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MAT4450 — Spring 2024

Mandatory assignment - Solution outline



Problem 1 [20 points]

Let M be a closed subspace of a locally convex Hausdorff space (X, 7) (over F)
and let ¢ : M — F be a continuous linear functional. Show that there exists
some p € (X, 7)* which extends v, that is, such that o = 1.

Solution: We follow the given hint. If ¢ = 0, the assertion is trivial. So we
may assume that ¢ # 0. We may then pick yo € M such that ¥ (yg) # 0.
Setting zg = m Yo, we have xg € M and ¢(xg) = 1.

Set N :={xz € M :¢(x) = 0}. Then N is a subspace of M, hence of X.
Moreover, N is closed in X (since N = ker(¢) is closed in M).

As xy & ker(v)), we have xyp ¢ N. We may therefore use one of the corollaries
to the Hahn-Banach separation theorem to obtain that there exists some

¢ € (X, 7)* such that ¢/(zg) # 0 and ¢’ =0 on N.

<p/(1:co)90/' Then ¢ € (X, 7)*, p(xo) =1 and ¢ =0 on N.
Now, consider x € M. Then

(@ —P(x) x0) = ¢(z) — ¢(z) P(20) = ¥(2) — ¥(2) =0,
so z—Y(x)xog € N. As x = (v — () zo) + ¢¥(x) 9 and ¢|N = 0, we get that

p(z) = p(Y(@)T0) = Y(2) P(20) = Y ().
Thus, ¢ agrees with 1) on M, as desired.

Set ¢ 1=

Problem 2 [20 points]

Let H be a complex Hilbert space # {0}. Set B={{ € H: ||| <1} and
B={TeB(H): ||T| <1}.

a) Show that ex(B) ={n € B : |n|| = 1}.

Solution: We first show that {n € B: ||n|| = 1} C ex(B).

Letne B, ||n||=1. Assume n=(1—t)+t& for £, e Band 0 <t < 1.
Then we must have ||€]| = |||| = 1 (otherwise, using the triangle inequality,
we would get [|n]| < 1).

Observe now that if Re (£, ¢’) < 1, then we get that

L=nl> =1 =) E+t&)> = (1 —)* + 2t(1 — t) Re (£, ) + ¢
< (A=t 4211 —t)+t>=1,

a contradiction. So we must have Re (£,£') > 1.

Using the Cauchy-Schwarz inequality, we then get that
1 < Re(&,&) < (&N < lEllNE =1,
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thus, Re (£, &) =1 (in fact, (€,&') =1). So
€ = €17 = €l = 2Re (&, &) + [€'P=1-2+1=0,
hence &€ = ¢’. This shows that 1 € ex(B). Hence the asserted inclusion holds.

Next, we show that ex(B) C {n € B; ||n|| = 1} holds:

Assume n € B, ||n|| # 1, so ||n|| < 1. It suffices to show that n & ex(B).

e If » = 0, then, since 0 = %54— % (=¢) and £ # —¢ for any £ € B\ {0}, we get
that n =0 & ex(B).

e Suppose now that n # 0. Set £ := ﬁn and ¢t := ||n||. Then 0 € B, £ € B,
0<t<1, and

1
(1=0)0+t& = |Inl 7—n = n.
[l
As £ # 0, this implies that n & ex(B).

b) Let T' € B(H). Assume that T or T* is isometric. (By T we mean here
the adjoint operator of T as defined for a bounded operator on a Hilbert space.)
Show that T € ex(B).

Solution: Assume first that T is an isometry. We note that 7' € B (since an
isometry is norm-preserving). Let R, S € B and 0 < ¢t < 1 be such that

T=(1-t)R+tS.

We want to show that R = S. By linearity of R and S, it suffices to show that
R(n) = S(n) for every n € H such that ||n|| = 1. So let n € H,||n|| = 1. Since
T is norm-preserving, we have [|T'(n)|| = ||n|| = 1. Using a), we get that

T'(n) € ex(B). Moreover, we have that

T(n) = (1 —=t)R(n)+tS(n), and R(n), S(n) € B (1)

because [[R(n)|| < [[R|| [[7]l <1 and [|S(n)[| < [IS][{Inll < 1.

Since T'(n) € ex(B), we conclude from (1) that R(n) = S(n), as desired. It
follows T" € ex(B).

Assume now that 7 is an isometry (7" is then often called a co-isometry).
Again, let R, S € Band 0 <t < 1 be such that T'= (1 —t)R+ tS. Then we
get that

T =((1-t)R+tS)" =(1—t)R* +tS* (2)
and ||R*|| = ||R|| <1, [|S*]| =S| £1, so R*,S* € B.
Since T™ is an isometry, we know from the first part that 7" € ext(B). Hence
it follows from (2) that R* = S*. Thus we get that R = (R*)* = (S*)* = S.
This shows that 1" € ex(B), as desired.
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Problem 3 (= Exercise 4.1.6 in Pedersen’s book) [15 points]

Let A be a unital complex Banach algebra, let A € A, and let Q be an open
subset of C containing sp(A). Show that there is an € > 0 such that B € A
and ||A — B|| < e implies that sp(B) C €.

Solution. Assume (for contradiction) that the assertion does not hold. For
every n € N we can then find some B,, € A such that |4 — B,| <n~! and
sp(By,) is not contained in Q, i.e., sp(B,) \ Q # (. We may then pick

An, € sp(Bp) \ Q for every n € N. Then we have

1
Al < [1Ball < 1B = All + Al = — + A < [[A] +1

for every n, so the sequence {\, }nen is bounded in C. By the
Bolzano-Weiertrass theorem, this sequence has a convergent subsequence.
Hence, by passing to a subsequence if necessary, we may assume that {\, }nen
is convergent, say lim, .o Ay, = A for some A € C.

Since {Ap}neny € C\ Q and C\ Q is closed, we get that A € C\ Q. Since
sp(A) € Q (by assumption), this implies that A & sp(A), i.e., A\l — A € GL(A).
But A\, I — B,, converges to A\I — A, and GL(.A) is is an open subset of A, so

we can find some N € N such that Ayl — By € GL(A), i.e.,, Ay & sp(Bn).
But Ay € sp(By), so this gives a contradiction.

Problem 4 [20 points]

Solve Exercise 4.3.1 in Pedersen’s book.

Solution. Let X and Y be compact Hausdorff spaces. Set
A=span({f®g: feC(X),geC(V)}),

where f ® g € C(X x Y) is defined by (f ® g)(z,y) := f(x)g(y) for all

(z,y) € X x Y. It is straightforward to verify that A is a self-adjoint
subalgebra of C'(X x Y') which contains the constant functions and separates
the points of X x Y. Hence it follows from the (complex) Stone-Weierstrass
theorem that A is dense in C(X x Y') (w.r.t. the uniform norm).

Problem 5 [20 points]

Let N € N and let Zy = {0,1,..., N — 1} denote the cyclic group of order N
(addition being defined modulo N ). Set A= (' (Zy,C). It can easily be
checked that A becomes a commutative unital Banach algebra w.r.t. the
convolution product given by

(fxg)(n)= > f(m)gln—m) for f,g€ An€Zy.
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Describe the character space A and the Gelfand transform T' : A — C(A) the
best you can.

Solution. One proceeds in the same way as when dealing with the infinite
cyclic group Z, but there is one important difference: one now gets that A can
be identified with Ty := {A € T : AN = 1}.

Indeed, if v € A, then using that 01 % 01 * - -+ x d1 (N-times) = oy = 99 = I
and that v is multiplicative, one gets that v(d1)" = ~v(I) = 1, i.e.,
A= 7(01) € Ty. It then follows that y(f) = >,cz, f(n)A" for all f € A.

On the other hand, if A € Ty, then one checks that the map vy : A — C,
given by 1\(f) := > ,ez, f(n)A" for all f € A, belongs to A. The proof that
v is multiplicative does require that A € Ty (i.e., it does not hold when
Ae T\ Ty).

To see this, let n,m € Zy, and p € Zy be given by p := n —m (modulo N).
Then we have that A? = A"~ (where n —m € Z has its usual meaning): if
0<m <n<N —1, this is obvious, while if 0 <n <m < N — 1, then

AP = )\N—l—n—m — )\N)\n—m — \vm

This implies that
ATAP = \TARTT = AT

and the same computation as for Z is easily seen to go through by making use
of this formula.

Identifying T with A via the map 7y — 7y, the Gelfand transform I' of A
becomes the map I' : A — C(Ty) given by

[CHIAN) = > f)A", AeTy.

neZn

121/N 5o that Ty = {w® w!,w?, ... w71}

Note that the map h +— (h(w?), h(w'), ..., h(w™N~1)) is an isometric
isomorphism from the Banach algebra C(Ty) onto the Banach algebra C
(with the || - ||co-norm and the pointwise product).

On the other hand, A = ¢}(Zy,C) can also be identified as a Banach
algebra with CV (but now with the || - ||;-norm and the convolution product),

via the map f — (f(0), f(1),..., f(N —1))).

Using these identifications, the Gelfand transform of A corresponds to the
map I' : CN — CV given by

Set now w := e

N-1 N-1 N-1 N—1
F(Z()uzla“'azN*l) - ( Z Z’n) Z wnznv Z w2nzn,"’ 3 Z W(Nil)n2n>,
n=0 n=0 n=0 n=0



whose standard matrix is the (unitary) matrix

1 1 1 1

1 w w? w1
Fy o= 1 w2 wt W2(N-1)

i w]\}fl w2(1;/71) . . w(N;l)Q

ie.,

Fy = [ez’jks 27r/N:|
4, ke{0,1,...,.N—1}

This matrix is frequently called the N x N Fourier matriz.



