Model answers for the final exam of MAT3500/4500, fall 2022

Makoto Yamashita

December 13, 2022

Convention:

- R: the set of real numbers
- I: closed unit interval $[0, 1]$
- Q: the set of rational numbers
- C: the set of complex numbers
- S^1 : unit circle in the Euclidean plane; $S^1 = \{(x, y) | x^2 + y^2 = 1\}$
- \bullet B^2 : the closed unit disc in the Eucledean plane; $B^2 = \{(x, y) \mid x^2 + y^2 \leq 1\}$

We consider them as topological spaces in the conventional topology unless stated otherwise. (On Q, as you can see below, we consider the induced topology for the inclusion $\mathbb{Q} \subset \mathbb{R}$.)

Part I

Problem 1. Consider the collection of subsets of $X = [-1, 1]$:

$$
\mathcal{T} = \{ X \cap [a, b) \mid a, b \in \mathbb{R} \}.
$$

This cannot be interpreted as the collection of open sets for some topology on X. Choose an appropriate reason.

- 1. $(0, 1)$ is the union of $[1/n, 1)$, so $\mathcal T$ is not closed under union.
- 2. [0, 1] is the complement of $[-1, 0)$ in X, so T is not closed under complement.
- 3. None of the above

Answer. 1.

Problem 2. Which of the following is closed in \mathbb{R} ?

1. $A = \bigcap_{n=1}^{\infty} A_n$, where

 $A_n = [0, 1/3^n] \cup [2/3^n, 3/3^n] \cup [2/3^{n-1}, 7/3^n] \cup \cdots \cup [(3^n - 1)/3^n, 1];$

 A_n is the union of 2^n intervals of length $1/3^n$, and A is the intersection of the A_n .

2. $B = \mathbb{Q}$; 3. $C = \bigcup_{n=1}^{\infty} [0, 1 - 1/n]$; union of closed intervals of length $1 - 1/n$.

Answer. 1.

Problem 3. Which of the following is a base of the usual topology on \mathbb{R} ?

- 1. $\mathcal{T} = \{ [a, b) \mid a, b \in \mathbb{R} \}$
- 2. $\mathcal{T}' = \{A \subset \mathbb{R}\}\$ (collection of all subsets)
- 3. None of the above

Answer. 3.

Problem 4. Let (X, d) be a metric space. Suppose that points x, y, z in X satisfy $d(x, y) = 1$ and $d(y, z) = 2$. What can we say about $d(x, z)$?

- 1. $1 \leq d(x, z) \leq 3$
- 2. $d(x, z) \geq 3$
- 3. $d(x, z) = 1$

Answer. 1.

Problem 5. Let X and Y be topological spaces. What can we say about the product topology on $X \times Y$?

- 1. Open sets are unions of the sets of the form $U \times V$, where U is open in X and V is open in Y .
- 2. Open sets are of the form $U \times V$, where U is open in X and V is open in Y .
- 3. None of the above

Answer. 1.

Problem 6. The real function

$$
f(x) = \begin{cases} 0 & (x < 0) \\ 1 & (x \ge 0) \end{cases}
$$

is not continuous. What is the appropriate reason for this?

- 1. Consider the open set $U = (1/2, 3/2)$ of R. The inverse image $f^{-1}(U)$ is not open in R.
- 2. Consider the open set $V = (-1/2, 1/2)$ of R. The inverse image $f^{-1}(V)$ is not open in R.
- 3. None of the above

Answer. 1.

Problem 7. Consider the following sequence of real functions f_n :

$$
f_n(x) = \begin{cases} n|x| & (|x| \le 1/n) \\ 1 & (|x| > 1/n) \end{cases}
$$

What can we say about this?

- 1. This converges to $f(x) = 0$ or 1 according to $x = 0$ or not, in the topology of pointwise convergence.
- 2. This converges to $f(x) = 0$ or 1 according to $x = 0$ or not, in the topology of uniform convergence.
- 3. This converges to the constant function $f(x) = 1$ in any sensible topology.

Answer. 1.

Problem 8. Consider the following subsets of \mathbb{R}^2 . Which one is connected for the induced topology?

- 1. $A = \{(x, y) \mid x^2 + y^2 \leq 1 \text{ or } (x 2)^2 + y^2 \leq 1\}$
- 2. $B = \{(x, 0) \mid x \in \mathbb{Q}\}\$
- 3. $C = \{(x, \sin x) \mid x \in \mathbb{R}\}\$

Answer. 1. or 3.

Problem 9. What can we say about the infinite product space $X = \prod_{i=1}^{\infty} \{0, 1\}$ $\{(x_i)_{i=1}^\infty \mid x_i = 0 \text{ or } 1\}$?

- 1. This space is compact, because it is the product of (copies of) the compact space $\{0,1\}.$
- 2. This space is not compact, because it is not a closed bounded subset of \mathbb{R}^k .
- 3. None of the above

Answer. 1.

Problem 10. Which one is correct?

- 1. The loop in S^1 given by $f: I \to S^1, t \mapsto (\cos 2\pi t, \sin 2\pi t)$ is not pathhomotopic to the loop $g: I \to S^1, t \mapsto (\cos 4\pi t, \sin 4\pi t)$.
- 2. The loop in B^2 given by $f: I \to B^2, t \mapsto (\cos 2\pi t, \sin 2\pi t)$ is not pathhomotopic to the loop $g: I \to B^2, t \mapsto (\cos 4\pi t, \sin 4\pi t)$.
- 3. None of the above

Answer. 1.

Part II

Problem 11. Let $X = \prod_J \mathbb{R}$ be the direct product of uncountably many copies of \mathbb{R} , with the product topology. Thus, the index set J is an uncountable set. As a subspace of X , we consider

 $A = \{(x_i)_{i \in J} \mid x_i = 1 \text{ except for finitely many } i \in I\}.$

- 1. Let x^0 denote the constant 0 sequence in X. (That is, $x^0 = (x_i^0)_i \in X$ defined by $x_i^0 = 0$ for all $i \in J$.) Show that x^0 belongs to the closure of A.
- 2. Let $(a^n)_{n=1}^{\infty}$ be a sequence in A, and for each n put

$$
J_n = \{i \in J \mid a_i^n \neq 1\}.
$$

Show that there is an element $\beta \in J$ not in $\bigcup_n J_n$.

3. Show that $(a^n)_n$ does not converge to x^0 .

Answer. 1. We denote the projection map $X \to \mathbb{R}$ to the j-th factor by π_j . Let U be an open neighborhood of x^0 . By definition of the product topology, there are finite number of indexes j_1, \ldots, j_k and open sets V_1, \ldots, V_k of $\mathbb R$ such that $B = \bigcap_{i=1}^k \pi_i^{-1}(V_i)$ satisfies $x^0 \in B \subset U$.

Define a point $y = (y_j)_j \in X$ by

$$
y_j = \begin{cases} 0 & (j \in \{j_1, \dots, j_k\}) \\ 1 & \text{otherwise.} \end{cases}
$$

Then we have $y \in B$ from $y_{j_i} = 0 = x_{j_i} \in V_i$ for $i = 1, ..., k$. On the other hand, $y \in A$ because $y_j \neq 0$ happens only for $j = j_i$ for some i.

Thus, we obtain that an arbitrary neighborhood of x^0 contains a point of A. 2. Each J_n is a finite set by definition of A. Thus, their union $\bigcup_{n=1}^{\infty} J_n$ is (at most) a countable set. By assumption J is uncountable, hence there is $\beta \in J$ not in the union.

3. Convergence of $(a^n)_n$ to x^0 means that, given any (open) neighborhood U of X^0 , there is an integer N such that $a^n \in U$ holds for any $n > N$.

Let $\beta \in J$ be as in the part 2. For any n, since $\beta \in J_n$, we have $a_{\beta}^n = 1$.

Define U as $\pi_{\beta}^{-1}((-1/2,1/2))$. This is an open neighborhood of x^0 . On the other hand, we have $a^n \notin U$ for all n by the above.

Problem 12. We say that a continuous map $f: X \to Y$ is proper if, for any compact subset $A \subset Y$, its inverse image $f^{-1}(A)$ is proper compact.

1. Give an example of a continuous map that is not proper.

Now, suppose that X and Y are locally compact spaces. Recall that we have one-point compactifications $X^+ = X \cup {\infty}$, $Y^+ = Y \cup {\infty}$ by formally adding extra points, and setting $(X \setminus K) \cup \{\infty\}$ for compact $K \subset X$ as open neighborhoods of ∞ in X^+ , etc.

2. Given a continuous map $f: X \to Y$, consider the map $f^+ : X^+ \to Y^+$ defined by

$$
f^+(x) = \begin{cases} f(x) & (x \in X) \\ \infty & (x = \infty). \end{cases}
$$

Show that f^+ is continuous when f is proper.

3. Find a (non-proper) continuous map f between locally compact spaces such that the above f^+ is not continuous.

Answer. 1. Take $X = \mathbb{R}, Y = \{*\}$, and $f: X \to Y$ be the only map. Then Y itself is compact, but its inverse image $f^{-1}(Y)$ is X itself. In the usual topology X is not compact, hence f is not proper.

2. We check that the inverse images $(f^+)^{-1}(U)$ are open in X^+ for open sets $U \subset Y^+$. There are two cases.

When U is an open subset of Y, its inverse image agrees with $f^{-1}(U)$ because $f^+(\infty) = \infty$ is not in U. By continuity of f, $f^{-1}(U)$ is open in X, hence it is also open in X^+ .

Next suppose that $U = (Y \setminus K) \cup \{\infty\}$ for some compact $K \subset Y$. Then $(f^+)^{-1}(U)$ is equal to $(X \setminus f^{-1}(K)) \cup \{\infty\}$. Indeed, $f^+(\infty) = \infty$ implies $\infty \in (f^+)^{-1}(U)$. For the points in X, we have $f(x) \in U$ if and only if $f(x) \notin K$, that is, if and only if $x \in X \setminus f^{-1}(K)$.

By properness assumption $f^{-1}(K)$ is a compact subset of X. Thus, $(X \setminus$ $f^{-1}(K)) \cup \{\infty\}$ is open in X^+ .

3. Take $X = \mathbb{R}, Y = \{*\}$ as in part 1. Then X^+ is homeomorphic to the circle, while Y^+ consits of two points and has the discrete topology. The map f^+ maps the additional point ∞ to ∞ , hence it is a surjective map from S^1 to $\{*,\infty\}$. Since continuous maps preserve connectedness, f^+ cannot be continuous.

Problem 13. We want to prove the following variation of the fundamental theorem of algebra: let $p(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0$ be a polynomial with complex coefficients of degree $n > 0$, such that $|a_{n-1}| + \cdots + |a_0| < 1$. Then there is a complex number z such that $|z| < 1$ and $p(z) = 0$.

Identify S^1 with the subset $\{z \in \mathbb{C} \mid |z|=1\}$ of \mathbb{C} , and similarly B^2 with $\{z \in \mathbb{C} \mid |z| \leq 1\}.$ We also put $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}.$

- 1. Assume that there is no z such that $|z| < 1$ and $p(z) = 0$. Show that the map $h: S^1 \to \mathbb{C}^\times, z \mapsto p(z)$ is homotopic to a constant map.
- 2. Under the same assumption, show that h is homotopic to the map $k: S^1 \to$ $\mathbb{C}^{\times}, z \mapsto z^{n}.$
- 3. Derive a contradiction from the above.

Answer. 1. Consider the map $F: S^1 \times I \to \mathbb{C}^\times$ defined by $F(z, t) = p(tz)$. This is well-defined by assumption on p. At $t = 1$ we recover the original map given by p. At $t = 0$ we get the constant map $z \mapsto p(0)$.

2. This time consider the map $F'(z,t) = z^n + t(a_{n-1}z^{n-1} + \cdots + a_0)$. This is again well defined, because we have

$$
|t(a_{n-1}z^{n-1} + \dots + a_0)| \le |a_{n-1}| + \dots + |a_0| < 1 = |z^n|
$$

by assumption. At $t = 1$ we recover the original map given by p. At $t = 0$ we get the map $k: z \mapsto z^n$.

3. Combining the above two, we get that the map k is homotopic to a constant map. However, the class of k in the fundamental group $\pi_1(S^1,*)$ corresponds to the integer n under the isomorphism $\pi_1(S^1,*) \simeq \mathbb{Z}$. This is a contradiction.

Problem 14. Given a commutative ring A, recall that we obtained a topological space

Spec $A = \{P \subset A \mid P$ is a prime ideal of A $\}$

whose closed sets are given by

$$
V(I) = \{ P \in \text{Spec } A \mid P \supset I \} \subset \text{Spec } A.
$$

- 1. Let $f: A \rightarrow B$ be a homomorphism of commutative rings. Show that the map f^* : Spec $B \to \text{Spec } A, P \mapsto f^{-1}(P)$ is continuous.
- 2. Given $P \in \text{Spec } A$, let K be the field of fractions of the integral domain $O = A/P$. What is the continuous map Spec $K \to \text{Spec } A$ corresponding to the natural homomorphism $A \to K$?
- 3. Let A be a Noetherian ring, that is, a commutative ring where any ideal $I \subset A$ is finitely generated. Show that Spec A is compact.

Answer. 1. We prove that $(f^*)^{-1}(V(I))$ is closed in Spec A for all $I \subset A$. We show that $(f^*)^{-1}(V(I)) = V(f(I))$ holds.

Suppose $P \in V(f(I))$. Then $f^*(P) = f^{-1}(P)$ contains $f^{-1}(f(I))$, because taking inverse image preserves containment relation. Since $I \subset f^{-1}(f(I))$, we get $f^*(P) \in V(I)$.

On the other hand, suppose $Q \in \text{Spec } B$ belongs to $(f^*)^{-1}(V(I))$. This means $f^*(Q) \in V(I)$, that is, $f^{-1}(Q) \supset I$. This implies $f(I) \subset Q$, that is, $Q \in V(f(I)).$

2. Since K is a field, it has only one prime ideal, namely $\{0\}$. The map Spec $K \rightarrow$ Spec A sends the unique element $x_0 \in \text{Spec } K$ to the point $P \in \text{Spec } A$. Indeed, the inverse image of $\{0\} \subset K$ in A agrees with P by construction.

3. Suppose that we have an open covering of Spec A, that is, a collection of open sets $U_j = \text{Spec } A \setminus V(I_j)$ for some indexes $j \in J$ such that $\bigcup_{j \in J} U_j = \text{Spec } A$. We need to find a finite subcollection $J' \subset J$ such that $\bigcup_{j \in J'} \widetilde{U}_j = \text{Spec } A$.

We do not lose generality by assuming that each I_j is an ideal of A, hence $\bigcap_{j\in J}V(I_j)$ is equal to $V(\sum_{j\in J}I_j)$. The assumption on the I_j means $\bigcap_{j\in J}V(I_j)$ \emptyset , hence we get $V(I) = \emptyset$ for $I = \sum_{j \in J} I_j$. If I is a proper ideal of A, a maximal ideal containing I is an element of $V(I)$. This means $I = A$, hence 1 can be written as a (finite) sum $1 = a_1 + \cdots + a_k$ with $a_i \in I_{j_i}$ for some $j_i \in J$.

Take $J' = \{j_1, \ldots, j_k\}$, then we have $V(\sum_{j \in J'} I_j) = \emptyset$, hence we have found a desired J' .