
SUGGESTED SOLUTIONS - §31− §35

§31

Problem 1 Let x, y ∈ X with x 6= y. Since X is regular (and so also Hausdorff) there exist
disjoint open sets Ux and Uy. Further there exist open sets Vx and Vy with V̄x ⊂ Ux and V̄y ⊂ Uy
(Lemma 31.1).

Problem 2 Almost identical to the previous one.

Problem 5 We show that the complement is open. Suppose that f(x) 6= g(x) for some
x ∈ X. Since Y is Hausdorff there are disjoint open sets Uf(x) and Ug(x) in Y . Then f−1(Uf(x))

and g−1(Ug(x)) are open subsets in X and so

Wx = f−1(Uf(x)) ∩ g−1(Ug(x)) 6= ∅
is an open set containing x, and we have that f(y) 6= g(y) for all y ∈Wx.

§32

Problem 1
Let X be normal and Y ⊂ X closed. Suppose that A,B ⊂ Y are closed and disjoint. Since

Y is closed we have that A and B are also closed in X. So there are disjoint open sets UA and
UB in X; so UA|Y and UB|Y are open sets in Y that separates A and B.

Problem 8

(a) Note that we have shown that such intervals are connected. Let x0 ∈ U . Assume first
that there is a point y ∈ C with y > x0. Then the set

{x ∈ C : x > x0}
is a nonempty set which is bounded from below, and so it has a greatest lower bound c′.
Then for any d > c′ there has to be a point x ∈ C with c′ ≤ x < d, otherwise c′ would
not be a greatest lower bound (since there are points c′ < x < d), and since C is closed,
it follows that c′ ∈ C. If there is a point x ∈ C with x < x0, a similar argument applies
to show that there exists c ∈ C such that (c, c′) ⊂ X \C; such an interval is a component
of X \ C. If there is no such x it follows that (−∞, c′) is a component. Finally, if there
were no x ∈ C with x > x0 there would have to be some x ∈ C with x < x0, and a
similar argument would show that (c,∞) is a component for some c ∈ C.

(b) Assume that x0 ∈ C̄ \C. Then x0 /∈ X \ (A∪B), since any component contains at most
one point from C, and this point is by assumption not x0. Without loss of generality
we may then assume x0 ∈ A, and we note that x0 /∈ int(A). Now for any interval (a, b)
containing x0 there exists some cW ∈ (a, b), and cW ∈ (c, c′) which is a component of
X \ (A ∪ B). We then have that (i) c < c′ < x0 or (ii) x0 < c < c′. Without loss of
generality we may assume that we always are in the case (i); for if there exists an interval
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(a, b) such that there is no interval of case (i), for any subinterval we would be in case
(ii). We now claim that there cannot exist e < x0 such that c is always less than e, for
if so (e, x0) would be contained in a component which could only contain one single cW .
So for any e < x0 there exist points x from both A and B with e < x < x0, and it would
follow that x0 ∈ B̄; a contradiction.

(c) We first show that C is nonempty. Let a ∈ A. Without loss of generality we assume
that there exists a point b ∈ B with b > a. Then the set

{x ∈ B : x > a}

in nonempty, it has a greater lower bound b, which is contained in B since B is closed.
Applying a similar argument we may assume that a is the smallest upper bound for all
x ∈ A with x < b, and so W = (a, b) is a component which contains a xW . Finally,
if an interval (cW1 , cW2) contains points from both A and B, a similar argument would
produce an interval W ⊂ (cW1 , cW2) containing some cW ; a contradiction.

§33

Problem 2

(a) Let X be a normal countable space with at least two points x1 and x2. By Urysohn’s
Lemma there exists a continuous function f : X → [0, 1] such that f(x0) = 0 and
f(x1) = 1. If X is also connected it follows from the intermediate value theorem that for
each a ∈ [0, 1] there exists x ∈ X with f(x) = a, so since [0, 1] is uncountable we have
that X is uncountable.

(b) Suppose that X is regular. We will show that if X is countable, then X is not connected.
If X is a finite set, then each point is open, so we are done. So assume now that X
is countably infinite, such that X = {xn}n∈Z+ with the xn’s pairwise disjoint Start by

choosing two open sets U1
1 and U1

2 containing x1 and x2 respectively, and such that
Ū1
1 ∩ Ū1

2 = ∅. Assume now that for n ∈ Z+ we have constructed open sets Un
1 , U

n
2 , ..., U

n
m

whose closures Ūn
j are pairwise disjoint, and the for each j ≤ n we have that xj ∈ Un

k
for some k.

If there are no points xm with m > n such that xm is not contained in Un
k for some

k we are done proving that X is not connected. Otherwise choose the smallest m > n
such that xm is not contained in Un

k for some k. There are now two possibilities. If
xm ∈ Ūn

k choose an open set V containing xm and such that V̄ ∩ Ūn
j for all j 6= k. Set

Un+1
k = Un

k ∪ V and set Un+1
j = Un

j for j 6= k. Now the Ūn+1
i ’s are pairwise disjoint.

The other possibility is that xm /∈ Ūn
k for all k. In that case let Un+1

m+1 be an open set

containing xm such that Ūn+1
m+1 ∩ Ūn

k = ∅ for k = 1, ...,m, and relabel the Un
k ’s by Un+1

k
for k = 1, ...,m.

Now for each k ∈ Z+ that appears in the construction (at least k = 1, 2 appears) we set

Uk = ∪n≥N(k)U
n
k (the N(k) depends on when U

N(k)
k first appears in the construction).

Then the Uk’s are pairwise disjoint open sets, and by the construction we have that {Uk}
covers X. Since x1 ∈ U1 and x2 ∈ U2 this shows that X is not connected.
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Problem 4 Suppose first that such a function exists. Then we may set Un = {x ∈ X : f(x) <
1
n}, and we see that A = ∩nUn.

Suppose next that A is a Gδ set, and let {Un}n∈Z+ be collection of open sets such that
A = ∩nUn. Since X is normal, for each n ∈ Z+ there exists by Urysohn’s Lemma a continuous
function fn : X → [0, 2−n] such that f(x) = 0 for all x ∈ A and such that f(x) = 2−n for all
x ∈ X \ Un. Then

f(x) =

∞∑
n=1

fn(x)

converges uniformly to a desired continuous function.

§34

Problem 1 Consider Example 1 on page 197: the space RK is Hausdorff but not regular.
It also has a countable base for the topology since you can consider all intervals (p, q) with
p < q, p, q ∈ Q and also all (p, q)\K. This space is certainly not metrizable, since a metric space
is even normal.

Problem 3 If X is a compact Hausdorff space, then it is automatically normal. So if it has
a countable base it follows from the metrization theorem that it is metrizable.

Assume then that X is metrizable, i.e., we may equip X with a metric d which induces the
topology on X. Then we have seen in class that if we for each n ∈ Z+ choose a collection
Bn

1 , ..., B
n
kn

of balls of radius 1/n that covers X we get that B = {Bn
k } is a basis for the topology,

and this family is countable.

§35

Problem 1 For two disjoint closed sets A,B ⊂ define a continuous function f : A∪B → [0, 1]
by setting f(x) = 0 for all x ∈ A and f(x) = 1 for all x ∈ B. Since B is closed we have that A
is an open set in the subspace topology and vice versa, so f−1(a, b) is either A or B or A ∪ B
or ∅, for any interval (a, b), and these are all open sets. By Tietze extension theorem we may
extend f to a function on all of X.


