SUGGESTED SOLUTIONS - §31 – §35

§31

Problem 1 Let $x, y \in X$ with $x \neq y$. Since X is regular (and so also Hausdorff) there exist disjoint open sets U_x and U_y . Further there exist open sets V_x and V_y with $\bar{V_x} \subset U_x$ and $\bar{V}_y \subset U_y$ (Lemma 31.1).

Problem 2 Almost identical to the previous one.

Problem 5 We show that the complement is open. Suppose that $f(x) \neq g(x)$ for some $x \in X$. Since Y is Hausdorff there are disjoint open sets $U_{f(x)}$ and $U_{g(x)}$ in Y. Then $f^{-1}(U_{f(x)})$ and $g^{-1}(U_{g(x)})$ are open subsets in X and so

$$
W_x = f^{-1}(U_{f(x)}) \cap g^{-1}(U_{g(x)}) \neq \emptyset
$$

is an open set containing x, and we have that $f(y) \neq g(y)$ for all $y \in W_x$.

§32

Problem 1

Let X be normal and $Y \subset X$ closed. Suppose that $A, B \subset Y$ are closed and disjoint. Since Y is closed we have that A and B are also closed in X. So there are disjoint open sets U_A and U_B in X; so $U_A|_Y$ and $U_B|_Y$ are open sets in Y that separates A and B.

Problem 8

(a) Note that we have shown that such intervals are connected. Let $x_0 \in U$. Assume first that there is a point $y \in C$ with $y > x_0$. Then the set

$$
\{x \in C : x > x_0\}
$$

is a nonempty set which is bounded from below, and so it has a greatest lower bound c' . Then for any $d > c'$ there has to be a point $x \in C$ with $c' \leq x < d$, otherwise c' would not be a greatest lower bound (since there are points $c' < x < d$), and since C is closed, it follows that $c' \in C$. If there is a point $x \in C$ with $x < x_0$, a similar argument applies to show that there exists $c \in C$ such that $(c, c') \subset X \setminus C$; such an interval is a component of $X \setminus C$. If there is no such x it follows that $(-\infty, c')$ is a component. Finally, if there were no $x \in C$ with $x > x_0$ there would have to be some $x \in C$ with $x < x_0$, and a similar argument would show that (c, ∞) is a component for some $c \in C$.

(b) Assume that $x_0 \in C \setminus C$. Then $x_0 \notin X \setminus (A \cup B)$, since any component contains at most one point from C , and this point is by assumption not x_0 . Without loss of generality we may then assume $x_0 \in A$, and we note that $x_0 \notin \text{int}(A)$. Now for any interval (a, b) containing x_0 there exists some $c_W \in (a, b)$, and $c_W \in (c, c')$ which is a component of $X \setminus (A \cup B)$. We then have that (i) $c < c' < x_0$ or (ii) $x_0 < c < c'$. Without loss of generality we may assume that we always are in the case (i) ; for if there exists an interval

 (a, b) such that there is no interval of case (i) , for any subinterval we would be in case (*ii*). We now claim that there cannot exist $e < x_0$ such that c is always less than e, for if so (e, x_0) would be contained in a component which could only contain one single c_W . So for any $e < x_0$ there exist points x from both A and B with $e < x < x_0$, and it would follow that $x_0 \in \overline{B}$; a contradiction.

(c) We first show that C is nonempty. Let $a \in A$. Without loss of generality we assume that there exists a point $b \in B$ with $b > a$. Then the set

$$
\{x \in B : x > a\}
$$

in nonempty, it has a greater lower bound b , which is contained in B since B is closed. Applying a similar argument we may assume that a is the smallest upper bound for all $x \in A$ with $x < b$, and so $W = (a, b)$ is a component which contains a x_W . Finally, if an interval (c_{W_1}, c_{W_2}) contains points from both A and B, a similar argument would produce an interval $W \subset (c_{W_1}, c_{W_2})$ containing some c_W ; a contradiction.

§33

Problem 2

- (a) Let X be a normal countable space with at least two points x_1 and x_2 . By Urysohn's Lemma there exists a continuous function $f: X \to [0,1]$ such that $f(x_0) = 0$ and $f(x_1) = 1$. If X is also connected it follows from the intermediate value theorem that for each $a \in [0, 1]$ there exists $x \in X$ with $f(x) = a$, so since $[0, 1]$ is uncountable we have that X is uncountable.
- (b) Suppose that X is regular. We will show that if X is countable, then X is not connected. If X is a finite set, then each point is open, so we are done. So assume now that X is countably infinite, such that $X = \{x_n\}_{n \in \mathbb{Z}_+}$ with the x_n 's pairwise disjoint Start by choosing two open sets U_1^1 and U_2^1 containing x_1 and x_2 respectively, and such that $\bar{U}_1^1 \cap \bar{U}_2^1 = \emptyset$. Assume now that for $n \in \mathbb{Z}_+$ we have constructed open sets $U_1^n, U_2^n, ..., U_m^n$ whose closures \bar{U}_j^n are pairwise disjoint, and the for each $j \leq n$ we have that $x_j \in U_k^n$ for some k.

If there are no points x_m with $m > n$ such that x_m is not contained in U_k^n for some k we are done proving that X is not connected. Otherwise choose the smallest $m > n$ such that x_m is not contained in U_k^n for some k. There are now two possibilities. If $x_m \in \bar{U}_k^n$ choose an open set V containing x_m and such that $\bar{V} \cap \bar{U}_j^n$ for all $j \neq k$. Set $U_k^{n+1} = U_k^n \cup V$ and set $U_j^{n+1} = U_j^n$ for $j \neq k$. Now the \bar{U}_i^{n+1} 's are pairwise disjoint. The other possibility is that $x_m \notin \overline{U}_k^n$ for all k. In that case let U_{m+1}^{n+1} be an open set containing x_m such that $\bar{U}_{m+1}^{n+1} \cap \bar{U}_k^n = \emptyset$ for $k = 1, ..., m$, and relabel the U_k^n 's by U_k^{n+1} k for $k = 1, ..., m$.

Now for each $k \in \mathbb{Z}_+$ that appears in the construction (at least $k = 1, 2$ appears) we set $U_k = \bigcup_{n \ge N(k)} U_k^n$ (the $N(k)$ depends on when $U_k^{N(k)}$ $\frac{f_1}{k}$ first appears in the construction). Then the U_k 's are pairwise disjoint open sets, and by the construction we have that $\{U_k\}$ covers X. Since $x_1 \in U_1$ and $x_2 \in U_2$ this shows that X is not connected.

Problem 4 Suppose first that such a function exists. Then we may set $U_n = \{x \in X : f(x)$ 1 $\frac{1}{n}$, and we see that $A = \bigcap_n U_n$.

Suppose next that A is a G_{δ} set, and let $\{U_n\}_{n\in\mathbb{Z}_+}$ be collection of open sets such that $A = \bigcap_n U_n$. Since X is normal, for each $n \in \mathbb{Z}_+$ there exists by Urysohn's Lemma a continuous function $f_n: X \to [0, 2^{-n}]$ such that $f(x) = 0$ for all $x \in A$ and such that $f(x) = 2^{-n}$ for all $x \in X \setminus U_n$. Then

$$
f(x) = \sum_{n=1}^{\infty} f_n(x)
$$

converges uniformly to a desired continuous function.

§34

Problem 1 Consider Example 1 on page 197: the space \mathbb{R}_K is Hausdorff but not regular. It also has a countable base for the topology since you can consider all intervals (p, q) with $p < q, p, q \in \mathbb{Q}$ and also all $(p, q) \setminus K$. This space is certainly not metrizable, since a metric space is even normal.

Problem 3 If X is a compact Hausdorff space, then it is automatically normal. So if it has a countable base it follows from the metrization theorem that it is metrizable.

Assume then that X is metrizable, i.e., we may equip X with a metric d which induces the topology on X. Then we have seen in class that if we for each $n \in \mathbb{Z}_+$ choose a collection $B_1^n, ..., B_{k_n}^n$ of balls of radius $1/n$ that covers X we get that $\mathcal{B} = \{B_k^n\}$ is a basis for the topology, and this family is countable.

§35

Problem 1 For two disjoint closed sets $A, B \subset$ define a continuous function $f : A \cup B \to [0, 1]$ by setting $f(x) = 0$ for all $x \in A$ and $f(x) = 1$ for all $x \in B$. Since B is closed we have that A is an open set in the subspace topology and vice versa, so $f^{-1}(a, b)$ is either A or B or $A \cup B$ or \emptyset , for any interval (a, b) , and these are all open sets. By Tietze extension theorem we may extend f to a function on all of X .