Some remarks on the mandatory assignment:

- Sets of the form $U \times V$ are open in $X \times Y$, for $U \subseteq X$, $V \subseteq Y$ open subsets. However, not all open sets in $X \times Y$ are on this form. Still it suffices to check continuity of functions $Z \to X \times Y$ on sets of the form $U \times V$. You should know why.
- In exercise 1 you can save yourself (and me) a lot of time by using Theorem 19.6.
- In exercise 2d, f(nx) = nf(x) must be treated as a special case for an integer n < 0.
- In exercise 2d it would be nice if you specified that c = f(1). This was not so clear in all the solutions.

Curiously there were three different solutions. The most common approach was to prove that $f|_{\mathbb{Q}} = f(1) \cdot \mathrm{id}_{\mathbb{Q}}$, and use part c. Another approach was to use that \mathbb{Q} is dense in \mathbb{R} directly, and that limits commute with continuous functions. A third approach was to prove that f is differentiable and use the fundamental theorem of calculus.

• In exercise 3b the best model for the projective plane is likely $\mathbb{P}^2 = S^2/(x \sim -x)$, see page 372.