Some remarks on the mandatory assignment:

- Sets of the form $U \times V$ are open in $X \times Y$, for $U \subseteq X, V \subseteq Y$ open subsets. However, not all open sets in $X \times Y$ are on this form. Still it suffices to check continuity of functions $Z \rightarrow X \times Y$ on sets of the form $U \times V$. You should know why
- In exercise 1 you can save yourself (and me) a lot of time by using Theorem 19.6
- In exercise 2d, $f(n x)=n f(x)$ must be treated as a special case for an integer $n<0$.
- In exercise 2 d it would be nice if you specified that $c=f(1)$. This was not so clear in all the solutions.

Curiously there were three different solutions. The most common approach was to prove that $\left.f\right|_{\mathbb{Q}}=f(1) \cdot \mathrm{id}_{\mathbb{Q}}$, and use part c. Another approach was to use that $\mathbb{Q}$ is dense in $\mathbb{R}$ directly, and that limits commute with continuous functions. A third approach was to prove that $f$ is differentiable and use the fundamental theorem of calculus.

- In exercise 3b the best model for the projective plane is likely $\mathbb{P}^{2}=$ $S^{2} /(x \sim-x)$, see page 372 .

