MAT4450 - Spring 2024

Mandatory assignment - Solution outline

Problem 1 [20 points]
Let M be a closed subspace of a locally convex Hausdorff space (X, τ) (over \mathbb{F}) and let $\psi: M \rightarrow \mathbb{F}$ be a continuous linear functional. Show that there exists some $\varphi \in(X, \tau)^{*}$ which extends ψ, that is, such that $\varphi_{\mid M}=\psi$.

Solution: We follow the given hint. If $\psi=0$, the assertion is trivial. So we may assume that $\psi \neq 0$. We may then pick $y_{0} \in M$ such that $\psi\left(y_{0}\right) \neq 0$.
Setting $x_{0}=\frac{1}{\psi\left(y_{0}\right)} y_{0}$, we have $x_{0} \in M$ and $\psi\left(x_{0}\right)=1$.
Set $N:=\{x \in M: \psi(x)=0\}$. Then N is a subspace of M, hence of X. Moreover, N is closed in X (since $N=\operatorname{ker}(\psi)$ is closed in $M)$.
As $x_{0} \notin \operatorname{ker}(\psi)$, we have $x_{0} \notin N$. We may therefore use one of the corollaries to the Hahn-Banach separation theorem to obtain that there exists some $\varphi^{\prime} \in(X, \tau)^{*}$ such that $\varphi^{\prime}\left(x_{0}\right) \neq 0$ and $\varphi^{\prime}=0$ on N.
Set $\varphi:=\frac{1}{\varphi^{\prime}\left(x_{0}\right)} \varphi^{\prime}$. Then $\varphi \in(X, \tau)^{*}, \varphi\left(x_{0}\right)=1$ and $\varphi=0$ on N.
Now, consider $x \in M$. Then

$$
\psi\left(x-\psi(x) x_{0}\right)=\psi(x)-\psi(x) \psi\left(x_{0}\right)=\psi(x)-\psi(x)=0
$$

so $x-\psi(x) x_{0} \in N$. As $x=\left(x-\psi(x) x_{0}\right)+\psi(x) x_{0}$ and $\varphi \mid N=0$, we get that

$$
\varphi(x)=\varphi\left(\psi(x) x_{0}\right)=\psi(x) \varphi\left(x_{0}\right)=\psi(x)
$$

Thus, φ agrees with ψ on M, as desired.
Problem 2 [20 points]
Let H be a complex Hilbert space $\neq\{0\}$. Set $B=\{\xi \in H:\|\xi\| \leq 1\}$ and $\mathcal{B}=\{T \in \mathcal{B}(H):\|T\| \leq 1\}$.
a) Show that $\operatorname{ex}(B)=\{\eta \in B:\|\eta\|=1\}$.

Solution: We first show that $\{\eta \in B:\|\eta\|=1\} \subseteq \operatorname{ex}(B)$.
Let $\eta \in B,\|\eta\|=1$. Assume $\eta=(1-t) \xi+t \xi^{\prime}$ for $\xi, \xi^{\prime} \in B$ and $0<t<1$.
Then we must have $\|\xi\|=\left\|\xi^{\prime}\right\|=1$ (otherwise, using the triangle inequality, we would get $\|\eta\|<1$).

Observe now that if $\operatorname{Re}\left\langle\xi, \xi^{\prime}\right\rangle<1$, then we get that

$$
\begin{aligned}
1=\|\eta\|^{2}=\|(1-t) \xi+t \xi\|^{2} & =(1-t)^{2}+2 t(1-t) \operatorname{Re}\left\langle\xi, \xi^{\prime}\right\rangle+t^{2} \\
& <(1-t)^{2}+2 t(1-t)+t^{2}=1
\end{aligned}
$$

a contradiction. So we must have $\operatorname{Re}\left\langle\xi, \xi^{\prime}\right\rangle \geq 1$.
Using the Cauchy-Schwarz inequality, we then get that

$$
1 \leq \operatorname{Re}\left\langle\xi, \xi^{\prime}\right\rangle \leq\left|\left\langle\xi, \xi^{\prime}\right\rangle\right| \leq\|\xi\|\left\|\xi^{\prime}\right\|=1
$$

thus, $\operatorname{Re}\left\langle\xi, \xi^{\prime}\right\rangle=1$ (in fact, $\left\langle\xi, \xi^{\prime}\right\rangle=1$). So

$$
\left\|\xi-\xi^{\prime}\right\|^{2}=\|\xi\|^{2}-2 \operatorname{Re}\left\langle\xi, \xi^{\prime}\right\rangle+\left\|\xi^{\prime}\right\|^{2}=1-2+1=0
$$

hence $\xi=\xi^{\prime}$. This shows that $\eta \in \operatorname{ex}(B)$. Hence the asserted inclusion holds.
Next, we show that $\operatorname{ex}(B) \subseteq\{\eta \in B ;\|\eta\|=1\}$ holds:
Assume $\eta \in B,\|\eta\| \neq 1$, so $\|\eta\|<1$. It suffices to show that $\eta \notin \operatorname{ex}(B)$.

- If $\eta=0$, then, since $0=\frac{1}{2} \xi+\frac{1}{2}(-\xi)$ and $\xi \neq-\xi$ for any $\xi \in B \backslash\{0\}$, we get that $\eta=0 \notin \operatorname{ex}(B)$.
- Suppose now that $\eta \neq 0$. Set $\xi:=\frac{1}{\|\eta\|} \eta$ and $t:=\|\eta\|$. Then $0 \in B, \xi \in B$, $0<t<1$, and

$$
(1-t) 0+t \xi=\|\eta\| \frac{1}{\|\eta\|} \eta=\eta
$$

As $\xi \neq 0$, this implies that $\eta \notin \operatorname{ex}(B)$.
b) Let $T \in \mathcal{B}(H)$. Assume that T or T^{*} is isometric. (By T^{*} we mean here the adjoint operator of T as defined for a bounded operator on a Hilbert space.) Show that $T \in \operatorname{ex}(\mathcal{B})$.

Solution: Assume first that T is an isometry. We note that $T \in \mathcal{B}$ (since an isometry is norm-preserving). Let $R, S \in \mathcal{B}$ and $0<t<1$ be such that

$$
T=(1-t) R+t S
$$

We want to show that $R=S$. By linearity of R and S, it suffices to show that $R(\eta)=S(\eta)$ for every $\eta \in H$ such that $\|\eta\|=1$. So let $\eta \in H,\|\eta\|=1$. Since T is norm-preserving, we have $\|T(\eta)\|=\|\eta\|=1$. Using a), we get that $T(\eta) \in \operatorname{ex}(B)$. Moreover, we have that

$$
\begin{equation*}
T(\eta)=(1-t) R(\eta)+t S(\eta), \text { and } R(\eta), S(\eta) \in B \tag{1}
\end{equation*}
$$

because $\|R(\eta)\| \leq\|R\|\|\eta\| \leq 1$ and $\|S(\eta)\| \leq\|S\|\|\eta\| \leq 1$.
Since $T(\eta) \in \operatorname{ex}(B)$, we conclude from (1) that $R(\eta)=S(\eta)$, as desired. It follows $T \in \operatorname{ex}(\mathcal{B})$.

Assume now that T^{*} is an isometry (T is then often called a co-isometry). Again, let $R, S \in \mathcal{B}$ and $0<t<1$ be such that $T=(1-t) R+t S$. Then we get that

$$
\begin{equation*}
T^{*}=((1-t) R+t S)^{*}=(1-t) R^{*}+t S^{*} \tag{2}
\end{equation*}
$$

and $\left\|R^{*}\right\|=\|R\| \leq 1,\left\|S^{*}\right\|=\|S\| \leq 1$, so $R^{*}, S^{*} \in \mathcal{B}$.
Since T^{*} is an isometry, we know from the first part that $T^{*} \in \operatorname{ext}(\mathcal{B})$. Hence it follows from (2) that $R^{*}=S^{*}$. Thus we get that $R=\left(R^{*}\right)^{*}=\left(S^{*}\right)^{*}=S$. This shows that $T \in \operatorname{ex}(\mathcal{B})$, as desired.

Problem 3 (= Exercise 4.1.6 in Pedersen's book) [15 points]
Let \mathcal{A} be a unital complex Banach algebra, let $A \in \mathcal{A}$, and let Ω be an open subset of \mathbb{C} containing $\operatorname{sp}(A)$. Show that there is an $\varepsilon>0$ such that $B \in \mathcal{A}$ and $\|A-B\|<\varepsilon$ implies that $\operatorname{sp}(B) \subseteq \Omega$.

Solution. Assume (for contradiction) that the assertion does not hold. For every $n \in \mathbb{N}$ we can then find some $B_{n} \in \mathcal{A}$ such that $\left\|A-B_{n}\right\|<n^{-1}$ and $\operatorname{sp}\left(B_{n}\right)$ is not contained in Ω, i.e., $\operatorname{sp}\left(B_{n}\right) \backslash \Omega \neq \emptyset$. We may then pick $\lambda_{n} \in \operatorname{sp}\left(B_{n}\right) \backslash \Omega$ for every $n \in \mathbb{N}$. Then we have

$$
\left|\lambda_{n}\right| \leq\left\|B_{n}\right\| \leq\left\|B_{n}-A\right\|+\|A\| \leq \frac{1}{n}+\|A\| \leq\|A\|+1
$$

for every n, so the sequence $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}$ is bounded in \mathbb{C}. By the Bolzano-Weiertrass theorem, this sequence has a convergent subsequence. Hence, by passing to a subsequence if necessary, we may assume that $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}$ is convergent, say $\lim _{n \rightarrow \infty} \lambda_{n}=\lambda$ for some $\lambda \in \mathbb{C}$.

Since $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathbb{C} \backslash \Omega$ and $\mathbb{C} \backslash \Omega$ is closed, we get that $\lambda \in \mathbb{C} \backslash \Omega$. Since $\operatorname{sp}(A) \subseteq \Omega$ (by assumption), this implies that $\lambda \notin \operatorname{sp}(A)$, i.e., $\lambda I-A \in \mathrm{GL}(\mathcal{A})$. But $\lambda_{n} I-B_{n}$ converges to $\lambda I-A$, and $\operatorname{GL}(\mathcal{A})$ is is an open subset of \mathcal{A}, so we can find some $N \in \mathbb{N}$ such that $\lambda_{N} I-B_{N} \in \operatorname{GL}(\mathcal{A})$, i.e., $\lambda_{N} \notin \operatorname{sp}\left(B_{N}\right)$. But $\lambda_{N} \in \operatorname{sp}\left(B_{N}\right)$, so this gives a contradiction.

Problem 4 [20 points]
Solve Exercise 4.3.1 in Pedersen's book.
Solution. Let X and Y be compact Hausdorff spaces. Set

$$
\mathcal{A}:=\operatorname{span}(\{f \otimes g: f \in C(X), g \in C(Y)\})
$$

where $f \otimes g \in C(X \times Y)$ is defined by $(f \otimes g)(x, y):=f(x) g(y)$ for all $(x, y) \in X \times Y$. It is straightforward to verify that \mathcal{A} is a self-adjoint subalgebra of $C(X \times Y)$ which contains the constant functions and separates the points of $X \times Y$. Hence it follows from the (complex) Stone-Weierstrass theorem that \mathcal{A} is dense in $C(X \times Y)$ (w.r.t. the uniform norm).

Problem 5 [20 points]
Let $N \in \mathbb{N}$ and let $\mathbb{Z}_{N}=\{0,1, \ldots, N-1\}$ denote the cyclic group of order N (addition being defined modulo N). Set $\mathcal{A}=\ell^{1}\left(\mathbb{Z}_{N}, \mathbb{C}\right)$. It can easily be checked that \mathcal{A} becomes a commutative unital Banach algebra w.r.t. the convolution product given by

$$
(f * g)(n)=\sum_{m \in \mathbb{Z}_{N}} f(m) g(n-m) \quad \text { for } \quad f, g \in \mathcal{A}, n \in \mathbb{Z}_{N}
$$

Describe the character space $\widehat{\mathcal{A}}$ and the Gelfand transform $\Gamma: \mathcal{A} \rightarrow C(\widehat{\mathcal{A}})$ the best you can.
Solution. One proceeds in the same way as when dealing with the infinite cyclic group \mathbb{Z}, but there is one important difference: one now gets that $\widehat{\mathcal{A}}$ can be identified with $\mathbb{T}_{N}:=\left\{\lambda \in \mathbb{T}: \lambda^{N}=1\right\}$.

Indeed, if $\gamma \in \widehat{\mathcal{A}}$, then using that $\delta_{1} * \delta_{1} * \cdots * \delta_{1}(N$-times $)=\delta_{N}=\delta_{0}=I$ and that γ is multiplicative, one gets that $\gamma\left(\delta_{1}\right)^{N}=\gamma(I)=1$, i.e., $\lambda:=\gamma\left(\delta_{1}\right) \in \mathbb{T}_{N}$. It then follows that $\gamma(f)=\sum_{n \in \mathbb{Z}_{N}} f(n) \lambda^{n}$ for all $f \in \mathcal{A}$.

On the other hand, if $\lambda \in \mathbb{T}_{N}$, then one checks that the map $\gamma_{\lambda}: \mathcal{A} \rightarrow \mathbb{C}$, given by $\gamma_{\lambda}(f):=\sum_{n \in \mathbb{Z}_{N}} f(n) \lambda^{n}$ for all $f \in \mathcal{A}$, belongs to $\widehat{\mathcal{A}}$. The proof that γ_{λ} is multiplicative does require that $\lambda \in \mathbb{T}_{N}$ (i.e., it does not hold when $\left.\lambda \in \mathbb{T} \backslash \mathbb{T}_{N}\right)$.

To see this, let $n, m \in \mathbb{Z}_{N}$, and $p \in \mathbb{Z}_{N}$ be given by $p:=n-m$ (modulo N). Then we have that $\lambda^{p}=\lambda^{n-m}$ (where $n-m \in \mathbb{Z}$ has its usual meaning): if $0 \leq m \leq n \leq N-1$, this is obvious, while if $0 \leq n<m \leq N-1$, then

$$
\lambda^{p}=\lambda^{N+n-m}=\lambda^{N} \lambda^{n-m}=\lambda^{n-m}
$$

This implies that

$$
\lambda^{m} \lambda^{p}=\lambda^{m} \lambda^{n-m}=\lambda^{n}
$$

and the same computation as for \mathbb{Z} is easily seen to go through by making use of this formula.
Identifying \mathbb{T}_{N} with $\widehat{\mathcal{A}}$ via the map $\gamma \mapsto \gamma_{\lambda}$, the Gelfand transform Γ of \mathcal{A} becomes the map $\Gamma: \mathcal{A} \rightarrow C\left(\mathbb{T}_{N}\right)$ given by

$$
[\Gamma(f)](\lambda)=\sum_{n \in \mathbb{Z}_{N}} f(n) \lambda^{n}, \quad \lambda \in \mathbb{T}_{N}
$$

Set now $\omega:=e^{i 2 \pi / N}$, so that $\mathbb{T}_{N}=\left\{\omega^{0}, \omega^{1}, \omega^{2}, \ldots, \omega^{N-1}\right\}$.
Note that the map $h \mapsto\left(h\left(\omega^{0}\right), h\left(\omega^{1}\right), \ldots, h\left(\omega^{N-1}\right)\right)$ is an isometric isomorphism from the Banach algebra $C\left(\mathbb{T}_{N}\right)$ onto the Banach algebra \mathbb{C}^{N} (with the $\|\cdot\|_{\infty}$-norm and the pointwise product).

On the other hand, $\mathcal{A}=\ell^{1}\left(\mathbb{Z}_{N}, \mathbb{C}\right)$ can also be identified as a Banach algebra with \mathbb{C}^{N} (but now with the $\|\cdot\|_{1}$-norm and the convolution product), via the map $f \mapsto(f(0), f(1), \ldots, f(N-1)))$.

Using these identifications, the Gelfand transform of \mathcal{A} corresponds to the $\operatorname{map} \Gamma: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ given by

$$
\Gamma\left(z_{0}, z_{1}, \ldots, z_{N-1}\right)=\left(\sum_{n=0}^{N-1} z_{n}, \sum_{n=0}^{N-1} \omega^{n} z_{n}, \sum_{n=0}^{N-1} \omega^{2 n} z_{n}, \cdots, \sum_{n=0}^{N-1} \omega^{(N-1) n} z_{n}\right)
$$

whose standard matrix is the (unitary) matrix

$$
F_{N}:=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)^{2}}
\end{array}\right]
$$

i.e.,

$$
F_{N}=\left[e^{i j k 2 \pi / N}\right]_{j, k \in\{0,1, \ldots, N-1\}}
$$

This matrix is frequently called the $N \times N$ Fourier matrix.

