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Convention:

• R: the set of real numbers

• I: closed unit interval [0, 1]

• Q: the set of rational numbers

• C: the set of complex numbers

• S1: unit circle in the Euclidean plane; S1 = {(x, y) | x2 + y2 = 1}

• B2: the closed unit disc in the Eucledean plane;
B2 = {(x, y) | x2 + y2 ≤ 1}

We consider them as topological spaces in the conventional topology unless
stated otherwise. (On Q, as you can see below, we consider the induced topology
for the inclusion Q ⊂ R.)

Part I
Problem 1. Consider the collection of subsets of X = [−1, 1]:

T = {X ∩ [a, b) | a, b ∈ R}.

This cannot be interpreted as the collection of open sets for some topology on
X. Choose an appropriate reason.

1. (0, 1) is the union of [1/n, 1), so T is not closed under union.

2. [0, 1] is the complement of [−1, 0) inX, so T is not closed under complement.

3. None of the above

Answer. 1.

Problem 2. Which of the following is closed in R?

1. A =
⋂∞
n=1An, where

An = [0, 1/3n] ∪ [2/3n, 3/3n] ∪ [2/3n−1, 7/3n] ∪ · · · ∪ [(3n − 1)/3n, 1];

An is the union of 2n intervals of length 1/3n, and A is the intersection of
the An.
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2. B = Q;

3. C =
⋃∞
n=1[0, 1− 1/n]; union of closed intervals of length 1− 1/n.

Answer. 1.

Problem 3. Which of the following is a base of the usual topology on R?

1. T = {[a, b) | a, b ∈ R}

2. T ′ = {A ⊂ R} (collection of all subsets)

3. None of the above

Answer. 3.

Problem 4. Let (X, d) be a metric space. Suppose that points x, y, z in X
satisfy d(x, y) = 1 and d(y, z) = 2. What can we say about d(x, z)?

1. 1 ≤ d(x, z) ≤ 3

2. d(x, z) ≥ 3

3. d(x, z) = 1

Answer. 1.

Problem 5. Let X and Y be topological spaces. What can we say about the
product topology on X × Y ?

1. Open sets are unions of the sets of the form U ×V , where U is open in X
and V is open in Y .

2. Open sets are of the form U × V , where U is open in X and V is open in
Y .

3. None of the above

Answer. 1.

Problem 6. The real function

f(x) =

{
0 (x < 0)

1 (x ≥ 0)

is not continuous. What is the appropriate reason for this?

1. Consider the open set U = (1/2, 3/2) of R. The inverse image f−1(U) is
not open in R.

2. Consider the open set V = (−1/2, 1/2) of R. The inverse image f−1(V )
is not open in R.

3. None of the above

Answer. 1.
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Problem 7. Consider the following sequence of real functions fn:

fn(x) =

{
n|x| (|x| ≤ 1/n)

1 (|x| > 1/n)

What can we say about this?

1. This converges to f(x) = 0 or 1 according to x = 0 or not, in the topology
of pointwise convergence.

2. This converges to f(x) = 0 or 1 according to x = 0 or not, in the topology
of uniform convergence.

3. This converges to the constant function f(x) = 1 in any sensible topology.

Answer. 1.

Problem 8. Consider the following subsets of R2. Which one is connected for
the induced topology?

1. A = {(x, y) | x2 + y2 ≤ 1 or (x− 2)2 + y2 ≤ 1}

2. B = {(x, 0) | x ∈ Q}

3. C = {(x, sinx) | x ∈ R}

Answer. 1. or 3.

Problem 9. What can we say about the infinite product spaceX =
∏∞
i=1{0, 1} =

{(xi)∞i=1 | xi = 0 or 1}?

1. This space is compact, because it is the product of (copies of) the compact
space {0, 1}.

2. This space is not compact, because it is not a closed bounded subset of
Rk.

3. None of the above

Answer. 1.

Problem 10. Which one is correct?

1. The loop in S1 given by f : I → S1, t 7→ (cos 2πt, sin 2πt) is not path-
homotopic to the loop g : I → S1, t 7→ (cos 4πt, sin 4πt).

2. The loop in B2 given by f : I → B2, t 7→ (cos 2πt, sin 2πt) is not path-
homotopic to the loop g : I → B2, t 7→ (cos 4πt, sin 4πt).

3. None of the above

Answer. 1.
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Part II
Problem 11. Let X =

∏
J R be the direct product of uncountably many copies

of R, with the product topology. Thus, the index set J is an uncountable set.
As a subspace of X, we consider

A = {(xi)i∈J | xi = 1 except for finitely many i ∈ I}.

1. Let x0 denote the constant 0 sequence in X. (That is, x0 = (x0i )i ∈ X
defined by x0i = 0 for all i ∈ J .) Show that x0 belongs to the closure of A.

2. Let (an)∞n=1 be a sequence in A, and for each n put

Jn = {i ∈ J | ani 6= 1}.

Show that there is an element β ∈ J not in
⋃
n Jn.

3. Show that (an)n does not converge to x0.

Answer. 1. We denote the projection map X → R to the j-th factor by πj . Let
U be an open neighborhood of x0. By definition of the product topology, there
are finite number of indexes j1, . . . , jk and open sets V1, . . . , Vk of R such that
B =

⋂k
i=1 π

−1
i (Vi) satisfies x0 ∈ B ⊂ U .

Define a point y = (yj)j ∈ X by

yj =

{
0 (j ∈ {j1, . . . , jk})
1 otherwise.

Then we have y ∈ B from yji = 0 = xji ∈ Vi for i = 1, . . . , k. On the other
hand, y ∈ A because yj 6= 0 happens only for j = ji for some i.

Thus, we obtain that an arbitrary neighborhood of x0 contains a point of A.
2. Each Jn is a finite set by definition of A. Thus, their union

⋃∞
n=1 Jn is (at

most) a countable set. By assumption J is uncountable, hence there is β ∈ J
not in the union.
3. Convergence of (an)n to x0 means that, given any (open) neighborhood U of
X0, there is an integer N such that an ∈ U holds for any n > N .

Let β ∈ J be as in the part 2. For any n, since β ∈ Jn, we have anβ = 1.
Define U as π−1β ((−1/2, 1/2)). This is an open neighborhood of x0. On the

other hand, we have an 6∈ U for all n by the above.

Problem 12. We say that a continuous map f : X → Y is proper if, for any
compact subset A ⊂ Y , its inverse image f−1(A) is����proper compact.

1. Give an example of a continuous map that is not proper.

Now, suppose that X and Y are locally compact spaces. Recall that we
have one-point compactifications X+ = X ∪ {∞}, Y + = Y ∪ {∞} by formally
adding extra points, and setting (X \ K) ∪ {∞} for compact K ⊂ X as open
neighborhoods of ∞ in X+, etc.

2. Given a continuous map f : X → Y , consider the map f+ : X+ → Y +

defined by

f+(x) =

{
f(x) (x ∈ X)

∞ (x =∞).

Show that f+ is continuous when f is proper.
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3. Find a (non-proper) continuous map f between locally compact spaces
such that the above f+ is not continuous.

Answer. 1. Take X = R, Y = {∗}, and f : X → Y be the only map. Then Y
itself is compact, but its inverse image f−1(Y ) is X itself. In the usual topology
X is not compact, hence f is not proper.
2. We check that the inverse images (f+)−1(U) are open in X+ for open sets
U ⊂ Y +. There are two cases.

When U is an open subset of Y , its inverse image agrees with f−1(U) because
f+(∞) = ∞ is not in U . By continuity of f , f−1(U) is open in X, hence it is
also open in X+.

Next suppose that U = (Y \ K) ∪ {∞} for some compact K ⊂ Y . Then
(f+)−1(U) is equal to (X \ f−1(K)) ∪ {∞}. Indeed, f+(∞) = ∞ implies
∞ ∈ (f+)−1(U). For the points in X, we have f(x) ∈ U if and only if f(x) 6∈ K,
that is, if and only if x ∈ X \ f−1(K).

By properness assumption f−1(K) is a compact subset of X. Thus, (X \
f−1(K)) ∪ {∞} is open in X+.
3. Take X = R, Y = {∗} as in part 1. Then X+ is homeomorphic to the circle,
while Y + consits of two points and has the discrete topology. The map f+ maps
the additional point ∞ to ∞, hence it is a surjective map from S1 to {∗,∞}.
Since continuous maps preserve connectedness, f+ cannot be continuous.

Problem 13. We want to prove the following variation of the fundamental
theorem of algebra: let p(X) = Xn+an−1X

n−1+ · · ·+a0 be a polynomial with
complex coefficients of degree n > 0, such that |an−1| + · · · + |a0| < 1. Then
there is a complex number z such that |z| < 1 and p(z) = 0.

Identify S1 with the subset {z ∈ C | |z| = 1} of C, and similarly B2 with
{z ∈ C | |z| ≤ 1}. We also put C× = C \ {0}.

1. Assume that there is no z such that |z| < 1 and p(z) = 0. Show that the
map h : S1 → C×, z 7→ p(z) is homotopic to a constant map.

2. Under the same assumption, show that h is homotopic to the map k : S1 →
C×, z 7→ zn.

3. Derive a contradiction from the above.

Answer. 1. Consider the map F : S1× I → C× defined by F (z, t) = p(tz). This
is well-defined by assumption on p. At t = 1 we recover the original map given
by p. At t = 0 we get the constant map z 7→ p(0).
2. This time consider the map F ′(z, t) = zn + t(an−1z

n−1 + · · · + a0). This is
again well defined, because we have∣∣t(an−1zn−1 + · · ·+ a0)

∣∣ ≤ |an−1|+ · · ·+ |a0| < 1 = |zn|

by assumption. At t = 1 we recover the original map given by p. At t = 0 we
get the map k : z 7→ zn.
3. Combining the above two, we get that the map k is homotopic to a constant
map. However, the class of k in the fundamental group π1(S1, ∗) corresponds
to the integer n under the isomorphism π1(S

1, ∗) ' Z. This is a contradiction.
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Problem 14. Given a commutative ring A, recall that we obtained a topological
space

SpecA = {P ⊂ A | P is a prime ideal of A}

whose closed sets are given by

V (I) = {P ∈ SpecA | P ⊃ I} ⊂ SpecA.

1. Let f : A→ B be a homomorphism of commutative rings. Show that the
map f∗ : SpecB → SpecA,P 7→ f−1(P ) is continuous.

2. Given P ∈ SpecA, let K be the field of fractions of the integral domain
O = A/P . What is the continuous map SpecK → SpecA corresponding
to the natural homomorphism A→ K?

3. Let A be a Noetherian ring, that is, a commutative ring where any ideal
I ⊂ A is finitely generated. Show that SpecA is compact.

Answer. 1. We prove that (f∗)−1(V (I)) is closed in SpecA for all I ⊂ A. We
show that (f∗)−1(V (I)) = V (f(I)) holds.

Suppose P ∈ V (f(I)). Then f∗(P ) = f−1(P ) contains f−1(f(I)), because
taking inverse image preserves containment relation. Since I ⊂ f−1(f(I)), we
get f∗(P ) ∈ V (I).

On the other hand, suppose Q ∈ SpecB belongs to (f∗)−1(V (I)). This
means f∗(Q) ∈ V (I), that is, f−1(Q) ⊃ I. This implies f(I) ⊂ Q, that is,
Q ∈ V (f(I)).
2. SinceK is a field, it has only one prime ideal, namely {0}. The map SpecK →
SpecA sends the unique element x0 ∈ SpecK to the point P ∈ SpecA. Indeed,
the inverse image of {0} ⊂ K in A agrees with P by construction.
3. Suppose that we have an open covering of SpecA, that is, a collection of open
sets Uj = SpecA \ V (Ij) for some indexes j ∈ J such that

⋃
j∈J Uj = SpecA.

We need to find a finite subcollection J ′ ⊂ J such that
⋃
j∈J′ Uj = SpecA.

We do not lose generality by assuming that each Ij is an ideal of A, hence⋂
j∈J V (Ij) is equal to V (

∑
j∈J Ij). The assumption on the Ij means

⋂
j∈J V (Ij) =

∅, hence we get V (I) = ∅ for I =
∑
j∈J Ij . If I is a proper ideal of A, a maximal

ideal containing I is an element of V (I). This means I = A, hence 1 can be
written as a (finite) sum 1 = a1 + · · ·+ ak with ai ∈ Iji for some ji ∈ J .

Take J ′ = {j1, . . . , jk}, then we have V (
∑
j∈J′ Ij) = ∅, hence we have found

a desired J ′.
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