UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: \quad MAT3500/MAT4500 - Topology
Day of examination: January 14th 2022
Examination hours: 9:00-13:00
This problem set consists of 2 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 (weight 30\%)

Complete the following definitions, where X and Y are topological spaces.
(a) A neighborhood of a point $x \in X$ is ...
(b) A function $f: X \rightarrow Y$ is continuous if ...
(c) A (nonempty) space X is connected if ...
(d) A space X is first-countable if
(e) A space X is normal if
(f) An m-dimensional manifold X is

Problem 2 (weight 10\%)

Give precise statements of the following results.
(a) The Lebesgue number lemma.
(b) The Tychonoff theorem.

Problem 3 (weight 10\%)

Let A and B be compact subspaces of a Hausdorff space X.
(a) Prove that $A \cap B$ is compact in the subspace topology from X.

Problem 4 (weight 20\%)

Let $p: E \rightarrow B$ be a covering map. Suppose that E is nonempty and path connected, and suppose that B is simply-connected.
(a) Prove that p is a bijection.
(b) Is p a homeomorphism? Justify your answer.

Problem 5 (weight 30\%)

Let X be a topological space. For each equivalence relation $R \subset X \times X$ let X / R be the set of R-equivalence classes in X, and let $q_{R}: X \rightarrow X / R$ be the canonical quotient map. We say that R is good if the quotient space X / R is Hausdorff.
(a) Is it true that each subspace of the product space

$$
Y=\prod_{R \text { is good }} X / R
$$

is Hausdorff? Justify your answer.
Let $f: X \longrightarrow Y$ be the function with $\pi_{R} \circ f=q_{R}$ for each good R, where $\pi_{R}: Y \rightarrow X / R$ is the R-th projection mapping. Let $Z=f(X)$ be its image, with the subspace topology from Y.
(b) Prove that the corestricted function $g: X \rightarrow Z$, given by $g(x)=f(x)$ for each $x \in X$, is a continuous surjection with Hausdorff image.
(c) Prove that $g: X \rightarrow Z$ is a quotient map.

