SAMPLE SOLUTIONS FOR MANDATORY ASSIGNMENT MAT3500/MAT4500, AUTUMN 2021

1 (a): Since $Y \subset \mathbb{C}^{3}$ is a subspace, and $\mathbb{C}^{3}=\mathbb{C} \times \mathbb{C} \times \mathbb{C}$ is a product space, $f: X \rightarrow Y$ is continuous if and only if each of the composites

$$
f_{i}: X \xrightarrow{f} Y \subset \mathbb{C}^{3} \xrightarrow{\pi_{i}} \mathbb{C}
$$

are continuous, for $i \in\{1,2,3\}$. Here

$$
f_{1}(a, b, c)=a, \quad f_{2}(a, b, c)=b-a \quad \text { and } \quad f_{3}(a, b, c)=(c-a) /(b-a)
$$

are restrictions of rational functions, which are known to be continuous on the subspaces of \mathbb{C}^{3} where they are defined, which contain X. Hence each f_{i} is continuous.

Solving $f(a, b, c)=(a, b-a,(c-a) /(b-a))=(x, y, z)$ for (a, b, c) gives $a=x, b=x+y$ and $c=x+y z$, so we define $g: Y \rightarrow X$ by

$$
g(x, y, z)=(x, x+y, x+y z)
$$

For $(x, y, z) \in Y$ we have $y \neq 0$ and $z \notin\{0,1\}$, which implies $x \neq x+y, x+y \neq x+y z$ and $x+y z \neq x$. Hence g is well-defined as a function to X. Moreover,
$g(f(a, b, x))=g(a, b-a,(c-a) /(b-a))=(a, a+(b-a), a+(b-a)(c-a) /(b-a))=(a, b, c)$
$f(g(x, y, z))=f(x, x+y, x+y z)=(x, x+y-x,(x+y z-x) /(x+y-x))=(x, y, z)$,
so $g f=1_{X}$ and $f g=1_{Y}$. Hence g is inverse to f.
Since $X \subset \mathbb{C}^{3}$ is a subspace, and $\mathbb{C}^{3}=\mathbb{C} \times \mathbb{C} \times \mathbb{C}$ is a product space, $g: Y \rightarrow X$ is continuous if and only if each of the composites

$$
g_{i}: Y \xrightarrow{g} X \subset \mathbb{C}^{3} \xrightarrow{\pi_{i}} \mathbb{C}
$$

are continuous, for $i \in\{1,2,3\}$. Here

$$
g_{1}(x, y, z)=x, \quad g_{2}(x, y, z)=x+y \quad \text { and } \quad g_{3}(x, y, z)=x+y z
$$

are restrictions of polynomials, which are known to be continuous on \mathbb{C}^{3}, to the subspace Y. Hence each g_{i} is continuous.

1(b): The condition $|b-a| \neq|c-b| \neq|a-c| \neq|b-a|$ for a point $(a, b, c) \in X$ to lie in A is equivalent to the condition

$$
|x+y-x| \neq|x+y z-(x+y)| \neq|x-(x+y z)| \neq|x+y-x|
$$

for the corresponding point $(x, y, z)=f(a, b, c)$ in Y to lie in $f(A)=B$, since $(a, b, c)=$ $g(x, y, z)=(x, x+y, x+y z)$. This simplifies to

$$
|y| \neq|y||z-1| \neq|y||z| \neq|y|
$$

which is equivalent to the combined conditions

$$
|y| \neq 0 \quad \text { and } \quad 1 \neq|z-1| \neq|z| \neq 1
$$

Hence $(x, y, z) \in B$ if and only if $y \neq 0$ and

$$
z \in Z=\{z \in \mathbb{C}|1 \neq|z-1| \neq|z| \neq 1\}
$$

We note that $0,1 \notin Z$, so $Z \subset \mathbb{C}-\{0,1\}$. Thus $B=\mathbb{C} \times(\mathbb{C}-\{0\}) \times Z$, with Z equal to the complement of the two circles and one vertical line shown below.

1(c): A homeomorphism induces a bijection between the sets of components, so A and B have the same number of components. The projection $\pi_{3}: B \rightarrow Z$ maps each component of B to a component of Z, and for each component $K \subset Z$ the preimage $\pi_{3}^{-1}(K)=\mathbb{C} \times(\mathbb{C}-\{0\}) \times K$ is connected, since \mathbb{C} and $\mathbb{C}-\{0\}$ are connected, and a product of connected spaces is connected. Hence B and Z have the same number of components. Inspection of the figure shows that Z has six components.

2(a): Let $j: Z \rightarrow Z$ denote the identity function. By the universal property of the subspace topology, $j p: X \rightarrow\left(Z, \mathcal{T}_{2}\right)$ is continuous because $f=i \circ j p: X \rightarrow Y$ is continuous. By the universal property of the quotient topology, $j:\left(Z, \mathcal{T}_{1}\right) \rightarrow\left(Z, \mathcal{T}_{2}\right)$ is continuous because $j \circ p: X \rightarrow$ $\left(Z, \mathcal{T}_{2}\right)$ is continuous. Hence $U \in \mathcal{T}_{2}$ implies $U=j^{-1}(U) \in \mathcal{T}_{1}$, so \mathcal{T}_{1} is finer than \mathcal{T}_{2}.

2(b): Let $X=\{a, b\}$ with the discrete topology and $Y=\{a, b\}$ with the trivial topology. Let $f: X \rightarrow Y$ be the identity function. Then f is continuous, and $Z=f(X)=\{a, b\}$. The quotient topology \mathcal{T}_{1} is the discrete topology, and the subspace topology \mathcal{T}_{2} is the trivial topology. In particular, \mathcal{T}_{1} is strictly finer than \mathcal{T}_{2}.

2(c): Any continuous image of a compact space is compact, so X compact implies that $\left(Z, \mathcal{T}_{1}\right)$ is compact. Any subspace of a Hausdorff space is Hausdorff, so Y Hausdorff implies that $\left(Z, \mathcal{T}_{2}\right)$ is Hausdorff. Hence $j:\left(Z, \mathcal{T}_{1}\right) \rightarrow\left(Z, \mathcal{T}_{2}\right)$ is a continuous bijection from a compact space to a Hausdorff space, and is therefore a homeomorphism. Thus $\mathcal{T}_{1}=\mathcal{T}_{2}$.

3: If $x, y \in X$ then $0 \leq D(x, y) \leq D(x, y)+D(y, x) \leq D(x, x)=0$ by (1) and (3). It follows that $D(x, y)=0$, and $x=y$ by (1). Hence X cannot have two or more elements.

John Rognes
Oslo, October 27th 2021

