
In this solution, the word ‘map’ means ‘continuous function’.

Problem 1a

A topological space X is Hausdorff if for each pair of distinct points p, q ∈ X
there exist open, disjoint subsets U, V ⊂ X with p ∈ U and q ∈ V .

A topological space X is locally compact if for each point p ∈ X there
exist an open set U ⊂ X and a compact set C ⊂ X with p ∈ U ⊂ C.

Problem 1b

The open sets in Y ∪{∞} are of the form V with V ⊂ Y open or (Y−D)∪{∞}
with D ⊂ Y compact. In the first case

f−11 (V ) = f−1(V )

and f−1(V ) is open in X since f is continuous, so f−11 (V ) is open in X∪{∞}.
In the second case,

f−11 ((Y−D) ∪ {∞}) = (X−f−1(D)) ∪ {∞}

and f−1(D) ⊂ X is compact since f is proper, so f−11 ((Y−D)∪{∞}) is open
in X ∪ {∞}. This proves that f1 is continuous.

Problem 1c

The open sets in B ∪{∞} are of the form W with W ⊂ B open or (B−E)∪
{∞} with E ⊂ B compact. In the first case,

i−12 (W ) = W

is open in B, hence also in Y , since B is open in Y . Thus i−12 (W ) is open in
Y ∪ {∞}. In the second case,

i−12 ((B−E) ∪ {∞}) = (Y−E) ∪ {∞}

where E ⊂ Y is compact. Thus i−12 ((B−E)∪{∞}) is open in Y ∪{∞}. This
proves that i2 is continuous.
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Problem 1d

To check that g is proper, let M ⊂ B be compact. Then

g−1(M) = {x ∈ A | g(x) ∈M}
= {x ∈ X | f(x) ∈ B and g(x) ∈M}
= {x ∈ X | f(x) ∈M} = f−1(M) .

Since M is compact and f is proper, we know that f−1(M) is compact. Hence
g−1(M) is compact. This proves that g is proper.

Since B is open in Y and f : X → Y is continuous, the preimage A =
f−1(B) is open in X. Hence j : A ⊂ X is an open inclusion.

Problem 2a

If f is continuous, then the function

F : X −→ X × Z
x 7−→ (x, f(x))

is continuous, with image G. We know that the continuous image of a con-
nected space is connected. Thus, if X is connected then G is connected.

Problem 2b

The restricted function f |(0,1] : (0, 1]→ R is continuous, so its graph

D = {(x, sin(1/x)) | 0 < x ≤ 1}

is connected. Furthermore, (0, 0) is in the closure of D in [0, 1] × R ⊂ R2,
since each ε-neighborhood of (0, 0) contains points of the form (1/nπ, 0) ∈ D
for n sufficiently large. Hence (0, 0) ∈ D̄ and D is dense in G. We know
that the closure of a connected subspace is connected. Applying this to the
subspace D of G, we conclude that G is connected.

Problem 2c

The restricted function f |R2−{(0,0)} is continuous, and R2−{(0, 0)} is path
connected. Its graph

E = {(x, y, f(x, y) | (x, y) 6= (0, 0)}
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is the continuous image of a path connected space, and is therefore path
connected. It remains to show that the point (0, 0, 0) = (0, 0, f(0, 0)) ∈ G
belongs to the same path component as E.

To see this, use the path p : [0, 1]→ G given by

p(t) = (t, 0, 0) .

It is continuous as a map to R3, and takes values in G, since p(0) = (0, 0, 0)
and p(t) = (t, 0, f(t, 0)) for 0 < t ≤ 1, hence is continuous as a map to
G in the subspace topology. Therefore p(0) = (0, 0, 0) is in the same path
component as p(1) ∈ E.

Problem 3a

Urysohn’s lemma: If X is a normal space, and A and B are closed, disjoint
subsets of X, then there exists a map f : X → [0, 1] such that f(A) ⊂ {0}
and f(B) ⊂ {1}.

Problem 3b

We assume that X is normal, and that A and B are closed, disjoint subsets
of X. Let f : X → [0, 1] be a map such that f(A) ⊂ {0} and f(B) ⊂ {1}.

Since f : X → [0, 1] and g : X → Z are continuous, so is e = (f, g) : X →
[0, 1]× Z.

To check that e is injective, consider x, y ∈ X with e(x) = e(y). Then
f(x) = f(y) and g(x) = g(y). If x and y both lie in X − A, then x = y
because g|X−A is injective. On the other hand, if x and y both lie in X −B,
then x = y because g|X−B is injective. We cannot have x ∈ A and y ∈ B,
because then f(x) = 0 is not equal to f(y) = 1. Finally, we cannot have
x ∈ B and y ∈ A, because then f(x) = 1 is not equal to f(y) = 0. This
exhausts all possibilities, so x = y and e is injective.

Problem 3c

To check that the continuous bijection X → e(X) given by e is open, consider
any open subset U ⊂ X. We must prove that e(U) is open in e(X). Since
A∩B = ∅ we have U = (U −A)∪ (U −B) and e(U) = e(U −A)∪ e(U −B).
Hence it is enough to show that e(U−A) and e(U−B) are open in e(X). By
symmetry it suffices to handle the case of e(U − A). We do this by showing
that e(U − A) is open in e(X − A), and that e(X − A) is open in e(X).
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Let h : e(X)→ g(X) be given by restricting the projection π2 : [0, 1]×Z →
Z to the subspace e(X). It restricts further to a map h : e(X−A)→ g(X−A).
The composition of e : X−A→ e(X−A) and h : e(X−A)→ g(X−A) is the
homeomorphism g : X−A→ g(X−A). It follows that e : X−A→ e(X−A)
is a bijective imbedding (= embedding), hence a homeomorphism. Because
U − A is open in X − A we deduce that e(U − A) is open in e(X − A).

To show that e(X − A) is open in e(X) is equivalent to showing that its
complement e(A) is closed in e(X). For this we use that g : X−B → g(X−B)
is a homeomorphism. It follows as above that e : X − B → e(X − B) is a
homeomorphism. Let

C = f−1([0, 1/2]) = {x ∈ X | f(x) ≤ 1/2}

be a (closed) subset of X, with A ⊂ C ⊂ X − B. Then A is closed in C, so
e(A) is closed in e(C). Finally, e(C) = e(X) ∩ [0, 1/2]× Z is closed in e(X),
since [0, 1/2]× Z is closed in [0, 1]× Z, so e(A) is indeed closed in e(X).
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