UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT3500/MAT4500 — Topology
Day of examination:	December 8th 2021
Examination hours:	15:00-19:00
This problem set consists of 2 pages.	
Appendices:	None
Permitted aids:	None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 (weight 30%)

Complete the following definitions.

- (a) A *basis* for a topology on a set X is a collection
- (b) The *closure* of a subset A of a space X is
- (c) A homeomorphism $f: X \to Y$ is
- (d) A space X is *locally connected* if \ldots
- (e) A space X is *compact* if
- (f) A space X is regular if

Problem 2 (weight 10%)

Give precise statements of the following results.

- (a) The Urysohn Lemma.
- (b) The Urysohn Metrization Theorem.

Problem 3 (weight 30%)

Give \mathbb{R} the usual metric topology, give \mathbb{R}^4 the product topology, and give

$$X = \{ (a, b, c, d) \in \mathbb{R}^4 \mid ad - bc = 1 \}.$$

the subspace topology. Consider the open subspaces

$$A = \{(a, b, c, d) \in X \mid a \neq 0\}$$
$$B = \{(a, b, c, d) \in X \mid b \neq 0\}.$$

- (a) Show that A and B are both homeomorphic to open subsets of \mathbb{R}^3 .
- (b) Is X is a 3-dimensional manifold? Justify your answer.
- (c) Is X compact? Justify your answer.

(Continued on page 2.)

Problem 4 (weight 10%)

Let $\mathbb{C} \cong \mathbb{R}^2$ have the usual metric topology, let $D^2 = \{z \in \mathbb{C} \mid |z| \le 1\}$ be the unit disc, and let $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ be the unit circle. Let

 $f\colon D^2\longrightarrow \mathbb{C}$

be a continuous function, and suppose that f(z) = z for each $z \in S^1$.

(a) Show that f(w) = 0 for some $w \in D^2$.

Problem 5 (weight 20%)

Let $p: E \to B$ be a surjective quotient map, with B connected. Suppose for each $b \in B$ that $F_b = p^{-1}(b)$ is connected in the subspace topology from E.

(a) Show that if U, V is a separation of E then $p^{-1}(p(U)) = U$. Point out where you use that each F_b is connected.

(b) Show that E is connected. Point out where you use that p is a quotient map, that p is surjective, and that B is connected.

- END -