UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:
MAT3500/MAT4500 - Topology
Day of examination: December 8th 2021
Examination hours: 15:00-19:00
This problem set consists of 2 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 (weight 30\%)

Complete the following definitions.
(a) A basis for a topology on a set X is a collection
(b) The closure of a subset A of a space X is
(c) A homeomorphism $f: X \rightarrow Y$ is \ldots.
(d) A space X is locally connected if \ldots.
(e) A space X is compact if \ldots.
(f) A space X is regular if

Problem 2 (weight 10\%)

Give precise statements of the following results.
(a) The Urysohn Lemma.
(b) The Urysohn Metrization Theorem.

Problem 3 (weight 30\%)

Give \mathbb{R} the usual metric topology, give \mathbb{R}^{4} the product topology, and give

$$
X=\left\{(a, b, c, d) \in \mathbb{R}^{4} \mid a d-b c=1\right\}
$$

the subspace topology. Consider the open subspaces

$$
\begin{aligned}
& A=\{(a, b, c, d) \in X \mid a \neq 0\} \\
& B=\{(a, b, c, d) \in X \mid b \neq 0\} .
\end{aligned}
$$

(a) Show that A and B are both homeomorphic to open subsets of \mathbb{R}^{3}.
(b) Is X is a 3 -dimensional manifold? Justify your answer.
(c) Is X compact? Justify your answer.

Problem 4 (weight 10\%)

Let $\mathbb{C} \cong \mathbb{R}^{2}$ have the usual metric topology, let $D^{2}=\{z \in \mathbb{C}| | z \mid \leq 1\}$ be the unit disc, and let $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ be the unit circle. Let

$$
f: D^{2} \longrightarrow \mathbb{C}
$$

be a continuous function, and suppose that $f(z)=z$ for each $z \in S^{1}$.
(a) Show that $f(w)=0$ for some $w \in D^{2}$.

Problem 5 (weight 20\%)

Let $p: E \rightarrow B$ be a surjective quotient map, with B connected. Suppose for each $b \in B$ that $F_{b}=p^{-1}(b)$ is connected in the subspace topology from E.
(a) Show that if U, V is a separation of E then $p^{-1}(p(U))=U$. Point out where you use that each F_{b} is connected.
(b) Show that E is connected. Point out where you use that p is a quotient map, that p is surjective, and that B is connected.

