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Most branches of mathematics involve structures of a type different from
the algebraic structures (groups, rings, fields, etc.) which are the subject
of the book Algebra of this series: namely structures which give a
mathematical content to the intuitive notions of limi¥, continuity and neigh-
bourhood. These structures are the subject matter of the present book.

Historically, the ideas of limit and continuity appeared very early
in mathematics, notably in geometry, and their role has steadily increased
with the development of analysis and its applications to the experimental
sciences, since these ideas are closely related to those of experimental deter-
mination and. approximation. But since most experimental determinations
are measurements, that is to say determinations of one or more numbers, it
is hardly surprising that the notions of limit and continuity in mathematics
were featured at first only in the theory of real numbers and its outgrowths
and fields of application (complex numbers, real or complex functions of
real or complex variables, Euclidean geometry and related geometries).

In recent times it has been realized that the domain of applicability
of these ideas far exceeds the real and complex numbers of classical
analysis (see the Historical Note to Chapter I). Their essential content
has been extracted by an effort of analysis and abstraction, and the result
is a tool whose usefulness has become apparent in many branches of
mathematics.

In order to bring out what is essential in the ideas of limit, continuity
and neighbourhood, we shall begin by analysing the notion of neighbourhood
(although historically it appeared later than the other two). If we start
from the physical concept of approximation, it is natural to say that a
subset A ofaset E isaneighbourhood of an element ¢ of A if, whenever
we replace ¢ by an element that “approximates” a, this new ele-
ment will also belong to A, provided of course that the “error” involved
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is small enough; or, in other words, if all the points of E which are ssufe
ficiently near” @ belong to A. This definition is meaningful whenever
precision can be given to the concept of sufficiently small error or of an
element sufficiently near another. In this direction, the first idea was
to suppose that the “distance” between two elements can be measured
by a (positive) real number. Once the ‘“distance” between any two
clements of a set has been defined, it is clear how the “neighbourhoods™
of an element « should be defined : a subset will be a neighbourhood of «
if it contains all elements whose distance from @ is less than some preas-
signed strictly positive number. Of course, we cannot expect to develop
an interesting theory from this definition unless we impose certain conditions
or axioms on the “distance” (for example, the inequalities relating the
distances between the three vertices of a triangle which hold in Euclidean
geometry should continue to hold for our generalized distance). In

)

N\

this way we arrive at a vast generalization of Euclidean geometry. Ttis.

convenient to continue to use the language of geometry : thus the elements
or a set on which a ‘distance” has been defined are called poinis, and
the set itself is called a space. We shall study such spaces iri Chapter IX.

So far we have not succeeded in freeing ourselves from the real numbers.
Nevertheless, the spaces so defined have a great many properties which
can be stated without reference to the «distance” which gave rise to them.
For example, every subset which contains a neighbourhood of « is again
a neighbourhood of a, and the intersection of two neighbourhoods
of a is a neighbourhood of a. These properties and others have a
multitude of consequences which can be deduced without any further
recourse to the ““distance” which originally enabled us to define neigh-
bourhoods. We obtain statements in which there is no mention of
magnitude or distance.

We are thus led at last to the general concept of a topological space,
" which does not depend on any preliminary theory of the real numbers.
We shall say that a set E carries a topological structure whenever we have
associated with each element of E, by some means or other, a family
of subsets of E which are called neighbourhoods of this element — provided
of course that these neighbourhoods satisfy certain conditions (the axioms
of topological structures). Evidently the choice of axioms to be imposed
is to some extent arbitrary, and historically has been the subject of a
great deal of experiment (see the Historical Note to Chapter I). The
system of axioms finally arrived at is broad enough for the present needs
of mathematics, without falling into excessive and pointless generality.

A set carrying a topological structure is called a fopological space and
its elements are called points. The branch of mathematics which studies
topological structures bears the name of Topology (etymologically, “science
of place”, not a particularly expressive name), which is preferred
nowadays to the earlier (and synonymous) name of Analysis sttus.
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INTRODUCTION

To formulate the idea of neighbourhood we started from the vague
concept of an element “sufficiently near” another element. Conversely,
a topological structure now enables us to give precise meaning to the
phrase “such and such a property holds for all points syfficiently near @’ :
by definition this means that the set of points which have this property is
a neighbourhood of a for the topological structure in question.

From the notion of neighbourhood there flows a series of other notions
whose study is proper to topology : the interior of a set, the closure of
a set, the frontier of a set, open sets, closed sets, and so on (see Chapter I,
§1). Forexample,asubset A isan opensetif, whenevera point a belongs
to A, all the points sufficiently near & belong to A; in other words,
if A is a neighbourhood of each of its points. The axioms for neighbour-
hoods have certain consequences for all these notions; for example, the
intersection of two open sets is an open set (because we have supposed that
the intersection of two neighbourhoods of a is a neighbourhood of a).
Conversely, we can start from one of these derived notions instead of
starting from the notion of a neighbourhood; for example, we may suppose
that the open sets are known, and take as axioms the properties of the
family of open sets (one of these properties has just been stated, by way
of example). We can then verify that, from knowledge of the open sets,
the neighbourhoods can be reconstructed; the axioms for neighbourhoods
are now consequences of the new axioms for open sets that we took as
a starting point. Thus a topological structure can be defined in various
different ways which are basically equivalent. In this book we shall
start from the notion of open set, because the corresponding axioms are the
simplest.

Once topological structures have been defined, it is easy to make
precise the idea of continuity. Intuitively, a function is continuous at
a point if its value varies as little as we please whenever the argument
remains sufficiently near the point in question. Thus continuity will
have an exact meaning whenever the space of arguments and the space
of values of the function are topological spaces. The precise definition is
given in Chapter I, § 2.

As with continuity, the idea of a limit involves two sets, each endowed
with suitable structures, and a mapping of one set into the other. For
example, the limit of a sequence of real numbers @, involves the set
N of natural numbers, the set R of real numbers, and a mapping of the
former set into the latter. A real number « is then said to be a limit of
the sequence if, whatever neighbourhood V of a we take, this neigh-
bourhood contains all the a, except for a finite number of values of #;
that is, if the set of natural numbers n for which a, belongs to V is
a subset of N whose complement is finite. Note that R is assumed to
carry a topological structure, since we are speaking of neigbourhoods;
as to theset N, we have made a certain family of subsets play a particular
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part, namely those subsets whose complement is finite; This is a general
fact: whenever we speak of limit, we are considering a mapping f of a
set F into a topological space F, and we say that f hasa point ¢ of F
as a limit if the set of elements ¥ of E whose image f(x) belongs to

a neighbourhood V of & [this set is just the “inverse image” fl(V)]
belongs, whatever the neighbourhood V, to a certain family § of subsets
of E, given beforehand. For the notion of limit to have the essential
properties ordinarily attributed to it, the family § must satisfy certain
axioms, which are stated in Chapter I, § 6. Such a family § of subsets
of E iscalled afilter on E. The notion of a filter, which is thus inseparable
from that of a limit, appears also in other contexts in topology; for example,
the neighbourhoods of a point in a topological space form a filter.

The general study of all these notions is the essential purpose of ChapterI.
In addition, particular classes of topological spaces are considered there,
spaces which satisfy more restrictive axioms, or spaces obtained by parti-
cular procedures from other given spaces.

As we have already said, a topological structure on a set enables one
to give an exact meaning to the phrase “whenever x is sufficiently
near a, x has the property P{x{”. But, apart from the situation
in which a “distance” has been defined, it is not clear what meaning
ought to be given to the phrase “every pair of points x, y which are suffi-
ciently near each other has the property Pf{x, »{”, since a priori
we have no means of comparing the neighbourhoods of two different
points. Now the notion of a pair of points near to each other arises fre-
quently in classical analysis (for example, in propositions which involve
uniform continuity). It is therefore important that we should be able
to give a precise meaning to this notion in full generality, and we are
thus led to define structures which are richer than topological structures,
namely uniform structures. ‘They are the subject of Chapter II.

The other chapters of this Book are devoted to questions in which,
in addition to a topological or uniform structure, there is some other
structure present. For example a group which carries a suitable topology
(compatible in a certain sense with the group structure) is called a fopo-
logical group. Topological groups are studied in Chapter III, and we
shall see there in particular how every topological group can be endowed
with certain uniform structures.

In Chapter IV we apply the preceding principles to the field of rational
numbers. This enables us to define the field of real numbers; because
of its importance, we study it in considerable detail. In the succeeding
chapters, starting from the real numbers, we define certain topological
spaces which are of particular interest in applications of topology to
classical geometry : finite-dimensional vector spaces, spheres, projective
spaces, etc. We consider also certain topological groups closely related to
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the additive group of real numbers, which we characterize axiomatically,
and this leads us to the definition and elementary properties of the most
important functions of classical analysis: the exponential, logarithmic
and trigonometric functions.

In Chapter IX we revert to general topological spaces, but now with
a new instrument, namely the real numbers, at our disposal. In particular
we study spaces whose topology is defined by means of a ‘“distance”;
these spaces have properties, some of which cannot be extended to more
general spaces. In Chapter X we study sets of mappings of a topological
space into a uniform space (function spaces) ; these sets, suitably topologized,
have interesting properties which already play an important part in classi-
cal analysis.
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HISTORICAL NOTE

(Numbers in brackets refer to the bibliography at the end of this note.)

The ideas of limit and continuity go back to antiquity, and a complete
history of them could not be written without studying systematically from
. this point of view not only the Greek mathematicians but also the Greek
philosophers and Aristotle in particular. It would also be necessary
to trace the evolution of these ideas through Renaissance mathematics
and the beginnings of the differential and integral calculus. Such a
study, though it would undoubtedly be interesting to undertake, would
' go far beyond the framework of this note.

* It is Riemann who should be considered as the creator of topology,
as of so many other branches of modern mathematics. - He was the first
to attempt to formulate the notion of a topological space; he conceived
the idea of an autonomous theory of such spaces; he defined invariants
(the “Betti numbers”) which were to play a pre-eminent part in the
later development of topology; and he was the first to apply topology
to analysis (periods of abelian integrals). But the current of ideas in the
first half of the nineteenth century had prepared the path for Riemann in
more ways than one. In the first place, the desire to put mathematics
on a firm basis, which was the cause of so many important researches
throughout the nineteenth century and up to the present day, hadledtoa
correct understanding of the notions of a convergent series and a sequence of
numbers tending to a limit (Cauchy, Abel) and to the notion of a continuous
function (Bolzano, Cauchy). On the other hand, the geometrical repre-
sentation (by points of a plane) of the complex numbers (or, as they had
hitherto been called, “imaginary” or even “impossible” numbers)
which was due to Gauss and Argand, had become familiar to the majority
of mathematicians; it constituted an advance of the same order as the
adoption, in our -century, of the language of geometry in the study of
Hilbert space, and contained the germ of the possibility of a geometrical
representation of every object capable of continuous variation. Gauss,
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HISTORICAL NOTE

who was in any case naturally led to such concepts by his researches on
the foundations of geometry, on non-Euclidean geometry and on curved
surfaces, seems to have had this possibility already in mind, for he uses
the words “magnitude twice extended” when defining (independently
of Argand and the French mathematicians) the geometrical representation
of complex numbers ([1], pp. 101-103 and 175-178).

Riemann’s work on algebraic functions and their integrals and his
reflections on the foundations of geometry (largely inspired by his study
of Gauss’s work) led him to formulate a program of study, which is
precisely that of modern topology, and to begin to realize this program.
Here, for example, is what he says in his theory of abelian functions
([21; p- 91)

“In the study of functions obiained by integrating exact differentials, some
theorems of Analysis situs are almost indispensable. By this name, which was
used by Leibnitz, although perhaps in a somewhat different sense, should be called
that part of the theory of continuous magnitudes which studies these magnitudes,
not independently of their position and by measuring them in terms of each other,
but rather by abstracting all ideas of measurement and considering only their relations
of position and inclusion. I reserve to a later occasion an investigation completely
independent of all measurement...”

And in his famous inaugural lecture “On the hypotheses which under-
lie Geometry” ([2], p. 272):

“... the general concept of a magnitude many times extended (¥) which contains
as a particular case that of spatial magnitude, has remained completely unexplored...”
(p. 272)

“... The notion of magnitude presupposes that an element is capable of different
determinations. According as one can pass jfrom one determination to another by
a continuous process of transition or not, these determination< form a continuous or
a discrete manifold : in the former case the determinations are called points of the
manifold...”" (p. 273)

“... Measurement consisis of superposition’ of the magnitudes to be compared,
hence in order to measure we need some means of using one magnitude as a yardstick
Jor another. In the absence of this we can compare two magnitudes only if one is
part of the other... The investigations which can be underiaken in this context
Jorm a part of the theory of magnitudes which is independent of the theory of measure-
ment and in which the magnitudes are considered not as existing independently
of their position nor as expressible in ferms of a unit gf measurement, but as regions
in a manifold. Such investigations have become necessary in several parts of mathe-
matics, in particular in the theory of many-valued analytic functions...”’ (p. 274)

(*) As the sequel shows, Riemann means by this phrase a subset of a topological
space of arbitrary dimension.

163




I TOPOLOGICAL STRUCTURES

«,.. The determination of position in a given manifold, whenever this is possible,
can be reduced to a finite number of numerical determinations. There are however
manifolds in which the determination of position requires not a finite number but an
infinite sequence or even a continuous manifold of determinations of magnitudes.
For example, the possible determinations of a function on a given domain, or the
possible forms of a spatial figure, give manifolds of this type.” (p. 276)

Note in this last phrase the first idea of a study of functional spaces;
Riemann had already expressed the same idea in his dissertation :
“the totality of these functions”, he stated in connection with the minimal
problem known as Dirichlet’s principle, «forms a connected domain which is
closed in itself” ([2], p. 30); this, though imperfectly expressed, is never-
theless the germ of the proof which Hilbert was later to give of Dirichlet’s
principle, and of most of the applications of function spaces to the calculus
of variations.

As- we have said, Riemann began the execution of this grandiose
program by defining the “Betti numbers”, first for a surface ([2],
pp. 92-93) and later ([2], pp. 479-482; cf. also [3]) for a manifold of any
dimension, and applied this definition to the theory of integrals; for this
and for the considerable development of this theory since Riemann’s
time we refer the reader to the Historical Notes to the chapters on alge-
braic topology in this series of volumes.

Before a general theory of topological spaces, such as Riemann had
envisaged, could be developed, it was necessary that the theory of real
numbers, of sets of numbers, of sets of points on a line, in a plane and in
space should be more systematically investigated than they had been
in Riemann’s time. Such investigations were related on the other hand
to research into the nature of irrational numbers (semi-philosophical by
Bolzanio and essentially mathematical by Dedekind) and to progress in
the theory of functions of a real variable in which Riemann himself
made an important contribution by his definition of the integral and his
theory of trigonometrical series, and to which du Bois-Reymond, Dini
and Weierstrass, among others, contributed; they were the work of the
second half of the nineteenth century, and especially the work of Cantor,
who was the first to define (originally on the line, later in Euclidean space
of n dimensions) the notions of point of accumnulation, closed set, open set,
perfect set, and obtained the essential results on the structure of these
sets on the line (cf. the Historical Note to Chapter IV). In this context,
not only the works of Cantor [4] should be consulted, but also his extremely
interesting correspondence with Dedekind [5], where the idea of dimensional-
ity as a topological invariant can be found clearly expressed. The later
progress of the theory is traced in a semi-historical, semi-systematic form
in Scheenflies’ book [6]; by far the most important acquisition was the
theorem of Borel-Lebesgue, namely the fact that every bounded closed
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HISTORICAL NOTE

subset of Euclidean n-space R* (cf. Chapter VI, § 1) satisfies axiom (C”)
of § g of this chapter (the theorem was first proved by Borel for a closed
interval on the line and a countable family of open intervals covering it).

Cantor’s ideas had originally met with vigorous opposition (cf. the
Historical Note to Book I, Chapters I-IV). At any rate his theory of
point-sets on the line and in the plane was quickly made use of and dissem-
inated by the French and German schools of function-theory (Jordan,
Poincaré, Klein, Mittag-Leffler, and later Hadamard, Bore, Baire,
Lebesgue, etc.); each of the early Borel treatises, in particular, contains
an elementary exposition of this theory (see for example [7]). As these
ideas spread, their possible application to sets, not of points but of curves
or functions, began to be considered in various quarters,.as witness the
title “On the limit curves of a variety of curves” of a memoir by Ascoli
in 1883 [8] and a communication by Hadamard to the congress of mathe-
maticians at Ziirich in 1896 [g]; all this is closely related to the introduction
of “line functions” by Volterra in 1887 and to the creation of “functional
calculus” or theory of functions in which the argument is a function
(cf. Voltera’s book on functional analysis [10]). On the other hand,
Hilbert’s famous memoir [11], in which, taking up Riemann’sideas again,
he proved the existence of the minimum in Dirichlet’s principle and
inaugurated the “direct method” in the calculus of variations, showed
clearly theimportance of considering sets of functions in which the Bolzano-
Weierstrass principle holds, that is to say in which every sequence has a
convergent subsequence. Such sets were beginning in any case to play
an important part, not only in the calculus of variations but also in the
theory of functions of a real variable (Ascoli, Arzeld) and a little later in the
theory of functions of a complex variable (Vitali, Carathéodory, Montel).
Finally the study of functional equations, and especially the solution by
Fredholm of the type of equation which bears his name, made it common-
place to consider a function as an argument and a set of functions as a
set of points, and as natural to use the language of geometry in this context
as in Euclidean space of n dimensions (a space which equally eludes
“intuition” and for this reason remained long an object of distrust to
many mathematicians), In particular the memorable work of Hilbert
on integral equations [12] led to the definition and geometrical study of
Hilbert space by Erhard Schmidt [14], in complete analogy with Eucli-
dean geometry.

Meanwhile the concept of an axiomatic theory had acquired more
and more importance, thanks to much work on the foundations of geometry;
here Hilbert’s contributions [13] had a particularly decisive influence.
In the course of this work, Hilbert had been led to formulate in rgo2
([13], p. 180) the first axiomatic definition of the “manifold twice ex-
tended” in the sense of Riemann, a definition which constituted, said
Hilbert, “the foundation of a rigorous axiomatic treatment of Analysis
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situs”.  Hilbert also made use of neighbourhoods (in a sense restricted
by the demands of the problem to which he limited himself).

The first attempts to abstract what is common to properties of sets
of points and sets of functions are due to Fréchet [15] and F. Riesz [16].
The former started from the notion of countable limit and did not succeed
in constructing a convenient and fruitful system of axioms, but at least he
recognized the relationship between the principle of Bolzano-Weierstrass
[which is just axiom (C) of § g, restricted to countable sequences] and
the Borel-Lebesgue theorem [axiom (C") of § g]; in this connection he
introduced the word “compact”, although in a sense somewhat different
from that in which it is used in this series of volumes. As to F. Riesz,
who took as his starting point the concept of point of accumulation
(or rather of “derived set”, which amounts to the same thing), his theory
was again incomplete and appeared only in outline form.

General topology as it is understood today began with Hausdorff
([17], Chapters 7, 8, g), who again took up the concept of neighbourhood
(by which he meant what in the terminology of this series of volumes is
called an “open neighbourhood”) and chose from Hilbert’s axioms for
neighbourhoods in the plane those which gave his theory all the precision
and generality desired. The axioms he took as a starting-point were essen-
tially (taking into account the difference between his concept of neighbour-
hood and ours) axioms (Vy), (Vi), (Vi) (Viy) of § 1 and (H) of § 8,
and the chapter in which he develops the consequences of these axioms
has remained a model of axiomatic theory, abstract but adapted in advance
to applications. Hausdorff’s work was naturally the point of departure
for later research in general topology and especially for the work of the
Moscow school, which was largely directed towards the problem of metri-
zation (cf. the Historical Note to Chapter IX); here we recall especially
the definition of compact spaces (under the name of “bicompact spaces”)
by Alexandroff and Urysohn, and Tychonoff’s proof of the compactness
of products of compact spaces [1g]. Finally, the introduction of filters
by H. Cartan, [20] has brought to topology a valuable instrument, usable
in all sorts of applications (in which it replaces to advantage the notion
of “Moore-Smith convergence” [18]). Furthermore, the development of
the theorem on ultrafilters (Theorem 1, § 6), has clarified and simplified the
theory.




