In this solution, the word 'map' means 'continuous function'.

Problem 1a

A topological space X is Hausdorff if for each pair of distinct points $p, q \in X$ there exist open, disjoint subsets $U, V \subset X$ with $p \in U$ and $q \in V$.

A topological space X is locally compact if for each point $p \in X$ there exist an open set $U \subset X$ and a compact set $C \subset X$ with $p \in U \subset C$.

Problem 1b

The open sets in $Y \cup \{\infty\}$ are of the form V with $V \subset Y$ open or $(Y-D) \cup \{\infty\}$ with $D \subset Y$ compact. In the first case

$$f_1^{-1}(V) = f^{-1}(V)$$

and $f^{-1}(V)$ is open in X since f is continuous, so $f_1^{-1}(V)$ is open in $X \cup \{\infty\}$. In the second case,

$$f_1^{-1}((Y\!-\!D)\cup\{\infty\})=(X\!-\!f^{-1}(D))\cup\{\infty\}$$

and $f^{-1}(D) \subset X$ is compact since f is proper, so $f_1^{-1}((Y-D) \cup \{\infty\})$ is open in $X \cup \{\infty\}$. This proves that f_1 is continuous.

Problem 1c

The open sets in $B \cup \{\infty\}$ are of the form W with $W \subset B$ open or $(B-E) \cup \{\infty\}$ with $E \subset B$ compact. In the first case,

$$i_2^{-1}(W) = W$$

is open in B, hence also in Y, since B is open in Y. Thus $i_2^{-1}(W)$ is open in $Y \cup \{\infty\}$. In the second case,

$$i_2^{-1}((B - E) \cup \{\infty\}) = (Y - E) \cup \{\infty\}$$

where $E \subset Y$ is compact. Thus $i_2^{-1}((B-E) \cup \{\infty\})$ is open in $Y \cup \{\infty\}$. This proves that i_2 is continuous.

Problem 1d

To check that g is proper, let $M \subset B$ be compact. Then

$$g^{-1}(M) = \{x \in A \mid g(x) \in M\} \\ = \{x \in X \mid f(x) \in B \text{ and } g(x) \in M\} \\ = \{x \in X \mid f(x) \in M\} = f^{-1}(M).$$

Since M is compact and f is proper, we know that $f^{-1}(M)$ is compact. Hence $g^{-1}(M)$ is compact. This proves that g is proper.

Since B is open in Y and $f: X \to Y$ is continuous, the preimage $A = f^{-1}(B)$ is open in X. Hence $j: A \subset X$ is an open inclusion.

Problem 2a

If f is continuous, then the function

$$F \colon X \longrightarrow X \times Z$$
$$x \longmapsto (x, f(x))$$

is continuous, with image G. We know that the continuous image of a connected space is connected. Thus, if X is connected then G is connected.

Problem 2b

The restricted function $f|_{(0,1]}: (0,1] \to \mathbb{R}$ is continuous, so its graph

$$D = \{ (x, \sin(1/x)) \mid 0 < x \le 1 \}$$

is connected. Furthermore, (0,0) is in the closure of D in $[0,1] \times \mathbb{R} \subset \mathbb{R}^2$, since each ϵ -neighborhood of (0,0) contains points of the form $(1/n\pi, 0) \in D$ for n sufficiently large. Hence $(0,0) \in \overline{D}$ and D is dense in G. We know that the closure of a connected subspace is connected. Applying this to the subspace D of G, we conclude that G is connected.

Problem 2c

The restricted function $f|_{\mathbb{R}^2-\{(0,0)\}}$ is continuous, and $\mathbb{R}^2-\{(0,0)\}$ is path connected. Its graph

$$E = \{ (x, y, f(x, y) \mid (x, y) \neq (0, 0) \}$$

is the continuous image of a path connected space, and is therefore path connected. It remains to show that the point $(0,0,0) = (0,0,f(0,0)) \in G$ belongs to the same path component as E.

To see this, use the path $p: [0,1] \to G$ given by

$$p(t) = (t, 0, 0)$$
.

It is continuous as a map to \mathbb{R}^3 , and takes values in G, since p(0) = (0, 0, 0)and p(t) = (t, 0, f(t, 0)) for $0 < t \leq 1$, hence is continuous as a map to G in the subspace topology. Therefore p(0) = (0, 0, 0) is in the same path component as $p(1) \in E$.

Problem 3a

Urysohn's lemma: If X is a normal space, and A and B are closed, disjoint subsets of X, then there exists a map $f: X \to [0, 1]$ such that $f(A) \subset \{0\}$ and $f(B) \subset \{1\}$.

Problem 3b

We assume that X is normal, and that A and B are closed, disjoint subsets of X. Let $f: X \to [0, 1]$ be a map such that $f(A) \subset \{0\}$ and $f(B) \subset \{1\}$.

Since $f: X \to [0, 1]$ and $g: X \to Z$ are continuous, so is $e = (f, g): X \to [0, 1] \times Z$.

To check that e is injective, consider $x, y \in X$ with e(x) = e(y). Then f(x) = f(y) and g(x) = g(y). If x and y both lie in X - A, then x = y because $g|_{X-A}$ is injective. On the other hand, if x and y both lie in X - B, then x = y because $g|_{X-B}$ is injective. We cannot have $x \in A$ and $y \in B$, because then f(x) = 0 is not equal to f(y) = 1. Finally, we cannot have $x \in B$ and $y \in A$, because then f(x) = 1 is not equal to f(y) = 0. This exhausts all possibilities, so x = y and e is injective.

Problem 3c

To check that the continuous bijection $X \to e(X)$ given by e is open, consider any open subset $U \subset X$. We must prove that e(U) is open in e(X). Since $A \cap B = \emptyset$ we have $U = (U - A) \cup (U - B)$ and $e(U) = e(U - A) \cup e(U - B)$. Hence it is enough to show that e(U - A) and e(U - B) are open in e(X). By symmetry it suffices to handle the case of e(U - A). We do this by showing that e(U - A) is open in e(X - A), and that e(X - A) is open in e(X). Let $h: e(X) \to g(X)$ be given by restricting the projection $\pi_2: [0, 1] \times Z \to Z$ to the subspace e(X). It restricts further to a map $h: e(X-A) \to g(X-A)$. The composition of $e: X - A \to e(X - A)$ and $h: e(X - A) \to g(X - A)$ is the homeomorphism $g: X - A \to g(X - A)$. It follows that $e: X - A \to e(X - A)$ is a bijective imbedding (= embedding), hence a homeomorphism. Because U - A is open in X - A we deduce that e(U - A) is open in e(X - A).

To show that e(X - A) is open in e(X) is equivalent to showing that its complement e(A) is closed in e(X). For this we use that $g: X - B \to g(X - B)$ is a homeomorphism. It follows as above that $e: X - B \to e(X - B)$ is a homeomorphism. Let

$$C = f^{-1}([0, 1/2]) = \{x \in X \mid f(x) \le 1/2\}$$

be a (closed) subset of X, with $A \subset C \subset X - B$. Then A is closed in C, so e(A) is closed in e(C). Finally, $e(C) = e(X) \cap [0, 1/2] \times Z$ is closed in e(X), since $[0, 1/2] \times Z$ is closed in $[0, 1] \times Z$, so e(A) is indeed closed in e(X).