Mandatory assignment: MAT4500, Fall 2016. Deadline: 2:30 pm, 7th floor, N. H. Abel's house, October 21, 2016.

Read the information concerning this assignment available at

http://www.uio.no/studier/emner/matnat/math/MAT4500/index - eng.html

(It is recommended that the mandatory assignment be written in latex, but legible handwritten solutions are also fine.) Show all your work. Good luck!

Exercise 1. Homeomorphisms and products

a) Let *X* and *Y* be topological spaces and let $\tau : X \times Y \rightarrow Y \times X$ be the "twist map" that sends (x, y) to (y, x). Show that τ is a homeomorphism.

b) Let *X* be a topological space and let τ : *X* × *X* × *X* → *X* × *X* × *X* be the "cyclic permutation map" that sends (*x*, *y*, *z*) to (*z*, *x*, *y*). Show that τ is a homeomorphism.

c) Let \mathscr{A} be a nonempty set and suppose $f_{\alpha} \colon X_{\alpha} \to Y_{\alpha}$ is a homeomorphism for each $\alpha \in \mathscr{A}$. Show that the function

$$\prod_{\alpha \in \mathscr{A}} f_{\alpha} \colon \prod_{\alpha \in \mathscr{A}} X_{\alpha} \to \prod_{\alpha \in \mathscr{A}} Y_{\alpha}$$

is a homeomorphism.

Exercise 2. Dense subsets and functions

A subset *A* of a topological space *X* is called dense in *X* if $\overline{A} = X$.

a) Show that $A \subset X$ is dense if and only if every nonempty open subset *U* of *X* intersects *A*.

b) If *U* and *V* are open dense subsets of *X*, show that $U \cap V$ is dense in *X*.

c) Suppose $f, g: X \to Y$ are continuous functions to a Hausdorff space Y, and $A \subset X$ is a dense subset. If the restrictions of f and g to A agree, i.e., $f_{|A|} = g_{|A|}$, show that f = g.

d) Suppose $f : \mathbf{R} \to \mathbf{R}$ is a function such that f(x + y) = f(x) + f(y) for all real numbers $x, y \in \mathbf{R}$. If f is continuous, show that there exists a real number c such that f(x) = cx for all $x \in \mathbf{R}$.

e) [Bonus question, solution not required.] Is the conclusion in c) valid if *f* is not continuous? [Hint: **R** is a **Q**-vector space, and every vector space over a field has a (possibly infinite) basis by Zorn's lemma.]

Exercise 3. Quotient spaces

Let *Q* be the set of all planes through the origin in \mathbb{R}^3 . To each unit vector $\underline{x} = (x_1, x_2, x_3)$ in \mathbb{R}^3 we associate the plane

$$q(\underline{x}) = \{ y \in \mathbf{R}^3 \mid \Sigma x_i y_i = 0 \}.$$

This furnishes a surjective function $q: S^2 \rightarrow Q$, where S^2 denotes the unit 2-sphere. Give *Q* the quotient topology induced by *q*.

a) Show that *q* is an open map.

b) Show that *Q* is homeomorphic to the projective plane \mathbf{P}^2 .

c) Let $H \subset Q \times \mathbb{R}^3$ be the set of all pairs $(\mathscr{P}, \underline{y})$, where $\underline{y} \in \mathscr{P}$. Show that H is a closed subset in the product space $Q \times \mathbb{R}^3$.