In this solution, the word ‘map’ means ‘continuous function’.

Problem 1a

A topological space X is Hausdorff if for each pair of distinct points p,q € X
there exist open, disjoint subsets U,V C X with p € U and q € V.

A topological space X is locally compact if for each point p € X there
exist an open set U C X and a compact set C' C X withpe U C C.

Problem 1b

The open sets in YU{oo} are of the form V with V' C Y open or (Y —D)U{oc}
with D C Y compact. In the first case

V) =f1(v)

and f~1(V) is open in X since f is continuous, so f; ' (V) is open in X U{oc}.
In the second case,

fr (Y=D)U{oo}) = (X—f(D)) U {oo}
and f~1(D) C X is compact since f is proper, so f; '((Y—D)U{oc}) is open
in X U {oco}. This proves that f; is continuous.

Problem 1c

The open sets in BU{oc} are of the form W with W C B open or (B—E)U
{oo} with E' C B compact. In the first case,

iy (W) =W

is open in B, hence also in Y, since B is open in Y. Thus i, (W) is open in
Y U {oo}. In the second case,

iy (B=E)U{oo}) = (Y—E) U{oc}

where E C Y is compact. Thus i, ' ((B—E)U{cc}) is open in Y U{oo}. This
proves that 75 is continuous.



Problem 1d

To check that g is proper, let M C B be compact. Then

g (M) ={z e Alg(x) € M}
={ze€ X | f(z) € Band g(x) € M}
={reX|f(x)e M} =f"(M).

Since M is compact and f is proper, we know that f~!(M) is compact. Hence
g~ ' (M) is compact. This proves that g is proper.

Since B is open in Y and f: X — Y is continuous, the preimage A =
f7Y(B) is open in X. Hence j: A C X is an open inclusion.

Problem 2a

If f is continuous, then the function

F:X —XxZ
v — (z, f(2))

is continuous, with image G. We know that the continuous image of a con-
nected space is connected. Thus, if X is connected then G is connected.

Problem 2b

The restricted function f[q7: (0,1] = R is continuous, so its graph
D = {(z,sin(1/z)) |0 <z < 1}

is connected. Furthermore, (0,0) is in the closure of D in [0,1] x R C R?,
since each e-neighborhood of (0,0) contains points of the form (1/nm,0) € D
for n sufficiently large. Hence (0,0) € D and D is dense in G. We know
that the closure of a connected subspace is connected. Applying this to the
subspace D of GG, we conclude that G is connected.

Problem 2c

The restricted function f|gz_g(,0) is continuous, and R*—{(0,0)} is path
connected. Its graph

E={(z,y, f(z,y) | (z,y) # (0,0)}
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is the continuous image of a path connected space, and is therefore path
connected. It remains to show that the point (0,0,0) = (0,0, £(0,0)) € G
belongs to the same path component as FE.

To see this, use the path p: [0, 1] — G given by

p(t) = (¢,0,0).

It is continuous as a map to R3 and takes values in G, since p(0) = (0,0,0)
and p(t) = (¢,0, f(£,0)) for 0 < ¢ < 1, hence is continuous as a map to
G in the subspace topology. Therefore p(0) = (0,0,0) is in the same path
component as p(1) € E.

Problem 3a

Urysohn’s lemma: If X is a normal space, and A and B are closed, disjoint
subsets of X, then there exists a map f: X — [0, 1] such that f(A) C {0}
and f(B) C {1}.

Problem 3b

We assume that X is normal, and that A and B are closed, disjoint subsets
of X. Let f: X — [0, 1] be a map such that f(A) C {0} and f(B) C {1}.

Since f: X — [0,1] and g: X — Z are continuous, so is e = (f,g9): X —
[0,1] x Z.

To check that e is injective, consider z,y € X with e(x) = e(y). Then
f(z) = f(y) and g(x) = g(y). If x and y both lie in X — A, then x = y
because g|x_ 4 is injective. On the other hand, if x and y both lie in X — B,
then = y because g|x_p is injective. We cannot have x € A and y € B,
because then f(xz) = 0 is not equal to f(y) = 1. Finally, we cannot have
r € B and y € A, because then f(z) = 1 is not equal to f(y) = 0. This
exhausts all possibilities, so x = y and e is injective.

Problem 3c

To check that the continuous bijection X — e(X) given by e is open, consider
any open subset U C X. We must prove that e(U) is open in e(X). Since
ANB =0 wehave U = (U—-A)U(U - B) and e(U) = e(U - A)Ue(U — B).
Hence it is enough to show that e(U — A) and e(U — B) are open in e¢(X). By
symmetry it suffices to handle the case of e(U — A). We do this by showing
that e(U — A) is open in (X — A), and that e(X — A) is open in e(X).
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Let h: e(X) — g(X) be given by restricting the projection my: [0,1]xZ —
Z to the subspace e(X). It restricts further toamap h: e(X—A) — g(X—A).
The composition of e: X —A — e(X —A) and h: e(X —A) = g(X —A) is the
homeomorphism g: X —A — g(X —A). It follows that e: X —A — e(X —A)
is a bijective imbedding (= embedding), hence a homeomorphism. Because
U — Aisopen in X — A we deduce that e(U — A) is open in e(X — A).

To show that e(X — A) is open in e(X) is equivalent to showing that its
complement e(A) is closed in e(X). For this we use that g: X—B — ¢g(X—B)
is a homeomorphism. It follows as above that e: X — B — ¢(X — B) is a
homeomorphism. Let

C=f710,1/2]) ={z € X| f(z) < 1/2}

be a (closed) subset of X, with A C C' C X — B. Then A is closed in C, so
e(A) is closed in e(C). Finally, e(C') = e(X) N [0,1/2] x Z is closed in e(X),
since [0,1/2] x Z is closed in [0,1] x Z, so e(A) is indeed closed in e(X).



