SUGGESTED SOLUTIONS - §31 — §35

§31

Problem 1 Let x,y € X with x # y. Since X is regular (and so also Hausdorff) there exist
disjoint open sets U, and U,. Further there exist open sets V,, and V,, with V,, C U, and V;, C U,
(Lemma 31.1).

Problem 2 Almost identical to the previous one.

Problem 5 We show that the complement is open. Suppose that f(z) # g(z) for some
z € X. Since Y is Hausdorff there are disjoint open sets Uy (,) and Ugy(,) in Y. Then f_l(Uf(z))

and g~ (U,

9(z)) are open subsets in X and so

Wo = Upy) Ng  (Uyy) # 0
is an open set containing x, and we have that f(y) # g(y) for all y € W,.

§32

Problem 1

Let X be normal and Y C X closed. Suppose that A, B C Y are closed and disjoint. Since
Y is closed we have that A and B are also closed in X. So there are disjoint open sets U4 and
Up in X; so Ualy and Upgly are open sets in Y that separates A and B.

Problem 8

(a) Note that we have shown that such intervals are connected. Let xy € U. Assume first
that there is a point y € C with y > x¢. Then the set

{xeC:x>ux}

is a nonempty set which is bounded from below, and so it has a greatest lower bound ¢’.
Then for any d > ¢ there has to be a point z € C with ¢ < x < d, otherwise ¢/ would
not be a greatest lower bound (since there are points ¢’ < x < d), and since C' is closed,
it follows that ¢’ € C. If there is a point € C with x < ¢, a similar argument applies
to show that there exists ¢ € C such that (¢, ¢’) C X\ C; such an interval is a component
of X \ C. If there is no such z it follows that (—oo, ) is a component. Finally, if there
were no x € C with x > zy there would have to be some x € C with x < x¢, and a
similar argument would show that (¢, 00) is a component for some ¢ € C.

(b) Assume that 29 € C'\ C. Then z¢ ¢ X \ (AU B), since any component contains at most
one point from C', and this point is by assumption not xg. Without loss of generality
we may then assume zg € A, and we note that z¢ ¢ int(A). Now for any interval (a,b)
containing x( there exists some cy € (a,b), and ey € (¢,¢’) which is a component of
X \ (AU B). We then have that (i) ¢ < ¢ < xg or (ii) zg < ¢ < ¢. Without loss of
generality we may assume that we always are in the case (i); for if there exists an interval
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(a,b) such that there is no interval of case (i), for any subinterval we would be in case
(7). We now claim that there cannot exist e < xg such that ¢ is always less than e, for
if so (e, xg) would be contained in a component which could only contain one single cyy.
So for any e < x( there exist points x from both A and B with e < z < x(, and it would
follow that o € B; a contradiction.

We first show that C is nonempty. Let a € A. Without loss of generality we assume
that there exists a point b € B with b > a. Then the set

{reB:x>a}

in nonempty, it has a greater lower bound b, which is contained in B since B is closed.
Applying a similar argument we may assume that a is the smallest upper bound for all
x € A with z < b, and so W = (a,b) is a component which contains a xy . Finally,
if an interval (cw,, cy,) contains points from both A and B, a similar argument would
produce an interval W C (cw,, e, ) containing some cyy; a contradiction.

§33

Problem 2

(a)

Let X be a normal countable space with at least two points z; and z2. By Urysohn’s
Lemma there exists a continuous function f : X — [0,1] such that f(xzo) = 0 and
f(x1) = 1. If X is also connected it follows from the intermediate value theorem that for
each a € [0,1] there exists x € X with f(x) = a, so since [0,1] is uncountable we have
that X is uncountable.

Suppose that X is regular. We will show that if X is countable, then X is not connected.
If X is a finite set, then each point is open, so we are done. So assume now that X
is countably infinite, such that X = {w,},ez, with the x,’s pairwise disjoint Start by
choosing two open sets Ui and U} containing x; and zg respectively, and such that
ULNU} = 0. Assume now that for n € Z we have constructed open sets U*, UL, ..., U
whose closures U;‘ are pairwise disjoint, and the for each j < n we have that z; € U}
for some k.

If there are no points x,, with m > n such that x,, is not contained in U}’ for some
k we are done proving that X is not connected. Otherwise choose the smallest m > n
such that x,, is not contained in U]’ for some k. There are now two possibilities. If
T € Ul? choose an open set V containing z,, and such that V N U b for all j # k. Set
U,?H = U UV and set U]’f‘“ = U} for j # k. Now the (_]Z-"H’s are pairwise disjoint.
The other possibility is that x,, ¢ (7,? for all k. In that case let U;‘lill be an open set
containing x,, such that U;;fl N U,? = () for k = 1,...,m, and relabel the U}'’s by U,?H
fork=1,...,m.

Now for each k € Z that appears in the construction (at least k£ = 1,2 appears) we set
Uk = Up>nk)Uy (the N (k) depends on when U,iv(k) first appears in the construction).
Then the Uy’s are pairwise disjoint open sets, and by the construction we have that {Uy}
covers X. Since x1 € Uy and x5 € Uy this shows that X is not connected.
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Problem 4 Suppose first that such a function exists. Then we may set U, = {x € X : f(x) <
%}, and we see that A = N,U,.

Suppose next that A is a Gy set, and let {Up},ez, be collection of open sets such that
A =N,U,. Since X is normal, for each n € Z, there exists by Urysohn’s Lemma a continuous
function f, : X — [0,27"] such that f(z) = 0 for all x € A and such that f(z) = 27" for all
x € X \ Uy,. Then

f(@)=7 falz)
n=1

converges uniformly to a desired continuous function.

§34

Problem 1 Consider Example 1 on page 197: the space Ry is Hausdorff but not regular.
It also has a countable base for the topology since you can consider all intervals (p,q) with
p < ¢q,p,q € Qand also all (p,q)\ K. This space is certainly not metrizable, since a metric space
is even normal.

Problem 3 If X is a compact Hausdorff space, then it is automatically normal. So if it has
a countable base it follows from the metrization theorem that it is metrizable.

Assume then that X is metrizable, i.e., we may equip X with a metric d which induces the
topology on X. Then we have seen in class that if we for each n € Z, choose a collection

15 By of balls of radius 1/n that covers X we get that B = { B’} is a basis for the topology,
and this family is countable.

§35

Problem 1 For two disjoint closed sets A, B C define a continuous function f : AUB — [0, 1]
by setting f(z) =0 for all x € A and f(z) =1 for all x € B. Since B is closed we have that A
is an open set in the subspace topology and vice versa, so f~!(a,b) is either A or B or AU B
or ), for any interval (a,b), and these are all open sets. By Tietze extension theorem we may
extend f to a function on all of X.



