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Submission deadline

Thursday 15th October 2020, 14:30 in Canvas.

Instructions

Students taking the course MAT4500 must submit the assignment typed in
LATEX. Students taking the course MAT3500 may choose between scanning
handwritten notes or typing the solution directly on a computer (for instance
with LATEX). The latter is preferred. The assignment must be submitted as a
single PDF file. Scanned pages must be clearly legible. The submission must
contain your name, course and assignment number.

It is expected that you give a clear presentation with all necessary explanations.
Remember to include all relevant plots and figures. Students who fail the assign-
ment, but have made a genuine effort at solving the exercises, are given a second
attempt at revising their answers. All aids, including collaboration, are allowed,
but the submission must be written by you and reflect your understanding of
the subject. If we doubt that you have understood the content you have handed
in, we may request that you give an oral account.

In exercises where you are asked to write a computer program, you need to
hand in the code along with the rest of the assignment. It is important that the
submitted program contains a trial run, so that it is easy to see the result of the
code.

Application for postponed delivery

If you need to apply for a postponement of the submission deadline due to
illness or other reasons, you have to contact the Student Administration at the
Department of Mathematics (e-mail: studieinfo@math.uio.no) well before the
deadline.

All mandatory assignments in this course must be approved in the same semester,
before you are allowed to take the final examination.

Complete guidelines about delivery of mandatory assignments:

uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html

GOOD LUCK!

mailto:studieinfo@math.uio.no
http://www.uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html


Problem 1. Let X = (−1, 1)× (−1, 1) ⊂ R2. We let F be the family of open
subsets W in R2 (with the usual topology) such that (−1, 1) × {1} ⊂ W or
W = ∅. Let T = {W ∩X : W ∈ F}.

(a) Prove that T is a topology on X.

(b) Prove that (X, T ) is a T1-space. Is (X, T ) a Hausdorff space?

(c) What are the continuous mappings from (X, T ) into R (equipped with the
usual topology)?

Solution:

(a) (i) ∅ ∈ F and ∅ ∩X = ∅, so ∅ ∈ T . Further, R2 ∈ F and R2 ∩X = X,
so X ∈ T .

(ii) Suppose {Uα}α∈A ⊂ T . Then Uα = X ∩Wα for all α with Wα ∈ F .
Set W = ∪αWα and note that W ∈ F . Then

U =
⋃
α

Uα =
⋃
α

X ∩Wα = X ∩
⋃
α

Wα = X ∩W,

so U ∈ T .
(iii) Suppose Uj ∈ T for j = 1, ..., n. Then Uj = X ∩Wj with Wj ∈ F

for j = 1, ..., n. Set W = ∩nj=1Wj and note that W ∈ F since the
intersection is finite. Then

U =
n⋂
j=1

Uj =
n⋂
j=1

X ∩Wα = X ∩
n⋂
j=1

Wj = X ∩W,

so U ∈ T .

(b) Let p = (x1, y1) and q = (x2, y2) be points in X. Choose ε > 0 such that
q /∈ Bε(p). Set W = {(x, y) ∈ R2 : y > y2} ∪Bε(p). Then W ∈ F , and we
have p ∈W ∩X while q /∈W ∩X. This shows that (X, T ) is a T1 space.
On the other hand, X is not a Hausdorff space. This is because for any
two nonempty sets W1,W2 ∈ F we have that W1 ∩W2 ∩X 6= ∅, and so
(X ∩W1) ∩ (X ∩W2) = X ∩ (W1 ∩W2) is nonempty.

(c) The only continuous functions are the constant functions. For if f : X → R
were continuous with f(p) < f(q) for p, q ∈ X and p 6= q, we could chose
f(p) < a < f(q) and get that

U = {x ∈ X : f(x) < a} and V = {x ∈ X : f(x) > a}

were two disjoint open sets in (X, T ), contradicting the conclusion in (b).

Problem 2. Let X be a topological space and let A ⊂ X. We say that A is
dense in X if A = X (recall that Ā is the intersection of all closed sets in X that
contain A).

(a) Prove that A ⊂ X is dense in X if and only if for any open subset U 6= ∅
of X we have that U ∩A 6= ∅.
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(b) Prove that if A ⊂ B is dense in B, and if B ⊂ X is dense in X, then
A ⊂ X is dense in X (A and B are equipped with the subset topology).

(c) Prove that if f : X → Y is a continuous surjective map, and if A ⊂ X is
dense, then f(A) is dense in Y .

(d) Suppose that f : X → Y is a continuous surjective map, and let B ⊂ Y be
dense. Is f−1(B) necessarily dense?

(e) Let U, V ⊂ X be two open dense subsets. Prove that U ∩ V is open and
dense.

Solution:

(a) Assume that A is dense in X. Then if U ⊂ X is open and disjoint from
A we have that Ā ⊂ X \ U . Since Ā = X it follows that U = ∅, so any
nonempty U intersects A.
Assume that any nonempty open set U intersects A. Let C be a closed set
containing A. Then X \ C is an open set disjoint from A, and it follows
that X \ C = ∅, and hence that C = X. So Ā = X.

(b) Let C be a closed set in X containing A. Then C ∩B is closed in B, so
C ∩B = B since Ā = B. So C is a closed set in X containing B, and since
B̄ = X we must have C = X. So Ā = X.

(c) Let V ⊂ Y be a nonempty open set. Since f is surjective, we have that
U = f−1(V ) is a nonempty open set. So there is a point a ∈ A ∩ U . So
f(a) ∈ V .

(d) No. Define f : R→ [0,∞) by setting f(x) = 0 for x ≤ 0 and f(x) = x for
x ≥ 0. Then f is continuous, (0,∞) is dense in [0,∞), but f−1(0,∞) =
(0,∞) which is not dense in R.

(e) Let W be a nonempty open set. Then U ∩W is nonempty and open since
U is open and dense. Then V ∩ (U ∩W ) is nonempty and open since V is
open and dense. So W ∩ (U ∩ V ) is nonempty. Since W is arbitrary we
conclude that U ∩ V is dense, and being the intersection of two open sets
it is also open.

Problem 3. Let X be the set of continuous functions f : (0, 1)→ R. For each
n ∈ Z+ we set Kn = [1/(n+ 1), 1− 1/(n+ 1)]. For each n ∈ Z+ and f, g ∈ X set

dn(f, g) = max
x∈Kn

{|f(x)− g(x)|}.

(a) Prove that for f, g, h ∈ X and every n ∈ Z+ we have that

dn(f, g) ≤ dn(f, h) + dn(h, g).

Is dn a metric on X for any n ∈ Z+?
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(b) Let B consist of the following subsets Bf,n,r of X, with f ∈ X,n ∈ Z+ and
r > 0:

Bf,n,r = {g ∈ X : dn(g, f) < r}.
Prove that B is a basis for a topology on X (this topology is called the
compact-open topology).

Solution:
(a) For f, g ∈ X, and for a fixed n ∈ Z+, there exists a point x0 ∈ Kn such

that dn(f, g) = |f(x0)− g(x0)|. For h ∈ X we have that
|f(x0)− g(x0)| = |f(x0)− h(x0) + h(x0)− g(x0)|

≤ |f(x0)− h(x0)|+ |h(x0)− g(x0)|
≤ dn(f, h) + dn(h, g)

where we in the passage to the second line used the triangle inequality on
R, and in the passage to the third used that dn is defined as a maximum.

We clearly have that dn(f, g) ≥ 0 for all f, g ∈ X and that dn(f, g) =
dn(g, f). But for any n ∈ Z+ there are functions f, g ∈ X such that
f(x) = g(x) for all x ∈ Kn but f 6= g. Then dn(f, g) = 0, but f 6= g. So
dn is not a metric on X. However, if we let Xn denote the space C(Kn,R)
of real valued continuous functions on Kn, we see that d′n = dn|Xn

is a
metric on Xn.

(b) Consider Bf1,n1,r1 and Bf2,n2,r2 with nonemtpty intersection containing
h ∈ X. Set sj = dnj (h, fj) for j = 1, 2. Set εj = rj − sj > 0. Then

dnj (g, h) < εj ⇒ dnj (g, fj) ≤ dnj (fj , h) + dnj (h, g) < sj + εj = rj ,

which shows thatBh,nj ,εj ⊂ Bfj ,nj ,rj for j = 1, 2. Without loss of generality
we assume that n2 ≥ n1, and note that Bh,n2,ε1 ⊂ Bh,n1,ε1 . So if we let
ε = min{ε1, ε2} we see that

Bh,n2,ε ⊂ Bf1,n1,r1 ∩Bf2,n2,r2 .

Problem 4. (Optional) Prove that the topology generated by the basis B in
Problem 3 is metrizable.

Solution: For each n ∈ Z+ we set d̄n = min{dn, 1}. We have seen (when
we metrized the product topology on Rω) that d̄n satisfies all the properties of
being the metric, except for the one that failed in (a) (and it fails here for the
same reason). If we set

d(f, g) = max
n∈Z+

{d̄n(f, g)/n},

Now dn(f, g) = 0 if and only if f |Kn
= g|Kn

for all n which is equivalent to
f = g, and the only remaining axiom for being a metric which is not clear is
perhaps the triangle inequality. But for any f, g ∈ X there exists an n ∈ Z+
such that d(f, g) = d̄n(f, g)/n. Then for any h ∈ X we have

d̄n(f, g)/n ≤ d̄n(f, h)/n+ d̄n(h, g)/n ≤ d(f, h) + d(h, g),
where in the first inequality we used the observation above, and in the second
we used that d is defined as a maximum.
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