MAT3500 / MAT4500 (2022 FALL) MANDATORY ASSIGNMENT

MAKOTO YAMASHITA

Choose (at least) one of the problems from the list below, and submit your solutions via Canvas. The deadline is October 31.

Problem 1. Let $X = \mathbb{R}^2$, with the standard topology. We consider an equivalence relation \sim on X defined by

$$(x,y) \sim (x',y') \Leftrightarrow y = y'.$$

What is the quotient space for this equivalence relation?

Problem 2. Let X be the disjoint union of two copies of closed disk. Formally, we can present it as

$$X = \{(i, x, y) \in \{0, 1\} \times \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 \le 1\}.$$

Consider the equivalence relation on X given by $(0, x, y) \sim (1, x, y)$ when $x^2 + y^2 = 1$. (That is, $(i, x, y) \sim (j, v, w)$ only if (x, y) = (v, w), and unless $x^2 + y^2 = 1$ we also impose i = j.) What is the quotient space for this equivalence relation?

Problem 3. Suppose we have a connected simple graph Γ (undirected graph without loops and parallel edges). Recall that a path in Γ is represented by a sequence of edges e_1, e_2, \ldots, e_k such that e_i and e_{i+1} share a vertex for $1 \leq i < k$, and this k is called the *length* of the path. Let V be the set of vertices of Γ , and consider the function

 $d(v, v') = \min\{k \mid \text{there is a path of length } k \text{ between } v \text{ and } v'\} \quad (v, v' \in V).$

Show that d is a metric on the set V.

Problem 4. Let X be the infinite product space $\prod_{i=1}^{\infty} \{0,1\}$. Consider the metric on X given by

$$d(x,y) = \sum_{i=1}^{\infty} 2^{-i} |x_i - y_i| \quad (x = (x_i)_{i=1}^{\infty}, y = (y_i)_{i=1}^{\infty}).$$

- (1) Give a concrete choice of ϵ satisfying the following condition: $d(x, y) < \epsilon$ implies $x_i = y_i$ for i = 1, 2.
- (2) Let N be an integer. Give a concrete choice of ϵ satisfying the following condition: $d(x,y) < \epsilon$ implies $x_i = y_i$ for i = 1, ..., N.
- (3) Let $x^{(1)}, x^{(2)}, \ldots$ be a sequence of elements in X. (Overall we have a double sequence $x_i^{(j)}$ of 0's and 1's indexed by $i, j = 1, 2, \ldots$) Suppose that $(x^{(j)})_j$ converges to y. What can be said about the sequence $(x_i^{(j)})_{i=1}^{\infty}$?

Problem 5. Let A be a commutative ring, and consider the set

Spec
$$A = \{ P \subset A \mid P \text{ is a prime ideal of } A \}.$$

For each ideal $I \subset A$, consider the subset $V(I) \subset \operatorname{Spec} A$ defined by

$$V(I) = \{P \in \operatorname{Spec} A \mid P \supset I\}.$$

(1) Show that the collection

 $\mathcal{T}' = \{ V(I) \mid I \text{ is an ideal of } A \}$

satisfy the conditions for collection of closed sets. (That is, the collection

$$\mathcal{T} = \{ \operatorname{Spec} A \setminus V(I) \mid I \text{ is an ideal of } A \}$$

- defines a topology on Spec A, called the Zariski topology.)
- (2) Determine the open sets of Spec \mathbb{Z} .
- (3) Let x_0 be the point of Spec \mathbb{Z} represented by the ideal $\{0\} \subset \mathbb{Z}$. Is $\{x_0\}$ closed in Spec \mathbb{Z} ?

Date: v1: 01.10.2021.