H).

Next, we show that T C(H) is ∗-closed, and that ∥T ∗∥1 = ∥T∥1 for all T ∈ T C(H): Let
T ∈ T C(H), let (ej) and (fj)j be orthonormal sequences in H, and notice that∑

j

|⟨T ∗ej , fj⟩| =
∑
j

|⟨ej , T fj⟩| =
∑
j

|⟨Tfj , ej⟩| ≤M ′
T <∞.

It follows that M ′
T ∗ ≤ M ′

T , so in particular T ∗ ∈ T C(H). Repeating the argument with
T = (T ∗)∗, we get M ′

T ≤M ′
T ∗ , so ∥T∥1 =M ′

T =M ′
T ∗ = ∥T ∗∥1.

We now show that T C(H) is an ideal of B(H): Let T ∈ T C(H) and S ∈ B(H). By
Lemma 5.1.7, we can write T = RR′ for R,R′ ∈ HS(H). Since HS(H) is an ideal of B(H),
R′S, SR ∈ HS(H), so TS = R(R′S) ∈ T C(H) and ST = (SR)R′ ∈ T C(H). Moreover, by
Proposition 5.1.5, we get

MTS ≤ ∥R∥2∥R′S∥2 ≤ ∥R∥2∥R′∥2∥S∥.

Taking the infimum over all R,R′ ∈ HS(H) such that T = RR′, we obtain

∥TS∥1 =MTS ≤MT ∥S∥ = ∥T∥1∥S∥.

The proof that ∥ST∥1 ≤ ∥S∥∥T∥1 is analogous.
By Lemma 5.1.7, every trace class operator can be written as a composition of two Hilbert–

Schmidt operators. Since HS(H) is an ideal of B(H), we get T C(H) ⊆ HS(H). In particular,
trace class operators are compact. Let T ∈ T C(H). Then |T | ∈ T C(H), since we can
write |T | = U∗T where T = U |T | is the polar decomposition of T . Hence |T | is a compact,
positive operator. By the spectral theorem for compact operators, we can find an orthonormal
basis (ej)j∈J for H consisting of eigenvectors for |T |: There are countably many nonnegative
eigenvalues which can only accumulate at 0, so we can write λ1 ≥ λ2 ≥ · · · for them. Let
fn be the eigenvector from (ej)j∈J corresponding to λn for each n ∈ N. Then (fn)n∈N is an
orthonormal basis for (Ker |T |)⊥. Now

∥T∥1 =
∑
j

⟨|T |ej , ej⟩ =
∑
n

⟨|T |fn, fn⟩ =
∑
n

λn∥fn∥2 =
∑
n

λn

while
∥T∥22 =

∑
j

∥Tej∥2 =
∑
n

∥Tfn∥2 =
∑
n

λ2n.

Thus, since (
∑

n λ
2
n)

1/2 ≤
∑

n λn, it follows that ∥T∥2 ≤ ∥T∥1.
The completeness of T C(H) will follow from a later proposition. We leave the inclusion

F(H) ⊆ T C(H) as an exercise. ■

Let now T ∈ T C(H). For any orthonormal basis (ej)j for H, the series
∑

j⟨Tej , ej⟩ is
absolutely convergent: Indeed, by Lemma 5.1.7, we have∑

j

|⟨Tej , ej⟩| ≤M ′
T = ∥T∥1.
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Note also that the series
∑

j⟨Tej , ej⟩ is independent of the chosen orthonormal basis: We
have already shown that this is the case when T is positive, and we can write more general
operators as a linear combination of positive operators by first decomposing into real and
imaginary parts and then decomposing into positive and negative parts. We can thus make
the following definition:

Definition 5.1.9. Let T ∈ T C(H). Then we define the trace of T to be the (finite) number

tr(T ) =
∑
j∈J

⟨Tej , ej⟩

where (ej)j is any orthonormal basis for H.

Note that for T ∈ T C(H) we have

| tr(T )| =
∣∣∣∑
j∈J

⟨Tej , ej⟩
∣∣∣ ≤ ∑

j∈J
|⟨Tej , ej⟩| ≤ ∥T∥1.

Proposition 5.1.10. Let T ∈ T C(H) and S ∈ B(H). Then

tr(TS) = tr(ST ).

Proof. Exercise. ■

We have now come to one of the main results regarding the trace class operators, which
characterizes the Banach space T C(H) as the dual space of K(H). Before we present the
theorem, recall that a finite rank operator can be written as a sum of rank one operators, and
that every rank one operator T ∈ B(H) is of the form T = Θy,z for some y, z ∈ H, where

Θy,zx = ⟨x, z⟩y for x ∈ H.

We have ∥Θy,z∥ ≤ ∥y∥∥z∥ (check this if you have not seen it before).

Theorem 5.1.11. For every T ∈ T C(H), the map ωT : K(H) → C given by

ωT (S) = tr(TS) for S ∈ K(H)

defines a bounded, linear functional on K(H). Furthermore, the map ω : T C(H) → K(H)∗

given by
ω(T ) = ωT for T ∈ T C(H)

is an isometric isomorphism.

Proof. Given T ∈ T C(H), linearity of the map ωT is clear. Boundedness follows from

|ωT (S)| = | tr(TS)| ≤ ∥TS∥1 ≤ ∥T∥1∥S∥ for S ∈ K(H),

which also shows that ∥ωT ∥ ≤ ∥T∥1.
Let ϕ ∈ K(H)∗. Define Lϕ : H ×H → C by

Lϕ(x, y) = ϕ(Θx,y) for x, y ∈ H.
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Then Lϕ is easily checked to be a sesquilinear form on H. Moreover, Lϕ is bounded, as

|Lϕ(x, y)| ≤ ∥ϕ∥∥Θx,y∥ ≤ ∥ϕ∥∥x∥∥y∥

for all x, y ∈ H. By Proposition 4.6.6, there exists a unique T ∈ B(H) such that

ϕ(Θx,y) = ⟨Tx, y⟩ for all x, y ∈ H.

Assume y is a unit vector, and let (ej)j∈J be an orthonormal basis for H in which y occurs.
Then

tr(TΘx,y) =
∑
j∈J

⟨TΘx,yej , ej⟩ =
∑
j∈J

⟨T ⟨ej , y⟩x, ej⟩ =
∑
j∈J

⟨Tx, ej⟩⟨ej , y⟩ = ⟨Tx, y⟩ = ϕ(Θx,y).

This formula is easily seen to extend to the case where y is not necessarily a unit vector as
well. By linearity, we get that

tr(TS) = ϕ(S) for all finite rank operators S ∈ B(H).

We now show that T is trace class. Let (ej)j∈J be an orthonormal basis. For each finite subset
F of J , let PF be the projection onto the finite-dimensional subspace spanned by {ej : j ∈ F}.
Let T = U |T | be the polar decomposition of T , so that |T | = U∗T . Then PFU

∗ is a finite
rank operator, so tr(TPFU

∗) = ϕ(PFU
∗) by what we have already proved. So for any finite

F ⊆ J , we get ∑
j∈F

⟨|T |ej , ej⟩ =
∑
j∈J

⟨|T |PF ej , ej⟩ = tr(|T |PF )

= tr(U∗TPF ) = tr(TPFU
∗) = ϕ(PFU

∗)

≤ ∥ϕ∥∥PF ∥∥U∗∥ = ∥ϕ∥.

Hence, taking the supremum over all finite F ⊆ J , we get

tr(|T |) =
∑
j∈J

⟨|T |ej , ej⟩ = lim
F

∑
j∈F

⟨|T |ej , ej⟩ ≤ ∥ϕ∥.

This shows that T ∈ T C(H).
Let now S ∈ K(H). Then S = limn→∞ Fn for a sequence of finite rank operators. Thus,

| tr(TFn)− tr(TS)| = | tr(T (Fn − S))| ≤ ∥T (Fn − S)∥1 ≤ ∥T∥1∥Fn − S∥ → 0.

This shows that

ϕ(S) = lim
n→∞

ϕ(Fn) = lim
n→∞

tr(TFn) = tr(TS) = ωT (S).

Hence ϕ = ωT . This shows surjectivity of ω, and we also get

∥T∥1 ≤ ∥ϕ∥ = ∥ωT ∥ ≤ ∥T∥1.

Hence ω is isometric, which finishes the proof. ■
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Theorem 5.1.12. For every T ∈ B(H), the map ψT : T C(H) → C given by

ψT (S) = tr(TS) for S ∈ T C(H)

defines a bounded, linear functional on T C(H). Furthermore, the map ψ : B(H) → T C(H)∗

given by
ψ(T ) = ψT

is an isometric isomorphism.

Proof. Exercise. ■

5.2 Fredholm operators

Let H be a Hilbert space, let y ∈ H and let T ∈ B(H). Suppose we wish to study the solutions
of the equation Tx = y.

Uniqueness of solutions of this equation is, roughly speaking, related to the injectivity of
T . When T is injective, i.e., when Ker(T ) = {0}, Tx = y has at most one solution. The bigger
the kernel is, the “less unique” solutions to the equation become.

On the other hand, existence of solutions is related to the surjectivity of T . When T is
surjective, i.e., when Im(T ) = H, then solutions always exist. Letting

Coker(T ) := H/ Im(T ),

we see that the bigger Coker(T ) is, the “less likely” the equation is to have a solution.
There exists a unique solution if and only if T is invertible, if and only if Ker(T ) and

Coker(T ) are both trivial. Considering operators for which these two spaces are finite-
dimensional instead of trivial, we arrive at the definition of a Fredholm operator:

Definition 5.2.1. Let H be a Hilbert space. An operator T ∈ B(H) is called Fredholm if the
vector spaces Ker(T ) and Coker(T ) are finite-dimensional. Moreover, the index of a Fredholm
operator T ∈ B(H) is the integer

i(T ) = dimKer(T )− dimCoker(T ).

Example 5.2.2. Let T ∈ B(H) be an invertible operator. Then as we have seen, T is
Fredholm, and

i(T ) = dimKer(T )− dimCoker(T ) = 0.

In particular, the identity operator I is always Fredholm, with i(I) = 0. If S ∈ B(H) is a
Fredholm operator, then Ker(S) = Ker(ST ) and Im(S) = Im(ST ), so ST is Fredholm with
index i(ST ) = i(T ).

Example 5.2.3. Let H be a finite-dimensional Hilbert space and let T ∈ B(H). Then T is
obviously Fredholm. Moreover, the rank-nullity theorem gives

i(T ) = dimKer(T )− dimCoker(T ) = dimKer(T )− (dimH − dim Im(T )) = 0.

Proposition 5.2.4. Let T ∈ B(H) be a Fredholm operator. Then Im(T ) is closed in H.
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Proof. First, we prove the following claim: If M is a subspace of H such that H/M is finite-
dimensional, then there exists a closed subspace N of H such that M ∩N = {0} and M+N =
H. Indeed, let {e1+M, . . . , en+M} be a basis for H/M . Set N = span{e1, . . . , en}. Then N
is finite-dimensional, hence closed. If x ∈ M ∩N , then we can find λ1, . . . , λn ∈ C such that
x =

∑n
i=1 λiei. But then

0 +M = x+M =

n∑
i=1

λi(ei +M),

so by linear independence we get λi = 0 for 1 ≤ i ≤ n Hence x = 0. Also, if x ∈ H, then we
can find λ1, . . . , λn ∈ C such that

x+M =
n∑

i=1

λi(ei +M).

Setting y =
∑n

i=1 λiei ∈ N , we get x − y ∈ M and x = (x − y) + y ∈ M + N . This finishes
the proof of the claim.

Now let N be such a subspace for M = Im(T ). We define a map T ′ : (H/Ker(T ))⊕N → H
by

T ′(x+Ker(T ), y) = T (x) + y for (x, y) ∈ H ×N .

This is well-defined due to the linearity of T . Moreover, T ′ is bounded, linear and surjective
since Im(T )+N = H. and It is also injective since if T (x)+ y = 0 for x ∈ H and y ∈ N , then
T (x) = y = 0 since M ∩ N = {0}, so (x + Ker(T ), y) = (Ker(T ), 0). By the open mapping
theorem, T ′ is a homeomorphism. Hence

Im(T ) = T ′((H/Ker(T ))× {0})

is closed since (H/Ker(T ))× {0} is closed. ■

Corollary 5.2.5. For an operator T ∈ B(H), the following are equivalent:

(a) T is Fredholm.

(b) Im(T ) is closed, and Ker(T ) and Ker(T ∗) are finite-dimensional.

Moreover, for T Fredholm, we have that dimCoker(T ) = dimKer(T ∗), so

i(T ) = dimKer(T )− dimKer(T ∗).

Proof. Note that for a closed subspace M of H, the restriction of the quotient map H →
H/M to M⊥ is a bijection, hence an invertible linear operator by the open mapping theorem
(since H/M is a Banach space). In particular, if T ∈ B(H) has closed range, then Im(T ) =
Cl(Im(T )) = Ker(T ∗)⊥, so H/ Im(T ) ∼= Ker(T ∗). From this (b) ⇒ (a) immediately follows,
and (a) ⇒ (b) follows as well when combined with Proposition 5.2.4. ■

Example 5.2.6. Let H = ℓ2(N) and let S ∈ B(H) be the shift operator given by

S(x1, x2, . . .) = (0, x1, x2, . . .) for x = (x1, x2, . . .) ∈ H.
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Then S is an isometry, so Im(S) is closed and Ker(S) = {0}. The adjoint S∗ is given by

S∗(x1, x2, . . .) = (x2, x3, . . .),

so KerS∗ = span{(x, 0, 0, . . .) : x ∈ C}. This shows that S is a Fredholm operator, with

i(S) = dimKer(S)− dimKer(S∗) = 0− 1 = −1.

Lemma 5.2.7. Let T ∈ B(H) be a compact operator. If M is a closed subspace of H and
M ⊆ Im(K), then M is finite-dimensional.

Proof. Exercise. ■

The following characterization of Fredholm operators is extremely useful:

Theorem 5.2.8 (Atkinson’s Theorem). Let T ∈ B(H). The following are equivalent:

(a) T is a Fredholm operator.

(b) There exists S ∈ B(H) such that both ST − I and TS − I are compact operators.

Proof. (a) ⇒ (b): Suppose T is Fredholm. We claim that the operator R : Ker(T )⊥ → Im(T )
given by R(x) = T (x) is a bijection: It is certainly injective, since if R(x) = 0 for some
x ∈ Ker(T )⊥, then x ∈ Ker(T ) ∩Ker(T )⊥ = {0}. We also have

T (Ker(T )⊥) = T (Ker(T )⊕Ker(T )⊥) = T (H),

which shows that R is surjective.
Since Im(T ) is closed, the open mapping implies that R has a bounded inverse S : Im(T ) →

Ker(T )⊥. Again, since Im(T ) is closed, we can extend S to the whole of H by setting S(y) = 0
for y ∈ Im(T )⊥. For x ∈ Im(T ) and y ∈ Im(T )⊥ we now get

TS(x+ y) = RS(x+ y) = RS(x) +RS(y) = x+R(0) = x.

Hence TS is the orthogonal projection onto Im(T ) = Ker(T ∗)⊥. Furthermore, if x′ ∈ Ker(T )
and y′ ∈ Ker(T )⊥, then

ST (x′ + y′) = ST (x′) + ST (y′) = S(0) + SR(y′) = y′.

Hence ST is the orthogonal projection onto Ker(T )⊥.
It now follows that I−TS is the orthogonal projection onto Ker(T ∗), while I−ST is the or-

thogonal projection onto Ker(T ). Since these are finite-dimensional spaces by Corollary 5.2.5,
the orthogonal projections onto them are finite rank operators, hence compact.

(b) ⇒ (a): Let S ∈ B(H) be such that I − ST and I − TS are compact operators. Setting
K = ST − I ∈ K(H), we have ST = I +K. If x ∈ Ker(I +K) then Kx = −x, so x ∈ Im(K).
Hence Ker(T ) ⊆ Ker(ST ) = Ker(I +K) ⊆ Im(K). By Lemma 5.2.7, Ker(T ) must be finite-
dimensional. Since S∗T ∗ − I = (TS − I)∗ is compact, a similar argument shows that Ker(T ∗)
is finite-dimensional.

By Corollary 5.2.5, it remains to show that Im(T ) is closed. Since K = ST − I is compact,
there exists a finite rank operator F ∈ B(H) such that ∥K − F∥ < 1/2. If x ∈ Ker(F ), then

∥S∥∥Tx∥ ≥ ∥STx∥ = ∥(I +K)x∥
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≥ ∥x∥ − ∥Kx∥ = ∥x∥ − ∥(K − F )x∥

≥ ∥x∥ − 1

2
∥x∥ =

1

2
∥x∥.

This shows that T (Ker(F )) is closed: Indeed, if (xn)n is a sequence in Ker(F ) such that
(Txn)n → y ∈ H, then

∥xm − xn∥ ≤ 2∥S∥∥Txm − Txn∥
which shows that (xn)n is Cauchy. Hence (xn)n has a limit x ∈ Ker(F ) since the latter is
closed, and (T (xn))n → T (x) ∈ T (Ker(F )).

Now Ker(F )⊥ = Cl(Im(F ∗)) = Im(F ∗), which is finite-dimensional since F ∗ is a finite
rank operator. Hence T (Ker(F )⊥) is finite-dimensional. So

Im(T ) = T (H) = T (Ker(F )⊕Ker(F )⊥) = T (Ker(F )) + T (Im(F ∗))

is expressible as the sum of a closed subspace and a finite-dimensional subspace. Such sub-
spaces are closed: If M ⊆ H is closed and N ⊆ H is finite-dimensional, let π : M → H/M
be the quotient map. Then π(N) ⊆ H/M is finite-dimensional, hence closed, so M + N =
π−1(π(N)) is closed. ■

Recall that the Calkin algebra associated to a Hilbert space H is the Banach algebra
C(H) = B(H)/K(H). Since K(H) is ∗-closed, the involution on B(H) passes to the Calkin
algebra. In fact, C(H) becomes a C*-algebra with respect to this involution, but we will not
need this.

Let π : B(H) → C(H), T 7→ π(T ) = T +K(H), be the quotient map. Then π is an algebra
homomorphism, and is ∗-preserving by definition. Due to Theorem 5.2.8, Fredholm operators
have a nice characterization in terms of the Calkin algebra: An operator T ∈ B(H) is Fredholm
precisely when π(T ) ∈ C(H) is invertible. This observation has some important consequences:

Proposition 5.2.9. Let Fred(H) denote the set of Fredholm operators on H. Then Fred(H)
has the following properties:

(a) It is an open subset of B(H),

(b) it is ∗-closed

(c) it is closed under composition,

(d) it is invariant under compact perturbations, that is, if T ∈ Fred(H) and K ∈ K(H),
then T +K ∈ Fred(H).

Proof. (a): Since Fred(H) = π−1(GL(C(H))) and the invertible elements of a unital Banach
algebra form an open set, it follows that Fred(H) is open.

(b): If T ∈ Fred(H), then π(T ) ∈ GL(C(H)), so π(T ∗) = π(T )∗ ∈ GL(C(H)), which means
that T ∗ ∈ Fred(H).

(c): If T, S ∈ Fred(H), then π(T ), π(S) ∈ GL(C(H)). Since π(TS) = π(T )π(S), we get
that π(TS) ∈ GL(C(H)) as well, so TS ∈ Fred(H).

(d): If T ∈ Fred(H) and K ∈ K(H), then

π(T +K) = π(T ) + π(K) = π(T ) ∈ GL(K(H)),

so T +K ∈ Fred(H). ■
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Set Fredn(H) = {T ∈ Fred(H) : i(T ) = n} for every n ∈ Z.

Lemma 5.2.10. If F ∈ B(H) is a finite rank operator, then I + F ∈ Fred0(H).

Proof. Let M = Im(F ) + Im(F ∗), which is a finite-dimensional (hence closed) subspace of H.
We claim that M is invariant under I+F : Indeed, if we consider Fx+F ∗y for some x, y ∈ H,
then

(I + F )(Fx+ F ∗y) = Fx+ F 2x+ F ∗y + FF ∗y ∈M.

Similarly M is invariant under I + F ∗ as well. We also claim that (I + F )|M⊥ = IM⊥ :
Indeed, since Im(F ∗) ⊆ M we have M⊥ ⊆ Im(F ∗)⊥ = Ker(F ). Thus, if x ∈ M⊥, then
(I + F )x = x+ Fx = x. Consequently

Im(I + F ) = (I + F )(H) = (I + F )(M) + (I + F )(M⊥) = (I + F )(M) +M⊥.

Since (I + F )(M) is finite-dimensional and M⊥ is closed, this shows that Im(I + F ) is closed
by the same argument as in the proof of Theorem 5.2.8.

We also claim that Ker(I+F ) ⊆M : letting x = x1+x2 ∈ H where x1 ∈M and x2 ∈M⊥,
the assumption (I + F )x = 0 then gives

0 = (I + F )x1 + (I + F )x2 = (I + F )x1 + x2.

Here (I + F )x1 ∈ M by the invariance and x2 ∈ M⊥, so we get x2 = 0. Hence x = x1 ∈ M .
Similarly Ker(I + F ∗) ⊆ M as well. This shows in particular that both Ker(I + F ) and
Ker(I + F ∗) = Ker((I + F )∗) are finite-dimensional, being subspaces of M . Thus, we have
shown that I + F is Fredholm.

Set T = I +M . We now consider the restriction T |M , which we can view as a bounded,
linear operator on M . Since Ker(T ),Ker(T ∗) ⊆ M , we also have that Ker(T |M ) = Ker(T )
and Ker(T ∗|M ) = Ker(T ∗). Since M is finite-dimensional, it follows from Example 5.2.3 that

i(T ) = dimKer(T )− dimKer(T ∗) = dimKer(T |M )− dimKer(T ∗|M ) = i(T |M ) = 0.

■

Proposition 5.2.11. Let T ∈ Fred(H) and T ∈ K(H). Then T +K ∈ Fred(H), and

i(T +K) = i(T ).

Proof. Assume first that i(T ) = 0. Then dimKer(T ) = dimKer(T ∗) < ∞. Pick a partial
isometry V ∈ B(H) with initial space Ker(T ) and final space Ker(T ∗). Then V has finite
rank. We claim that T + V is bijective:

To see that T +V is injective, let x ∈ H and suppose that (T +V )x = 0. Writing x = y+z
where y ∈ Ker(T ) and z ∈ Ker(T )⊥, we get

0 = (T + V )(y + z) = Tz + V y.

Here Tz ∈ Im(T ) while V y ∈ Ker(T ∗) = Im(T )⊥, so we get Tz = V y = 0. But then
z ∈ Ker(T ) ∩Ker(T )⊥, so z = 0, and y = 0 since V |Ker(T ) is an isometry. Hence x = 0.

Surjectivity follows from the following computation:

(T + V )(H) = T (Ker(T )⊥) + V (Ker(T )) = T (H) + Ker(T ∗)
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= Ker(T ∗)⊥ +Ker(T ∗) = H.

The open mapping theorem now implies that T + V ∈ GL(B(H)). Since GL(B(H)) is open
in B(H), we can find δ > 0 such that T + V +W ∈ GL(B(H)) whenever ∥W∥ < δ.

Pick a finite rank operator F ∈ B(H) such that ∥K−F∥ < δ. Then S := T +V +K−F ∈
GL(B(H)). Set G = F − V . Then G has finite rank, and

T +K = S + F − V = S +G = S(I + S−1G).

Since S−1G is a finite rank operator, I + S−1G ∈ Fred0(H) by Lemma 5.2.10. Since S is
invertible, it follows that T +K = S(I + S−1G) is Fredholm, with

i(T +K) = i(S(I + S−1G)) = i(I + S−1G) = 0.

The case of more general i(T ) ∈ Z is left as an exercise. ■

Proposition 5.2.12. Let S, T ∈ B(H) be Fredholm operators. Then

i(ST ) = i(S) + i(T ).

Proof. Assume first that i(T ) = 0. As in the proof of Proposition 5.2.11, we can find a partial
isometry V ∈ B(H) with finite rank such that T + V is invertible. Therefore

i(S) + i(T ) = i(S) + 0 = i(S(T + V )) = i(ST + SV ) = i(ST ).

The case of general i(T ) ∈ Z is left as an exercise. ■

In light of the above proposition, we can view the index as a group homomorphism
i : GL(C(H)) → Z.

5.3 Spectral theory for compact operators

We will apply the theory of Fredholm operators to describe the spectrum of a compact operator,
and give a new proof of the spectral theorem for normal, compact operators.

Theorem 5.3.1. Let K ∈ B(H) be a compact operator. Then the following hold:

(a) sp(K) is countable.

(b) If λ ∈ sp(K) and λ ̸= 0, then λ is an eigenvalue of K, λ is an eigenvalue of K∗, and

dimKer(λI −K) = dimKer(λI −K∗) <∞.

(c) If sp(K) is countably infinite and sp(K) \ {0} = {λ1, λ2, . . .}, then limn→∞ λn = 0.

Proof. (b): Let λ ∈ sp(K) \ {0}. Then λI is invertible, so it follows from Proposition 5.2.11
that λI −K is a Fredholm operator with i(λI −K) = 0. Thus,

d = dimKer(λI −K) = dimKer(λI −K∗) <∞.
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We cannot have d = 0: This would imply that Ker(λI−K) = 0 so that λI−K is injective, but
also Im(λI−K) = Cl Im(λI−K) = Ker(λI−K∗)⊥ = H, giving that λI−K is invertible. This
contradicts the fact that λ ∈ sp(K), so we conclude that d ≥ 1. But then λ is an eigenvalue for
K, and λ is an eigenvalue for K∗, and the corresponding eigenspaces are finite-dimensional,
with the same dimension.

(a) and (c): Suppose (µn)n∈N is a sequence of distinct eigenvalues of K. We will show that
(µn)n must go to zero. Let (xn)n∈N be a sequence of corresponding eigenvectors. For each
n ∈ N, set

Mn = span{x1, . . . , xn}.

Then Mn ⊂ Mn+1 for each n ∈ N, so we can pick a sequence of unit vectors (yn)n in H such
that y1 ∈M1 and yn+1 ∈Mn+1 ∩M⊥

n for all n ∈ N. By construction, (yn)n is an orthonormal
sequence. Since K is compact and (yn)n is orthonormal, we must have K(yn) → 0 as n→ ∞.
(This is a general result which is covered in MAT4400. Exercise?)

Let n ∈ N. Since yn ∈Mn, we can find c1, . . . , cn ∈ C such that yn =
∑n

i=1 cixi. Then

Kyn =
n∑

i=1

ciKxi =
n∑

i=1

ciµixi.

Set ϕn = Kyn − µnyn. Then

ϕn =
n∑

i=1

ciµixi − µn

n∑
i=1

cixi =
n∑

i=1

ci(µi − µn)xi =
n−1∑
i=1

ci(µi − µn)xi ∈Mn−1.

Consequently, the Pythagorean identity gives

|µn|2 = |µn|2∥yn∥2 ≤ ∥µnyn∥2 + ∥ϕn∥2 = ∥µnyn + ϕn∥2 = ∥K(yn)∥2.

Letting n→ ∞, we get µn → 0.
This shows that if sp(K) was countably infinite, then any enumeration of sp(K) goes to

zero. But it also shows that sp(K) is countable: For any k ∈ N, the above argument shows
that there can only be finitely many eigenvalues λ of K with |λ| ≥ 1/k. Consequently

sp(K) \ {0} =
⋃
k∈N

{λ ∈ sp(K) : |λ| ≥ 1/k}

is countable. ■

Theorem 5.3.2. Let K ∈ B(H) be a normal, compact operator. Then H admits an orthonor-
mal basis consisting of eigenvectors of K.

Proof. For each λ ∈ sp(K), let Sλ be an orthonormal basis for Ker(λI − K). Since K is
normal, eigenvectors corresponding to different eigenvalues are orthogonal. It follows that
S =

⋃
λ∈sp(K) Sλ is an orthonormal set.

Let M = Cl(spanS). Then M contains all eigenvectors of K. Since both K and K∗

leave M invariant, both K and K∗ must also leave M⊥ invariant. We can therefore consider
K|M⊥ ∈ B(M⊥). This is a normal, compact operator on M⊥, but has no eigenvalues: Any
eigenvector for K|M⊥ would be an eigenvector for K in M⊥, which would then be zero since
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it also lies in M . By Theorem 5.3.1, any nonzero element in the spectrum K|M⊥ is an
eigenvalue, so we are forced to conclude that sp(K|M⊥) = {0}. Since K|M⊥ is normal, this
implies that K|M⊥ = 0, i.e., M⊥ ⊆ Ker(K). But Ker(K) (if nontrivial) is the eigenspace of
K corresponding to λ = 0, so Ker(K) ⊆ M . Hence M⊥ = 0, so M = H and the proof is
finished. ■
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