SAMPLE SOLUTIONS FOR MAT3500/MAT4500 FINAL EXAM, AUTUMN 2021

Problem 1

(a) A basis for a topology on a set X is a collection \mathcal{B} of subsets of X such that (1) for each $x \in X$ there is a $B \in \mathcal{B}$ with $x \in B$, and (2) for any two $B_{1}, B_{2} \in \mathcal{B}$ and any $x \in B_{1} \cap B_{2}$ there is a $B_{3} \in \mathcal{B}$ with $x \in B_{3} \subset B_{1} \cap B_{2}$.
(b) The closure of a subset A of a topological space X is the intersection of all the closed subset that contain A.
(c) A homeomorphism $f: X \rightarrow Y$ is a continuous bijection such that the inverse function $f^{-1}: Y \rightarrow X$ is also continuous.
(d) A space X is locally connected if for each $x \in X$ and each neighborhood U of x there is a connected neighborhood V of x with $V \subset U$.
(e) A space X is compact if for each open cover $\mathcal{C}=\left\{U_{\alpha}\right\}_{\alpha \in J}$ of X there exists a finite subcover $\mathcal{F}=\left\{U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}\right\}$ of \mathcal{C}.
(f) A space X is regular if each singleton set $\{x\}$ is closed, and if for each $x \in X$ and closed subset $B \subset X$ with $x \notin B$ there are disjoint open subsets $U, V \subset X$ with $x \in U$ and $B \subset V$.

Problem 2

(a) The Urysohn Lemma: Let X be a normal space, and let $A, B \subset X$ be disjoint closed subset. Then there exists a continuous function $f: X \rightarrow[0,1]$ such that $f(x)=0$ for all $x \in A$ and $f(x)=1$ for all $x \in B$.
(b) The Urysohn Metrization Theorem: Let X be a regular and secondcountable space. Then X is metrizable.

Problem 3

(a) Let $h: A \rightarrow(\mathbb{R}-\{0\}) \times \mathbb{R} \times \mathbb{R}$ be given by $h(a, b, c, d)=(a, b, c)$, with inverse $h^{-1}(a, b, c)=(a, b, c,(b c+1) / a)$. Each of these is continuous, because each component function is continuous (since $a \neq 0$). Hence h is a homeomorphism from A to the open subset $(\mathbb{R}-\{0\}) \times \mathbb{R} \times \mathbb{R}$ of \mathbb{R}^{3}.
Let $k: B \rightarrow \mathbb{R} \times(\mathbb{R}-\{0\}) \times \mathbb{R}$ be given by $k(a, b, c, d)=(a, b, d)$, with inverse $k^{-1}(a, b, d)=(a, b,(a d-1) / b, d)$. Each of these is continuous, because each component function is continuous (since $b \neq 0$). Hence k is a homeomorphism from B to the open subset $\mathbb{R} \times(\mathbb{R}-\{0\}) \times \mathbb{R}$ of \mathbb{R}^{3}.
(b) Yes, X is a 3 -manifold. It is second-countable and Hausdorff because it is a subspace of the second-countable and Hausdorff space \mathbb{R}^{4}, and it is locally homeomorphic to \mathbb{R}^{3} by (a). This uses that $A \cup B=X$, which holds because there are no points $(a, b, c, d) \in X$ with both $a=0$ and $b=0$.
(c) No, X is not compact. The function $f: X \rightarrow \mathbb{R}$ given by $f(a, b, c, d)=b$ is continuous. If X were compact, then its image $f(X)$ would be compact. However, f is surjective, since $(1, b, 0,1) \in X$ for all $b \in \mathbb{R}$, so $f(X)=\mathbb{R}$ in the metric topology, which is not compact.

Problem 4

(a) If $f(w) \neq 0$ for all $w \in D^{2}$, then

$$
r(z)=\frac{f(z)}{|f(z)|}
$$

defines a continuous function $r: D^{2} \rightarrow S^{1}$ with $r(z)=z / 1=z$ for each $z \in S^{1}$. Then $r \circ i=i d$, where $i: S^{1} \rightarrow D^{2}$ is the inclusion. Hence the composition

$$
\pi_{1}\left(S^{1}, 1\right) \xrightarrow{i_{*}} \pi_{1}\left(D^{2}, 1\right) \xrightarrow{r_{*}} \pi_{1}\left(S^{1}, 1\right)
$$

is the identity. However, this is impossible, since $\pi_{1}\left(S^{1}, 1\right)$ is nontrivial (an infinite cyclic group) and $\pi_{1}\left(D^{2}, 1\right)$ is the trivial group. Hence $f(w)=0$ for some $w \in D^{2}$.

Problem 5

(a) If $x \in U$ then $p(x) \in p(U)$ so $x \in p^{-1}(p(U))$. Hence $U \subset p^{-1}(p(U))$, with no assumption on U.
If U, V is a separation of E, then U is open and closed in E. For each $b \in B$ the intersection $F_{b} \cap U$ is then open and closed in $F_{b}=p^{-1}(b)$. Since F_{b} is connected, we must have $F_{b} \cap U=\emptyset$ or $F_{b} \cap U=F_{b}$.
Suppose that $x \in p^{-1}(p(U))$. Then $p(x) \in p(U)$, so that $p(x)=p(y)$ for some $y \in U$. Let $b=p(y)$. Then $y \in U$ and $y \in F_{b}$, so $F_{b} \cap U \neq \emptyset$. The only alternative is $F_{b} \cap U=F_{b}$. From $x \in F_{b}=F_{b} \cap U$, we deduce $x \in U$, so that $p^{-1}(p(U)) \subset U$. Hence $p^{-1}(p(U))=U$, as required.
(b) Suppose that U, V is a separation of E. Then U is open in E, and $p^{-1}(p(U))=U$ by (a). Since p is a quotient map, it follows that $p(U)$ is open in B. The same argument, with V in place of U, shows that $p(V)$ is open in B.
The union $p(U) \cup p(V)=p(U \cup V)=p(E)$ is equal to B, because p is surjective.
The intersection $p(U) \cap p(V)$ is empty, because otherwise there is a point $p(z) \in p(U)$ with $z \in V$. Then $z \in p^{-1}(p(U))=U$, so $z \in U \cap V$. But U and V are disjoint.
Hence $p(U), p(V)$ is a separation of B. Since B is connected, this cannot happen. Hence no separation of E exists, so E is connected.

