UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT3500/4500 — Topology
Day of examination:	Wednesday December 18th 2013
Examination hours:	09.00-13.00
This problem set consists of 3 pages.	
Appendices:	None
Permitted aids:	None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Each of the 10 subproblems (1a, 1b, \ldots , 5b) carries the same weight. You may use the results of an earlier subproblem to answer later questions, even if you have not answered the earlier one.

Problem 1

1a

Give the definitions of *regular spaces* and *normal spaces*, and state the *Urysohn metrization theorem*.

1b

Let \mathbb{R} have the topology generated from the basis consisting of the half open intervals [p,q) where p and q are rational numbers. Show that the sets [p,q)form a basis, and that the basis elements are both closed and open in this topology. Describe the connected components of \mathbb{R} with this topology.

1c

Explain how we can use the Urysohn metrization theorem to prove that $\mathbb R$ with the topology from Problem 1b is metrizable.

Problem 2

Let \mathcal{T}_0 be the standard topology on \mathbb{R}^2 .

(Continued on page 2.)

2a

If $a < b \in \mathbb{R}$ and $0 < c \in \mathbb{R}$, let

$$B_{a,b,c} = \{ (x, y) \in \mathbb{R}^2 \mid a < x < b \text{ and } |xy| < c \}$$

Let \mathcal{B} be the family of sets $B_{a,b,c}$. This will be a basis of a topology \mathcal{T}_1 on \mathbb{R}^2 (you do not have to prove this). Explain why \mathcal{T}_0 is finer than \mathcal{T}_1 .

2b

Is \mathcal{T}_1 from Problem 2a Hausdorff? Show that every subset of the *y*-axis

$$Y = \{(0, y) \mid y \in \mathbb{R}\}$$

is compact in \mathcal{T}_1 , but that there are only two closed subsets of Y in this topology.

Problem 3

Let X be a nonempty locally compact Hausdorff space and let $Y = X \cup \{\infty\}$ be the one point compactification of X.

Assume that there is a continuous function $f:[0,1) \to X$ such that

$$\{x \in [0,1) \mid f(x) \in C\}$$

is compact for each compact C in X. Show that if X is path connected, then Y is path connected.

Problem 4

A topological space X is called *sequential* if for every $U \subseteq X$ we have that U is open when the following is satisfied:

For every sequence $\{x_n\}_{n\in\mathbb{N}}$ from X with a limit $x\in U$ we have some $n_0\in\mathbb{N}$ such that $x_n\in U$ for all $n\geq n_0$.

4a

Let $p: X \to Y$ be a quotient map. Show that if X is sequential, then Y is sequential.

4b

Show that if X is *first countable*, that is, there is a countable basis at each point $x \in X$, then X is sequential.

(Continued on page 3.)

Problem 5

5a

Let B be figure 8 given as the union of the circles in \mathbb{R}^2 with radius 1 and centers in (0,0) and (2,0).

Let $p:\mathbb{R}\to B$ be defined by

-
$$p(x) = (\cos 2\pi x, \sin 2\pi x)$$
 if $x \in [2a, 2a + 1]$ for some $a \in \mathbb{Z}$.
- $p(x) = (2 - \cos 2\pi x, -\sin 2\pi x)$ if $x \in [2a + 1, 2a + 2]$ for some $a \in \mathbb{Z}$.

Show that p is <u>not</u> a covering map and give an example of a loop in B with no lifting to a path in \mathbb{R} .

5b

We now let \equiv be the smallest equivalence relation on B where $(x, y) \equiv (v, w)$ when y = w = 0, x = -1 and v = 3. Let E be the quotient space of B induced by this relation. Find a covering map $q: E \to B$.

END