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1. August 19th lecture

1.1. Quick overview. We will use Bjørn Jahren’s lecture notes “Geometric Structures in Di-
mension Two”. The five chapters are about:

(Ch1) Hilbert’s axiom system for planar geometry (some connection with MAT2500 – Ge-
ometry).

(Ch2) Hyperbolic geometry (2-dimensional theory; the 3-dimensional theory is an active field
of research).

(Ch3) Classification of surfaces (higher-dimensional classifications rely on tools from MAT4530
– Algebraic Topology I and MAT4540 – Algebraic Topology II).

(Ch4) Geometry on surfaces (the distinction between topological and differential manifolds
is developed in all dimensions in MAT4520 – Manifolds).

(Ch5) Differential geometry (Riemannian geometry is developed fully in MAT4590 – Differ-
ential Geometry).

Let us start with a more detailed survey of the contents of this course.

1.2. Synthetic geometry. Euclid’s “Elements” from ca. 400 BC, treats the following subjects
in thirteen books:

Plane geometry (the Pythagorean theorem), number theory (the irrationality of
√

2, the
existence of infinitely many primes), solid geometry (construction of the Platonic polyhedra).

Start with undefined terms (point, line, contains, equal, congruent) and some postulated
axioms about them.

(Eu1) Given any two points A and B, with A not equal to B, there exists a unique (one and
only one) line ` that contains A and B.

Define the segment of points between A and B, and the ray from A passing through B.
(Eu2) Can construct segments of any given length along any given ray.
Define the circle with center A and radius congruent to the segment from A to B.
(Eu3) Can construct a circle with any given segment as a radius.
Define angle, supplementary angle and right angle.
(Eu4) Any two right angles are congruent.
Define parallel lines (as lines that do not meet).
(Eu5) For every point A and line ` that does not contain A, there exists a unique line m that

contains A and is parallel to `.
Deduce other statements, called propositions, about the undefined and defined terms, as logi-

cal consequences of the axioms and the previously proved propositions. The body of statements
that can be established as proven propositions is known as “synthetic geometry”.

Particularly noteworthy propositions, perhaps having short statements compared to the
length of the proof needed to establish them, are called theorems.

1.3. The Pythagorean theorem. Consider a triangle 4ABC, with ∠BCA a right angle.
Construct a square �ADEB with side AB, a square �BFGC with side BC, and a square
�CHIA with side CA. Then the area of �ADEB is equal to the sum of the areas of the
squares �BFGC and �CHIA, in the sense that �ADEB can be divided into finitely many
triangles, and �BFGC and �CHIA can be divided into finitely many triangles, and there is
a one-to-one correspondence between these two lists of triangles such that each triangle in one
list is congruent to the corresponding triangle in the other list.

The proof assumes that we already have established how to construct the perpendicular
from a point to a line, that two triangles with congruent sides, angles and sides (in order) are
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congruent, and that two times the area of a triangle is equal to the area of a rectangle with the
same base and height as the triangle.

Draw the perpendicular from C through AB, intersecting AB in J and intersecting DE in
K. We claim that the area of rectangle �ADKJ is equal to the area of square �CHIA. In the
same way the area of rectangle �BJKE is equal to the area of square �BFGC. Since the area
of �ADEB is the sum of the areas of the rectangles �ADKJ and �BJKE, this will complete
the proof.

To prove the claim, draw the lines CD and BI. The points B, C and H lie on the same line,
parallel to AI, so the triangle 4ABI has base AI and height AC. Hence two times the area of
4ABI is equal to the area of the square �CHIA.

The right angles ∠CAI and ∠DAB are congruent. Hence adding the angle ∠BAC to each
of these gives congruent angles ∠BAI and ∠DAC. Furthermore the segments AI and AC
are congruent, since �CHIA is a square, and the segments AB and AD are congruent, since
�ADEB is a square. Hence the triangles 4ABI and 4ADC are congruent.

Finally, the points C, J and K lie on the same line, parallel to AD, so the triangle 4ADC
has base AD and height AJ . Hence two times the are of 4ADC is equal to the area of the
rectangle �ADKJ .

In symbols, �CHIA ∼= 2 · 4ABI ∼= 2 · 4ADC ∼= �ADKJ , as claimed.
Q.E.D.
This proof should illustrate how theorems are deduced from previously established proposi-

tions, using the undefined terms, the postulated axioms, and logical reasoning.
Euclid’s books were used for over two thousand years, but Euclid’s presentation is nonetheless

incomplete by modern mathematical standards. Some assumptions are not made explicit.
Consider the following fallacious proof that every triangle is isosceles, i.e., has two sides of

equal length. The proof has been attributed to Charles Dodgson, better known by his pen name
Lewis Carroll (“Alice’s Adventures in Wonderland” and “Through the Looking-Glass”).

Consider a triangle 4ABC. We will prove that AB is congruent to AC. Consider the angle
bisector ` of ∠BAC and the side bisector m of BC. If these are parallel (or equal), then 4ABC
is isosceles. (We omit this part of the proof, which is not fallacious.) Otherwise, they meet in
a point D. Draw the perpendicular from D to AB meeting the latter line in E, and draw the
perpendicular from D to AC meeting the latter line in F .

Since D lies on the angle bisector `, ∠BAD = ∠EAD is congruent to ∠CAD = ∠FAD,
and the right-angled triangles 4AED and 4AFD have the same hypotenuse AD, these two
triangles are congruent. In particular, the segment AE is congruent to the segment AF , and
the segment DE is congruent to the segment DF .

Since D lies on the side bisector m, segment BD is congruent to segment CD. Hence the
right-angled triangles 4BED and 4CFD have congruent sides DE ∼= DF and congruent
hypotenuses BD ∼= CD, hence must be congruent. In particular, the remaining sides BE and
CF must be congruent.

Hence the sides AB and AC satisfy AB+BE = AE ∼= AF = AC+CF . Canceling BE ∼= CF
we deduce that AB ∼= AC, so 4ABC is isosceles.

Q.E.D.(?)
What is the hidden, erroneous, assumption?

1.4. Incidence geometries. More famously, Euclid’s axiom Eu5, the parallel postulate, was
for a long time suspected to be superfluous, in the sense that it might possibly be deduced from
the other axioms. This expectation was proven to be faulty early in the 19th century, when
models were found for other geometries than the Euclidean one, where each of the undefined
terms is given some concrete interpretation, and the first four of Euclid’s axioms are true
statements in the model, but the parallel postulate is not correct.

One of these models had been right under the nose of the Arabic astronomers and European
explorers, namely in terms of the spherical geometry and trigonometry needed for navigation
at sea. If one interprets “point” as a point on the surface of a sphere, such as the earth, and
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“line” as a great circle on that sphere, with origin at the center of the earth, the Euclid’s
axioms Eu1–Eu4 are almost satisfied. The only difficulty is that two distinct points A and B
do not determine a unique line (= great circle) through them if the two points happen to be
antipodal, i.e., on opposite sides of the earth. Hence the uniqueness clause in Eu1 fails for
spherical geometry.

Presumably the navigators thought of spherical geometry as a part of solid, or 3-dimensional,
geometry, rather than as planar, 2-dimensional geometry. Probably they would also not think
that it could make sense to interpret the word “line” as something other than a straight line
in 2- or 3-dimensional space. This required a separation of the idea that there is only one
“geometry”, representing the physical world around us, and the insight that synthetic geometry
consists of formal reasoning about undefined terms, which might not be directly tied to that
one interpretation. Even if motion along a great circle is locally the shortest path between two
points on the surface of the earth, and such motion is not perceived as involving any turning
to the left or to the right relative to the direction of travel, it must have been difficult to think
that the word “line” could meaningfully be used about a path that is curved in the surrounding
3-dimensional space.

Nonetheless, by making a small change to the spherical model for geometry, an interpretation
of “points”, “lines”, “congruence” and the other undefined terms of synthetic geometry can
be given, satisfying Eu1–Eu4. The trick is called projective geometry, where a “point” is
reinterpreted to mean a pair of antipodal points on the sphere, and a “line” is reinterpreted to
mean the collection of points lying on a great circle on the sphere. Now Eu1–Eu4 hold, but
Eu5 does not. For any great circle ` on the sphere and any pair {A,A′} of antipodal points,
not lying on `, there does not exist any great circle m through {A,A′} that does not meet m.
In fact, any pair of great circles will intersect; there are no parallel lines in this geometry.

This example also shows that the parallel postulate is not superfluous; the example of pro-
jective geometry shows that there is no way that one can deduce Eu5 from Eu1-Eu4, since this
would lead to a contradiction when the axioms are interpreted in terms of this model.

This geometry is also called elliptic geometry, because the perpendicular lines ` andm through
the ends of a segment AB do not remain at constant distance, but come closer as one moves
away from AB, and meet in a point C at a finite distance. Notice then that the triangle 4ABC
has two right angles, so that the sum of the angles in a spherical triangle is greater than two
right angles. The excess is related to the area of the triangle, and can be expressed by saying
that this is a positively curved geometry. (We will discuss curvature more precisely in the
course.)

At a small scale near a point, the curvature of a sphere becomes less and less noticeable as the
radius of the sphere increases. One measure of curvature is related to the square of the radius,
and so one might hope that a sphere with purely imaginary radius might model a geometry
with negative curvature. It turns out that no such complex valued interpretation is needed.
Frameworks for hyperbolic geometry, where the distance between the perpendiculars ` and m
at the ends of a segment AB increases to infinity as one moves away from AB, were found
by Bolyai, Gauss and Lobachevsky, in some order. One model for hyperbolic geometry, due
to Beltrami but often called the Poincaré disc model D, is given by the open unit disc in the
Euclidean plane. A “hyperbolic point” is a point in this open disc, but a “hyperbolic line” is
the part of a Euclidean line or a Euclidean circle that lies in this disc, subject to the condition
that the line or circle is orthogonal to the unit circle, i.e., the circle of the open unit disc.

This is also a model for Euclid’s axioms Eu1-Eu4, but now the parallel postulate Eu5 fails
in a different way from in the elliptic case. Namely, given a hyperbolic line ` and a hyperbolic
point A not on `, there is not just one but infinitely many hyperbolic lines m through A that do
not meet `, i.e., that are parallel to `. The sum of the angles in a hyperbolic triangle4ABC will
always be less than two right angles. The defect is reflected in the fact that this is a negatively
curved geometry.
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1.5. Betweenness and Congruence. Returning to the fallacious proof, that every triangle
is isosceles, the problem is not related to the parallel postulate, but has to do with the ordering
of points on a line, i.e., what it means for a point to lie between two other points. An accurate
drawing will show that if E lies on the far side of B, as seen from A, so that B is between A
and E, then F will not lie on the far side of C, as seen from A, but rather will lie between
A and C. So if AB + BE = AE we will have AF + CF = AC, not AC + CF = AF . Thus
AB + BE = AE ∼= AF and AF + CF = AC, with BE ∼= CF , but now that the signs have
changed we cannot cancel two equal terms to deduce that AB = AC.

To precisely axiomatize planar geometry, Hilbert therefore replaced Euclid’s axioms Eu1-Eu4
with a more precise set of axioms. First there are axioms concerning “incidence”. These only
concern points and lines and the property that a given point may or not may lie on a given line.
If it does, we say that the point and line are incident.

Next there are axioms concerning “betweenness”. These concern the property that three
points A, B and C on a line come in a given order, so that B is between A and C. We write
A ∗B ∗ C to express this.

Thereafter there are axioms for “congruence”. When is a line segment congruent to another
line segment, and when is an angle congruent to another angle?

Nearing the end, there are axioms related to constructions with compass and straightedge,
ensuring that a line and a circle, or two circles, meet in exactly two points when this is reason-
able.

Up to this point, it is not clear whether the points on a line, with a chosen origin (0) and
unit length ([0, 1]) correspond to all real numbers, or only a suitable subfield. An completeness
axiom similar to Dedekind’s construction of the real numbers will pin this down.

Finally, Hilbert adds an axiom to replace Euclid’s parallel postulate. Given a point A and a
line `, with A not on `, if one postulates the existence of a unique parallel m to ` through A
one recovers the classical Euclidean plane, modeled by R2. If one instead postulates that there
exist at least two parallels m and m′ to ` through A, then there are in fact infinitely many, and
one recovers the hyperbolic plane H2, modeled by the Poincaré disc D. If one postulates that
no parallel line exists, one recovers the elliptic geometry, modeled by the projective plane RP 2

of pairs of antipodal points on the unit sphere S2, or equivalently, the space of lines through
the origin in R3.

1.6. The hyperbolic plane. We will spend a good part of the course developing a couple of
equivalent models for the hyperbolic plane. Sticking with the Poincaré disc model D for now,
the points are the elements of the unit disc and the lines are the intersections of Euclidean
lines or circles that meet the boundary of the disc at right angles. The notion of incidence, i.e.,
whether a point lies on a given line or not, is then the evident one. The notion of betweenness
is also the obvious one, since each hyperbolic line is topologically equivalent (= homeomorphic)
to an open interval, so the complement of each point consists of two connected components.

The notion of congruence requires more work, especially for segments. We need to determine
when two hyperbolic segments AB and CD are congruent. This will allow us to introduce a
notion of linear content, or length, so that AB and CD are congruent if and only if they are
of the same length. It turns out that there is a group of isometries γ : D → D, i.e., length-
preserving bijections, such that AB is congruent to CD if and only if there exists such a γ with
γ(AB) = CD. Hence each “local congruence” between line segments is realized by a “global
congruence” of the entire geometry.

This situation is more familiar in the Euclidean and the elliptic cases. The isometries of the
Euclidean plane R2 are the so-called Euclidean motions, which are bijections γ : R2 → R2 of
the form γ(x) = Rx + t with R ∈ O(2) an orthogonal 2 × 2 matrix (representing a rotation
or a reflection) and t ∈ R2 a vector (representing a translation). Two Euclidean segments AB
and CD are congruent, or equally long, if and only if there exists an Euclidean motion γ with
γ(AB) = CD. More precisely, R must be chosen to turn AB in the same direction as CD, and
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t must be chosen to move R(A) to C. Then γ(A) = C and γ(AB) points in the same direction
as CD, so γ(B) = D if and only if AB is equally long as CD.

The isometries of the projective plane RP 2 are the rotations and reflections γ(x) = Rx, with
R ∈ O(3) an orthogonal 3× 3-matrix. Multiplication by R defines a linear bijection R3 → R3,
but since R preserves distances, it restricts to a bijection S2 → S2 of the unit sphere. It takes
antipodal points to antipodal points, hence induces a bijection γ : RP 2 → RP 2, and this is the
rotation or reflection that we have in mind. Again, two spherical segments (arcs, parts of great
circles) AB and CD are congruent, or equally long, if and only if there exists a rotation (or
reflection) γ with γ(AB) = CD. We can first rotate A to C, about an axis orthogonal to the
great circle through A and C. Thereafter, by rotating around the axis through C we may bring
the image of B to D if and only if AB and CD are equally long.

In the same way, we will construct a group of operations on the unit disc D, i.e., bijections
γ : D→ D, such that two hyperbolic segments AB and CD are congruent if and only if γ(AB) =
CD for one of these particular bijections. These operations γ will then be distance-preserving
bijections of D, i.e., isometries of the hyperbolic plane. If we identify R2 with C in the usual
way, so that D corresponds to the complex numbers z of modulus |z| < 1, these isometries can
be written on one of the forms

γ(z) =
az + b

cz + d
or

γ(z) =
az̄ + b

cz̄ + d

for suitable a, b, c, d ∈ C. (The coefficients must be chosen so that γ maps D bijectively to D.)
These maps are called fractional linear transformations, or Möbius transformations.

Once we have constructed this group of Möbius transformations, we have well-defined notions
of congruence and length for hyperbolic segments. It turns out that each Möbius transformation
is conformal, i.e., preserves angles, so we also get well-defined notions of congruence and angle
measure of hyperbolic angles. In fact, the hyperbolic angle between two hyperbolic lines meeting
at A will be the same as the Euclidean angle between their respective Euclidean tangent lines at
A. With these definitions, we can verify that the Poincaré disc satisfies all of Hilbert’s axioms
for plane hyperbolic geometry.

2. August 21st lecture

2.1. Homogeneous spaces. Each of the three geometries X we now have discussed, namely
the Euclidean plane R2, the projective plane RP 2 and the hyperbolic plane D, are homogeneous,
in the sense that there is a group G = {γ : X → X} of isometries that acts transitively on the
set X of points, meaning that for any two points A,B ∈ X there exists an isometry γ ∈ G with
γ(A) = B.

In the Euclidean case G = O(2)nR2 is the semi-direct product of O(2) and R2, with respect to
the standard action of O(2) on R2. In the elliptic case G = PO(3) = O(3)/{±I} is the quotient
of O(3) by its center {±I}. In the hyperbolic case G contains PSL2(R) = SL2(R)/{±I} as a
subgroup of index two, where SL2(R) is the group of matrices

γ =

[
a b
c d

]
with a, b, c, d ∈ R and ad− bc = 1. There is a relation between these matrices and the Möbius
transformations mentioned above, but this connection is more easily seen with another model
for the hyperbolic plane than the unit disc model.

Selecting a point A ∈ X, we may consider the subgroup H ⊂ G of isometries η that fix A,
i.e., such that η(A) = A. Then the map G → X taking γ to γ(A) will take each right coset
γH = {γη | η ∈ H} to the same point in X, and therefore induces a bijection

G/H
∼=−→ X
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taking γH to γ(A). We call H the stabilizer group of A. Such spaces G/H, with G a Lie
group and H a closed subgroup, are called homogeneous spaces. Restricting to the orientation-
preserving isometries, we get bijections

SO(2) nR2/SO(2) ∼= R2 ,

SO(3)/SO(2) ∼= S2

(the projective case is a little more complicated) and

SL2(R)/SO(2) ∼= D .

2.2. Trigonometry. Just as two points determine a line and a segment, three points A, B,
C will determine a triangle 4ABC, with three sides AB, BC, CA and three angles ∠BAC,
∠CBA, ∠ACB. As is familiar from the Euclidean case, these quantities are not unrelated.
The study of the relations between these lengths and angles is the subject of trigonometry. In
the Euclidean case, the key relations are the sine rule, the cosine rule, and the fact that the
sum of the three angles equals two right angles. We shall determine the corresponding laws of
hyperbolic trigonometry, including a formula for the area contained within a hyperbolic triangle.

2.3. Differential geometry. A very different point of view on the role of lines in geometry
is found in Riemann’s lectures on the foundations of geometry, which relies on the differential
calculus of Newton and Leibniz. We start by extending the notion of length from being defined
for line segments to being defined for more general curves. In the Euclidean case, a curve in
the plane may be parametrized by a function

ω : [a, b]→ R2

where [a, b] is some interval. For each t ∈ [a, b], the value ω(t) is then a point on the curve, and
as a set the curve consists of all these values. If

a = c0 < c1 < · · · < cn = b

is a partition of the interval, we may consider the part of the curve from ω(ci−1) to ω(ci) for
each 1 ≤ i ≤ n. We require that the length of that part of the curve shall be greater than or
equal to the length of the line segment between these two points, i.e.,

‖ω(ci)− ω(ci−1)‖

where ‖(x, y)‖ =
√
x2 + y2 is the Euclidean norm. Hence the length of ω should be greater or

equal than the sum
n∑
i=1

‖ω(ci)− ω(ci−1)‖ .

Letting n and the partition {ci}ni=0 vary, we get a set of such sums, and if this set has a least
upper bound, we say that the curve ω is rectifiable, and define its length to be that supremum:

sup
a=c0<···<cn=b

n∑
i=1

‖ω(ci)− ω(ci−1)‖ .

For Riemannian geometry, we limit attention to the curves that are continuously differen-
tiable, i.e., such that the tangent vector ω′(t) is defined for each t ∈ [a, b], and such that the
rule t 7→ ω′(t) defines a continuous function. Such a curve is also called a C1 curve. When the
partition is fine enough, the sum

n∑
i=1

‖ω(ci)− ω(ci−1)‖

is closely approximated by the sum
n∑
i=1

‖ω′(di)‖(ci − ci−1)
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for any choice of points di ∈ [ci−1, ci] for 1 ≤ i ≤ n. Since the function t 7→ ‖ω′(t)‖ is assumed
to be continuous, it is Riemann integrable. It follows that the curve is rectifiable, and that its
length is given by the integral ∫ b

a
‖ω′(t)‖ dt .

2.4. Lines as shortest paths. Instead of starting with the primitive concept of a line in R2,
we may instead start with the measure ‖ω′(t)‖ of the length of each tangent vector, and use
the formula above to define the length of any C1 curve. The line segment from A to B in R2

can then be characterized as the shortest path from A to B, i.e., the image of the C1 curve
ω : [a, b]→ R2 from ω(a) = A to ω(b) = B of minimal length. (It is necessary to prove that such
a curve exists, and that it is uniquely determined up to reparametrization. The corresponding
problem for surfaces of minimal area is much more difficult.)

A line in R2 is then the image of a C1 curve ω : R → R2 that is locally of minimal length,
i.e., such that for each t ∈ R there is an interval [a, b] with a < t < b such that the restricted
curve ω|[a,b] : [a, b]→ R2 is the shortest path from ω(a) to ω(b). Such a path is called a complete

geodesic, and this approach lets us recognize the lines in R2 as the complete geodesics in the
plane equipped with the Euclidean length measure for tangent vectors.

The same approach can be applied in the elliptic and hyperbolic cases. A C1 curve ω̄ : [a, b]→
RP 2 can be represented by a curve

ω : [a, b]→ S2

on the unit sphere S2 inside R3, and each tangent vector ω′(t) to the curve, which lies in the
tangent plane to S2 at ω(t), can be viewed as a vector in R3. We declare its length ‖ω′(t)‖ to

be given by the Euclidean norm ‖(x, y, z)‖ =
√
x2 + y2 + z2, and define the length of ω̄, as well

as that of ω, to be the same integral ∫ b

a
‖ω′(t)‖ dt

as before, except that now each ω′(t) is a tangent vector to S2 in R3, while earlier it was a
tangent vector in R2. The shortest paths between two points on RP 2 then turn out to be the
segments of great circles, i.e., the elliptic line segments. Furthermore, the complete geodesics
parametrize the great circles. This lets us recognize the elliptic lines in RP 2 as the complete
geodesics in the projective plane equipped with the length measure for tangent vectors inherited
via S2 from R3.

In the hyperbolic case, each C1 curve ω : [a, b] → D can be viewed as a curve in R2, but in
order to recognize the hyperbolic line segments as the shortest paths between two points, we
cannot simply define the hyperbolic length of a tangent vector ω′(t) in D to be the same as its
Euclidean length as a tangent vector in R2. A scaling factor of 2/(1− ‖ω(t)‖2) turns out to be
needed, which grows to infinity as ω(t) approaches the boundary of the unit disc. This leads to
the formula ∫ b

a

2‖ω′(t)‖
1− ‖ω(t)‖2

dt

for the hyperbolic length of the curve ω, where now ‖ω′(t)‖ refers to the Euclidean length of
ω′(t). With this modified measure of length, or norm, for tangent vectors in D, the hyperbolic
line segments become the shortest paths between their endpoints, and the hyperbolic lines are
the complete geodesics.

Note that in the elliptic case the complete geodesics are closed loops of finite length, while
in the hyperbolic case they are simple curves of infinite length.

2.5. Riemannian manifolds. At this point, it becomes possible to vastly generalize the scope
of geometry. For any differentiable manifold, i.e., a topological space M that is locally homeo-
morphic to Rn for some n, equipped with some additional structure to make sure that we can
talk about an n-dimensional vector space TpM of tangent vectors to M at each point p of M ,
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we may consider C1 curves ω : [a, b]→M in M , having tangent vectors ω′(t) ∈ Tω(t)M for each
t ∈ [a, b]. A Riemannian metric on M is one more additional structure, namely an inner product
pairing on each tangent space TpM , which permits us to speak about the length ‖ω′(t)‖ of each
of these tangent vectors. A Riemannian manifold is a differentiable manifold equipped with a
Riemannian metric. We define the length of the curve ω in the Riemannian manifold M to be
the integral ∫ b

a
‖ω′(t)‖ dt.

This in turn allows us to identify the shortest curves in M between two points p and q. The
images of these curves can now play the roles of generalized line segments in a geometric
theory on M . The complete geodesics for this length measure now play the role of (full)
lines. They may no longer satisfy the axioms of Euclid or Hilbert, but they still carry a lot of
spatial, geometric information. The study of the geometry of Riemannian manifolds is called
Riemannian geometry.

2.6. Surfaces in R3. In the case n = 2, a 2-dimensional manifold is usually called a surface.
We shall study surfaces M ⊂ R3 contained in ordinary Euclidean 3-space, with differentiable
structure defined in such a way that each tangent vector to M can be viewed as a vector in R3,
i.e., that TpM ⊂ R3 for each p ∈ M . (This generalizes the case of S2 ⊂ R3 that we discussed
earlier, in the context of elliptic geometry.) We can then let each tangent plane TpM inherit the
Euclidean inner product from the containing space R3, so that the length ‖ω′(t)‖ of a tangent
vector to M in p is set to be equal to the Euclidean length of ω′(t) viewed as a vector in R3. In
this case we say that M has the Riemannian metric inherited from the ambient space R3.

For example, we might consider the torus M = T 2 embedded in R3 as the surface of rotation
obtained by rotating the circle of radius r in the xz-plane, with origin at (R, 0, 0), about the
z-axis. Here we assume 0 < r < R, to ensure that M is topologically equivalent to the Cartesian
product S1 × S1 of a circle with itself. This surface is like the boundary of a doughnut. Some
closed geodesics can be recognized on this surface, but the general picture is complex and
fascinating. Near the outer perimeter the geometry is positively curved, like that of a sphere.
Here the sum of angles in a small geodesic triangle is larger than two right angles. Near the
inner perimeter, it is negatively curved, like that of a hyperboloid. Here the sum of angles in a
small geodesic triangle is smaller than two right angles. In a region near the top and bottom
the curvature is close to zero.

Alternatively, we might consider the surface of a glass or bowl in R3. In most cases this surface
is topologically equivalent to S2, but the inherited Riemannian metric will be very different, as
will the structure of the collection of geodesic curves.

We might also consider the surface of a cup, or mug, in R3. If the cup has exactly one handle,
the surface is topologically equivalent to T 2 = S1×S1, but the Riemannian metric will depend
heavily on the shape of the cup.

Continuing, we might consider the surface of a mug with two or more handles. If there are
g handles, this is called a surface of genus g. In the inherited Riemannian metric, it will have
parts of positive curvature at the outside of the handles, and at the bottom of the mug (both
inside and outside). It will have parts of negative curvature at the inside of the handles, and
along the upper rim.

2.7. Abstract surfaces. More generally, we might consider abstractly defined 2-dimensional
manifolds, or surfaces, that are not explicitly presented as subspaces of R3. For example, we
might consider the unit square I2 = [0, 1]× [0, 1] in the plane, with the sides identified so that
(x, 0) ∼ (x, 1) for all x ∈ [0, 1], and (0, y) ∼ (1, y) for all y ∈ [0, 1]. We can define the length
‖ω′(t)‖ of the tangent vector to a curve as the Euclidean length of the corresponding tangent
vector in R2. This makes sense because the identifications (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y) are
realized by Euclidean motions, namely (x, y) 7→ (x, y + 1) and (x, y) 7→ (x+ 1, y), respectively,
so the definition of length is compatible with the implicit identifications. Locally, this geometry
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is flat, i.e., just like that of the Euclidean plane. We therefore call this Riemannian manifold
the flat torus. Note that this is rather different than the Riemannian geometry on the boundary
of a doughnut, inherited from the surrounding Euclidean space.

The flat torus can also be realized by making identifications of opposite edges in a regular
hexagon.

A surprising theorem of the late Abel prize laureate John Nash asserts that allowing abstractly
defined surfaces and abstract Riemannian metrics does in fact not add any generality compared
to only considering surfaces realized as subspaces of R3, with the inherited Riemannian metric.
In other words, any abstract Riemannian manifold can be C1 isometrically embedded in a
Euclidean space. (One can be more precise about the dimensions of these manifolds and the
surrounding space.)

For example the flat torus can be realized as a subspace of R3, in such a way that the lengths
of tangent vectors, hence also the lengths of curves, are the same in that subspace as in the
abstract flat model I2/∼. (A picture approximating such an embedding was recently produced
by the Hevea project.) One can even arrange that this subspace is contained in an arbitrarily
small ball.

The genus g surface, for g ≥ 2, can also be realized as an identification space, now starting
with a polygon with 4g edges, which have to be identified in pairs in a specific order. For
simplicity let us assume g = 2, so that we are considering the boundary of a mug with two
handles. Starting with an octagon ABCDEFGH, the side AB is identified with DC, the side
BC is identified with ED, the side EF is identified with HG and the side FG is identified with
AH. Topologically this produces a manifold M that is topologically a genus 2 surface. However,
if we started with a regular Euclidean octagon, it is not possible to give M a Riemannian metric
in a way that is respected by the identifications. All eight corners are identified to one point
p in M , and going once around p in M corresponds to looping through all eight angles in the
octagon, in the order ∠A, ∠D, ∠C, ∠B, ∠E, ∠H, ∠G and ∠F . Since each interior angle in the
Euclidean octagon is one-and-a-half right angle (also known as 135 degrees), this adds to twelve
right angles, which is three times as much as a full rotation should be for any inner product on
the plane.

A solution is to replace the Euclidean octahedron with a hyperbolic octahedron, where the
angle sum in a polygon can be made smaller by bringing the corners of the polygon closer to
the boundary “at infinity” of the hyperbolic plane. It is possible to put the eight corners A to
H as in a regular Euclidean octahedron, inside the open unit disc D model for the hyperbolic
plane, and to replace the eight Euclidean line segments AB to HA with the corresponding eight
hyperbolic line segments. Then the inner angles in this regular hyperbolic octahedron will be
smaller than 135 degrees, and can be arranged to be exactly half a right angle, i.e., 45 degrees.
If the identifications are made from this part of the hyperbolic plane, the total angle around the
conjoined point p will now be four right angles, as desired. Furthermore each identification can
be realized by a hyperbolic isometry, i.e., a Möbius transformation, and therefore the genus 2
surface M can be given the structure of a Riemannian manifold in such a way that it is locally
just like a piece of the hyperbolic plane. In particular this model in everywhere negatively
curved, unlike the boundary of a mug with two handles, which had some positively curved and
some negatively curved parts.

This illustrates a uniformization theorem. Every (closed, connected) surface can made geo-
metric, i.e., given a Riemannian metric so that each small open piece of the surface is isometric
to a small open piece of one of the three model geometries that we have mentioned: the posi-
tively curved elliptic geometry, the flat Euclidean geometry, or the negatively curved hyperbolic
geometry. These correspond to the cases of genus g = 0, genus g = 1 and genus g ≥ 2,
respectively.

2.8. Theorema Egregium and Gauss-Bonnet. An important result in the differential ge-
ometry of surfaces is Gauss’ Theorema Egregium (Latin for “remarkable theorem”), which shows
that curvature is an intrinsic property of a surface with a Riemannian metric, i.e., that it does
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not depend on how this surface is or may be isometrically embedded in an ambient space. (This
concerns two times continuously differentiable embeddings, hence is not contradicted by Nash’
theorem.)

Another important result is the Gauss–Bonnet theorem, which shows that the integral of
the curvature over a surface with a Riemannian metric is a topological invariant of the surface,
namely 2π times the Euler characteristic of the surface, or equivalently 2π ·(2−2g) if the surface
has genus g.

For instance, a sphere of radius r has genus 0 and Euler characteristic 2. The curvature at
each point is 1/r2, and the surface area is 4πr2, so the integral of the curvature over the area is
4πr2/r2 = 4π = 2π · 2. Making the corresponding calculation for the surface of a glass or bowl,
or any convex body, gives the same result.

A torus has genus 1 and Euler characteristic 0. The flat torus has curvature 0 at each point,
so the integral of the curvature over the surface is 0 = 2π · 0. Less obviously, we get the same
result if we consider the boundary of a doughnut with the metric inherited from R3, or the
boundary of a mug with one handle. Here the curvature is sometimes positive and sometimes
negative, and when integrated the positive and negative contributions cancel perfectly, leaving
0 as the answer.

A surface of genus g ≥ 2 can be realized as an identification space from a regular hyperbolic
4g-gon, and has constant negative curvature at all points. By Gauss–Bonnet, the product of the
curvature and the area is 2π times the negative number 2−2g. Making the same calculation for
a mug with g ≥ 2 handles, the curvature will sometimes be positive and sometimes be negative,
but in this case the negative contributions dominate, leaving a negative total answer.

3. August 26th lecture

3.1. Dimension three. Going up one dimension, the classification of 3-dimensional manifolds
is much more complicated that the classification of surfaces. Some examples of 3-manifolds
are Euclidean 3-space R3, the 3-sphere S3 given as the unit sphere in R4, and the 3-torus
T 3 = S1 × S1 × S1. Each 3-manifold can be realized as a subspace of a higher-dimensional
Euclidean space, M ⊂ RN for some N . They can also be presented abstractly as identification
spaces obtained by making identifications along the boundary of polyhedra.

If we start with a cube, I3 = [0, 1]× [0, 1]× [0, 1], also known as a six-sided die, and identify
opposite sides according to the rules (x, y, 0) ∼ (x, y, 1), (x, 0, z) ∼ (x, 1, z) and (0, y, z) ∼
(1, y, z), then the resulting 3-manifold is topologically equivalent to the 3-torus T 3 = S1×S1×S1.
This admits a flat Riemannian metric, locally modeled on the Euclidean metric in R3.

If we instead identify antipodal points on the boundary of I3, i.e., via (x, y, z) ' (1− x, 1−
y, 1−z) when at least one of x, y or z is 0 or 1, we get a 3-manifold that is homeomorphic to S3

with antipodal points identified, i.e., to the projective space RP 3 of lines through the origin in
R4. This manifold admits a Riemannian metric of constant positive curvature, locally modeled
on the elliptic metric on S3.

A famous example, called the Poincaré homology sphere, is given by starting with a dodec-
ahedron, also known as a twelve-sided die, and identifying each pair of opposite sides (which
are regular pentagons) by 1/10-th of a full turn. This manifold also admits a Riemannian
metric of constant positive curvature. It is an interesting example, because a collection of im-
portant invariants of topological spaces, called the homology groups, are unable to distinguish
the Poincaré homology sphere from the ordinary 3-dimensional sphere S3. Another invariant,
the fundamental group, does however distinguish between these two manifolds.

Yet another example, called the Seifert–Weber space, is given by starting with a dodecahedron
and identifying each pair of opposite sides using 3/10-th of a full turn. This construction can
be done using a regular hyperbolic dodecahedron, so that the identifications are made using
hyperbolic isometries, in such a way that the Seifert–Weber space admits a Riemannian metric
of constant negative curvature.
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Finally, identifying opposite sides of a dodecahedron by 5/10-th of a full turn, i.e., a half-turn,
gives another model for the positively curved projective space RP 3.

3.2. The geometrization conjecture. Deep insight of William Thurston suggested that the
interplay between geometry and topology is almost as close in dimension three as in dimension
two. Thurston’s geometrization conjecture from 1982 asserts that any closed 3-manifold M can
be decomposed into pieces, by cutting it open along suitable embedded spheres S2 →M or tori
T 2 → M , such that each of the resulting pieces admits a geometric structure. More precisely,
there are eight possible 3-dimensional model geometries, including the positively curved elliptic
geometry of the sphere S3, the flat geometry of R3, and the negatively curved hyperbolic
geometry of a hyperbolic 3-space H3, and each piece of the decomposition of M admits a
Riemannian metric that corresponds to one of these model geometries.

Thurston proved that a large class of 3-manifolds admit a hyperbolic structure, i.e., a Rie-
mannian metric that is locally isometric to the hyperbolic 3-space. In a sense this is the largest
class of geometric pieces of 3-manifolds. The existence of a hyperbolic geometric structure in
these pieces is a very useful tool for their classification, even if the full story remains complicated.

Switching from the everywhere negatively curved to the everywhere positively curved side,
the geometrization conjecture includes as a special case the Poincaré conjecture from 1904, pre-
dicting that the only simply connected closed 3-manifold is the 3-sphere. The full geometrization
conjecture, including the Poincaré conjecture, was famously proven by Grigori Perelman, start-
ing with preprints published in 2002 and 2003. (Additional details were spelled out by other
authors in the following years.)

Perelman’s proof develops an idea introduced by Richard Hamilton, of starting with a Rie-
mannian metric on the given 3-manifold, and then letting the Riemannian metric evolve over
time, in such a way that the rate of change of the inner product defining the metric is given,
up to a sign, by a version of the curvature of the metric known as the Ricci curvature. This
time-evolving family of Riemannian metrics on the same manifold is called the Ricci flow. The
sign is chosen so that the parts of the manifold with positive curvature shrink in size, so that
the lengths of tangent vectors decrease to zero, while the parts of the manifold with negative
curvature grow, so that tangent vectors become longer. This geometric evolution helps to de-
compose the manifold into pieces that can be analyzed. Since the positively curved parts shrink
to points in finite time, a modification process called surgery is required at various points in the
process. The details of a careful proof require many precise estimates from the theory of partial
differential equations on manifolds, in an area that overlaps with geometric analysis and PDEs.

3.3. Higher dimensions. In higher dimensions, other more exotic phenomena enter. Up to
dimension three there is little difference between topological manifolds, i.e., those reasonable
spaces that are locally homeomorphic to Euclidean n-space, and differential manifolds, i.e., those
where we have introduced enough additional structure to be able to talk about tangent vectors
and other derivatives. Starting in dimension four, it turns out that not all topological manifolds
admit differentiable structures, and sometimes the same topological manifold admits many
different differential structures. John Milnor showed in 1956 that the 7-dimensional sphere
S7 admits many non-equivalent differential structures, called exotic spheres. Around 1982
Simon Donaldson developed a theory particular to dimension 4, which eventually led to a proof
that there are uncountably many nonequivalent differentiable structures on R4. The higher-
dimensional analogue of the Poincaré conjecture, that a manifold that is homotopy equivalent
to Sn is also homeomorphic to Sn, was proven by Stephen Smale for n ≥ 5 around 1960, and
by Mike Freedman for n = 4 in 1982. Technically speaking, Smale’s results were proven for
manifolds with a geometric structure called a piecewise linear structure, which is intermediate
between a “naked” topological manifold and a differentiable manifold.

In high dimensions, we therefore first have three categories, or contexts, of manifolds to study:
the topological, the piecewise linear and the differentiable (or smooth) manifolds. This area is
known as geometric topology, or manifold topology. For differentiable manifolds it is possible
to add a Riemannian structure, and one is led to study differential geometry and Riemannian
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geometry. Many interesting results concern the relationship between geometry and topology,
i.e., to what extent local geometric data determine the global topology, and to what extend
topological objects admit geometric models.

3.4. Related courses. MAT4520 – Manifolds: About differentiable manifolds, tangent vectors,
tensor fields and integration.

MAT4530 – Algebraic topology I: About the fundamental group and homology.
MAT4540 – Algebraic topology II: About cohomology and Poincaré duality for manifolds.
MAT4590 – Differential geometry: About Riemannian metrics and curvature.
MAT9560 – Lie groups: About isometry groups and their homogeneous spaces.

4. August 28th lecture

4.1. Hilbert’s axiom system. [[Start with Chapter 1.]]

4.2. Hyperbolic geometry. [[Continue with Chapter 2, Section 2.1.]]

4.3. Stereographic projection. Let S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} be the unit
2-sphere in 3-space. Let N = (0, 0, 1) ∈ S2 be the “north pole”. Stereographic projection is a
homeomorphism

Φ: S2 \ {N} → R2

with very good geometric properties. It is defined by identifying R2 with the xy-plane in R3,
and sending a point (x, y, z) ∈ S2 different from N to the intersection of the Euclidean line
through N and (x, y, z) with the xy-plane. We can parametrize the line by

t 7→ (1− t)(0, 0, 1) + t(x, y, z) = (tx, ty, 1− t+ tz)

for t ∈ R. The intersection with the xy-plane occurs when 1− t+ tz = 0, i.e., with t = 1/(1−z),
hence at the point (x/(1− z), y/(1− z), 0). Thus

Φ(x, y, z) =
( x

1− z
,

y

1− z

)
.

It is geometrically clear that rotation of S2 about the z-axis corresponds under Φ to rotation
of R2 about the origin, through the same angle.

The inverse to stereographic projection is a homeomorphism

Ψ: R2 → S2 \ {N} .
We often view this as a map to S2, or to R3, without change in the notation. By construction,
Ψ(x, y) is a point on the Euclidean line through N and (x, y, 0). It has unit length, and is
different from N . We can parametrize the line by

t 7→ (1− t)(0, 0, 1) + t(x, y, 0) = (tx, ty, 1− t) .
The point (tx, ty, 1− t) lies on S2 if (tx)2 + (ty)2 + (1− t)2 = 1, or equivalently, if t2(x2 + y2 +
1) − 2t = 0. The solution t = 0 corresponds to the point N ; we are interested in the other
solution, t = 2/(x2 + y2 + 1). Hence

Ψ(x, y) = (2x/(x2 + y2 + 1), 2y/(x2 + y2 + 1), 1− 2/(x2 + y2 + 1))

=
( 2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

By construction Φ and Φ are mutually inverse continuous maps, hence they specify a topolog-
ical equivalence, or homeomorphism, between the punctured sphere S2 \{N} and the plane R2.

If two differentiable curves ω1 and ω2 in R2 intersect at a point P , so that ω1(t1) = P = ω2(t2)
for some parameters t1 and t2, we can compare the tangent vectors ω′1(t1) and ω′2(t2) of these
curves, which are tangent vectors at P . If these vectors are nonzero, there is a well-defined angle
between them, and we then say that the two curves ω1 and ω2 intersect at P at that angle.

Similarly, if two differentiable curves η1 and η2 in S2 intersect at a point Q, so that η1(t1) =
Q = η2(t2) for some parameters t1 and t2, we can compare the tangent vectors η′1(t1) and η′2(t2)
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of these curves, which are tangent vectors to S2 at Q. They line in the tangent plane TQS
2 to

S2 at Q, which we can view as a subspace of R3. In particular, we talk about inner products,
lengths and angles for such vectors as if they were vectors in R3. If these two tangent vectors
are nonzero, there is a well-defined angle between them, and we then say that the two curves
η1 and η2 intersect at Q at that angle.

We say that a differentiable map is conformal if it preserves angles, i.e., if composition with
this map takes any pair of curves that meet at an angle θ to a new pair of curves that meet at
the same angle θ.

5. September 2nd lecture

[[We did Exercises 3, 8 and 14 from Chapter 1.]]

Lemma 5.1. Φ and Ψ are conformal.

Proof. We prove that Ψ: R2 → S2 \ {N} is conformal, i.e., that if ω1 and ω2 are curves in R2

that meet at a point P = (x, y) at an angle θ, then the image curves η1 = Ψ◦ω1 and η2 = Ψ◦ω2

in S2 \ {N} ⊂ S2 ⊂ R3 meet at Q = Ψ(P ) at the same angle θ.
Since Φ and Ψ are mutually inverse differentiable maps, this will also imply that Φ: S2 \

{N} → R2 preserves angles between intersecting curves, hence is conformal.
Since angles between tangent vectors in S2 \ {N} are defined to be the same as the angles

between the corresponding vectors in R3, we may as well consider Ψ as a differentiable map
Ψ: R2 → R3. The chain rule for composition of differentiable maps tells us that if η = Ψ ◦ ω,
then

η′(t) = Ψ′(P )ω′(t) .

Here ω′(t) is the tangent vector of ω at the point P = ω(t), Ψ′(P ) = Ψ′(ω(t)) is the differential
of Ψ at P , i.e., the linear transformation from the tangent plane of R2 at P to the tangent space
of R3 at Φ(P ) that best approximates Φ near P . This linear transformation is given in matrix
terms as multiplication by the Jacobian matrix of Φ, i.e.,

Ψ′(P ) =
(∂Ψi

∂xj
(P )
)
i,j

where Ψ = (Ψ1,Ψ2,Ψ3) and (x1, x2) = (x, y). The image of the vector ω′(t) under the linear
transformation Ψ′(ω(t)) is the tangent vector η′(t) of η at Q = Ψ(P ).

We must therefore prove that the linear transformation Ψ′(P ) from the tangent plane of R2

at P to the tangent space of R3 at Q preserves angles between nonzero vectors. We shall see
that in fact the linear transformation takes an orthonormal basis to a pair of orthogonal vectors
of equal length. Hence the linear transformation preserves angles, and scales all lengths by the
same constant factor.

Rotation of the xy-plane about the origin corresponds, under the inverse stereographic
projection Ψ, to rotation of the unit sphere about the z-axis. Since these rotations pre-
serve angles, we may assume that P = (x, 0) is a point on the x-axis, so that Ψ(P ) =
(2x/(x2 + 1), 0, (x2 − 1)/(x2 + 1)) is a point on the xz-plane. We now consider the effect
of the differential Ψ′(P ) on the two unit vectors (1, 0) and (0, 1) in the xy-plane.

The unit tangent vector (1, 0) in the positive x-direction is the velocity vector of a curve ω1

on the x-axis, which gets mapped to a curve η1 in the unit circle of the xz-plane. Hence Ψ′(P )
maps it to a tangent vector in that plane. Let us simplify the notation by restricting attention
to the x-axis and the xz-plane, omitting y = 0 from the notation. Then inverse stereographic
projection defines a map ψ : R→ S1 ⊂ R2, where S1 is the unit circle, given by

ψ(x) =
( 2x

x2 + 1
,
x2 − 1

x2 + 1

)
.

We calculate

ψ′(x) =
(2(x2 + 1)− (2x)(2x)

(x2 + 1)2
,
(2x)(2x)− (x2 − 1)(2x)

(x2 + 1)2

)
=
( 2− 2x2

(x2 + 1)2
,

4x

(x2 + 1)2

)
,
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so that

‖ψ′(x)‖2 =
(2− 2x2)2 + (4x)2

(x2 + 1)4
=

4x4 + 8x2 + 4

(x2 + 1)4
=

4

(x2 + 1)2

and

‖ψ′(x)‖ =
2

x2 + 1
.

In words, the image of ω′1(t1) = (1, 0) is a vector η′1(t1) in the xz-plane of length 2/(x2 + 1).
The unit tangent vector (0, 1) in the positive y-direction is the velocity vector of the circle ω2

in the xy-plane with center at the origin, going through the point P = (x, 0). Hence this circle
has radius |x|. Inverse stereographic projection maps this curve to another circle, η2, parallel
to the xy-plane and going through the point Ψ(P ) = (2x/(x2 + 1), 0, (x2 − 1)/(x2 + 1)). This
circle has radius 2|x|/(x2 + 1). Since the radius of the latter circle is 2/(x2 + 1) times as large
as the radius of the former circle, it follows from the rotational symmetry of the situation that
the length of the velocity vector η′2(t2) is also 2/(x2 + 1) times as large as the length of the
velocity vector ω′2(t2) = (0, 1), and that these point in the same direction. Hence the image
of ω′2(t2) = (0, 1) is the vector η′2(t2) = (0, 2/(x2 + 1), 0) in the positive y-direction of length
2/(x2 + 1).

Hence the orthonormal vectors (1, 0) and (0, 1) are mapped by Ψ′(P ) to two vectors, one in
the xz-plane and one parallel with the y-axis, both having length 2/(x2 + 1). It follows that the
linear transformation Ψ′(P ) scales all lengths by this number, but does not alter angles. Hence
Ψ preserves angles. �

Lemma 5.2. Consider a curve C ⊂ S2, which may or may not contain N = (0, 0, 1).
(a) If N /∈ C, then C is a circle on S2 if and only if Φ(C) is a Euclidean circle in R2.
(b) If N ∈ C then C is a circle on S2 if and only if Φ(C \ {N}) is a Euclidean line in R2.

Proof. A circle C ⊂ S2 is the intersection of S2 with a plane α in R3, defined by an equation
ax+ by+ cz = d, where we can assume that (a, b, c) is a vector of unit length that is orthogonal
to α, and where |d| < 1. (If |d| = 1 the intersection consists of a single point, and if |d| > 1 it
is empty.) We have N ∈ C if and only if c = d.

The image Φ(C) (or Φ(C \ {N})) of C under stereographic projection consists of the points
(x, y) ∈ R2 such that Ψ(x, y) ∈ C, i.e., the points that satisfy

a · 2x

x2 + y2 + 1
+ b · 2y

x2 + y2 + 1
+ c · x

2 + y2 − 1

x2 + y2 + 1
= d ,

which we can rewrite as

2ax+ 2by + c(x2 + y2 − 1) = d(x2 + y2 + 1)

or as
(c− d)(x2 + y2) + 2ax+ 2by = c+ d .

If c 6= d, this is the equation of a Euclidean circle with center at (−a/(c − d),−b/(c − d)) =
(a/(d− c), b/(d− c)) and positive radius r satisfying r2 = (1− d2)/(c− d)2. If c = d this is the
equation of a Euclidean line, equal to the line ax + by = c. Here a2 + b2 = 1 − c2 = 1 − d2 is
positive, so this is, indeed, a line.

Conversely, any Euclidean circle or line D in R2 can be realized by this equation, with a, b,
c and d as above and then Ψ(D) or Ψ(D) ∪ {N} is a circle in S2, according to the case c 6= d
or c = d, respectively.

This is clear when D is a line. When D is a circle in R2, we may consider a diameter AB
of D such that the line through A and B goes through the origin. The image Ψ(AB) is then a
segment of a great circle on S2. The Euclidean line segment in R3 from Ψ(A) to Ψ(B) is the
diameter of a circle C on S2. The image Φ(C) is then a circle in R2, by what we have already
shown, containing A = Φ(Ψ(A)) and B = Φ(Ψ(B)). Since C is symmetric about the diameter
Ψ(A)Ψ(B), it follows that Φ(C) is symmetric about AB, i.e., that AB is a diameter of Φ(C).
Hence Φ(C) = D, since a circle is determined by its diameter. This implies that Ψ(D) = C, so
that Ψ(D) is a circle on S2. This concludes the proof. �

16



[[Proceed with Section 2.2.]]

5.1. Models for the hyperbolic plane. We will refer to the following models for the hyper-
bolic plane.

• The Beltrami–Klein model K = {(x, y) ∈ R2 | x2 + y2 < 1}, where the K-lines are the
nonempty intersections of Euclidean lines in R2 with the open unit disc K.
• The lower open hemisphere B = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z < 0}, where the
B-lines are semi-circles in S2 meeting the boundary ∂B = {(x, y, 0) ∈ R3 | x2 + y2 = 1}
orthogonally.
• The Poincaré disc model D = {(x, y) ∈ R2 | x2 + y2 < 1} = {z ∈ C | |z| < 1},

where the D-lines are segments of Euclidean lines or circles in R2 meeting the boundary
∂D = {(x, y) ∈ R2 | x2 + y2 = 1} = {z ∈ C | |z| = 1} orthogonally.
• The right-hand open hemisphere B′ = {(x, y, z) ∈ R3 | x2+y2+z2 = 1, y > 0}, where the
B-lines are semi-circles in S2 meeting the boundary ∂B′ = {(x, 0, z) ∈ R3 | x2 + z2 = 1}
orthogonally.
• The upper half-plane model H = {(x, y) ∈ R2 | y > 0} = {z ∈ C | Im z > 0}, where

the H-lines are segments of Euclidean lines or circles in R2 meeting the boundary line
{(x, 0) ∈ R2} = R ⊂ C orthogonally.

We are most interested in the disc and half-plane models, D and H.
We use the following homeomorphisms to identify the various models.

• Vertical projection (x, y)↔ (x, y,−
√

1− x2 − y2) identifies K and B.
• Stereographic projection Φ: B→ D, with inverse Ψ: D→ B, identifies B and D.
• Rotation through a right angle about the x-axis, (x, y, z) 7→ (x,−z, y), identifies the

lower open hemisphere B with the right-hand open hemisphere B′.
• Stereographic projection Φ: B′ → H, with inverse Ψ: H→ B′, identifies B′ and H.

Given what we have proved about stereographic projection, it is clear that these identifications
take the lines in one model to the lines of each other model. The combined identification
D ∼= B ∼= B′ ∼= H turns out to be given by the formula

z 7→ 1

i

z + i

z − i
=

z + i

iz + 1

for |z| < 1.

6. September 4th lecture

6.1. Bijections preserving lines and circles. We shall define the notion of congruence be-
tween line segments, in each of these models, by means of a group of homeomorphisms acting
transitively on the model. These homeomorphisms will then turn out to preserve all hyperbolic
lengths, i.e., be hyperbolic isometries, and to map lines (= complete geodesics) to lines, in each
model. In particular, the isometries of the disc model will be bijections γ : D → D that map
D-lines to D-lines. Similarly, the isometries of the upper half-plane model will be bijections
γ : H→ H that map H-lines to H-lines.

Notice that all of these bijections γ : D→ D and γ : H→ H map segments of some Euclidean
lines or circles in R2 = C to segments of segments of the same kind of Euclidean lines or circles.
It turns out that these maps can be extended to take almost all Euclidean lines or circles in C
to Euclidean lines or circles in C, only with the exception that when a circle is sent to a line,
one point gets sent to “infinity”.

To compensate for this exception, we instead work with the one-point compactification C̄ =
C∪ {∞} of C, known as the Riemann sphere. Stereographic projection Φ: S2 \ {N} → R2 = C
extends to a homeomorphism Φ: S2 → C̄. A curve in C̄ that is either a Euclidean circle in
C, or of the form ` ∪ {∞} where ` is a Euclidean line in C, will be called a C̄-circle. (These
curves correspond under Φ to the great circles in S2.) Working in C̄, the boundary of H also
contains the point ∞, hence equals ∂H = R̄ = R ∪ {∞}. Stereographic projection also induces
a homeomorphism S1 ∼= R̄.
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Each hyperbolic isometry γ : D → D or γ : H → H will be obtained by restriction from a
bijection

m : C̄→ C̄
that takes C̄-circles to C̄-circles. These so-called Möbius transformations turn out to be of two
kinds: the fractional linear transformations (FLTs)

m(z) =
az + b

cz + d

where a, b, c, d ∈ C satisfy ad− bc 6= 0, and their composites with the complex conjugation map
z 7→ z̄, given by

n(z) =
az̄ + b

cz̄ + d
,

with a, b, c, d as above. The first kind of map is complex differentiable, hence holomorphic. The
second kind is not complex differentiable, but can be referred to as anti-holomorphic. (This
means that the real differential is not complex linear, but takes multiplication by i to multipli-
cation by −i.) An FLT m is thus a holomorphic Möbius transformation. The composite n of
an FLT and complex conjugation is an anti-holomorphic Möbius transformation. Alternatively,
we may refer to an FLT m as an even Möbius transformation, and to the composite n of an
FLT and complex conjugation as an odd Möbius transformation.

6.2. Fractional linear transformations (FLTs).

Definition 6.1. A complex fractional linear transformation (FLT) is a meromorphic function
m : C̄→ C̄ given by the formula

m(z) =
az + b

cz + d
for some a, b, c, d ∈ C with ad− bc 6= 0. We write Möb+ = Möb+(C) for the set of all FLTs. In
view of the following lemma, this is a (non-abelian) group.

Lemma 6.2. The FLTs form a group under composition. The composite m ◦ n of m(z) =
(az + b)/(cz + d) and n(z) = (a′z + b)/(c′z + d) is the FLT

(m ◦ n)(z) = m(n(z)) =
(aa′ + bc′)z + (ab′ + bd′)

(ca′ + dc′)z + (cb′ + dd′)
.

(Here (aa′ + bc′)(cb′ + dd′) − (ab′ + bd′)(ca′ + dc′) = (ad − bc)(a′d′ − b′c′) 6= 0.) The FLT
e(z) = (1z + 0)/(0z + 1) acts as the identity. The inverse of m(z) = (az + b)/(cz + d) is the
FLT

m−1(z) =
dz − b
−cz + a

.

Proof. These claims are verified by direct calculations. �

Lemma 6.3. Each FLT can be written as a composite of one or more of the following FLTs:

• m(z) = az = (az + 0)/(0z + 1) with a ∈ C, a 6= 0 (rotation and scaling);
• m(z) = z + b = (1z + b)/(0z + 1) with b ∈ C (translation);
• m(z) = 1/z = (0z + 1)/(1z + 0) (inversion).

Hence these elements generate Möb+ as a group.

Proof. If c = 0 so that ad 6= 0 we can write m(z) = (az + b)/d = (a/d)z + (b/d) as z 7→ (a/d)z
followed by z 7→ z + (b/d). Otherwise, we can write

az + b

cz + d
=

1

c

(
a− ad− bc

cz + d

)
as the composite of z 7→ cz, z 7→ z + d, z 7→ 1/z, z 7→ −(ad− bc)z, z 7→ z + a and a 7→ (1/c)z,
in order. (It suffices to use b = 1, since z + b = b((1/b)z + 1) for b 6= 0.) �

Lemma 6.4. (a) An FLT is conformal, i.e., preserves angles between tangent vectors.
(b) An FLT maps C̄-circles to C̄-circles.
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Proof. (a) The differential of an FLT m takes the tangent vector ω′(t) of a curve ω in C̄ to the
tangent vector η′(t) of the composite curve η = m ◦ ω in C̄. The linear transformation taking
ω′(t) ∈ C to η′(t) ∈ C is given by multiplication with the complex derivative

m′(z) =
a(cz + d)− (az + b)c

(cz + d)2
=

ad− bc
(cz + d)2

at the point z = ω(t). This is a nonzero complex number [[when ad− bc 6= 0 and cz+d 6= 0]], so
multiplication by it corresponds to rotation through an angle equal to the argument of m′(z),
and scaling by a factor equal to the modulus (= norm) of m′(z). Both rotation and scaling
preserves angles between vectors, hence so does the differential of m. [What happens at ∞?
Two C̄-lines intersecting at ∞ also intersect, at the same angle, at some point in C, ETC.]]

(b) It is clear that m(z) = az and m(z) = z + b, with a 6= 0, each map C̄-circles to C̄-circles.
It therefore suffices to verify that m(z) = 1/z also maps C̄-circles to C̄-circles. [[This can be
geometrically verified by realizing inversion in terms of two stereographic projections, but we
instead give a calculational proof.]]

We can write the equation

(x− p)2 + (y − q)2 = r2

of a circle in R2 = C, with center (p, q) and radius r > 0, in terms of z = x+ iy as

zz̄ − p(z + z̄) + iq(z − z̄) + p2 + q2 = r2

or as

zz̄ + µz + µ̄z̄ + ν = 0

where µ = −p + iq ∈ C and ν = p2 + q2 − r2 ∈ R, subject to ν < µµ̄. Multiplying by a scalar
λ ∈ R, and replacing λµ and λν by µ and ν, respectively, we get the equation

λzz̄ + µz + µ̄z̄ + ν = 0 ,

with λ, ν ∈ R, µ ∈ C and λν < µµ̄. If λ = 0 this is the equation

µz + µ̄z̄ + ν = 0

of a line in R2 = C, with ν ∈ R, µ ∈ C and µ 6= 0, otherwise it is the equation of a circle.
Let w = m(z) = 1/z. As z ranges through the solutions of the equation above, w ranges

through the solutions of the equation λ/(ww̄) + µ/w + µ̄/w̄ + ν = 0. Multiplying by ww̄, and
reordering, we can rewrite this as

νww̄ + µ̄w + µw̄ + λ = 0 ,

with ν, λ ∈ R, µ̄ ∈ C and νλ < µ̄µ. If ν = 0 this is the equation of a line, otherwise it is
the equation of a circle. Hence m(z) = 1/z maps any C-circle to another C-circle. [[A similar
calculation works for any FLT m(z) = (az + b)/(cz + d).]] �

Corollary 6.5. (a) Any FLT m : C̄→ C̄ that maps D to itself, so that m(D) = D, takes D-lines
to D-lines.

(b) Any FLT m : C̄→ C̄ that maps H to itself, so that m(H) = H, takes H-lines to H-lines.

Proof. (a) If m(z) = (az + b)/(cz + d) maps D to itself, it must take the boundary circle ∂D to
itself. Since it preserves angles (is conformal), it takes any C̄-circle (line or circle) that meets
∂D at a right angle to another C̄-circle that meets ∂D at a right angle. Restricting to the part
in D, it follows that m takes D-lines to D-lines.

(b) If m(z) = (az+ b)/(cz+ d) maps H to itself, it must take the boundary circle ∂H = R̄ to
itself. Since it preserves angles (is conformal), it takes any C̄-circle (line or circle) that meets
∂H at a right angle to another C̄-circle that meets ∂H at a right angle. Restricting to the part
in H, it follows that m takes H-lines to H-lines. �
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6.3. The projective linear group. As an aside, we note that the group Möb+ of FLTs is
closely related to the group

GL2(C) =
{[
a b
c d

]
| a, b, c, d ∈ C, ad− bc 6= 0

}
of invertible complex 2× 2 matrices, with group structure given by matrix multiplication[

a b
c d

] [
a′ b′

c′ d′

]
=

[
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

]
.

The neutral element is the identity matrix I =

[
1 0
0 1

]
. The rule

φ : GL2(C)→ Möb+

sending the matrix

[
a b
c d

]
to the FLT m(z) = (az + b)/(cz + d) is then a surjective group

homomorphism. The kernel, D = ker(φ) = φ−1(e), consists of the matrices that are sent to the
identity FLT, i.e., such that (az + b)/(cz + d) = z for all z. This holds if and only if a = d and
b = c = 0, so that

D =
{
λI =

[
λ 0
0 λ

]
| λ ∈ C, λ 6= 0

}
consists of the (invertible) diagonal matrices. Hence the matrices that correspond to the same

FLT as

[
a b
c d

]
are precisely the products[

λ 0
0 λ

] [
a b
c d

]
=

[
λa λb
λc λd

]
for λ 6= 0. We therefore get a group isomorphism

φ̄ : GL2(C)/D
∼=−→ Möb+ .

This kernel D, of diagonal matrices, equals the center of GL2(C), so the quotient group on the
left hand side is often called the projective linear group PGL2(C). Hence the group of FLTs,
or even/holomorphic Möbius transformations, is isomorphic to this projective linear group.

6.4. Action on three points. In order to determine which FLTs map D to D, or map H to
H, it is illuminating to analyze to what extent we can prescribe the values of an FLT on a given
set of points in C̄.

Lemma 6.6. Given three distinct points z1, z2 and z3 in C̄ there is one and only one FLT
m : C̄→ C̄ such that m(z1) = 1, m(z2) = 0 and m(z3) =∞.

If all three points lie in R̄, then m may be expressed with real coefficients, i.e., as m(z) =
(az + b)/(cz + d) with a, b, c, d ∈ R and ad− bc 6= 0.

Proof. If z1, z2 and z3 all lie in C, the FLT

m(z) =
z − z2

z1 − z2

z1 − z3

z − z3

satisfies m(z1) = 1, m(z2) = 0 and m(z3) =∞, as required. There are three other cases:

• If z1 =∞, let m(z) = (z − z2)/(z − z3).
• If z2 =∞, let m(z) = (z1 − z3)/(z − z3).
• If z3 =∞, let m(z) = (z − z2)/(z1 − z2).

In each case, m(z1) = 1, m(z2) = 0 and m(z3) =∞, as required.
This establishes existence. The claim about the real case follows by inspection of the formulas.
To prove uniqueness, suppose that n : C̄→ C̄ is also an FLT such that n(z1) = 1, n(z2) = 0

and n(z3) =∞. Then the composite FLT ` = m◦n−1 satisfies `(1) = 1, `(0) = 0 and `(∞) =∞.
The last condition implies `(z) = az + b for some a, b ∈ C, and the first two conditions imply
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a = 1 and b = 0, so that ` = e is the identity. It follows that m = m ◦ n−1 ◦ n = e ◦ n = n,
proving uniqueness. �

Corollary 6.7. Given three distinct points z1, z2 and z3 in C̄, and (again) three distinct points
w1, w2 and w3 in C̄, there is one and only one FLT m : C̄ → C̄ such that m(z1) = w1,
m(z2) = w2 and m(z3) = w3.

If all six points lie in R̄, then m may be expressed with real coefficients, i.e., as m(z) =
(az + b)/(cz + d) with a, b, c, d ∈ R and ad− bc 6= 0.

Proof. Choose FLTs ` and n so that `(z1) = 1, `(z2) = 0, `(z3) =∞, n(w1) = 1, n(w2) = 0 and
n(w3) = ∞. Then m = n−1 ◦ ` maps zi to wi for i = 1, 2, 3, and may be expressed with real
coefficients if ` and n admit such a presentation. Uniqueness is proved in the same way as in
the lemma. �

Remark 6.8. These results show that PGL2(C) = Möb+ acts simply transitively on the config-
uration space

F3(C̄) = {(z1, z2, z3) ∈ C̄3 | zi 6= zj for i 6= j}
of three distinct ordered points in C̄. The map

Möb+ ∼=−→ F3(C̄)

taking m to (m−1(1),m−1(0),m−1(∞)) is a topological equivalence (homeomorphism), even if
the group structure on the left hand side is not evident on the right hand side. The use of m−1

in place of m ensures that a triple of points (z1, z2, z3) on the right hand side corresponds to
the FLT m on the left hand side with m(z1) = 1, m(z2) = 0 and m(z3) =∞, as above.

Lemma 6.9. Given two C̄-circles C and C ′, there exists an FLT m such that m(C) = C ′. In
other words, Möb+ acts transitively on the set of C̄-lines in C̄.

Proof. Note first that given three distinct points in C̄ there is one and only one C̄-circle through
all three of them. If one of the points is at ∞, the C̄-circle is the line through the other two
points. Otherwise, if all three points lie on a line, the C̄-circle must be that line. Finally, if all
three points do not lie on a line, hence form a triangle, the C-circle must be the circumcircle
of that triangle. Its center lies on the perpendicular bisector of each of the three edges of the
triangle.

Now choose three distinct points z1, z2 and z3 on C and three distinct points w1, w2 and w3

on C ′. Let m : C̄→ C̄ be the FLT with m(zi) = wi for i = 1, 2 and 3. Then m(C) and C ′ are
C̄-circles with three points in common. As noted above, this implies that m(C) = C ′. �

7. September 9th lecture

7.1. Preserving the upper half-plane.

Proposition 7.1. An FLT m : C̄ → C̄ restricts to a homeomorphism of the upper half-plane
H→ H if and only if it can be written in the form m(z) = (az + b)/(cz + d) where a, b, c and
d are real and ad− bc = 1. Such FLTs map H-lines to H-lines.

Proof. If m(H) = H then m(R̄) = R̄, so m(1), m(0) and m(∞) all lie in R̄. Hence m may be
expressed with real coefficients a, b, c and d. Assuming this, the calculation

m(z) =
az + b

cz + d
=

(az + b)(cz̄ + d)

(cz + d)(cz̄ + d)

=
ac|z|2 + (ad+ bc) Re z + bd

|cz + d|2
+ i

(ad− bc) Im z

|cz + d|2

shows that m maps the upper half-plane (where Im z > 0) to the upper half-plane (where
Imm(z) > 0) if and only if ad− bc > 0. In this case we may divide each of a, b, c and d by one
of the real square roots of ad− bc, to arrange that ad− bc = 1.
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Conversely, if a, b, c and d are real, with ad − bc = 1, then m(R̄) = R̄ and m maps H onto
H, so m restricts to a homeomorphism of the upper half-plane.

Each H-line L is part of a unique C-circle C that meets R̄ at a right angle. Any FLT m with
m(R̄) = R̄ will map this to another C-circle m(C) that meets R̄ at a right angle. Hence any
FLT m with m(H) = H will take the H-line L to an H-line m(L). �

Definition 7.2. Let Möb+(H) denote the group of FLTs that restrict to homeomorphisms of
H. It is a subgroup of the group Möb+ = Möb+(C) of all FLTs. Let

SL2(R) =
{[
a b
c d

]
| a, b, c, d ∈ R, ad− bc = 1

}
be the special linear group of real 2× 2 matrices with determinant 1. The rule

ψ : SL2(R)→ Möb+(H)

sending

[
a b
c d

]
to m(z) = (az + b)/(cz + d) is a surjective group homomorphism, with kernel

ker(ψ) = {I,−I} equal to the center of SL2(R). We get a group isomorphism

ψ̄ : PSL2(R)
∼=−→ Möb+(H)

where PSL2(R) = SL2(R)/{±I} is the projective special linear group over R.

Lemma 7.3. Given two H-lines L and L′, there exists an FLT m preserving H such that
m(L) = L′. In other words, Möb+(H) acts transitively on the set of H-lines in H.

Proof. Let C and C ′ be the C̄-circles containing L and L′, respectively. These meet R̄ orthog-
onally, say at {z1, z2} and {w1, w2}, respectively. Choose points z3 ∈ L and w3 ∈ L′. There is
then a unique FLT m(z) = (az + b)/(cz + d) with m(z1) = w1, m(z2) = w2 and m(z3) = w3,
which satisfies m(L) = L′. It maps the C̄-line R̄, which meets C at right angles at z1 and z2,
to a C̄-line m(R̄), which meets C ′ at right angles at w1 and w2. This implies that m(R̄) = R̄.
Since m(z3) = w3, with both z3 and w3 in H, it follows that m(H) = H, so m preserves H. �

Remark 7.4. We will find similar results for FLTs that restrict to homeomorphisms D → D in
Section 2.7.

7.2. The cross-ratio.

Definition 7.5. Given three distinct points z1, z2, z3 ∈ C̄, the uniquely determined FLT m
with m(z1) = 1, m(z2) = 0 and m(z3) =∞ is a function C̄→ C̄ that is denoted

m(z) = [z, z1, z2, z3] .

The extended number [z, z1, z2, z3] ∈ C̄ is called the cross-ratio of z, z1, z2 and z3. (Another
notation is (z, z1; z2, z3).)

Remark 7.6. In the real case, when z and z1 lie between z2 and z3, the point z divides the
segment from z2 to z3 into pieces of length z − z2 and z3 − z, with ratio (z − z2)/(z3 − z).
Likewise, z1 divides the same segment into pieces of length z1 − z2 and z3 − z1, with ratio
(z1 − z2)/(z3 − z1). The quotient

z − z2

z3 − z
:
z1 − z2

z3 − z1

equals the cross-ratio [z, z1, z2, z3].

Lemma 7.7. Given three distinct points z1, z2 and z3 in C̄, and an FLT m, the cross-ratio
satisfies

[z, z1, z2, z3] = [m(z),m(z1),m(z2),m(z3)]

for each point z ∈ C̄. In particular, if m is the FLT with m(z1) = w1, m(z2) = w2 and
m(z3) = w3, we have

[z, z1, z2, z3] = [m(z), w1, w2, w3] .
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Proof. Let n be the FLT mapping m(z1), m(z2) and m(z3) to 1, 0 and ∞, in that order. Then
` = n ◦m is the FLT mapping z1, z2 and z3 to 1, 0 and ∞. By definition, [z, z1, z2, z3] = `(z)
and [m(z),m(z1),m(z2),m(z3)] = n(m(z)). Hence these cross-ratios are equal. �

Remark 7.8. The cross-ratio defines a map

[−,−,−,−] : F4(C̄)→ C̄ \ {1, 0,∞} = C \ {0, 1}
from the configuration space F4(C̄) of four distinct ordered points in C̄, to the complement of
{0, 1} in C. The group Möb+ of FLTs acts freely on this configuration space, and the cross-ratio
is constant on each orbit. Hence there is an induced bijection

F4(C̄)/Möb+ ∼=−→ C \ {0, 1}
from the orbit space for the action of Möb+ on F4(C̄), taking the orbit

{(m(z),m(z1),m(z2),m(z3)) | m ∈ Möb+}
to the cross-ratio [z, z1, z2, z3]. It follows that any function of four distinct points in C̄, assumed
to be invariant under the action by FLTs, can be expressed in terms of the cross-ratio. In this
sense, the cross-ratio is the universal invariant of configurations of four distinct ordered points
in C̄, with respect to the action by holomorphic Möbius transformations.

[[See Proposition 2.2.10 for more about the cross-ratio.]]

7.3. Möbius transformations. There are more C̄-circle preserving homeomorphisms C̄→ C̄
than the FLTs. One such homeomorphism σ is given by complex conjugation: σ(z) = z̄ for
z ∈ C and σ(∞) = ∞. Another is given by reflection in the imaginary axis: ρ(z) = −z̄ for
z ∈ C and ρ(∞) =∞.

Definition 7.9. A complex Möbius transformation is a homeomorphism C̄ → C̄ given by one
of the formulas

m(z) =
az + b

cz + d
or n(z) =

az̄ + b

cz̄ + d
where a, b, c, d ∈ C and ad− bc 6= 0. We write Möb = Möb(C) for the set of all complex Möbius
transformations.

Lemma 7.10. Each Möbius transformation is either holomorphic, and equals an FLT m(z) =
(az + b)/(cz + d), or it is anti-holomorphic, and of the form n(z) = (az̄ + b)/(cz̄ + d). In each
case we may assume that ad− bc = 1.

Proof. For the first claim, the key thing to check is that σ(z) = z̄ is not holomorphic (but
anti-holomorphic). For the second claim, note that we can divide a, b, c and d by one of the
complex square roots of ad− bc. �

Lemma 7.11. Möb is the group of homeomorphisms C̄→ C̄ generated by the FLTs and complex
conjugation. Möb+ is a subgroup of index two, and there is a split extension

1→ Möb+ → Möb→ {e, σ} → 1

with σ acting on Möb+ by taking m(z) = (az + b)/(cz + d) to mσ(z) = (āz + b̄)/(c̄z + d̄).

Proof. It is clear that each complex Möbius transformation can be written as m or n = m ◦ σ,
where m(z) = (az + b)/(cz + d) is an FLT and σ is complex conjugation. We must prove that
Möb is closed under composition. This follows from the relation σ ◦m = mσ ◦ σ. �

Remark 7.12. It is possible to prove that Möb is the whole group of C̄-circle preserving homeo-
morphisms C̄→ C̄. See e.g. Theorem 2.21 on page 51 in J. W. Anderson, Hyperbolic Geometry,
Springer-Verlag (2007).

Definition 7.13. Let Möb(H) be the group of Möbius transformations that restrict to homeo-
morphisms of H. It is a subgroup of the full group Möb = Möb(C) of Möbius transformations,
and contains the group Möb+(H), of FLTs preserving H, as a subgroup of index two.
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Lemma 7.14. There is a split extension

1→ Möb+(H)→ Möb(H)→ {e, ρ} → 1

with ρ acting on Möb+(H) by taking m(z) = (az + b)/(cz + d) (with a, b, c, d ∈ R, ad− bc = 1)
to mρ(z) = (az − b)/(−cz + d).

Proof. The key facts are that ρ ∈ Möb(H) is not in Möb+(H), and the relation ρ ◦m = mρ ◦ ρ
holds:

−az̄ + b

cz̄ + d
=

a(−z̄)− b
−c(−z̄) + d

.

�

Definition 7.15. We sometimes write Möb− = Möb−(C) for the coset Möb \Möb+ of anti-
holomorphic (or odd) Möbius transformations. Similarly, we write Möb−(H) for the coset
Möb(H) \Möb+(H) of anti-holomorphic (or odd) Möbius transformations preserving H.

Proposition 7.16. Each Möbius transformation preserving H can be written in one of the
forms

m(z) =
az + b

cz + d
with a, b, c and d ∈ R and ad− bc = 1, or

m(z) =
az̄ + b

cz̄ + d

with a, b, c and d ∈ R and ad − bc = −1. In each case the presentations are unique, up to
replacing (a, b, c, d) by (−a,−b,−c,−d).

Proof. We already checked this in the holomorphic case. In the anti-holomorphic case we can
write the Möbius transformation as m = ρ ◦ n with n(z) = (az + b)/(cz + d) as in the first
case. Then m(z) = −(az̄ + b)/(cz̄ + d) = ((−a)z̄ + (−b))/(cz̄ + d) with a, b, c and d ∈ R and
ad− bc = 1. Replacing (a, b, c, d) with (−a,−b, c, d) yields the claim. �

8. September 11th lecture

8.1. Eigenvectors and fixed points. The action of the group GL2(C) on C̄ by FLTs is closely
related to the (usual) linear action of GL2(C) on

C2 = {(z1, z2) | z1, z2 ∈ C} ,

complex 2-dimensional space, given by[
a b
c d

]
·
[
z1

z2

]
=

[
az1 + bz2

cz1 + dz2

]
.

For brevity we write this as M · (z1, z2) = (az1 + bz2, cz1 + dz2), where M =

[
a b
c d

]
.

Since ad − bc 6= 0, we have M · (z1, z2) 6= (0, 0) whenever (z1, z2) 6= (0, 0). The resulting
actions by GL2(C) on C2 \ {(0, 0)} and C̄ are compatible under the projection

π : C2 \ {(0, 0)} → C̄

that takes (z1, z2) to z1/z2, interpreted as ∞ when z2 = 0. The compatibility means that

π(M · (z1, z2)) = M · π(z1, z2) ,

or equivalently, that
az1 + bz2

cz1 + dz2
=
a(z1/z2) + b

c(z1/z2) + d
= m(z1/z2)

where m(z) = (az + b)/(cz + d) is the FLT associated to M .
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We can analyze the action of M ∈ GL2(C) on C2 in terms of eigenvectors and eigenvalues.
If (z1, z2) is an eigenvector for M , with eigenvalue λ, we have M · (z1, z2) = (λz1, λz2). Here
λ 6= 0, since M is invertible. Then

m(z) = π(M · (z1, z2)) = π(λz1, λz2) = λz1/λz2 = z1/z2 = z ,

where z = π(z1, z2). In other words, z ∈ C̄ is a fixed point for m : C̄ → C̄. The classification
of M in terms of eigenvectors therefore corresponds to a classification of m in terms of fixed
points.

8.2. Classification of real FLTs. We are principally interested in real FLTs (and Möbius
transformations), preserving H ⊂ C̄, hence will assume that a, b, c and d are real, and that
ad − bc = 1. In other words, M ∈ SL2(R). The eigenvalues of M are then roots of the
characteristic polynomial

pM (t) = det(tI −M) = (t− a)(t− d)− bc
= t2 − (a+ d)t+ (ad− bc) = t2 − (a+ d)t+ 1 .

Hence

λ =
(a+ d)±

√
(a+ d)2 − 4

2
.

Since a, b, c and d are real, we can divide into three cases, according to the sign of (a+ d)2− 4.
In this discussion we assume that M is not ±I, so that m is not the identity transformation.

8.2.1. The hyperbolic case. If |a + d| > 2 we say that M and m are of hyperbolic type. The
matrix M has two real eigenvalues λ and λ′, and two real eigenvectors (x1, x2) and (x′1, x

′
2), with

M · (x1, x2) = (λx1, λx2) and M · (x′1, x′2) = (λ′x′1, λ
′x′2). Since the eigenvalues are different, the

eigenvectors are linearly independent, so by scaling one or both eigenvectors we may assume
that x1x

′
2 − x′1x2 = 1.

The fixed points of the FLT m(z) = (az + b)/(cz + d), i.e., the solutions of m(z) = z with
z ∈ C̄, are then the two points x = π(x1, x2) = x1/x2 and x′ = π(x′1/x

′
2) = x′1/x

′
2 on the

extended real line R̄.
Note that λ+λ′ = a+d and λλ′ = 1. Replacing M by −M , if necessary, we may assume that

a+ d is positive, in which case λ and λ′ are also positive. Interchanging λ and λ′, if necessary,
we may assume that 1 < λ <∞ and 0 < λ′ = 1/λ < 1.

Let N =

[
x1 x′1
x2 x′2

]
represent a change-of-basis, between the standard basis for C2 and the

basis given by the eigenvectors, so that M · N = N · L, with L =

[
λ 0
0 λ′

]
a diagonal matrix.

Both N and L lie in SL2(R).
Let n(z) = (x1z + x′1)/(x2z + x′2) and `(z) = (λz + 0)/(0z + λ′) = λ2z be the associated

FLTs in Möb+(H). Then m ◦ n = n ◦ `. Viewing the homeomorphism n : C̄ → C̄ as a change
of coordinate system on C̄, the FLT `(z) = λ2z (at the source of n) corresponds to the original
FLT m(z) = (az + b)/(cz + d) (at the target of n). The two fixed points 0 and ∞ of ` get
mapped by n to the fixed points n(0) = x and n(∞) = x′ of m.

Up to conjugation by n, m = n ◦ ` ◦n−1 is given by the standard hyperbolic FLT, `(z) = λ2z
with 1 < λ < ∞. The sign of λ depends on the choice of M , but the value of η = λ2 only
depends on m.

8.2.2. The parabolic case. If |a + d| = 2 we say that M and m are of parabolic type. The
matrix M has only one eigenvalue, λ = (a+ d)/2, equal to 1 or −1. Replacing M with −M , if
necessary, we may assume that a+ d is positive, in which case λ = 1.

If the eigenspace of M were 2-dimensional, M would be the identity matrix. Since we are
assuming this not to be the case, the eigenspace of M must be 1-dimensional. Hence M has one
real eigenvector (x1, x2) with M · (x1, x2) = (λx1, λx2), and m has one fixed point x = x1/x2,
which lies in R̄.
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Choose any real vector (x′1, x
′
2), so that x1x

′
2 − x′1x2 = 1, and let N1 =

[
x1 x′1
x2 x′2

]
. Then

M · N1 = N1 · L1, with N1 and L1 =

[
α β
γ δ

]
both in SL2(R). Here α = 1, γ = 0 and δ = 0,

since M · (x1, x2) = (x1, x2) and det(L1) = 1. Hence L1 =

[
1 β
0 1

]
with β ∈ R. Let n1(z) and

`1(z) = (1z + β)/(0z + 1) = z + β be the associated FLTs, with m ◦ n1 = n1 ◦ `1.

In fact, we can standardize `1 a bit more. Let k 6= 0 and let N2 =

[
k 0
0 1/k

]
. Then L1 ·N2 =

N2 · L with N2 and L =

[
1 β/k2

0 1

]
in SL2(R). Choosing k with k2 = |β| we may thus arrange

that L =

[
1 ±1
0 1

]
. Let n2(z) = (kz+0)/(0z+(1/k)) = k2z and `(z) = (1z±1)/(0z+1) = z±1

be the associated FLTs in Möb+(H), with `1 ◦ n2 = n2 ◦ `.
Combining the two steps, let N = N1 · N2, with associated FLT n = n1 ◦ n2 in Möb+(H).

Then m ◦ n = n ◦ `. Viewing n : C̄→ C̄ as a change of coordinate system, the FLT `(z) = z± 1
(at the source of n) corresponds to the FLT m(z) (at the target of n). The single fixed point
z =∞ of ` gets mapped by n to the single fixed point n(∞) = x of m, which lies in R̄.

8.2.3. The elliptic case. If |a+ d| < 2 we say that M and m are of elliptic type. The matrix M
has a conjugate pair of complex eigenvalues, λ and λ̄, and two complex eigenvectors (w1, w2)
and (w̄1, w̄2), with M · (w1, w2) = (λw1, λw2) and M · (w̄1, w̄2) = (λ̄w̄1, λ̄w̄2). (In each case the
bar denotes complex conjugation).

The fixed points of the FLT m(z) = (az + b)/(cz + d) acting on C̄ are then w = w1/w2 and
w̄ = w̄1/w̄2. Interchanging (w1, w2) and (w̄1, w̄2), if necessary, we may assume that Imw > 0,
so that w ∈ H is in the upper half-plane. Then the restriction of m to H has exactly one fixed
point, namely w.

Let N be such that n−1(z) = (z−Rew)/ Imw in Möb+(H), and let L =

[
α β
γ δ

]
be such that

M ·N = N · L. We can arrange that N , hence also L, lies in SL2(R). Let ` be the associated
FLT, with m ◦ n = n ◦ `. Then n−1(w) = i, so w = n(i) and `(i) = i. Under the change of
coordinates n : C̄→ C̄, the FLT ` (at the source of n) corresponds to the FLT m (at the target
of n). The single fixed point z = i in H of ` gets mapped to the single fixed point n(i) = w in
H of m.

From `(i) = i we get iα + β = iδ − γ, so α = δ and β = −γ. From αδ − βγ = 1 we get
α2 + β2 = 1, so there exists a unique angle θ ∈ [0, 2π) with α = cos θ and β = sin θ. Then

L = Rθ =

[
cos θ sin θ
− sin θ cos θ

]
represents clockwise rotation through the angle θ in R2, around the

origin, while the associated FLT

`(z) = rθ(z) =
(cos θ)z + sin θ

(− sin θ)z + cos θ

represents a “hyperbolic rotation” through an angle 2θ in the counter-clockwise direction of the
upper half-plane H, around the fixed point i. To see this, recall that

r′θ(z) =
1

((− sin θ)z + cos θ)2
,

so r′θ(i) = (cos θ + i sin θ)2 = ei2θ. Hence rθ maps (differentiable) curves through i to (dif-
ferentiable) curves through rθ(i) = i, and acts on their tangent vectors by multiplication by
r′θ(i) = ei2θ, i.e., by rotation through the angle 2θ.

The cases θ = 0 and θ = π are excluded by our assumption M 6= ±I. Notice that Rθ+π =
−Rθ, so rθ+π = rθ. We may therefore assume that θ ∈ (0, π). The eigenvalues of M are the
same as the eigenvalues of L = Rθ, i.e., λ = cos θ + i sin θ and λ̄ = cos θ − i sin θ.
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We summarize our findings in the following statement. (The “exactly one” uniqueness state-
ments are left as exercises.)

Proposition 8.1. Let m(z) = (az + b)/(cz + d) in Möb+(H) be an FLT preserving H, with a,
b, c and d ∈ R and ad− bc = 1. Assume that m 6= e is not the identity.

(a) If |a+ d| > 2 then m is of hyperbolic type, and is conjugate in Möb+(H) to exactly one

`(z) = ηz

with 1 < η <∞. In this case m has exactly two fixed points, both of which lie in R̄.
(b) If |a+ d| = 2 then m is of parabolic type, and is conjugate in Möb+(H) to exactly

one of z 7→ z + 1 and z 7→ z − 1 .

In this case m has only one fixed point, which lies in R̄.
(c) If |a+ d| < 2 then m is of elliptic type, and is conjugate in Möb+(H) to exactly one

`(z) = rθ(z) =
(cos θ)z + sin θ

(− sin θ)z + cos θ

with 0 < θ < π. In this case m has exactly two fixed points, one in H and the other being its
complex conjugate. �

[[The eigenvalues of M can be normalized as {λ, 1/λ} for λ in the open ray 1 < λ <∞ in the
hyperbolic case, as {1} in the parabolic case, and as {λ, 1/λ} for λ in the open semicircle |λ| = 1,
Im z > 0 in the elliptic case. Visualize hyperbolic, parabolic and elliptic FLTs, as in Figures
2.3.2, 2.3.1 and 2.3.3, respectively. Introduce the axis of a hyperbolic FLT, the horocycles of a
parabolic FLT, and the “center” of an elliptic FLT.]]

Remark 8.2. The two standard parabolic transformations, z 7→ z + 1 and z 7→ z − 1, are
conjugate in Möb(H), since ρ(z + 1) = ρ(z) − 1, where ρ(z) = −z̄. Hence there is only one
conjugacy class of Möbius transformations of parabolic type.

The two standard elliptic transformations rθ and rπ−θ are also conjugate in Möb(H), since
ρ◦rθ = rπ−θ ◦ρ. Hence each conjugacy class of Möbius transformations of elliptic type contains
rθ for exactly one θ ∈ (0, π/2].

8.3. Classification of real Möbius transformations. It remains to classify the anti-holo-
morphic Möbius transformations that preserve H.

Definition 8.3. For p ∈ R, the Möbius transformation

m(z) = p− (z̄ − p) = 2p− z̄
is given by reflection in the vertical line L given by x = p. The vector m(z) − p is obtained
from z − p by reflection in the imaginary axis. The fixed point set of m is the line L, and m
interchanges the two sides of the complement of L.

For p ∈ R and r > 0 the Möbius transformation

m(z) = p+ r2 z − p
|z − p|2

= p+
r2

z̄ − p
is given by inversion in the circle C given by (x−p)2 +y2 = r2. The vector m(z)−p is obtained
from z − p by scaling its length so that |m(z)− p| · |z − p| = r2. The fixed point set of m is the
circle C, and m interchanges the inside and the outside of C.

In both cases we say that m is given by inversion in the corresponding H-line, i.e., the part
of L or C that lies in H. Each inversion m satisfies m ◦m = e.

Proposition 8.4. Let m(z) = (az̄ + b)/(cz̄ + d) in Möb−(H) be a Möbius transformation
preserving H, with a, b, c and d ∈ R and ad− bc = −1.

(a) If a + d = 0, then m is an inversion, with fixed point set an H-line. It is conjugate in
Möb(H) to the reflection ρ(z) = −z̄ in the imaginary axis, as well as to the inversion z 7→ 1/z̄
in the unit circle.
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(b) If a + d 6= 0, then m can be factored as m = n ◦ `, where n is an inversion and n and
` commute (n ◦ ` = ` ◦ n). This factorization is unique, and ` is of hyperbolic type, with axis
equal to the H-line of inversion of n. In this case m has exactly two fixed points, both of which
lie in R̄. �

The composites m = n ◦ ` = ` ◦n in case (b) are often called glide reflections: the hyperbolic
transformation ` glides along its axis, and the inversion n reflects in that axis.

8.3.1. The case of inversions. Suppose that a+ d = 0, so that a = −d. If c = 0 then d 6= 0 and
m(z) = (−dz̄ + b)/(0z̄ + d) = (b/d) − z̄ is reflection in the vertical line given by x = b/2d. If
c 6= 0 then

m(z) =
az̄ + b

cz̄ + d
=
a

c
+

1/c2

z̄ − (a/c)

is inversion in the circle with center a/c and radius 1/|c|.
Let n ∈ Möb+(H) be an FLT preserving H that maps the imaginary axis x = 0 to the H-line

of inversion of m. Then m ◦ n = n ◦ ` where ` is an inversion fixing the imaginary axis, which
implies that ` = ρ.

[[To see that ` = n−1 ◦m ◦ n is an inversion, note that the trace of L = N−1 ·M ·N equals
the trace of M . Alternatively use that the fixed point set is an H-line in H, not just two points
in R̄, and compare with the composite case.]]

Alternatively, let n be an FLT preserving H that maps the unit circle x2 + y2 = 1 to the
H-line of inversion of m. Then m ◦n = n ◦ ` where ` is an inversion fixing the unit circle, which
implies that `(z) = 1/z̄.

8.3.2. The case of glide reflections. Suppose, finally, that a+ d 6= 0. We claim that in this case
m(z) = (az̄+b)/(cz̄+d) has exactly two fixed points, both in R̄. If c = 0, m(z) = (az̄+b)/d = z
if and only if z = b/(d− a) or z =∞. If c 6= 0 then m(∞) = a/c, so z = x+ iy is not ∞. The
condition m(z) = z is equivalent to az̄+b = c|z|2+dz, or equivalently, to ax+b = c(x2+y2)+dx
and −ay = dy. The second equation implies y = 0, so z = x is a root of cx2 + (d− a)x− b = 0.
Since (d− a)2 + 4bc = (a+ d)2 + 4 > 0, this equation has precisely two real roots.

Let x1 and x2 be the two fixed points of m, both in R̄, and let L be the H-line that intersects
R̄ orthogonally at x1 and x2. Let n be the inversion on L. Then ` = n−1 ◦m and `′ = m ◦ n−1

are both FLTs preserving H, different from e, that fix x1 and x2. From the classification of
FLTs preserving H, it follows that both ` and `′ are of hyperbolic type, both with axis L. In
fact `|L = m|L = `′|L, which implies that ` = `′. Hence m = n ◦ ` = ` ◦ n, with n an inversion
and ` hyperbolic.

[[See Proposition 2.3.3 for the proof of uniqueness.]]

9. September 16th lecture

9.1. Congruence in H.

Definition 9.1. If z and w are two distinct points in H, let←→zw be the uniquely determined line
containing them, let −→zw be the ray from z containing w, and let [z, w] = [w, z] be the segment
between z and w.

If z, u and v are three distinct points in H, with ←→zu not equal to ←→zv , then let ∠uzv be the
angle with vertex z, consisting of the two rays −→zu and −→zv.

Definition 9.2. (a) Let [z, w] and [z′, w′] be (hyperbolic line) segments in H. We define
[z, w] to be congruent to [z′, w′], written [z, w] ∼= [z′, w′], if and only if there exists a Möbius
transformation m ∈ Möb(H) preserving H such that m([z, w]) = [z′, w′].

(b) Let ∠uzv and ∠u′z′v′ be angles in H. We define ∠uzv to be congruent to ∠u′z′v′, written
∠uzv ∼= ∠u′z′v′, if and only if there exists a Möbius transformation m ∈ Möb(H) preserving H
such that m(−→zu) =

−−→
z′u′ and m(−→zv) =

−→
z′v′.
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Definition 9.3. A hyperbolic line L meets R̄ in two points, p and q, say, which we call the
endpoints of the line. If L is contained in the C̄-circle C, then C ∩ R̄ = {p, q}. The endpoints
uniquely determine the line, and we write L = (p, q) = (q, p).

A hyperbolic ray R meets R̄ in one point, q, say, which we call the endpoint of the ray. If
R = −→zw is a ray with vertex z and endpoint q, then these points uniquely determine the ray,
and we write R = [z, q).

Lemma 9.4. Given two lines L = (p, q) and L′ = (p′, q′), and points z ∈ L and z′ ∈ L′, there
exists a unique m ∈ Möb+(H) (an FLT preserving H) such that m(p) = p′, m(z) = z′ and
m(q) = q′. In particular, m(L) = L′.

Proof. There is a unique FLT m with m(p) = p′, m(z) = z′ and m(q) = q′. In particular,
m(L) = L′. Since R̄ is a C̄-circle that meets L at right angles at p and q, it follows that m(R̄)
is a C̄-circle that meets L′ at right angles at p′ and q′. Since R̄ is the unique C̄-circle that
meets L′ at right angles at p′ and q′, it follows that m(R̄) = R̄. Since m(z) = z′ it follows that
m(H) = H, so m ∈ Möb+(H). �

Corollary 9.5. Given two rays R = [z, q) and R′ = [z′, q′) there is a unique m ∈ Möb+(H)
such that m(R) = R′. In particular, m(z) = z′ and m(q) = q′. In other words, Möb+(H) acts
simply transitively on the set of rays in H.

Proof. The rays R and R′ are contained in unique lines L = (p, q) and L′ = (p′, q′), respectively.
Let m be the unique FLT preserving H with m(p) = p′, m(z) = z′ and m(q) = q′. Then
m(R) = R′, as desired. �

Lemma 9.6. (a) An FLT preserving H is uniquely determined by its values at two distinct
points. In other words, if z 6= w ∈ H and m,n ∈ Möb+(H) satisfy m(z) = n(z) and m(w) =
n(w), then m = n.

(b) If [z, w] ∼= [z′, w′] then there exists a unique FLT m preserving H with m(z) = z′ and
m(w) = w′.

Proof. (a) Let ←→zw = L = (p, q), with p ∗ z ∗ w and z ∗ w ∗ q. The (hyperbolic) lines m(L)
and n(L) both contain m(z) = n(z) and m(w) = n(w), hence are equal. Thus the sets of
endpoints, {m(p),m(q)} and {n(p), n(q)}, are also equal. Since m and n preserve betweenness,
we must have m(p) ∗m(z) ∗m(w) and n(p) ∗n(z) ∗n(w), which implies that m(p) = n(p) a and
m(q) = n(q). Hence the FLTs m and n agree on four points (p, z, w and q), and must be equal.

(b) By the definition of congruence, there exists a Möbius transformation m preserving H
with m([z, w]) = [z′, w′]. If m ∈ Möb−(H), we may precompose m with inversion in the H-line
←→zw, to arrange that m ∈ Möb+(H).

If m(z) = w′ and m(w) = z′ we may precompose m with an FLT preserving H and inter-
changing z and w. To prove that such an interchanging FLT exists, choose an FLT n preserving
H and taking the positive imaginary axis to the line ←→zw. Then n(is) = z and n(it) = w for
some s, t > 0. Let `(u) = −st/u, for u ∈ H. Then ` interchanges is and it, and n ◦ ` ◦ n−1 is an
FLT preserving H and interchanging z and w. This way we may arrange that m(z) = z′ and
m(w) = w′.

Uniqueness of this m is clear from part (a). �

Lemma 9.7. Given two rays R1 and R2, with common vertex z, there is a unique inversion n
such that n(R1) = R2. (This implies that n(z) = z and n(R2) = R1.)

Proof. Omitted. See Lemma 2.4.5 in Jahren’s notes. �

9.2. Verification of Hilbert’s congruence axioms.

Proposition 9.8. Congruence of segments and angles in H, as defined above, satisfies Hilbert’s
axioms C1 through C6:

(C1) Given a segment [z, w] and a ray R′ with vertex z′ there is a unique point w′ on R′ such
that [z, w] ∼= [z′, w′].
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(C2) ∼= is an equivalence relation on the set of segments.
(C3) If u ∗ v ∗ w, u′ ∗ v′ ∗ w′, [u, v] ∼= [u′, v′] and [v, w] ∼= [v′, w′], then [u,w] ∼= [u′, w′].
(C4) Given an angle ∠uzv and a ray R = [w, q), there are unique angles ∠qwp1 and ∠qwp2,

on opposite sides of ←→wq, such that ∠qwp1
∼= ∠uzv ∼= ∠qwp2.

(C5) ∼= is an equivalence relation on the set of angles.
(C6) Given triangles 4uzv and 4u′z′v′, with [z, u] ∼= [z′, u′], ∠uzv ∼= ∠u′z′v′ and [z, v] ∼=

[z′, v′], we also have [u, v] ∼= [u′, v′], ∠zuv ∼= ∠z′u′v′ and ∠zvu ∼= ∠z′v′u′ (side-angle-side
criterion for congruence).

Proof. (C1) Let R = −→zw = [z, q) be the ray containing [z, w]. Then there is a unique FLT m
preserving H with m(R) = R′. In particular, m(z) = z′. Let w′ = m(w). Then m([z, w]) =
[z′, w′], so [z, w] ∼= [z′, w′].

Suppose that w′′ is a second point on R′ such that [z, w] ∼= [z′, w′′]. There is a unique FLT n

preserving H such that n(z) = z′ and n(w) = w′′. Then
−−→
z′w′ = R′ =

−−→
z′w′′, so m(R) = R′ and

n(R) = R′. By simple transitivity of the action of Möb+(H) on rays it follows that m = n, so
w′ = m(w) = n(w) = w′′.

(C2) This is clear, since Möb(H) is a group.
(C3) Let m ∈ Möb+(H) be such that m(u) = u′ and m(v) = v′. Let w′′ = m(w), so that

[u,w] ∼= [u′, w′′] and [v, w] ∼= [v′, w′′]. Then u′ ∗ v′ ∗ w′ and u′ ∗ v′ ∗ w′′, so w′′ lies on the ray
−−→
v′w′. Furthermore, [v′, w′] ∼= [v, w] ∼= [v′, w′′], so w′ = w′′ by the uniqueness in (C1). Hence
[u,w] ∼= [u′, w′′] = [u′, w′].

(C4) Let m ∈ Möb+(H) be such that m([z, u)) = [w, q), and let n ∈ Möb−(H) be obtained by
postcomposing m with inversion in the line L containing [w, q). Define p1 and p2 by [w, p1) =
m([z, v)) and [w, p2) = n([z, v)). Then m exhibits the congruence ∠uzv ∼= ∠qwp1 and n exhibits
the congruence ∠uzv ∼= ∠qwp2. The angles ∠qwp1 and ∠qwp2 lie on opposite sides of L, because
m and n differ by inversion in that line.

[[For uniqueness, see the proof on pages 42–43 in Jahren’s notes, which uses Lemma 2.4.5.]]
(C5) This is clear, since Möb(H) is a group.

(C6) Let m ∈ Möb(H) be such that m(−→zu) =
−−→
z′u′ and m(−→zv) =

−→
z′v′, realizing the congruence

∠uzv ∼= ∠u′z′v′. Then m(z) = z′, [z, u] ∼= [z′,m(u)] and [z, v] ∼= [z′,m(v)], so by the uniqueness
in (C1) we can deduce that m(u) = u′ and m(v) = v′. Hence m maps 4uzv to 4u′z′v′ and the
triangles as congruent. �

10. September 18th lecture

10.1. Distance in H. We now introduce a notion of distance between points in H, so that two
segments are congruent if and only if they have the same length, i.e., the same distance between
their endpoints.

Definition 10.1. A metric on H is a function d : H×H→ R such that
(D1) d(z, w) ≥ 0 for all z, w ∈ H, and d(z, w) = 0 if and only if z = w (positivity),
(D2) d(z, w) = d(w, z) for all z, w ∈ H (symmetry), and
(D3) d(u,w) ≤ d(u, v) + d(v, w) for all u, v, w ∈ H (triangle inequality).

We seek a metric on H that is invariant under Möbius transformations, so that:
(D5) d(z, w) = d(z′, w′) if (and only if) there exists an m ∈ Möb(H) with m(z) = z′ and

m(w) = w′.
Given z 6= w ∈ H there is a unique m ∈ Möb+(H) such that m(−→zw) = [i,∞), or equivalently,

such that m(z) = i and m(w) = it for some t > 1. By condition (D5) we must then have
d(z, w) = d(i, it), so d is fully determined by the function

f : [1,∞)→ [0,∞)

given by f(t) = d(i, it). Note that f(1) = 0. By the triangle inequality we must have d(i, ist) ≤
d(i, is) + d(is, ist) for all s, t ≥ 1. If we add the condition that (hyperbolic line) segments are
locally to be paths of shortest lengths, we can demand (D4) that d(i, ist) = d(i, is) + d(is, ist),
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since is lies on the line segment [i, ist], so the shortest path from i to ist should pass through
is. Due to the existence of the hyperbolic FLT z 7→ sz, we must have d(i, it) = d(is, ist). Hence
f(st) = d(i, ist) = d(i, is) + d(is, ist) = d(i, is) + d(i, it) = f(s) + f(t) for all s, t ≥ 1. It follows
that f has the form f(t) = C ln(t) for some C > 0. It will be convenient to let C = 1. Note
that t = |it| = |m(w)|, with the notations above.

Definition 10.2. For z, w ∈ H let

d(z, w) = ln(|m(w)|) ,

where m ∈ Möb+(H) is chosen so that m(z) = i and m(w) = it, for some t ≥ 1.

Proposition 10.3. The function d : H×H→ R defines a metric on H.

Proof. The function is clearly well defined, and (D1) is obvious.
To prove (D2), let m ∈ Möb+(H) be such that m(z) = i and m(w) = it with t ≥ 1, and let

` ∈ Möb+(H) be given by `(u) = −t/u. Then `(i) = it and `(it) = i, so n = ` ◦m ∈ Möb+(H)
satisfies n(w) = i and n(z) = it. Hence d(w, z) = ln(|n(z)|) = ln(t) = ln(|m(w)|) = d(z, w), as
required.

We postpone the proof of the triangle inequality, (D3), after the following three lemmas. �

Lemma 10.4. Let z, w, z′, w′ ∈ H. Then d(z, w) = d(z′, w′) if and only if there exists an
m ∈ Möb(H) with m(z) = z′ and m(w) = w′.

Proof. If d(z, w) = d(z′, w′) then there exist n, n′ ∈ Möb+(H) with n(z) = i = n′(z′) and
n(w) = it = n′(w′), for some t ≥ 1. (This uses that ln is strictly increasing, so that ln(t) ≥ 0
determines t ≥ 1.) Then m = (n′)−1 ◦ n ∈ Möb+(H) satisfies m(z) = z′ and m(w) = w′.

Conversely, if m(z) = z′ and m(w) = w′ for some m ∈ Möb(H), we may assume that
m ∈ Möb+(H) by, if necessary, precomposing m with inversion in the line ←→zw. If n ∈ Möb+(H)
is an FLT preserving H such that n(z) = i and n(w) = it, for some t ≥ 1, then n′ = n ◦m−1

must be an FLT preserving H such that n′(z′) = i and n′(w′) = is, for some s ≥ 1. Here
is = n′(w′) = n(m−1(w′)) = n(w) = it, so s = t. Hence d(z, w) = ln(|n(w)|) = ln(|n′(w′)|) =
d(z′, w′), as required. �

Lemma 10.5. Given z 6= w ∈ H let p and q be the endpoints of the line through z and w, so
that ←→zw = (p, q), with p ∗ z ∗w and z ∗w ∗ q. The FLT m preserving H that maps z to m(z) = i
and w to m(w) = it with t > 1, is given by the formula

m(u) = i · u− p
u− q

· z − q
z − p

.

Hence

d(z, w) = ln
(w − p
w − q

· z − q
z − p

)
.

Proof. The unique FLT sending z, p and q to 1, 0 and ∞, respectively, is given by

n(u) =
u− p
u− q

· z − q
z − p

(extended as usual, if p = ∞ or q = ∞). It takes w to a point t between 1 and ∞. Now let
m(u) = i · n(u). This FLT takes p, z, w and q to 0, i, it and ∞. Hence it takes R̄, which meets
(p, q) orthogonally at p and q, to a C̄-circle that meets the imaginary axis orthogonally at 0 and
at ∞. The latter C̄-circle must be R̄, so m(R̄) = R̄. Since m(z) ∈ H, it follows that m(H) = H,
so m ∈ Möb+(H). �

Lemma 10.6. For z, w ∈ H we have

d(z, w) ≥ | ln
( Imw

Im z

)
| ,

with equality if and only if Re z = Rew.
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Proof. Note that if we interchange z and w, the fraction Imw/ Im z becomes inverted, so
ln(Imw/ Im z) changes sign. Due to the absolute value operator on the right hand side, both
sides of the inequality remain unchanged after this interchange. We may therefore assume that
Im z ≤ Imw, so that ln(Imw/ Im z) is non-negative (and the absolute value sign is superfluous).

If Re z = Rew we have p = Re z = Rew and q =∞, so

d(z, w) = ln
(w − p
z − p

)
= ln

( i Imw

i Im z

)
= ln

( Imw

Im z

)
.

Otherwise, Re z 6= Rew and p and q are finite. The (strict) inequality is trivially satisfied if
Im z = Imw, so we may assume that Im z < Imw.

The positive real number (w − p)/(w − q) · (z − q)/(z − p) equals its own modulus, so

d(z, w) = ln
(∣∣∣w − p
w − q

∣∣∣ · ∣∣∣z − q
z − p

∣∣∣) = ln
(∣∣∣w − p
w − q

∣∣∣/∣∣∣z − p
z − q

∣∣∣) .
Let A = ∠pqz and B = ∠pqw. Then∣∣∣z − p

z − q

∣∣∣ = tanA =
Im z

|Re z − q|
and ∣∣∣w − p

w − q

∣∣∣ = tanB =
Imw

|Rew − q|
.

Since p ∗ z ∗ w ∗ q we have |Re z − q| > |Rew − q|, so

d(z, w) = ln(tanB/ tanA) = ln
( Imw

|Rew − q|
/

Im z

|Re z − q|

)
= ln

( |Re z − q|
|Rew − q|

· Imw

Im z

)
> ln

( Imw

Im z

)
.

�

Proof of (D3) and (D4). Applying a Möbius transformation that maps u to i and w to it, it
will suffice to consider the special case when u = i and w = it, with t > 1. Then

d(u, v) + d(v, w) ≥ | ln
( Im v

Imu

)
|+ | ln

( Imw

Im v

)
| ≥ | ln

( Im v

Imu

)
+ ln

( Imw

Im v

)
|

= | ln
( Im v

Imu
· Imw

Im v

)
| = | ln

( Imw

Imu

)
| = d(u,w) .

The last equality uses Reu = Rew, and this proves (D3).
We have equality if and only if Reu = Re v = Rew and if ln(Im v/ Imu) and ln(Imw/ Im v)

have the same sign. This is equivalent to asking that v ∈ [u,w], proving the strong form of (D4)
asserting that d(u,w) = d(u, v) + d(v, w) if and only if v ∈ [u,w]. �

11. September 23rd lecture

11.1. Angle measure in H. We also wish to introduce a numerical measure for hyperbolic
angles in H, so that

(A1) the angle measure takes positive real values,
(A2) congruent angles have the same angle measure,
(A3) the angle measure of ∠uzw is the sum of the angle measures of ∠uvz and of ∠vzw,

when v is inside ∠uzw,
(A4) the angle measure of a right angle is equal to π/2 = 90◦.
Here z, u, v and w are points in H, and ∠uzv is defined to be a right angle if it is congruent

to its supplementary angle, i.e., the angle ∠vzw where u ∗ z ∗ w.
These conditions will determine the angle measure, if it exists. For instance, if ∠uzw is a right

angle, if v is inside ∠uzw, and ∠uzv ∼= ∠vzw, then the angle measure of ∠uzv must be equal
to π/4 = 45◦. Continuing this way, the measure of a dense set of angles is determined by these
conditions, and the measure of the remaining angles is determined by continuity/monotonicity.
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It follows that the angle measure takes values in the interval (0, π) = (0◦, 180◦), and that all
such values are realized.

The fact that congruence in H is generated by Möbius transformations, and that these are
conformal, i.e., preserve the Euclidean angle measure of the containing space C, will enable us
to simply transport the Euclidean angle measure in C to the (uniquely determined) hyperbolic
angle measure in H. We simply define hyperbolic angle between two hyperbolic rays −→zu and
−→zv to be equal to the Euclidean angle between these two Euclidean curves, oriented from the
vertex z and heading in the direction of u and v, respectively.

Proposition 11.1. The hyperbolic angle measure satisfies (A1) through (A4). Furthermore,
two hyperbolic angles are congruent if (and only if) they have the same angle measure.

Proof. (A1) The Euclidean angle between −→zu and −→zv is evidently non-negative. It would be
zero if the C̄-circles containing these hyperbolic rays were tangent at z, but since these C̄-circles
meet R̄ at right angles that only happens if the C̄-circles are equal, in which case −→zu and −→zv lie
on the same line, and the angle ∠uzv is not defined..

(A2) If the Möbius transformation m maps ∠uzv to ∠u′z′v′, then the Euclidean angle between
−→zu and −→zv is equal to the Euclidean angle between

−−→
z′u′ and

−→
z′v′. This is simply the fact that

m is conformal. Hence the hyperbolic angle measure of ∠uzv is equal to the hyperbolic angle
measure of ∠u′z′v′.

(A3) This is clear from the Euclidean case.
(A4) If ∠uzv is a hyperbolic right angle, and u∗ z ∗w in H, then ∠uzv is congruent to ∠vzw,

so the Euclidean angle A between −→zu and −→zv has the same measure as the Euclidean angle B
between −→zv and −→zw. Since −→zu and −→zw lie on the same H-line, and have the same Euclidean
tangent line at z, it follows that these two Euclidean angles, A and B, are supplementary, and
add to π = 180◦. Hence A is a right angle, and the hyperbolic measure of ∠uzv is π/2 = 90◦,
as claimed.

It remains to prove that if ∠uzv and ∠u′z′v′ have the same angle measure, then they are

congruent. Choose Möbius transformations n and n′ mapping −→zu and
−−→
z′u′ to [i,∞). Then

n(−→zv) and n′(
−→
z′v′) meet [i,∞) at the same Euclidean angle. Hence they either agree, or can

be mapped to one another by the reflection ρ(z) = −z̄ in the imaginary axis. In the first case,
m = (n′)−1 ◦ n is a Möbius transformation showing that ∠uzv and ∠u′z′v′ are congruent. In
the second case, m = (n′)−1 ◦ ρ ◦ n achieves the same purpose. �

12. September 25th lecture

12.1. Poincaré’s disc model D. We now translate our definitions and results about the upper
half-plane model H = {z ∈ C | Im z > 0} for the hyperbolic plane to definitions and results about
the unit disc model D = {z ∈ C | |z| < 1}. We do this using the bijection ξ : D→ H, defined as
the composite of inverse stereographic projection Ψ: D→ B, the rotation (x, y, z) 7→ (x,−z, y)
from B to B′, and stereographic projection Φ: B′ → H. It equals the FLT that maps 1, −i and
i to 1, 0 and ∞, respectively, and is given by the formula

ξ(z) =
z + i

1 + i
· 1− i
z − i

=
z + i

iz + 1
.

Its inverse, ξ−1 : H→ D, is given by the formula

ξ−1(z) =
z − i
−iz + 1

=
iz + 1

z + i
.

(Jahren emphasizes G = ξ−1, with G−1 = ξ.)
The mutually inverse maps ξ and ξ−1 induce a one-to-one correspondence between the points

of D and the points of H.
Since ξ and ξ−1 are FLTs, they preserve angles, and map C̄-circles to C̄-circles. Recall that

a D-line L = C ∩ D is the part in D of a C̄-circle that meets S1 = ∂D = {z ∈ C | |z| = 1}
at right angles. Since ξ maps S1 = ∂D to R̄ = ∂H, it takes each D-line to the part in H of a
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C̄-circle that meets R̄ at right angles, i.e., to an H-line. Hence ξ and ξ−1 induce a one-to-one
correspondence between the D-lines in D and the H-lines in H.

Clearly these bijections preserve incidence: if a point z ∈ D lies on a D-line L ⊂ D, then the
point ξ(z) ∈ H lies on the H-line ξ(L) ⊂ H, and conversely.

These bijections also preserve betweenness. [[Elaborate?]]
To define congruence between line segments or angles in D, we use the group

Möb(D) = {m ∈ Möb |m(D) = D}

of Möbius transformations that preserve D. This condition is equivalent to asking that (ξ ◦m ◦
ξ−1)(H) = H, i.e., that ξmξ−1 ∈ Möb(H) is a Möbius transform preserving H. Hence Möb(D)
and Möb(H) are conjugate subgroups of Möb = Möb(C), with

Möb(H) = ξMöb(D)ξ−1

and

Möb(D) = ξ−1 Möb(H)ξ .

In particular, the rule m 7→ ξmξ−1 induces a group isomorphism Möb(D) ∼= Möb(H). Let
Möb+(D) and Möb−(D) denote the index two subgroup and coset of Möb(D) corresponding to
Möb+(H) and Möb−(H) in Möb(H), respectively. Here Möb+(D) consists of the FLTs preserving
D. An example of an element in Möb−(D) is complex conjugation: σ(z) = z̄ for z ∈ D.

We now define congruence between segments of D-lines, and between angles in D, as we did
in H, but using the group Möb(D) in place of the group Möb(H). The maps ξ and ξ−1 will then
preserve congruence, i.e., take congruent segments to congruent segments, and take congruent
angles to congruent angles.

Since ξ preserves angles, the hyperbolic angle measure in D will be inherited from the Eu-
clidean angle measure in the containing space C, just as the hyperbolic angle measure in H was
inherited from the Euclidean angle measure in C.

Proposition 12.1. Each FLT (holomorphic Möbius transformation) preserving D, i.e., each
element m ∈ Möb+(D), can be written in the form

m(z) =
αz + β

β̄z + ᾱ

with |α|2 − |β|2 = 1. This presentation is unique, up to replacing (α, β) with (−α,−β).
Each anti-holomorphic Möbius transformation preserving D, i.e., each element m ∈ Möb−(D),

can be written in the form

m(z) =
αz̄ + β

β̄z̄ + ᾱ

with |α|2 − |β|2 = 1. This presentation is unique, up to replacing (α, β) with (−α,−β).

Proof. The group Möb+(D) = ξ−1 Möb+(H)ξ consists of the composites m = ξ−1 ◦ n ◦ ξ with
n(z) = (az + b)/(cz + d), where a, b, c, d ∈ R and ad − bc = 1. Here ξ−1, n and ξ can be
represented by the matrices [

1 −i
−i 1

]
,

[
a b
c d

]
and

[
1 i
i 1

]
in GL2(C), respectively, so the composite is represented by the matrix product[

1 −i
−i 1

] [
a b
c d

] [
1 i
i 1

]
=

[
a− ic b− id
−ia+ c −ib+ d

] [
1 i
i 1

]
=

[
a− ic+ ib+ d ia+ c+ b− id
−ia+ c+ b+ id a+ ic− ib+ d

]
=

[
2α 2β
2β̄ 2ᾱ

]
where

2α = (a+ d) + i(b− c) and 2β = (b+ c) + i(a− d) ,
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so that

a = Reα+ Imβ

b = Imα+ Reβ

c = − Imα+ Reβ

d = Reα− Imβ .

Then m(z) = (2αz + 2β)/(2β̄z + 2ᾱ) = (αz + β)/(β̄z + ᾱ). Comparing determinants, we find
4(ad− bc) = 4(αᾱ− ββ̄), so |α|2 − |β|2 = 1.

Since σ(z) = z̄ defines an element of Möb−(D), each element of Möb−(D) can be uniquely
written as m = n ◦σ, where n ∈ Möb+(D). Writing n(z) = (αz+β)/(β̄z+ ᾱ), as above, we get
the asserted formula for m(z). �

Proposition 12.2. Let m(z) = (αz + β)/(β̄z + ᾱ) in Möb+(D) be an FLT preserving D, with
|α|2 − |β|2 = 1.

(a) If |Reα | > 1 then m is of hyperbolic type, and is conjugate in Möb+(D) to exactly one
FLT preserving D of the form

`(z) =
(cosh t)z + sinh t

(sinh t)z + cosh t

with 0 < t <∞. In this case m has exactly two fixed points in C̄, both of which lie in S1.
(b) If |Reα | = 1 and m 6= e then m is of parabolic type, and is conjugate in Möb+(D) to

exactly one of [[ETC]]. In this case m has exactly one fixed point in C̄, which lies in S1.
(c) If |Reα | < 1 then m is of elliptic type, and is conjugate in Möb+(D) to exactly one

`(z) = ei2θz

with 0 < θ < π. In this case m has exactly two fixed points in C̄, one in D and one outside of
S1.

Proof. The condition |a+d| > 2, subject to ad− bc = 1, translates to the condition |Reα | > 1,
subject to |α|2 − |β2| = 1, and similarly for |a+ d| = 2 and |a+ d| < 2.

If |Reα | > 1, we know that the hyperbolic transformation ξ◦m◦ξ−1(z) = (az+b)/(cz+d) is
conjugate in Möb+(H) to a unique FLT ξ ◦n◦ ξ−1 (preserving H) of the form z 7→ ηz = (

√
ηz+

0)/(0z + 1/
√
η), with 1 < η <∞. It follows that m is conjugate in ξ−1 Möb+(H)ξ = Möb+(D)

to a unique FLT n (preserving D) of the form z 7→ ξ−1(η · ξ(z)). Here

n(z) = ξ−1(η · ξ(z)) =
(η + 1)z + i(η − 1)

−i(η − 1)z + (η + 1)
=

(cosh t)z + i sinh t

(−i sinh t)z + cosh t

where t = ln
√
η = (ln η)/2 is uniquely chosen so that cosh t = (

√
η + 1/

√
η)/2 and sinh t =

(
√
η − 1/

√
η)/2. To further simplify this expression we can conjugate again, to `(z) = n(iz)/i,

which equals

`(z) =
(cosh t)z + sinh t

(sinh t)z + cosh t

with 0 < t <∞. We know that ξ ◦m ◦ ξ−1 has exactly two fixed points, both of which lie in R̄,
which implies that m also has exactly two fixed points, both of which lie in ξ−1(R̄) = S1. The
axis of m is the D-line with these two endpoints, which m maps to itself as a set.

If |Reα | = 1, the parabolic transformation ξ ◦m◦ξ−1(z) is conjugate in Möb+(H) to exactly
one of z 7→ z + 1 = (1z + 1)/(0z + 1) and z 7→ z − 1 = (1z − 1)/(0z + 1). It follows that m is
conjugate in Möb+(D) to exactly one of z 7→ ξ−1(ξ(z) + 1) and z 7→ ξ−1(ξ(z)− 1). Here

ξ−1(ξ(z)± 1) =
(2i∓ 1)z ± i
±iz + (2i± 1)

=
(1± i/2)z ± 1/2

±z/2 + (1∓ i/2)
.

[[Any other standard form?]] We know that ξ ◦m ◦ ξ−1 has exactly one fixed point, which lies
in R̄. This implies that m also has exactly one fixed point, which lies in ξ−1(R̄) = S1.
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If |Reα | < 1, the elliptic transformation ξ ◦m ◦ ξ−1(z) is conjugate in Möb+(H) to a unique
FLT ξ ◦ ` ◦ ξ−1 of the form z 7→ rθ(z) = ((cos θ)z + sin θ)/((− sin θ)z + cos θ), with 0 < θ < π.
Hence m is conjugate in Möb+(D) to a unique FLT ` of the form ξ−1 ◦ rθ ◦ ξ. Here

`(z) = ξ−1
( (cos θ)ξ(z) + sin θ

(− sin θ)ξ(z) + cos θ

)
=

eiθz + 0

0z + e−iθ
= ei2θz .

We know that ξ ◦m◦ ξ−1 has exactly two fixed points in C̄, one of which lies in H and the other
its complex conjugate. It follows that m has exactly two fixed points in C̄, one of which lies in
D and the other being its image under inversion in S1. �

12.2. Distance in D. We can translate the distance measure in H, i.e., the metric d = dH, to
a distance measure in D, by way of the bijection ξ. For z, w ∈ D we define

dD(z, w) = dH(ξ(z), ξ(z)) .

It is clear that dD defines a metric on D, so that ξ and ξ−1 become isometries, i.e., distance-
preserving maps. Furthermore, each Möbius transformation m ∈ Möb(D) acts as an isometry
on D, so that

dD(z, w) = dD(m(z),m(w)) .

This follows directly from the corresponding property in H.

Lemma 12.3. Let z 6= w ∈ D, and let p, q ∈ S1 be the endpoints of the D-line through z and
w. Then

dD(z, w) = | ln(
∣∣∣w − p
z − p

z − q
w − q

∣∣∣) | .
Proof. We may assume that p ∗ z ∗ w and z ∗ w ∗ q. Otherwise we interchange p and q, which
changes the sign of the logarithm, but does not alter its absolute value. Then ξ(p) and ξ(q) are
the endpoints of the H-line through ξ(z) and ξ(w), and ξ(p) ∗ ξ(z) ∗ ξ(w) and ξ(z) ∗ ξ(w) ∗ ξ(q).

Recall that dH(ξ(z), ξ(w)) = ln(|m(ξ(w))|), where m ∈ Möb+(H) satisfies m(ξ(z)) = i and
m(ξ(w)) = it for some t > 1. Then m(ξ(p)) = 0 and m(ξ(q)) =∞, so m(u) = in(u), where n is
the FLT mapping ξ(z), ξ(p) and ξ(q) to 1, 0 and∞, respectively. Hence m(ξ(w)) = in(ξ(w)) =
i`(w), where ` = n ◦ ξ is the FLT mapping z, p and q to 1, 0 and ∞, respectively. Thus

m(ξ(w)) = i
w − p
z − p

z − q
w − q

and the formula follows. �

(This argument could also have been formulated in terms of the cross-ratio [w, z, p, q], using
its invariance under Möbius transformations.)

We now aim to obtain a formula for dD(z, w) that does not depend on the endpoints p and q.
We begin with the case when z = 0. Recall that sinhx = (ex − e−x)/2, coshx = (ex + e−x)/2
and tanhx = sinhx/ coshx = (ex − e−x)/(ex + e−x).

Lemma 12.4. Let w ∈ D, with r = |w| ∈ [0, 1). Then

dD(0, w) = ln
(1 + r

1− r

)
and r = tanh

(dD(0, w)

2

)
.

Proof. This is the case z = 0 and w = rei2θ, for some θ ∈ [0, π). Multiplication by ei2θ is an
element of Möb+(D), corresponding to α = eiθ and β = 0, and maps (0, r) to (0, w). By the
invariance of dD under the action of Möb(D) we deduce that dD(0, w) = dD(0, r).

In the special case z = 0 and w = r, we have p = −1 and q = 1, so

dD(0, r) = ln(
∣∣∣r + 1

0 + 1
· 0− 1

r − 1

∣∣∣) = ln
(1 + r

1− r

)
as asserted.

The formula d = ln((1 + r)/(1− r)), with d = dD(0, r), is equivalent to (1 + r)/(1− r) = ed,

so (1 + r) = ed(1 − r), (ed + 1)r = (ed − 1) and (ed/2 + e−d/2)r = (ed/2 − e−d/2), hence
r = tanh(d/2). �
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Proposition 12.5. Let z, w ∈ D, with

r =
|w − z|
|1− z̄w|

.

Then

dD(z, w) = ln
(1 + r

1− r

)
and r = tanh

(dD(z, w)

2

)
.

Proof. To find the distance from z to w, we first move z to 0 by an isometry m in Möb+(D). If
m(u) = (αu+ β)/(β̄u+ ᾱ) satisfies m(z) = 0, then αz + β = 0, so

m(u) =
αu− αz
−ᾱz̄u+ ᾱ

=
α

ᾱ
· u− z

1− z̄u
.

Hence m(w) = (a/ᾱ)(w − z)/(1 − z̄w), with |m(w)| = |w − z|/|1 − z̄w| = r, and dD(z, w) =
dD(m(z),m(w)) = dD(0,m(w)) = ln((1 + r)/(1− r)), as claimed. �

Proposition 12.6. Let z, w ∈ D. Then

sinh2
(dD(z, w)

2

)
=

|w − z|2

(1− |z|2)(1− |w|2)

and

cosh(dD(z, w)) = 1 +
2|w − z|2

(1− |z|2)(1− |w|2)
.

Proof. Let d = dD(z, w), so that r = tanh(d/2). Then

r2

1− r2
=

tanh2(d/2)

1− tanh2(d/2)
=

sinh2(d/2)

cosh2(d/2)− sinh2(d/2)
= sinh2(d/2)

where we used the identity cosh2 x− sinh2 x = 1. Furthermore,

r2

1− r2
=

|w − z|2

|1− z̄w|2

1− |w − z|
2

|1− z̄w|2

=
|w − z|2

|1− z̄w|2 − |w − z|2
.

Here

|1− z̄w|2 − |w − z|2 = (1− z̄w)(1− zw̄)− (w − z)(w̄ − z̄)
= 1− zw̄ − z̄w + |z|2|w|2 − |w|2 + wz̄ + zw̄ − |z|2

= (1− |z|2)(1− |w|2)

so

sinh2(d/2) =
r2

1− r2
=

|w − z|2

(1− |z|2)(1− |w|2)
.

Finally we use cosh(2x) = cosh2 x + sinh2 x = 1 + 2 sinh2 x with x = d/2 to obtain the
convenient formula

cosh(dD(z, w)) = 1 +
2|w − z|2

(1− |z|2)(1− |w|2)
.

�

This achieves our aim of expressing the hyperbolic distance between two points in D, in a
formula that does not involve auxiliary quantities (like the endpoints of hyperbolic lines). Note
that coshx is strictly increasing for x ≥ 0, so the last formula determines dD(z, w) ≥ 0 uniquely.

We can also translate these formulas back to H, using ξ−1 : H→ D.

Proposition 12.7. Let z, w ∈ H. Then

cosh(dH(z, w)) = 1 +
|w − z|2

2(Im z)(Imw)
.
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Proof. We have dH(z, w) = dD(ξ−1(z), ξ−1(w)), where

ξ−1(w)− ξ−1(z) =
iw + 1

w + i
− iz + 1

z + i
=

2(z − w)

(z + i)(w + i)

and

1− |ξ−1(z)|2 = 1−
∣∣∣ iz + 1

z + i

∣∣∣2 =
4 Im z

|z + i|2

(and likewise for w in place of z). Hence

2|ξ−1(w)− ξ−1(z)|2

(1− |ξ−1(z)|2)(1− |ξ−1(w)|2)
=

|w − z|2

2(Im z)(Imw)
,

which gives the asserted formula. �

13. October 2nd lecture

13.1. Arc length in the hyperbolic plane. The length measure of hyperbolic line segments
[z, w] in H can be generalized to a length measure for reasonable parametrized curves ω : [a, b]→
H. Here “reasonable” can be interpreted as “rectifiable”, but for simplicity we can limit ourselves
to the more restricted class of continuously differentiable (or C1) curves in H. Here ω : [a, b]→ H
is continuously differentiable if the components x = Reω : [a, b] → R and y = Imω : [a, b] → R
of the composite map [a, b]→ H ⊂ C are continuously differentiable in the usual sense.

We will assign a hyperbolic length measure ‖ω′(t)‖H to each tangent vector ω′(t) of a C1

curve in H, depending on the starting point ω(t) of that tangent vector, in such a way that the
hyperbolic length of the curve ω is the integral of these hyperbolic lengths of tangent vectors:

lengthH(ω) =

∫ b

a
‖ω′(t)‖H dt .

Since the Möbius transformations m : H → H preserve lengths of hyperbolic line segments, we
will also want them to preserve lengths of C1 curves. In order to have

lengthH(ω) = lengthH(m ◦ ω)

we will need to have

‖ω′(t)‖H = ‖(m ◦ ω)′(t)‖H ,
where the length of v = ω′(t) at the left hand side is measured at z = ω(t), while the length
of (m ◦ ω)′(t) at the right hand side is measured at m(z) = (m ◦ ω)(t). By the chain rule,
(m ◦ ω)′(t) = m′(z) · ω′(t).

For instance, if m(z) = z + b, we have m′(z) = 1 for all z, so we require that the H-length of
v = ω′(t) at z = ω(t) is equal to the H-length of 1 · v = v at m(z) = z + b. In other words, the
hyperbolic length measure at z does not depend on the real part of z.

On the other hand, if m(z) = ηz, with η > 0, we have m′(z) = η for all z, so we require that
the H-length of v = ω′(t) at z = ω(t) is equal to the H-length of η · v = ηv at m(z) = ηz. Hence
the H-length of a vector w at ηz is equal to 1/η times the H-length of the same vector at z.
This implies that the hyperbolic length measure at z is inversely proportional to the imaginary
part of z.

This suggests the formula

‖ω′(t)‖H =
|ω′(t)|
Imω(t)

for the hyperbolic length measure of the tangent vector ω′(t) of the curve ω at the point
ω(t). Here |ω′(t)| refers to the usual Euclidean length of that tangent vector. If we write
ω(t) = (x(t), y(t)), then

‖ω′(t)‖H =

√
x′(t)2 + y′(t)2

y(t)
.
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Definition 13.1. The hyperbolic length of a C1 curve ω : [a, b]→ H, with components ω(t) =
(x(t), y(t)), is defined to be

lengthH(ω) =

∫ b

a

|ω′(t)|
Imω(t)

dt =

∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt .

Lemma 13.2. The hyperbolic length of a C1 curve in H is invariant under Möbius transfor-
mations, i.e., lengthH(ω) = lengthH(m ◦ ω) for m ∈ Möb(H).

Proof. If m is holomorphic, so m(z) = (az+ b)/(cz+ d) for some a, b, c, d ∈ R with ad− bc = 1,
then

(m ◦ ω)′(t) = m′(z) · ω′(t) =
ω′(t)

(cz + d)2

and

Im(m ◦ ω)(t) =
Im z

|cz + d|2
for z = ω(t), by earlier calculations, so

|ω′(t)|
Imω(t)

=
|(m ◦ ω)′(t)|
Im(m ◦ ω)(t)

.

This implies

lengthH(ω) =

∫ b

a

|ω′(t)|
Imω(t)

dt =

∫ b

a

|(m ◦ ω)′(t)|
Im(m ◦ ω)(t)

dt = lengthH(m ◦ ω) .

(The limits of integration, a and b, are not related to the FLT coefficients of the same names.)
If m = ρ is given by reflection in the imaginary axis, then (ρ ◦ ω)′(t) is given by the same

reflection from ω′(t), hence |(ρ ◦ ω)′(t)| = |ω′(t)|. This reflection preserves imaginary parts, so
Im(ρ ◦ ω)(t) = Imω(t). Hence the last steps of the calculation for holomorphic m also applies
for m = ρ, so that lengthH(ω) = lengthH(ρ ◦ ω).

The general case of anti-holomorphic m now follows from these two cases. �

In the following statement, [z, w] ⊂ ←→zw ⊂ H refers to a hyperbolic line segment, whereas
[a, b] ⊂ R refers to a Euclidean line segment, i.e., a closed interval.

Lemma 13.3. The hyperbolic length of a hyperbolic line segment [z, w] in H, viewed as a C1

curve by any continuously differentiable bijection ω : [a, b] → [z, w], is equal to the hyperbolic
distance d(z, w) = dH(z, w) from z to w.

Proof. By the invariance of hyperbolic length of curves under Möbius transformations, we may
assume that [z, w] is the segment [i, ib] on the imaginary axis, so that d(z, w) = d(i, ib) = ln(b).
We can parametrize that segment by ω(t) = it, for t ∈ [1, b], with |ω′(t)| = |i| = 1 and
Imω(t) = t, so that

lengthH(ω) =

∫ b

1

1

t
dt =

[
ln(t)

]b
1

= ln(b)− ln(1) = ln(b) .

Hence the two length measures agree. It is a consequence of the change-of-variable formulas for
integrals that any other (C1 bijective) choice of parametrization ω gives the same result. �

It follows that the hyperbolic length measure of piecewise H-linear curves in H equals the
sum of the distances along the linear segments. [[Relate length of a C1 curve to the supremum
of the lengths of the piecewise H-linear approximations to the curve.]]

We can translate the length measure for C1 curves in H to an equivalent length measure
for C1 curves in D, using the chosen identification ξ : D → H, with ξ(z) = (z + i)/(iz + 1).
We need to assign a hyperbolic length measure ‖ω′(t)‖D to each tangent vector of a C1 curve
ω : [a, b]→ D in D, again depending on both z = ω(t) and v = ω′(t), in such a way that

lengthD(ω) =

∫ b

a
‖ω′(t)‖D dt
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satisfies lengthD(ω) = lengthH(ξ ◦ ω). To achieve this we must have

‖ω′(t)‖D = ‖(ξ ◦ ω)′(t)‖H =
|(ξ ◦ ω)′(t)|
Im(ξ ◦ ω)(t)

=
|ξ′(z)||ω′(t)|

Im ξ(z)

where z = ω(t). Here

|ξ′(z)| = 2

|iz + 1|2
and

ξ(z) =
2 Re z + i(1− |z|2)

|iz + 1|2
,

so the factors |iz + 1|2 cancel, and

|ξ′(z)||ω′(t)|
Im ξ(z)

=
2|ω′(t)|
1− |z|2

=
2|ω′(t)|

1− |ω(t)|2
.

This proves the following statement.

Proposition 13.4. The hyperbolic length of a C1 curve ω : [a, b]→ D, with components ω(t) =
(x(t), y(t)), is given by

lengthD(ω) =

∫ b

a

2|ω′(t)|
1− |ω(t)|2

dt =

∫ b

a

2
√
x′(t)2 + y′(t)2

1− x(t)2 − y(t)2
dt .

It is equal to the hyperbolic length in H of the composite ξ ◦ ω : [a, b] → H, and agrees with the
distance measure dD(z, w) when ω is a bijective parametrization of a segment [z, w] in D. �

Example 13.5. Let 0 < r < 1, and consider the closed curve ω : [0, 2π] → D given by ω(t) =
reit = r(cos t+ i sin t), with components x(t) = r cos t and y(t) = r sin t. Let ρ = ln((1+ r)/(1−
r)) be the hyperbolic distance from 0 to ω(0) = r. We have dD(0, ω(t)) = ρ for all t, since
rotations around 0 are FLTs and hence hyperbolic isometries, so the curve parametrized by ω
is both the Euclidean circle with center 0 and radius r, and the hyperbolic circle with center 0
and radius ρ.

Note that ω′(t) = ireit = ir(cos t + i sin t), so |ω(t)| = r and |ω′(t)| = r for all t. The
hyperbolic length of ω is

lengthD(ω) =

∫ 2π

0

2r

1− r2
dt =

4πr

1− r2
.

To express this in terms of the hyperbolic radius ρ, recall that r = tanh(ρ/2), so

4πr

1− r2
=

4π tanh(ρ/2)

1− tanh2(ρ/2)
= 4π sinh(ρ/2) cosh(ρ/2) = 2π sinh ρ .

This uses 1− tanh2 x = 1/ cosh2 x and sinh(2x) = 2 sinhx coshx. The Taylor expansion

lengthD(ω) = 2π sinh ρ = 2π(ρ+
ρ3

6
+

ρ5

120
+ . . . )

shows that the circumference of a hyperbolic circle with radius ρ is longer than the circumfer-
ence of a Euclidean circle with an equally long radius (namely 2πρ), and that the hyperbolic
circumference grows faster than the Euclidean circumference. This is a manifestation of the
negative curvature of the hyperbolic plane.

Remark 13.6. On the unit sphere, S2, with the distances measured along great circles on that
surface, the circle ω with center the north pole N = (0, 0, 1) and spherical radius ρ is equal to
the Euclidean circle of radius r = sin ρ and circumference 2πr = 2π sin ρ. (This is the line of
latitude π/2− ρ.) Its Taylor expansion

lengthS2(ω) = 2π sin ρ = 2π(ρ− ρ3

6
+

ρ5

120
− . . . )
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shows that the circumference of a spherical circle with radius ρ is shorter than the circumference
of a Euclidean circle with an equally long radius, and that the spherical circumference grows
slower of a function of ρ than the Euclidean circumference. This is a manifestation of the
positive curvature of the sphere.

13.2. Area measure in the hyperbolic plane. We shall assign an area measure to hyperbolic
triangles4ABC ⊂ H, and more generally to nice regions Ω ⊂ H, i.e., domains that are bounded
by a finite number of C1 curves (in H ⊂ C ∼= R2). At a point z = x+ iy ∈ H we have assigned
the hyperbolic length 1/ Im z = 1/y to each of the unit vectors e1 = (1, 0) and e2 = (0, 1), so
we shall assign the hyperbolic area (1/ Im z)2 = 1/y2 to the unit square tangent to H at z. The
hyperbolic area of a nice region Ω is then the integral of the hyperbolic area of these tangent
squares:

areaH(Ω) =

∫∫
Ω

1

y2
dx dy =

∫∫
Ω

dx dy

y2
.

Lemma 13.7. The hyperbolic area measure satisfies:
(a) (additivity)

areaH(Ω1 ∪ Ω2) = areaH(Ω1) + areaH(Ω2)− areaH(Ω1 ∩ Ω2)

for nice regions Ω1 and Ω2 ⊂ H, and
(b) (Möbius invariance)

areaH(Ω) = areaH(m(Ω))

for any nice region Ω ⊂ H and Möbius transformation m preserving H.

Proof. (a) This is clear from the additivity properties of double integrals.
(b) Suppose first that m(z) = (az + b)/(cz + d), with a, b, c, d ∈ R and ad− bc = 1. The real

derivative of m at z is the linear map from R2 ∼= C to itself given by complex multiplication by
m′(z) = 1/(cz + d)2, which has real determinant J(m)(z) = |m′(z)|2 = 1/|cz + d|4. This is the
determinant of the Jacobian of m at z. Writing m(z) = w = u + iv, so that v = Imm(z) =
Im z/|cz + d|2, we have

areaH(m(Ω)) =

∫∫
m(Ω)

du dv

v2
=

∫∫
Ω
|J(m)(z)| · dx dy

(Imm(z))2

=

∫∫
Ω

|cz + d|4

|cz + d|4
· dx dy

(Im z)2
=

∫∫
Ω

dx dy

y2
= areaH(Ω) .

If m is not holomorphic, it can be written as the composite of the reflection ρ(z) = −z̄ about
the imaginary axis and an FLT as above, so it only remains to check that the hyperbolic area is
invariant under ρ. This is clear, since the derivative of ρ is the same reflection, with determinant
−1, and Im ρ(z) = Im z since the reflection preserves the y-coordinate:

areaH(ρ(Ω)) =

∫∫
ρ(Ω)

du dv

v2
=

∫∫
Ω
|−1| · dx dy

y2
= areaH(Ω) .

�

Definition 13.8. Let A, B and C be three distinct points in H. The hyperbolic triangle 4ABC
is the region bounded by the segments [A,B], [B,C] and [A,C]. It lies on the same side of

←→
AB

as C, on the same side of
←→
BC as A, and on the same side of

←→
AC as B.

If A and B are distinct points in H, and C ∈ R̄, the (singly) ideal triangle 4ABC is the

region in H bounded by the segment [A,B] and the rays
−−→
BC and

−→
AC.

If A ∈ H and B and C are distinct points in R̄, the (doubly) ideal triangle 4ABC is the

region in H bounded by the ray
−−→
AB, the line (B,C) and the ray

−→
AC.

If A, B and C are distinct points in R̄, the (triply) ideal triangle 4ABC is the region in H
bounded by the lines (A,B), (B,C) and (A,C).
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Theorem 13.9. Let 4ABC be a hyperbolic triangle in H, possibly with some ideal vertices.
Let α = ∠BAC, β = ∠ABC and γ = ∠ACB be the angles in the triangle. (The angle at an
ideal vertex is 0.) Then the area of 4ABC satisfies

areaH(4ABC) = π − (α+ β + γ) .

Proof. We begin with the singly ideal case, in which C ∈ R̄ and γ = 0. We can first normalize

by a Möbius transform preserving H to get in the situation where C =∞ and
←→
AB = (−1, 1) is

the semicircle with center 0 and radius 1, so that A = ei(π−α) and B = eiβ, where α = ∠BAC
and β = ∠ABC are the angles in the ideal triangle. (The Möbius transform does not change
the area or the angles in the triangle.) Then

4ABC = {(x, y) | cos(π − α) ≤ x ≤ cosβ,
√

1− x2 ≤ y}
and

areaH(4ABC) =

∫∫
4ABC

dx dy

y2
=

∫ cosβ

cos(π−α)

(∫ ∞
√

1−x2

1

y2
dy
)
dx

=

∫ cosβ

cos(π−α)

[
−1

y

]∞
√

1−x2
dx =

∫ cosβ

cos(π−α)

dx√
1− x2

=

∫ β

π−α

− sin t

sin t
dt =

[
−t
]β
π−α

= −β + (π − α) = π − (α+ β) ,

where we substituted x = cos t, with dx = − sin t dt and
√

1− x2 = sin t. This completes the
proof in the singly ideal case.

The doubly and triply ideal cases are obtained as limits of this case. In particular, any two
triply ideal triangles are congruent, and each of them has area equal to π.

In the finite (non-ideal) case, with A, B and C in H, let D ∈ R̄ be the endpoint of the

ray
−−→
BC, and consider the ideal triangle 4ABD as the union of 4ABC and the ideal triangle

4ACD. Let α = ∠BAC, α′ = ∠CAD, β = ∠ABC, γ = ∠ACB, and γ′ = ∠ACD. Then
γ + γ′ = π, area(4ABD) = π − (α + α′ + β) and area(4ACD) = π − (α′ + γ′) = −α′ + γ, so
area(4ABC) = area(4ABD)− area(4ACD) = π − (α+ β + γ), as asserted. �

13.3. Area measure in D. Using ξ : D→ H, we translate the hyperbolic area measure in H to
a hyperbolic area measure in D. For a nice region Ω ⊂ D, i.e., one bounded by a finite number
of C1 curves, we define

areaD(Ω) = areaH(ξ(Ω)) .

Proposition 13.10. The hyperbolic area of a nice region Ω ⊂ D is given by

areaD(Ω) =

∫∫
Ω

4 dx dy

(1− |z|2)2
=

∫∫
Ω

4 dx dy

(1− x2 − y2)2
.

Proof. We use the change-of-variables formula for ξ : D → H mapping z = x + iy ∈ D to
ξ(z) = w = u+iv ∈ H, in the case ξ(z) = (z+i)/(iz+1). Here ξ′(z) = 2/(iz+1)2, so the Jacobian
determinant is J(ξ)(z) = |ξ′(z)|2 = 4/|iz + 1|4. Furthermore v = Im ξ(z) = (1− |z|2)/|iz + 1|2,
so

areaD(Ω) = areaH(ξ(Ω)) =

∫∫
ξ(Ω)

1

v2
du dv =

∫∫
Ω

1

(Im ξ(z))2
|J(ξ)(z)| dx dy

=

∫∫
Ω

|iz + 1|4

(1− |z|2)2

4 dx dy

|iz + 1|4
=

∫∫
Ω

4 dx dy

(1− |z|2)2
.

�

In polar coordinates, with z = Reiθ and (x, y) = (R cos θ,R sin θ), we have dx dy = RdRdθ,
so

areaD(Ω) =

∫∫
4RdRdθ

(1−R2)2
,
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where the area of integration on the right hand side is the set of (R, θ) with R ≥ 0 and 0 ≤ θ ≤ 2π
for which Reiθ ∈ Ω.

Example 13.11. Let 0 < r < 1 and consider the hyperbolic disc Ω = {z ∈ D||z| < r} of
hyperbolic radius ρ = ln((1 + r)/(1− r)), so that r = tanh(ρ/2). Its hyperbolic area is

areaD(Ω) =

∫∫
x2+y2<r2

4 dx dy

(1− x2 − y2)2
=

∫ 2π

0

(∫ r

0

4RdR

(1−R2)2

)
dθ

= 2π
[ 2

1−R2

]r
0

= 4π
r2

1− r2
= 4π sinh2(ρ/2) .

This uses tanh2 x/(1− tanh2 x) = sinh2 x, like earlier. The Taylor expansion of this hyperbolic
area

areaD(Ω) = 4π sinh2(ρ/2) = π(ρ2 +
ρ4

12
+

ρ6

360
+ . . . )

shows that the area of a hyperbolic disc with radius ρ is greater than the area of a Euclidean
disc with an equally long radius (namely πρ2), and that the hyperbolic area grows faster than
the Euclidean area. Again, this is a consequence of the negative curvature of the hyperbolic
plane.

Remark 13.12. On the unit sphere, S2, with distances measured along great circles on that
surface, the disc Ω of radius ρ with center at the north pole is bounded by the circle ω at
latitude π/2− ρ, as discussed in an earlier remark. The surface area of Ω is

areaS2(Ω) =

∫ ρ

0
2π sinRdR = 2π

[
− cosR

]ρ
0

= 2π(1− cos ρ) = 4π sin2(ρ/2) .

The Taylor expansion of this spherical area

areaS2(Ω) = 4π sin2(ρ/2) = π(ρ2 − ρ4

12
+

ρ6

360
+ . . . )

shows that the area of a spherical disc with radius ρ is smaller than the area of a Euclidean
disc with the same radius (i.e., πρ2), and that the spherical area grows more slowly than the
Euclidean area. Once more, this expresses the positive curvature of the sphere and its elliptic
geometry.

14. October 7th lecture

14.1. Trigonometry in the hyperbolic plane. Consider a hyperbolic triangle 4ABC. Let
α = ∠BAC, β = ∠CBA and γ = ∠ACB be the hyperbolic angles at the three vertices, and let
a = d(B,C), b = d(C,A) and c = d(A,B) by the hyperbolic lengths of the respective opposite
sides.

By the side-angle-side (SAS) criterion for congruence, i.e., Hilbert’s axiom (C6), knowledge
of the angle α and the lengths b and c, which amounts to knowledge of the congruence classes
of ∠BAC, [C,A] and [A,B], determines the congruence classes of [B,C], ∠CBA and ∠ACB,
i.e., the length a and the angles β and γ.

We now determine the trigonometric identities that allow us to compute a, β and γ in terms
of α, b and c. We begin with a formula that determines a.

Theorem 14.1 (The first hyperbolic law of cosines).

cosh a = cosh b cosh c− sinh b sinh c cosα .

Proof. We work in the Poincaré disc model D. Applying a FLT preserving D that maps the ray−−→
AB to the ray [0, 1), and continuing with complex conjugation if needed, we may assume that
A = 0, B = r and C = seiα for some r, s ∈ (0, 1). Then c = d(0, r) = ln((1 + r)/(1 − r)) and
b = d(0, seiα) = d(0, s) = ln((1 + s)/(1 − s)). Our task is to determine a = d(r, seiα). We use
the formula

cosh a = 1 +
2|seiα − r|2

(1− r2)(1− s2)
.
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Here |seiα − r|2 = (s cosα− r)2 + (s sinα)2 = r2 + s2 − 2rs cosα, and a little calculation gives
the expression

cosh a =
1 + r2

1− r2

1 + s2

1− s2
− 2r

1− r2

2s

1− s2
cosα .

Furthermore, r = tanh(c/2), so

1 + r2

1− r2
=

1 + tanh2(c/2)

1− tanh2(c/2)
= cosh c

and
2r

1− r2
=

2 tanh(c/2)

1− tanh2(c/2)
= sinh c ,

and likewise for s and b. Hence

cosh a = cosh c cosh b− sinh c sinh b cosα ,

as asserted. �

Remark 14.2. In terms of Taylor expansions, the first cosine law becomes

(1 +
a2

2
+ . . . ) = (1 +

b2

2
+ . . . )(1 +

c2

2
+ . . . )− (b+ . . . )(c+ . . . ) cosα

which we can rewrite as

1 +
a2

2
≡ 1 +

b2

2
+
c2

2
− bc cosα

modulo terms of order 4 or higher (in a, b and c). Hence, for small a, b and c the hyperbolic
cosine law tends to the Euclidean cosine law

a2 = b2 + c2 − 2bc cosα .

Corollary 14.3 (The hyperbolic Pythagorean theorem). If α = π/2, then

cosh a = cosh b cosh c .

Remark 14.4. For small triangles, this converges to the Pythagorean theorem a2 = b2 + c2.

Conversely, knowing the sides a, b and c we can use the first cosine law to determine the
angle α. Permuting the vertices of the triangle, we can in principle also use this to determine
the angles β and γ. Here is the clean way to state the result.

Theorem 14.5 (The hyperbolic law of sines).

sinα

sinh a
=

sinβ

sinh b
=

sin γ

sinh c
.

Proof. Squaring
sinh b sinh c cosα = cosh b cosh c− cosh a

we get
(sinh2 b sinh2 c)(1− sin2 α) = (cosh b cosh c− cosh a)2

and

sin2 α sinh2 b sinh2 c = (cosh2 b− 1)(cosh2 c− 1)− (cosh b cosh c− cosh a)2

= 1− cosh2 a− cosh2 b− cosh2 c+ 2 cosh a cosh b cosh c .

This expression is symmetric in a, b and c, so we get

sin2 α sinh2 b sinh2 c = sin2 β sinh2 c sinh2 a = sin2 γ sinh2 a sinh2 b .

Hence
sin2 α

sinh2 a
=

sin2 β

sinh2 b
=

sin2 γ

sinh2 c
.

Taking (positive) square roots gives the hyperbolic sine law. �
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Remark 14.6. For small triangles sinh a ≡ a, sinh b ≡ b and sinh c ≡ c modulo terms of order 3
or higher, so the hyperbolic sine law tends to the Euclidean sine law

sinα

a
=

sinβ

b
=

sin γ

c
.

These two laws suffice to determine all sides and angles in a hyperbolic triangle when all three
sides are known (SSS), or when two sides and one angle are known (SAS or SSA), except for
an ambiguity in recovering an angle from its sine in the side-side-angle case. In the Euclidean
case two angles determine the third, and knowing three angles only determines a triangle up to
similarity. In the hyperbolic case there is instead a second cosine law, dual to the first law of
cosines. It lets us determine all sides and angles in a hyperbolic triangle when all three angles
are known (AAA), or when two angles and one side are known (ASA or AAS).

Theorem 14.7 (The second hyperbolic law of cosines).

cosα = − cosβ cos γ + sinβ sin γ cosh a .

Sketch proof. Using the first cosine law and a step in the proof of the sine law we can express

cosα+ cosβ cos γ

and

sinβ sin γ

in terms of cosh a, cosh b and cosh c. After some calculation, the ratio of the two expressions is
seen to be cosh a. [See Proposition 2.9.4 in Jahren’s notes.] �

Remark 14.8. For small triangles cosh a is close to 1, so the second cosine law tends to the
relation

cosα = − cosβ cos γ + sinβ sin γ = cos((π − β)− γ) .

This recovers the sum-of-angles relation

α+ β + γ = π

from flat Euclidean geometry. In the Euclidean case knowledge of the three angles only deter-
mines a triangle up to similarity. In the hyperbolic case there are no similarity transformations,
other than the congruences.

15. October 9th lecture

15.1. Topological surfaces.

Definition 15.1. A topological surface is a topological space M that is locally homeomorphic
to R2. We shall also assume that each topological surface is Hausdorff and second countable.

In other words, we assume that each point in M has an open neighborhood that is home-
omorphic to (an open subset of) R2, that distinct points in M lie in disjoint neighborhoods,
and that there is a countable basis for the topology of M . These conditions ensure that M is a
metrizable topological space, and that M can be embedded in some Euclidean space RN , i.e.,
that M is homeomorphic to a subset of RN in the subspace topology.

Example 15.2. Here are some examples of topological surfaces:

• The unit sphere S2 consisting of vectors x ∈ R3 of length 1.
• The real projective plane P 2 = RP 2 = S2/∼ where x ∼ −x.
• The Euclidean plane R2 ∼= C.
• The torus T 2 = R2/∼ where (x, y) ∼ (x+ 1, y) and (x, y) ∼ (x, y + 1).
• The Klein bottle K2 = R2/∼ where (x, y) ∼ (x+ 1, y) and (x, y) ∼ (1− x, y + 1).
• The hyperbolic plane D ∼= H.
• The genus two surface obtained from an octagon ABCDEFGH by identifying AB with
DC, BC with ED, EF with HG and FG with AH.
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• The zero set M = {(x, y, z) ∈ Ω | f(x, y, z) = 0} of any C1 function f : Ω→ R such that
∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z) 6= 0 on M . Here Ω is an open subset of R3. For instance,
we might have f(x, y, z) = x2 + y2 + z2− 1, with ∇f = (2x, 2y, 2z), so that M = S2. As
another instance, we might have f(x, y, z) = z−g(x, y), for some C1 function g : U → R
with U open in R2, in which case ∇f = (∂g/∂x, ∂g/∂y, 1) and M is the graph of g.
• The zero set M = {(z, w) ∈ Ω | h(z, w) = 0} of any complex analytic function h : Ω→ C

such that (∂h/∂z, ∂h/∂w) 6= 0 on M . Here Ω is an open subset of C2. This defines
a complex curve, which is a real surface. For instance, we might have h(z, w) = w2 −
(z3 + az + b) with 4a3 + 27b2 6= 0, so that M is a plane elliptic curve.
• Any open subset of the previous examples.
• Any (finite or countable) disjoint union of the previous examples.

Definition 15.3. A closed surface is a topological surface that it compact as a topological
space.

Remark 15.4. This terminology reflects the fact that there exists a more general notion of
surface with boundary, and the term compact surface usually refers to a surface, with or without
boundary, that is compact. The term closed surface refers to a surface without boundary that
is compact. We concentrate on surfaces without boundary.

Definition 15.5. Given two connected (topological) surfaces M1 and M2 we can choose an
embedding hi : D

2 →Mi for each i = 1, 2. Then the closed subspace

M ′i = Mi \ hi(intD2)

is locally homeomorphic to R2, except at the “boundary” hi(S
1) ⊂ M ′i . The connected sum of

M1 and M2 is the identification space

M1#M2 = M ′1 ∪S1 M ′2

of these two pieces, where we use hi to identify S1 with hi(S
1) ⊂M ′i for i = 1, 2.

Lemma 15.6. M1#M2 is a connected (topological) surface. If M1 and M2 are closed, then so
is M1#M2.

Sketch proof. The main thing to check is that M1#M2 is locally homeomorphic to R2 at the
common image of h1(S1) and h2(S1). �

[[Discuss non-dependence of M1#M2 on the choices of h1 and h2.]]
[[Similar construction for combinatorial surfaces, removing the interior of a triangle on each

side, and identifying the two boundary triangles.]]

Lemma 15.7. There are homeomorphisms

• M1#S2 ∼= M1,
• M1#M2

∼= M2#M1 and
• (M1#M2)#M3

∼= M1#(M2#M3).

Hence the set of homeomorphism classes of connected surfaces becomes a commutative monoid
with respect to the connected sum pairing, with neutral element given by the class of S2.

Proof. For the first case, note that we can choose the embedding h2 : D2 → S2 = M2 so that
h2(D2) is one hemisphere and M ′2 = S2 \ h2(intD2) is the other hemisphere, meeting at the
equator. Any choice of homeomorphisms between these hemispheres, restricting to the identity
on their common boundary, induces a homeomorphism between M1 and M1#S2.

The proofs in the other two cases are similar. �

Theorem 15.8 (Classification of closed surfaces). Each closed, connected (topological) surface
M is homeomorphic to a connected sum

M ∼= S(g, h) = T 2# . . .#T 2︸ ︷︷ ︸
g copies

#P 2# . . .#P 2︸ ︷︷ ︸
h copies
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of g ≥ 0 copies of the torus T 2 = S1×S1 and h ≥ 0 copies of the real projective plane P 2 = RP 2.
The only relations among these homeomorphism classes are generated by the identity

S(1, 1) = T 2#P 2 ∼= P 2#P 2#P 2 = S(0, 3) ,

so that S(g, h) ∼= S(0, 2g+h) if h ≥ 1. Hence each closed, connected surface M is homeomorphic
to exactly one of the following standard surfaces:

• the orientable surface Mg = S(g, 0) = T 2# . . .#T 2 (g copies) of genus g ≥ 0, or
• the non-orientable surface Nh = S(0, h) = P 2# . . .#P 2 (h copies) of demigenus h ≥ 1.

Note that S2 = M0 = S(0, 0) is treated as the connected sum of zero surfaces, and the Klein
bottle appears as K2 = S(0, 2) = P 2#P 2.

We shall prove the existence part of this classification, assuming that the surface can be
triangulated in a sense that we will soon make precise. We will sketch the uniqueness part
of the classification, using tools (Euler characteristic, orientability) that are shown to be well-
defined in the first algebraic topology course (MAT4530).

16. October 14th lecture

16.1. Combinatorial surfaces. To get a handle on general topological surfaces, it is useful to
first equip them with a more combinatorial structure.

Definition 16.1. An n-simplex in some Euclidean space RN is the convex hull σ of (n + 1)
points v0, v1, . . . , vn that are not contained in any (n − 1)-dimensional affine subspace. The
convex hull of a non-empty subset of {v0, v1, . . . , vn} is called a face of σ, and is again a simplex
in RN .

Example 16.2. A 0-simplex is called a vertex, a 1-simplex is called an edge, and a 2-simplex
is called a triangle. The proper faces of an edge are its two endpoints. The proper faces of a
triangle are its three side edges and its three vertices.

Definition 16.3. A simplicial complex is a collection Σ of simplices in some Euclidean space
RN such that any face of a simplex in Σ is again in Σ, and the intersection of two simplices
in Σ is either empty or a face of both. (If Σ is infinite, we also require that the collection is
locally finite, in the sense that each point of RN has a neighborhood that meets only finitely
many simplices in the collection. Two sets meet if their intersection is not empty.)

The union of the simplices in Σ, as a subspace of RN , is called the polyhedron of Σ, and is
denoted |Σ|. A triangulation of a topological space X is a choice of a simplicial complex Σ and
a homeomorphism h : |Σ| → X.

Example 16.4. Here are some examples of simplicial complexes.

• A tetrahedron T ⊂ R3, which is a 3-simplex, together with all its proper faces, is a
simplicial complex ∆3. Its polyhedron |∆3| is equal to T , which is homeomorphic to
D3.
• The subcollection ∂∆3 consisting only of the proper faces of T is also a simplicial com-

plex. Its polyhedron |∂∆3| is equal to the topological boundary ∂T of T in R3, which is
homeomorphic to S2.
• A simplicial complex with polyhedron homeomorphic to S1 consists of k vertices v1, . . . , vk

and k edges [v1, v2], . . . , [vk−1, vk] and [vk, v1], for some k ≥ 3.

Lemma 16.5. A simplicial complex consists of finitely many simplices if and only if its poly-
hedron is compact.

Definition 16.6. Let v be a vertex in a simplicial complex Σ. The collection of simplices in Σ
that contain v is called the (open) star of v. The simplicial complex consisting of the simplices
that contain v, and all of their faces, is called the closed star of v. The complement of the
open star in the closed star, consisting of the simplices that do not contain v but are faces of
simplices that contain v, is a simplicial complex called the link of v in Σ.
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Example 16.7. Here are some examples of links.

• The link of a vertex v in ∆3 is the triangular face of T opposite to v. Its polyhedron is
homeomorphic to D2.
• The link of v in ∂∆3 is the boundary of that triangular face of T . Its polyhedron is the

union of the three edges of the triangle, and is homeomorphic to S1.

Definition 16.8. A combinatorial surface is a simplicial complex Σ such that the link of each
vertex has polyhedron homeomorphic to S1.

Remark 16.9. A topological surface is the special case n = 2 of a topological n-manifold. A
combinatorial surface is the special case n = 2 of a combinatorial n-manifold.

Lemma 16.10. The polyhedron of a combinatorial surface is a topological surface.

Proof. By the cone of a space X we mean the identification space CX = X × [0, 1]/∼, where
(x, 0) ∼ (y, 0) for all x, y ∈ X. It contains a homeomorphic copy of X as the subspace X ×{1}.
The cone on S1 is homeomorphic to D2, and the complement CS1 \S1 is homeomorphic to the
open disc intD2 = D2 \ S1 in R2.

The polyhedron of the closed star of a vertex v is homeomorphic to the cone on the polyhedron
of its link, so in a combinatorial manifold these are homeomorphic to D2 and the open stars
are homeomorphic to intD2. These open stars cover the polyhedron, which is therefore locally
homeomorphic to R2.

Any polyhedron is a subspace of some RN , hence metrizable, and therefore Hausdorff and
second countable. �

The converse is a much harder theorem of Tibor Radó from 1925.

Theorem 16.11 (Radó). Each topological surface admits a triangulation, i.e., is homeomorphic
to the polyhedron of a combinatorial surface.

Remark 16.12. We will not prove this result. Carsten Thomassen (Amer. Math. Monthly,
1992) gave a short proof using the Jordan–Schönflies theorem. Allen Hatcher (arXiv, 2013)
wrote up a proof using the Kirby torus trick, which proves existence and uniqueness of smooth
structures on topological surfaces, and which implies existence of triangulations. Without these
results the arguments that follow will only provide a topological classification of triangulable
surfaces, i.e., of surfaces that can be given a combinatorial structure.

Radó also proves that any two triangulations of the same topological surface are equivalent,
in the sense that they admit a common subdivision, so there is a one-to-one correspondence
between equivalence classes of topological structures and combinatorial structures on any sur-
face. A corresponding result also holds for 3-dimensional manifolds (Moise (1952), Bing (1954,
1959)), but is false in higher dimensions. Kirby and Siebenmann (1969) give examples of 5-
manifolds with two inequivalent combinatorial structures, and of topological 6-manifolds that
cannot be triangulated as combinatorial manifolds. [[What is the situation for 4-manifolds?]]

17. October 16th lecture

17.1. Gluings.

Definition 17.1. A gluing pattern consists of a finite set of triangles

∆1,∆2, . . . ,∆n ,

a pairing of the edges of these triangles such that each edge appears in exactly one of the pairs,
and a choice of one of the two possible (affine) linear identifications between the edges in each
pair.

The associated gluing space is the identification space

M = (∆1 t∆2 t · · · t∆n)/∼
obtained from the disjoint union of these triangles, where ∼ is the equivalence relation generated
by the chosen linear identifications between the edges in each pair.
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For instance, if an edge [A,B] ⊂ ∆1 is paired with an edge [C,D] ⊂ ∆2, with the choice
of linear bijection taking A to D and B to C, then (1 − t)A + tB is identified under ∼ with
(1− t)D + tC, for each t ∈ [0, 1].

Lemma 17.2. The polyhedron |Σ| of a finite combinatorial surface Σ can be obtained as the
gluing space M of a gluing pattern on its set of triangles.

Proof. Let ∆1,∆2, . . . ,∆n be the set of triangles in Σ. The gluing pattern is defined so that two
edges in ∆1,∆2, . . . ,∆n are paired if and only if they represent the same edge in Σ. Each edge
E of Σ corresponds to a (link) vertex in the link of either one of its endpoints, and since the
link has polyhedron homeomorphic to S1, that (link) vertex is the meeting point of precisely
two (link) edges. These correspond to precisely two triangles ∆i and ∆j in Σ, both containing
E as an edge. Hence the gluing pattern pairs each edge in ∆1,∆2, . . . ,∆n with precisely one
other edge in the same collection.

We get a well-defined map M → |Σ| from the gluing space of the gluing pattern to the
polyhedron of Σ. It is clearly bijective away from the vertices, and surjective on vertices. To
check that the map is injective on vertices, use that the link of any vertex v is connected, to see
that any two representatives of that vertex in the disjoint union ∆1 t∆2 t · · · t∆n are in fact
equivalent under ∼. �

Notice that since the 3n edges of the n triangles can be grouped into disjoint pairs, n must
be an even integer.

Lemma 17.3. If the gluing space M associated to a gluing pattern with n triangles is connected,
then it is homeomorphic to an identification space F/∼, where F is an (n+ 2)-gon, homeomor-
phic to D2, and ∼ is an equivalence relation generated by pairwise (affine) linear identifications
of the (n+ 2) edges of F .

Proof. We may choose the ordering of ∆1,∆2, . . . ,∆n so that each ∆k has at least one edge Ek
in common with the union ∆1 ∪ · · · ∪∆k−1, for 2 ≤ k ≤ n. (This uses that M is connected.)
Let F1 = ∆1 and inductively define

Fk = Fk−1 ∪Ek
∆k .

Then each Fk is a (k + 2)-gon, since one edge in Fk−1 is replaced by two new edges in Fk. In
particular, F = Fn is an (n+ 2)-gon, homeomorphic to D2, and the map from F to the gluing
space M only identifies the remaining pairs of edges that did not occur in the list E2, . . . , En. �

Definition 17.4. Given an (n + 2)-gon F ∼= D2, equipped with pairwise identifications of its
(n + 2) edges, we label the edges with symbols a or a−1, in such a way that two edges that
get identified have the same labels (both a, or both a−1) if the identification preserves the
direction of travel around the boundary of F , and have inverse labels (one a and one a−1) if
the identification reverses the direction of travel around that boundary.

Let W = a . . . a±1 . . . be the word obtained by concatenating the labels around the boundary
of F , in the direction corresponding to a counterclockwise lap around the boundary of D2. Let
D2/W denote the identification space F/∼ given by the equivalence relation encoded by the
word W . Let W−1 denote the corresponding word read clockwise, with each label replaced with
its inverse, and in the reversed ordering. A word W of length (n + 2), with (n + 2)/2 pairs
of distinct letters, or their inverses, will be called admissible. We also permit the empty word,
W = {}, and define D2/{} = S2.

Example 17.5. Here are some examples of admissible words W and the associated gluing spaces
F/∼ = D2/W :

• D2/aa−1 ∼= S2.
• D2/aa ∼= P 2.
• D2/aba−1b−1 ∼= T 2.
• D2/aba−1b ∼= K2.
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If W1 and W2 are words, we write W1W2 for their concatenation.

Lemma 17.6. (a) If W = W1W2 is admissible, then so is W2W1 and D2/W1W2
∼= D2/W2W1.

(b) If W1 and W2 are admissible, then so is W1W2 and D2/W1W2
∼= D2/W1#D2/W2.

(c) If W1xW2x is admissible then so is W1W
−1
2 yy (with x and y not occurring in W1 and

W2).

Proof. (a) This corresponds to starting to read the labels around the boundary of F at a different
point.

(b) Let z be a line segment in F from the beginning of W1 to its end, or equivalently, from the
end of W2 to its beginning. Since these words are admissible, the endpoints of z are identified
in F/∼ = D2/W1W2, with image z/∼ = Z, say. Write F = F1 ∪z F2, with each of F1 and
F2 a polygon. If we make the identifications along the boundary of F1 that are specified by
W1 we get a space homeomorphic to D2/W1 \ int ∆2, where we have removed an open triangle
with boundary given by the image Z of z (broken into three edges). Likewise for F2 with the
identifications specified by W2. Hence

F/∼ ∼= F1/∼ ∪Z F2/∼ ∼= (D2/W1 \ int ∆2) ∪Z (D2/W2 \ int ∆2) ∼= D2/W1#D2/W2 .

(c) Let y be a line segment in F from the end of the first edge labeled x to the end of the
second edge labeled x. Cutting F apart along y we get two polygons F1 and F2, the first with
boundary W1xy and the second with boundary W2xy

−1. Gluing F1 and F2 together along x
(with F2 turned upside-down), we get a new polygon with boundary W1W

−1
2 yy. Hence there

is a homeomorphism D2/W1xW2x ∼= D2/W1W
−1
2 yy. �

18. October 21st lecture

18.1. Proof of the classification theorem.

Proof of relations. The relation T 2#P 2 ∼= P 2#P 2#P 2 among the topological types (= homeo-
morphism classes) of closed connected surfaces is a consequence of the following two applications
of the lemma above:

• D2/abab−1 ∼= D2/bbyy ∼= D2/bb#D2/yy, so K2 ∼= P 2#P 2.
• D2/aba−1b−1xx ∼= D2/acbab−1c ∼= D2/cbab−1ca ∼= D2/cbc−1byy, so T 2#P 2 ∼= K2#P 2.

The general relation S(g, h) ∼= S(0, 2g + h) for h ≥ 1 follows from this by an easy induction on
g ≥ 0. �

Proof of existence. We now prove that for any connected closed surface M there exists a stan-
dard surface S(g, h) such that M ∼= S(g, h), i.e., such that M is a connected sum of g ≥ 0 copies
of T 2 and h ≥ 0 copies of P 2.

By Radó’s theorem we may assume that M has been triangulated, hence is homeomorphic
to the gluing space associated to a gluing pattern. That gluing space may be written as F/∼ =
D2/W for some admissible word W .

Step 1: If any letter x occurs twice in W , so that W = W1xW2xW3, we can use case (a) in the
lemma above to write D2/W as D2/W3W1xW2x, and then use case (c) to write D2/W3W1xW2x
as D2/W ′yy with W ′ = W3W1W

−1
2 . By case (b) we have D2/W ′yy ∼= D2/W ′#D2/yy, where

D2/yy ∼= P 2, so we have recognized M as D2/W ′#P 2 where W ′ is a shorter admissible word
than the initial word W .

In the same way, if any letter x−1 occurs twice in W , then we can also write M as D2/W ′#P 2

where W ′ is shorter than W . We can continue this way until no letter x occurs twice in the
word W ′, nor does any inverse letter x−1 occur twice. If Step 1 is taken h ≥ 0 times to get to
this point, we have shown that M ∼= M ′#S(0, h), and M ′ ∼= D2/W ′ for an admissible word W ′

such that each letter in W ′ only occurs together with its inverse.

Step 2: If a letter x is followed by its inverse x−1 in W ′, in the cyclic sense, so that W ′ =
W1xx

−1W2 or W ′ = x−1W ′′x, then D2/W ′ ∼= D2/W ′′xx−1 by case (a), with W ′′ = W2W1, and
D2/W ′′xx−1 ∼= D2/W ′′#D2/xx−1 by case (b). Here D2/xx−1 ∼= S2, so D2/W ′′#D2/xx−1 ∼=
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D2/W ′′#S2 ∼= D2/W ′′. A similar argument applies if x and x−1 are interchanged. Hence in
each of these cases we may replace W ′ with a shorter admissible word (where each letter only
occurs together with its inverse), without changing the topological type of D2/W ′.

Step 3: If no letter x is adjacent to its inverse x−1 in W ′, still in the cyclic sense, there must
be two letters x and y occurring in the order . . . x . . . y . . . x−1 . . . y−1 . . . in W ′, at least up to
a cyclic reordering. To see this, assume that x and x−1 are as close as possible in the cyclic
ordering, and let y (or y−1) be one of the letters between x and x−1. Then y−1 (or y) cannot also
be between x and x−1, since that would mean that y and y−1 were closer together than x and
x−1, contradicting the choice of x. If the letters occur in the order . . . x . . . y−1 . . . x−1 . . . y . . .
we cyclically permute the y to the front, and interchange the roles of x and y. This way we may
assume that the letters occur in the order . . . x . . . y . . . x−1 . . . y−1 . . . . Cycling x to the front of
W ′, we may assume that W ′ = xW1yW2x

−1W3y
−1W4.

Now cut the polygon F along a line segment a going from the beginning of x to the be-
ginning of x−1. The resulting two pieces are polygons with boundaries xW1yW2x

−1a−1 and
aW3y

−1W4. Glue these together along y and y−1 to get a new polygon F ′ with boundary
xW1W4aW3W2x

−1a−1. Thereafter cut F ′ along a line segment b going from the end of a
to the end of a−1. The resulting two pieces are polygons with boundaries W3W2x

−1b−1 and
ba−1xW1W4a. Glue these together along x and x−1 to get a final polygon F ′′ with bound-
ary W3W2W1W4aba

−1b−1. Hence there are homeomorphisms D2/W ′ ∼= D2/W ′′aba−1b−1 ∼=
D2/W ′′#D2/aba−1b−1, with W ′′ = W3W2W1W4 admissible. Here D2/aba−1b−1 ∼= T 2, so
D2/W ′ ∼= D2/W ′′#T 2 where W ′′ is an admissible word (where each letter only occurs together
with its inverse), shorter than W ′.

We repeat Steps 2 and 3 until W ′′ = {} is the empty word. If Step 3 was taken g ≥ 0
times, we have identified M ′ = D2/W ′ with S2#T 2# . . .#T 2 ∼= S(g, 0), i.e., the connected
sum of g copies of T 2. To conclude, there exist non-negative integers g, h ≥ 0 such that
M ∼= M ′#S(0, h) ∼= S(g, 0)#S(0, h) ∼= S(g, h) is homeomorphic to one of the standard surfaces
obtained from finitely many copies of T 2 and P 2 by the formation of connected sums. �

19. October 28th lecture

Sketch proof of uniqueness. We must prove that the surfaces Mg = S(g, 0) for g ≥ 0 and Nh =
S(0, h) for h ≥ 1 are all topologically distinct.

The surfaces Mg are all orientable. An orientation of a surface is a compatible choice of
local orientations at each point of the surface, and a local orientation at a point is a choice of
which of the two possible directions of travel around that point (say for a simple closed curve
contained in a coordinate chart around the point) that counts as the positive direction. Any
surface of the form D2/W where each letter x in the admissible word W only occurs together
with its inverse x−1 is orientable. This is because the usual orientation of D2 inherited from
R2, where the counterclockwise direction of travel is declared to be the positive one, descends
to a well-defined orientation on D2/W for these words.

On the other hand, the surfaces Nh with h ≥ 1 are not orientable. Any surface of the form
D2/W where some letter x occurs twice in the word W is not orientable. This is because either
choice of orientation for D2 gets reversed when we move across the boundary of F ∼= D2 along
one edge labeled x and return to D2 across the other edge labeled x. A closed neighborhood of
the line segment in F connecting the mid-points of the two edges labeled x is homeomorphic to
a square I × I, but in F/∼ a pair of opposite sides are identified, after a half-twist, yielding a
non-orientable Möbius band within the closed surface.

It follows that we cannot have Mg
∼= Nh for some g ≥ 0 and h ≥ 1, since two homeomorphic

surfaces are either both orientable or both non-orientable.
To show that Mg and Mg′ cannot be homeomorphic for g 6= g′, and that Nh and Nh′ cannot

be homeomorphic for h 6= h′, we need another topological invariant. One such invariant is the
Euler characteristic. For a compact triangulated surface M ∼= |Σ| this is the number

χ(M) = v − e+ f
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where v is the number of vertices (or 0-simplices) of the combinatorial surface Σ, e is the number
of edges (or 1-simplices) of Σ, and f is the number of triangles (or 2-simplices) of Σ. The fact
that remains to be proved is that χ(M) is a topological invariant, so that if M ∼= M ′ then
χ(M) = χ(M ′).

Assuming this, we can finish the proof. The sphere S2 admits a triangulation (as ∂∆3) with
v = 4, e = 6 and f = 4, so χ(S2) = 2. The projective plane P 2 has Euler characteristic
χ(P 2) = 1, and the torus T 2 has Euler characteristic χ(T 2) = 0. The latter two facts are
perhaps easier to see if we grant that the Euler characteristic can also be computed from a
model F/∼ ∼= D2/W , where v is the number of vertices on the boundary of F , after the
identifications ∼ have been made, e is the number of edges on the boundary of F , also after the
identifications ∼ have been made, and f = 1 (for the single convex 2-cell F ). With the model
D2/aa for P 2 we get v = 1, e = 1 and f = 1, so χ(P 2) = 1. With the model D2/aba−1b−1 for
T 2 we get v = 1, e = 2 and f = 1, so χ(T 2) = 0.

The connected sum M1#M2 = M ′1∪S1M ′2 of two triangulated surfaces can be constructed by
removing the interior of a triangle (2-simplex) of each, and identifying the remaining three edges
and vertices on one side with those on the other side. Thus χ(M1#M2) = χ(M ′1)+χ(M ′2)+(3−
3) = χ(M1)− 1 + χ(M2)− 1 = χ(M1) + χ(M2)− 2. This leads to the formulas χ(Mg) = 2− 2g
for g ≥ 0 and χ(Nh) = 2−h for h ≥ 1. In particular, χ(Mg) uniquely determines the number g,
and χ(Nh) uniquely determines the number h. �

20. October 30th lecture

20.1. Charts and atlases. A topological surface M is, in particular, a topological space, and
this structure carries enough information to make sense of what we mean by saying that a
function f : M → R is continuous. Since M is assumed to be locally homeomorphic to R2,
this condition can be translated into a collection of conditions on functions on open subsets of
R2. To state this in detail, let us spell out in more detail what it means for M to be locally
homeomorphic to R2:

We require that for each point p ∈M there exist an open neighborhood U ⊆M (of p ∈ U), an

open subset V ⊆ R2, and a homeomorphism φ : U
∼=−→ V . If we view φ as a map U → V ⊆ R2,

it induces a homeomorphism φ : U
∼=−→ φ(U).

Definition 20.1. We call the open subset U a coordinate patch, the components of φ = (φ1, φ2)
are called coordinates on U , and the pair (U, φ) is a chart on M . As p ranges through M , the
collection of coordinate patches U forms an open cover of M . The corresponding collection of
charts is then called an atlas.

Conversely, if we select an open covering {Ui}i of M , where i runs through some set of indices,
and each Ui is homeomorphic to an open subset Vi of R2 by a homeomorphism

φi : Ui
∼=−→ Vi ⊂ R2 ,

then each point p lies in at least one Ui, which then serves as the open neighborhood of p
required by the condition that M should be locally homeomorphic to R2. The corresponding
atlas can then be denoted {(Ui, φi)}i.

A real function f : M → R is continuous if and only if each restriction f |Ui : Ui → R is
continuous, since {Ui}i is an open cover of M . Since each φi is a homeomorphism, this is
equivalent to the condition that each composite

f |Ui ◦ φ−1
i : Vi −→ R

is continuous. Since each Vi is an open subset of R2, this is just the usual condition that a map
from an open subset of R2 to R is continuous.
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20.2. Differentiable atlases. Now suppose that we want to make sense of what it means for
a function f : M → R to be differentiable. Our strategy will be to ask that for each i the
composite

f |Ui ◦ φ−1
i : Vi −→ R

is differentiable. Since each Vi is an open subset of R2, this should just be the usual condition
that a map from an open subset of R2 to R is differentiable, which can be expressed by the
existence of a sufficiently good linear approximation at each point. However, in this generality
it may happen that a function f : M → R appears to be differentiable at a point p ∈ M from
the point of view of one chart (Ui, φi) with p ∈ Ui, but not to be differentiable from the point
of view of another chart (Uj , φj). More precisely, it may happen that

f |Ui ◦ φ−1
i : Vi −→ R

is differentiable at φi(p), but also that

f |Uj ◦ φ−1
j : Vj −→ R

is not differentiable at φj(p). This ambiguity can happen for all p in Uij = Ui ∩ Uj . To avoid
this ambiguity, we can assume that the coordinate transformation

(φi|Uij) ◦ (φj |Uij)−1 : φj(Uij) −→ φi(Uij)

is differentiable, as a map from the open subset φj(Uij) ⊆ φj(Uj) = Vj of R2 to the open subset

φi(Uij) ⊆ φi(Uj) = Vi of R2. Then, if f |Ui ◦ φ−1
i : Vi −→ R is differentiable at φi(p), then so is

its restriction f |Uij ◦ (φi|Uij)−1 : φi(Uij)→ R. By the chain rule, it follows that the composite

f |Uij ◦ (φi|Uij)−1 ◦ (φi|Uij) ◦ (φj |Uij)−1 = f |Uij ◦ (φj |Uij)−1

is differentiable at φj(p), as a map φj(Uij)→ R. Hence f |Uj ◦φ−1
j : Vj → R is also differentiable

at φj(p).

Definition 20.2. If the atlas {(Ui, φi)}i has the property that each coordinate transformation
(φi|Uij) ◦ (φj |Uij)−1 is differentiable, for any pair of indices i and j, then the condition given
for a map f : M → R to be differentiable at a point p ∈M will be independent of the choice of
coordinate chart, as long as the charts are chosen from this atlas. Such an atlas will be called
a differentiable atlas.

The choice of a differentiable atlas is an additional structure, or piece of data, that we can
associate with a topological surface M , and which grants us the additional ability to specify
which real functions f on M that are differentiable (at the various points of M).

A choice of differentiable atlas {(Ui, φi)}i also lets us make sense of which curves in M
are differentiable. To ease the notation, we hereafter use the same symbol for a map and its
restrictions to subsets in the domain (= source) or codomain (= target). A continuous map
ω : [a, b] → M is differentiable at a point t ∈ [a, b] if for any chart (Ui, φi) with ω(t) ∈ Ui the
composite map

φi ◦ ω : ω−1(Ui) −→ R2

is differentiable at t, as a map from an open neighborhood of t ∈ [a, b] ⊂ R to R2. A different
choice of chart (Uj , φj) in the same atlas, also with ω(t) ∈ Uj , leads to the same notion of
differentiability, since the composite

φj ◦ ω = φj ◦ φ−1
i ◦ φi ◦ ω : ω−1(Uij) −→ R2

will be differentiable at t if φi ◦ ω is differentiable at t and φj ◦ φ−1
i is differentiable at φi(ω(t)),

and the last condition always holds, by definition, for a differentiable atlas.
To each differentiable curve ω : [a, b] → M we will be able to associate a tangent vector

v = ω′(t) to M at p = ω(t), and the set of all tangent vectors at p will form a tangent plane
TpM , which is a 2-dimensional vector space. To each differentiable function f : M → R we
will be able to associate a differential df , which at each point p ∈ M gives a linear functional
dfp : TpM → R. These constructions will be essential for doing differential topology, differential
geometry and Riemannian geometry on surfaces.
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20.3. Differentiable surfaces. A topological surface M together with a choice of differentiable
atlas {(Ui, φi)}i therefore determines what we will call a differentiable surface. However, there
are many different choices of differentiable atlases that lead to the same notions of differentiable
functions on M and curves in M . In fact, a second differentiable atlas {(U ′k, φ′k)}k will specify
the same notion of differentiability for functions f : M → R if and only if the union of the two
collections of charts

{(Ui, φi)}i ∪ {(U ′k, φ′k)}k
is again a differentiable atlas. In addition to the conditions that the coordinate transformations
φi ◦ φ−1

j and φ′k ◦ φ′`−1 within the first and second atlases, respectively, are differentiable maps,
this amounts to the condition that the transformations

φi ◦ φ′k−1 : φ′k(Ui ∩ U ′k) −→ φi(Ui ∩ U ′k)
between the atlases, and their inverses

φ′k ◦ φ−1
i : φi(Ui ∩ U ′k) −→ φ′k(Ui ∩ U ′k) ,

are differentiable, for all indices i and k.
We say that two differentiable atlases on M are equivalent if their union is again a differen-

tiable atlas. A differentiable surface can then be defined as a topological surface together with
a choice of an equivalence class of differentiable atlases.

Each equivalence class of differentiable atlases contains a preferred element, namely the max-
imal differentiable atlas given by the union of all the differentiable atlases in the equivalence
class. This differentiable atlas is maximal in the sense that it is impossible to add any fur-
ther charts (U, φ) to it without breaking the condition than each coordinate transformation is
differentiable.

Definition 20.3. A differentiable surface is a topological surface M together with a chosen
equivalence class of differentiable atlases {(Ui, φi)}i on M . An equivalent definition is that a
differentiable surface is a topological surfaceM together with a choice of a maximal differentiable
atlas.

Given two differentiable surfaces, M with the maximal atlas containing a differentiable atlas
{(Ui, φi)}i, and N with the maximal atlas containing a differentiable atlas {(Vk, ψk)}k, we can
define what we mean by a differentiable map

f : M −→ N .

We say that f is differentiable at a point p ∈ M if for any chart (Ui, φi) with p ∈ Ui and for
any chart (Vk, ψk) with f(p) ∈ Vk the composite map

ψk ◦ f ◦ φ−1
i : φi(Ui ∩ f−1(Vk)) −→ R2

is differentiable. The assumption that {(Ui, φi)}i and {(Vk, ψk)}k are differentiable atlases
ensures that if this holds for some pair of charts (Ui, φi) with p ∈ Ui and (Vk, ψk) with f(p) ∈ Vk,
then it holds for any such pair of charts.

A differentiable map f : M → N with differentiable inverse g = f−1 : N → M is called a
diffeomorphism. This is the natural notion of isomorphism between differentiable surfaces.

20.4. Smooth surfaces. To ensure that the tangent plane TpM at p of a differentiable surface
varies continuously with p, or to speak about continuous fields of tangent vectors (= continuous
vector fields), we will need to know what it means for a function f : M → R to be continuously
differentiable, not just differentiable. For each 1 ≤ r ≤ ∞, a Cr atlas is defined to be an atlas
{(Ui, φi)}i such that each coordinate transformation

φi ◦ φ−1
j : φj(Uij) −→ φi(Uij)

is r times continuously differentiable as a map between open subsets of R2. If r = ∞, this
means that each coordinate transformation is infinitely often (continuously) differentiable. A
C∞ atlas is also called a smooth atlas. In that case we may also ask that each coordinate
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transformation is real analytic, meaning that the Taylor series expansion at each point converges
in a neighborhood of that point. A real analytic atlas is also called a Cω atlas. A Cr surface,
for r ∈ {1, 2, . . .∞, ω}, is then a topological surface with a choice of a maximal Cr atlas.

Theorem 20.4 (Baer (1928), Epstein). Each topological surface can be given a C1 structure.
Any two C1 structures on the same surface are C1 diffeomorphic.

Theorem 20.5 (Whitney (1936)). Each C1 surface can be given a Cr structure, for any r ∈
{1, 2, . . . ,∞, ω}. Any two Cr structures on the same C1 surface are Cr diffeomorphic.

Remark 20.6. As in the case of triangulations, we will not prove these results. Allen Hatcher’s
proof (arXiv, 2013) establishes a slightly stronger theorem using only smooth techniques.

The corresponding existence and uniqueness statement holds for 3-dimensional manifolds
(Moise, Bing(?)), but is false in most higher dimensions. Milnor (1956) showed that the 7-sphere
S7 admits smooth structures that are not diffeomorphic to the standard structure. Donaldson
(1983), relying on work of Casson and Freedman, showed that R4 admits a smooth structure that
is not diffeomorphic to the standard structure, and it was later found that there are uncountably
many such non-diffeomorphic smooth structures on R4.

21. November 4th lecture

21.1. Geometric structures on surfaces. By the discussion above, it makes little difference
whether we consider smooth, combinatorial or topological surfaces. However, none of these
structures are geometric, in the sense that they specify distances between points in the surface,
or a notion of congruence between line segments or between angles. To study such geometric
structures we consider surfaces M that are locally modeled on a standard surface X together
with a Lie group G of congruences of X.

Definition 21.1 (Thurston). A 2-dimensional model geometry (G,X) is

(1) a connected and simply connected smooth surface X, and
(2) a Lie group G acting smoothly and transitively on X, with compact stabilizers.

To avoid redundancy, we assume that G is a subgroup of the group of diffeomorphisms of X,
that no larger group acts with compact stabilizers, and that there exists at least one closed
surface M modeled on (G,X).

The condition that X is simply connected means that each closed curve in X can be contin-
uously deformed (homotoped) to a point. Any connected surface admits a “universal covering
space” with this property. A Lie group is a smooth manifold G with a group structure, such that
the group multiplication m : G × G → G taking (g, h) to gh, and the group inverse i : G → G
taking g to g−1, are both smooth maps. To say that G acts smoothly on X means that there is
a smooth action map a : G×X → X taking (g, x) to g · x. This action is transitive if for each
pair of points x, y ∈ X there exists a g ∈ G with g · x = y.

The stabilizer Gx = {h ∈ G | h ·x = x} of a point x ∈ X is the subgroup of elements mapping
that point to itself. It gets a topology as a subspace of G. If g · x = y then gGxg

−1 = Gy,
so for a transitive action one stabilizer group is compact if and only if every stabilizer group is
compact. This implies that X admits a Riemannian metric, hence also a metric d : X×X → R,
such that G acts by isometries. In other words, for each g ∈ G the map γ : X → X given by
x 7→ g · x is an isometry, with d(x, y) = d(γ(x), γ(y)).

Definition 21.2. A surface M is modeled on (G,X) if it has an atlas {(Ui, φi)}i, consisting of

open subsets Ui covering M and homeomorphisms φi : Ui
∼=−→ Vi to open subsets Vi in X, such

that the coordinate transformations are locally given by the action of G. In other words, for
each point x ∈ φi(Uij), with Uij = Ui ∩ Uj , there is an element g ∈ G such that

φi ◦ φ−1
j = γ

in a neighborhood of x, where γ(y) = g · y for all y ∈ X.
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Theorem 21.3. The only 2-dimensional model geometries are

(1) the spherical geometry (O(3), S2), where S2 has a Riemannian metric of constant cur-
vature +1;

(2) the Euclidean geometry (O(2)nR2,R2), where R2 has a Riemannian metric of constant
curvature 0; and

(3) the hyperbolic geometry (Möb(H),H), where H has a Riemannian metric of constant
curvature −1.

Example 21.4. A surface M modeled on spherical geometry comes with a Riemannian metric
that is locally isometric to S2. At any point p ∈M each coordinate patch Ui ⊆M containing p
is identified with an open subset Vi = φi(Ui) ⊆ S2 in such a way that Ui inherits a well-defined
metric from Vi (making φi an isometry). The locally shortest paths (geodesics) between points
in Ui correspond to arcs of great circles on S2. The only closed, connected examples of such
surfaces are S2 and P 2.

Example 21.5. A surface M modeled on Euclidean geometry comes with a Riemannian metric
that is locally isometric to R2. At any point p ∈M each coordinate patch Ui ⊆M containing p
is identified with an open subset Vi = φi(Ui) ⊆ R2 in such a way that Ui inherits a well-defined
metric from Vi (making φi an isometry). The locally shortest paths (geodesics) between points
in Ui correspond to line segments in R2. The only closed, connected examples of such surfaces
are T 2 and K2, but each of these admits many non-isometric Euclidean structures.

For example, each Euclidean parallelogram ABCD ⊂ C, with A = 0, B = 1, C = 1 + τ and
D = τ , with Im τ > 0, specifies a Euclidean structure on the torus T 2, obtained by identifying
AB with DC, and BC with AD, by way of parallel translations.

Example 21.6. A surface M modeled on hyperbolic geometry comes with a Riemannian metric
that is locally isometric to H. At any point p ∈M each coordinate patch Ui ⊆M containing p
is identified with an open subset Vi = φi(Ui) ⊆ H in such a way that Ui inherits a well-defined
metric from Vi (making φi an isometry). The locally shortest paths (geodesics) between points
in Ui correspond to hyperbolic line segments in H. The closed, connected examples of such
surfaces are Mg and Nh for g ≥ 2 and h ≥ 3, and these admit many non-isometric hyperbolic
structures.

For example, each hyperbolic octagon ABCDEFGH, with sides AB and DC, BC and ED,
EF and GH, and FG and AH of pairwise equal length, and internal angle sum equal to 2π,
specifies a hyperbolic structure on the surface M2 = T 2#T 2 of genus two.

[[Discuss how for any connected surface M modeled on (G,X) the universal covering space

M̃ is diffeomorphic to X, so that M ∼= X/Γ where Γ ⊂ G is a discrete subgroup isomorphic to
the fundamental group π1(M) of M .]]

21.2. Thurston’s Geometrization Conjecture. The situation in dimension three is also
well understood.

Theorem 21.7 (Thurston). There are precisely eight 3-dimensional model geometries (G,X),
namely those modeled on S3 (spherical), R3 (Euclidean), H3 (hyperbolic), S2 × R and H2 × R,

nil geometry, the geometry of S̃L(2,R) and solv geometry.

A 3-manifold is prime if it is not the connected sum of two manifolds different from S3. Each
3-manifold can be written as the connected sum of prime 3-manifolds.

Theorem 21.8 (The Geometrization Theorem, Perelman). Every oriented prime closed 3-
manifold M can be cut along finitely many disjoint, embedded tori T1, . . . , Tn ⊂ M , such that
each component of M \ (T1 ∪ · · · ∪ Tn) has a geometric structure with finite volume.
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22. November 6th lecture

22.1. Tangent planes and differentials of maps. We can give an intrinsic construction of
the tangent plane TpM at a point p of a smooth surface M , and the derivative dfp : TpM → TqN
at p of a smooth map f : M → N , with q = f(p).

Definition 22.1. Let M be a surface, with smooth structure given by a smooth atlas {(Ui, φi)}i.
Let p be a point in M , and let Ωp(M) be the set of smooth curves

ω : J →M

with J an open interval in R containing 0, and ω(0) = p. Say that two curves ω1 and ω2 in
Ωp(M) are equivalent, denoted ω1 ∼ ω2, if for any chart (Ui, φi) with p ∈ Ui the relation

(φi ◦ ω1)′(0) = (φi ◦ ω2)′(0)

holds. Here φi ◦ ω1 and φi ◦ ω2 are smooth maps from neighborhoods of 0 in R to R2, and the
relation asks that they have the same derivative at 0. (If the relation holds for one chart (Ui, φi)
with p ∈ Ui then it holds for any other chart (Uj , φj) in the smooth atlas with p ∈ Uj . This

follows from the chain rule, since the coordinate transformations φj ◦ φ−1
i are smooth.)

Let
TpM = Ωp(M)/ ∼

be the set of equivalence classes of smooth curves through p. The equivalence class of a curve
ω is called the tangent vector of ω at p, and is denoted

ω′(0) = [ω] ∈ TpM .

The set TpM of tangent vectors is the tangent plane of M at p. The rule mapping ω′(0) to
(φi ◦ ω)′(0) is a bijection TpM → R2, and determines a unique vector space structure on TpM
making this bijection a linear isomorphism. (A different choice of chart (Uj , φj) in the smooth
atlas with p ∈ Uj gives a different bijection, but the same vector space structure.)

Definition 22.2. Let f : M → N be a smooth map, where the surface N is equipped with the
smooth atlas {(Vk, ψk)}k. If ω : J →M is a smooth curve in M through p, then f ◦ ω : J → N
is a smooth curve in N through q = f(p). The equivalence class (f ◦ ω)′(0) = [f ◦ ω] ∈ TqN
only depends on the equivalence class (ω)′(0) = [ω] ∈ TpM , hence the rule

dfp : ω′(0) 7→ (f ◦ ω)′(0)

defines a map dfp : TpM → TqN , called the differential of f at p. It is a linear homomorphism,
because for q ∈ Vk the rule mapping (φi ◦ ω)′(0) to (ψk ◦ f ◦ ω)′(0) is the linear homomorphism
R2 → R2 given by the differential of the smooth map ψk ◦ f ◦ φ−1

i at φi(p).

22.2. Riemannian surfaces. In order to specify the length of a smooth curve β : [a, b] → M
in a smooth surface M , it suffices to specify the length of each of its tangent vectors, i.e., to
give a norm on each tangent plane TpM . We shall assume that this norm comes from an inner
product on TpM .

Definition 22.3. A Riemannian metric on a smooth surface M is a choice of inner product
on each tangent plane TpM , i.e., a bilinear, symmetric and positive definite paring

〈−,−〉p : TpM × TpM −→ R
for each p ∈M . The inner product on TpM is assumed to vary smoothly with p (in a sense that
will be specified below). A Riemannian surface is a smooth surface equipped with a Riemannian
metric.

We write ‖ − ‖p for the associated norm on TpM , given by ‖v‖2p = 〈v, v〉p for each v ∈ TpM .
The angle θ between two nonzero tangent vectors v, w ∈ TpM is determined by the relation

cos θ =
〈v, w〉p
‖v‖p‖w‖p

.

We often omit the subscript p when the point is clear from the context.
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Definition 22.4. Let β : [a, b] → M be a smooth curve. For each t ∈ [a, b] the derivative
β′(t) ∈ Tβ(t)M is the tangent vector ω′(0) of the curve ω : J → M defined by ω(u) = β(t + u)
for u near 0. (We assume that β extends to an open interval containing [a, b], and the definition
of β′(t) does not depend on the choice of extension.)

Definition 22.5. The length of a smooth curve β : [a, b] → M in a Riemannian surface M is
defined to be

length(β) =

∫ b

a
‖β′(u)‖β(u) du .

More generally, for each t ∈ [a, b] the arc length of β|[a, t] equals

s(t) =

∫ t

a
‖β′(u)‖β(u) du .

In particular,
s′(t) = ‖β′(t)‖β(t) .

Definition 22.6. A regular curve β : [a, b] → M is a smooth curve such that β′(t) 6= 0 for
all t ∈ [a, b]. Let ` = length(β). Then s : t 7→ s(t) is a diffeomorphism [a, b] → [0, `]. Let
α : [0, `]→M be the smooth curve α = β ◦ s−1, so that

α(s(t)) = β(t) .

Then α′(s(t))s′(t) = β′(t), so ‖α′(s)‖α(s) = 1 for all s ∈ [0, `]. The curve α thus traverses the
same image as β, but at unit speed. We call it the reparametrization of β by arc length.

23. November 11th lecture

23.1. Regular surfaces in R3. Many (and possibly all) Riemannian surfaces can locally be
realized as topological subspaces of R3, so that each tangent plane appears as a linear subspace
of R3, and the Riemannian metric is obtained by restriction from the Euclidean dot product on
R3. We now concentrate on such concrete realizations of abstract surfaces as subspaces of R3.

Definition 23.1. Let S be a topological subspace of R3, and suppose that S is a topological
surface, with a chosen atlas {(Ui, φi)}i. The inverse of each homeomorphism

φi : Ui → φi(Ui) = Vi ⊆ R2

can be viewed as an embedding

xi = φ−1
i : Vi → xi(Vi) = Ui ⊆ S ⊂ R3 .

We call each map xi : Vi → S a local parametrization of S. The images xi(Vi) are open subsets
of S, and their union covers S.

Definition 23.2. A regular surface in R3 is a subspace S ⊂ R3 together with a collection
{(xi, Vi)}i of local parametrizations xi : Vi → S, where each Vi is an open subset of R2, each
composite xi : Vi → S ⊂ R3 is a smooth map whose Jacobian has rank 2 at each point, each xi
corestricts to a homeomorphism xi : Vi → xi(Vi), and the images {xi(Vi)}i form an open cover of
S. (As for smooth surfaces, one should really require that the collection of local parametrizations
is maximal.)

If we write xi : Vi → R3 as xi(u, v) = (x(u, v), y(u, v), z(u, v)), the transposed Jacobian of xi
is the matrix [

∂x/∂u ∂y/∂u ∂z/∂u
∂x/∂v ∂y/∂v ∂z/∂v

]
of partial derivatives. The differential of xi is the linear map R2 → R3 given by multiplication
by the Jacobian matrix. It has rank 2 if and only if the row vectors

(xi)u = (∂x/∂u, ∂y/∂u, ∂z/∂u) and (xi)v = (∂x/∂v, ∂y/∂v, ∂z/∂v)

are linearly independent.
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Example 23.3. The graph

S = {(u, v, h(u, v)) | (u, v) ∈ V }
of a smooth function h : V → R is a regular surface in R3. It has a local parametrization

x(u, v) = (u, v, h(u, v))

with transposed Jacobian matrix [
1 0 hu
0 1 hv

]
.

where hu = ∂h/∂u and hv = ∂h/∂v.

Example 23.4. Let S2 = {(x, y, z) | x2 + y2 + z2 = 1} be the unit sphere in R3. It is a regular
surface, with local parametrizations of the form

x1(u, v) = (u, v,
√

1− u2 − v2) x2(u, v) = (u, v,−
√

1− u2 − v2)

for (u, v) in the open unit disc V ⊂ R2, together with four more variants obtained by cyclically
permuting the coordinates.

Example 23.5. A helicoid is the regular surface S in R3 with parametrization

x(u, v) = (u cos v, u sin v, v)

for u ∈ (0,∞) and v ∈ R. The vectors

xu(u, v) = (cos v, sin v, 0) and xv(u, v) = (−u sin v, u cos v, 1)

are linearly independent.

Lemma 23.6. A regular surface in R3 is a smooth surface.

Proof. Given a collection of local parametrizations {(xi, Vi)}i we define an atlas {(Ui, φi)}i by
setting Ui = xi(Vi) and φi = x−1

i . It remains to verify that the coordinate transformations

φi ◦ φ−1
j = x−1

i ◦ xj

from x−1
j (Uij) ⊆ Vj ⊆ R2 to x−1

i (Uij) ⊆ Vi ⊆ R2 are smooth maps.

To do this, we use the inverse function theorem to locally extend x−1
i : Ui → Vi to a smooth

map π ◦ X−1
i defined in an open neighborhood in R3, so that x−1

i ◦ xj = π ◦ X−1
i ◦ xj is a

composite of smooth maps. Let p = xi(u, v) ∈ Uij , with (u, v) ∈ Vi ⊂ R2, and choose a vector
N ∈ R3 so that (xi)u(u, v), (xi)v(u, v) and N are linearly independent. Define Xi : Vi×R→ R3

by

Xi(u, v, w) = xi(u, v) + wN .

The transposed Jacobian of Xi at (u, v, 0) has rows (xi)u(u, v), (xi)v(u, v) and N , hence is
invertible, so Xi restricts to a diffeomorphism from a neighborhood of (u, v, 0) in Vi × R to a
neighborhood of p in R3. Its inverse X−1

i is a diffeomorphism from a neighborhood of p in R3

to a neighborhood of (u, v, 0) in Vi×R. Let π : Vi×R→ Vi be the linear projection on the first
coordinate(s). Then π ◦ X−1

i is a smooth map to Vi defined near p in R3, and it agrees with

x−1
i on xi(Vi) ⊂ S. �

Lemma 23.7. At each point p ∈ S the (abstract) tangent plane TpS is naturally identified with
the (concrete) linear subspace of R3 consisting of tangent vectors at p of curves in S viewed as
curves in R3.

Proof. The inclusion ι : S → R3 takes each smooth curve ω : J → S with ω(0) = p to a smooth
curve ι ◦ ω : J → R3. The derivative (ι ◦ ω)′(0) ∈ R3 only depends on the equivalence class
ω′(0) = [ω] of ω in TpS, and the rule dιp : ω′(0) 7→ (ι◦ω)′(0) defines the stated identification. �

Lemma 23.8. A regular surface S inherits a Riemannian metric from the dot product in R3.
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Proof. For each p ∈ S the inner product

〈−,−〉p : TpS × TpS → R
is defined by means of the Euclidean dot product:

〈v, w〉p = v · w = v1w1 + v2w2 + v3w3

where v, w ∈ TpS on the left hand side, and v = (v1, v2, v3), w = (w1, w2, w3) ∈ R3 in the middle
and on the right hand side. �

23.2. The first fundamental form. A local parametrization x : V → S of a regular surface
in R3 gives rise to a preferred basis (xu, xv) for TpS ⊂ R3 at each point p ∈ x(V ). The inherited
Riemannian metric is determined by its values on these basis vectors.

Definition 23.9. Let x : V → S be a local parametrization. The curves

t 7→ αv(t) = x(t, v) and t 7→ βu(t) = x(u, t)

for fixed v ∈ R and u ∈ R, respectively, are called coordinate curves in S. Let

xu(u, v) = α′v(u) and xv(u, v) = β′u(v)

be the tangent vectors of these curves, at t = u and t = v, respectively. These are tangent
vectors in TpS, for p = x(u, v). Viewed as vectors in R3, these are the partial derivatives of
x at (u, v) with respect to u and v, respectively. Hence xu(u, v) and xv(u, v) are the rows
vectors of the transposed Jacobian of x at (u, v). By the regularity assumption they are linearly
independent, and therefore form a basis for the tangent plane TpS ⊂ R3.

Definition 23.10. The inner product

〈−,−〉p : TpS × TpS −→ R
is determined by its values on pairs of vectors taken from the basis {xu(u, v), xv(u, v)} of TpS,
where p = x(u, v). Let

E = xu · xu , F = xu · xv = xv · xu and G = xv · xv
as smooth functions V → R. The inner product of axu + bxv and cxu + dxv (at p ∈ x(V )) then
equals

(axu + bxv) · (cxu + dxv) = Eac+ F (ad+ bc) +Gbd

(evaluated at x−1(p) ∈ V ). This expression, in terms of the coordinates (a, b) and (c, d) of the
two vectors with respect to the ordered basis (xu(u, v), xv(u, v)), equals the matrix product[

a b
] [E F
F G

] [
c
d

]
.

The bilinear form represented in these coordinates by the symmetric, positive definite matrix

I =

[
E F
F G

]
is called the first fundamental form of the parametrization x : V → S. Note that EG− F 2 > 0
by the Cauchy–Schwarz inequality, since xu and xv are linearly independent.

If β : [a, b]→ S is a smooth curve, and β(t) = p ∈ x(V ), then β = x(u, v) for smooth functions
u and v defined near t. By the chain rule, β′(t) = xuu

′(t) + xvv
′(t), so

s′(t)2 = ‖β′(t)‖2p = Eu′(t)2 + 2Fu′(t)v′(t) +Gv′(t)2 .

We can write this as

(
ds

dt
)2 = E(

du

dt
)2 + 2F

du

dt

dv

dt
+G(

dv

dt
)2

or as
ds2 = E du2 + 2F dudv +Gdv2 ,

in terms of symmetric 2-forms. This expression is also often called the first fundamental form
of the parametrization x : V → S.
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Example 23.11. The tangent plane TpS at p = x(u, v) of the graph S ⊂ R3 of a smooth map
h : V → R is spanned by the vectors

xu(u, v) = (1, 0, hu(u, v)) and xv(u, v) = (1, 0, hv(u, v)) .

The first fundamental form is given by

E = 1 + h2
u , F = huhv and G = 1 + h2

v .

Example 23.12. The first fundamental form of S = R2 ⊂ R3, viewed as the graph of the zero
function R2 → R, is

ds2 = du2 + dv2

with E = G = 1 and F = 0.

Example 23.13. ((Do the case S = S2?))

Remark 23.14. The condition that the inner products 〈−,−〉p of a Riemannian metric vary
smoothly with p can be made precise as follows. For each local parametrization (x, V ) the inner
products

E = 〈xu, xu〉 , F = 〈xu, xv〉 = 〈xv, xu〉 and G = 〈xv, xv〉
are required to be smooth as functions V → R. Then, ifX : p→ Xp ∈ TpS and Y : p 7→ Yp ∈ TpS
are smooth vector fields on S, then 〈X,Y 〉 is a smooth function on S. This condition is clearly
satisfied for our regular surfaces.

Example 23.15. The upper half-plane model S = H for the hyperbolic plane cannot be fully
realized as a regular surface in R3, but it admits a Riemannian metric 〈−,−〉p for p = (u, v) ∈ H
such that

s′(t)2 = ‖β′(t)‖2p =
u′(t)2 + v′(t)2

v(t)2

for any smooth curve β = (u, v) with v > 0. Once we know that H can be locally realized as a
regular surface, its first fundamental form will be

ds2 =
du2 + dv2

v2

with E(u, v) = G(u, v) = 1/v2 and F (u, v) = 0.

Example 23.16. The unit disc model S = D for the hyperbolic plane also admits a Riemannian
metric 〈−,−〉p for p = (u, v) ∈ D such that

s′(t)2 = ‖β′(t)‖2p =
4(u′(t)2 + v′(t)2)

(1− u(t)2 − v(t)2)2

for any smooth curve β = (u, v) with u2 + v2 < 1. When realized locally as a regular surface,
its first fundamental form will be

ds2 =
4(du2 + dv2)

(1− u2 − v2)2

with E(u, v) = G(u, v) = 4/(1− u2 − v2)2 and F (u, v) = 0.

23.3. Intrinsic and extrinsic properties.

Definition 23.17. A map f : M → N of Riemannian surfaces is an isometry if it is a diffeo-
morphism and

〈v, w〉p = 〈dfp(v), dfp(w)〉q
for each p ∈M and v, w ∈ TpM , with q = f(p).

It is equivalent to require that ‖v‖p = ‖dfp(v)‖q for each p ∈M and v ∈ TpM , with q = f(p).
The self-isometries γ : M →M of a Riemannian surface form a group, called the isometry group
of M .
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Example 23.18. The isometries γ : R2 → R2 are the Euclidean motions E(2) = O(2)nR2 of R3,
of the form γ(v) = Av + b with A ∈ O(2) and b ∈ R2.

Example 23.19. The isometries γ : S2 → S2 are the restrictions of the Euclidean motions of R3

that preserve S2, i.e., the rotations and reflections of the form γ(v) = Av with A ∈ O(3).

Example 23.20. The isometries γ : H→ H are the Möbius transformations preserving H, i.e., the
group Möb(H). Similarly, the isometries γ : D→ D are the Möbius transformations preserving
D, i.e., the group Möb(D).

Definition 23.21. Aspects of the geometry of a Riemannian surface that are preserved under
all isometries are said to be intrinsic, whereas those that depend on a particular presentation
of the surface, e.g. as a regular surface in R3, are called extrinsic.

Example 23.22. Arc length is an intrinsic property of smooth curves in a Riemannian surface.
If β : [a, b]→M is such a curve, and f : M → N is an isometry, then

lengthM (β) = lengthN (f ◦ β) .

If β is parametrized by arc length, then so is f ◦ β.

Lemma 23.23. Let S and S′ be regular surfaces in R3 (or Riemannian surfaces), and suppose
that there is an isometry f : U → U ′ from an open subset U ⊆ S to an open subset U ′ ⊆ S′. If
x : V → S is a local parametrization of S, with x(V ) ⊆ U , then x′ = f ◦ x : V → S′ is a local
parametrization of S′ with x′(V ) ⊂ U ′. The first fundamental form Edu2 + 2Fdudv+Gdv2 for
S is then equal to the first fundamental form E′du2 + 2F ′dudv +G′dv2 for S′.

Proof. E = xu · xu = df(xu) · df(xu) = x′u · x′u = E′, and likewise F = F ′ and G = G′. �

Lemma 23.24. Let x : V → S and x′ : V → S′ be local parametrizations of two regular surfaces
in R3 (or Riemannian surfaces), such that E = E′, F = F ′ and G = G′ are equal as functions
on V . Then f = x′ ◦ x−1 is an isometry from x(V ) to x′(V ).

Proof. We have df(xu) = x′u and df(xv) = x′v, so

xu · xu = E = E′ = x′u · x′u = dfp(xu) · dfp(xu)

and similarly we get xu · xv = dfp(xu) · dfp(xv) and xv · xv = dfp(xv) · dfp(xv). It follows by
bilinearity that dfp : TpS → Tf(p)S

′ preserves the inner product inherited from the dot product,
for each p ∈ x(V ). �

[[ETC: Area.]]

24. November 13th lecture

24.1. Orientations and normal vectors. For smooth surfaces we can specify orientations in
terms of oriented atlases. For regular surfaces in R3 they can be specified in terms of choices of
normal vectors.

Definition 24.1. An orientation of a 2-dimensional vector space P is a choice of an equivalence
class of ordered bases (b1, b2) for P , where two ordered bases are equivalent if the change-of-basis
matrix relating them has positive determinant. An ordered basis in the chosen equivalence class
is then called positively oriented. There is precisely one other equivalence class of ordered bases,
and these are called negatively oriented.

If (b1, b2) is positively oriented, then (b2, b1) is negatively oriented, since the change-of-basis
matrix [

0 1
1 0

]
has negative determinant. A choice of orientation of the plane P determines a preferred direction
of travel for (simple) loops around its origin, namely that of the loop from b1 to b2 to −b1 to −b2
and back to b1, for any positively oriented basis (b1, b2). The negatively oriented basis (b2, b1)
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then specifies the loop from b2 to b1 to −b2 to −b1 and back to b2, which corresponds to the
opposite direction of travel.

Definition 24.2. For each 2-dimensional subspace P ⊂ R3 there are precisely two vectors ±N
of length 1 that are orthogonal to P . We call these the two unit normal vectors to P .

A choice N of one of the two unit normal vectors determines an orientation of the plane P ,
by the rule that an ordered basis (b1, b2) is positively oriented if (b1, b2, N) forms a right-handed
system, i.e., if the matrix with rows b1, b2 and N has positive determinant. This is equivalent
to asking that

N =
b1 × b2
‖b1 × b2‖

is the unit vector in the direction of the cross product b1 × b2.

Lemma 24.3. A regular surface S in R3 is orientable if and only if it admits a smooth unit
normal vector field, i.e., if and only if we can choose a unit normal vector Np ∈ S2 ⊂ R3 to
each tangent plane TpS ⊂ R3 so that the Gauss map N : S → S2 sending p to Np is smooth.

Proof. It suffices to assume that the unit normal field N is continuous. Then the condition
on an ordered basis (b1, b2) for TpS that (b1, b2, N) is right-handed suffices to determine an
orientation of TpS, and this varies continuously with p ∈ S. Conversely, a continuous choice of
orientations determines a continuous choice of unit normal vectors p 7→ Np. To see that this
continuous choice is in fact smooth, it suffices to consider p ∈ x(V ) for a local parametrization
x : V → S. We may assume that V is connected. Then (xu(u, v), xv(u, v)) forms an ordered
basis for Tx(u,v)S ⊂ R3, for all (u, v) ∈ V . It is either positively oriented for all (u, v) ∈ V , or
negatively oriented for all (u, v) ∈ V , since V is connected. In the latter case, replace x by the
local parametrization y given by y(u, v) = x(v, u), and rename y as x. It then follows that

N =
xu × xv
‖xu × xv‖

at all points p of x(V ), and the right hand side varies smoothly with p. Hence the continuous
vector field p 7→ Np is in fact smooth. �

24.2. Curvature. The curvature of a regular surface S in R3 is a measure of how fast the
tangent planes TpS ⊂ R3 moves as p varies on the surface. Equivalently, it measures how much
a unit normal vector Np ∈ S2 moves as p varies.

The determinant of a linear map f : P → P is the determinant of the matrix representing f
with respect to any choice of ordered basis (b1, b2) for both copies of P . As long as we use the
same ordered basis in the source (domain) and target (codomain), the value of the determinant
does not change. Similar remarks apply for the trace of f .

Definition 24.4. The derivative of the Gauss map N : S → S2 at p ∈ S2 maps the tangent
plane TpS of S at p to the tangent plane TNpS

2 of S2 at Np. Since Np is a unit normal to TpS,
the latter tangent plane is also equal to TpS. Hence

dNp : TpS −→ TNpS
2 = TpS

is a linear self-map of the plane TpS. The Gaussian curvature of S at p is defined to be the
determinant of this linear self-map:

K(p) = det(dNp) .

This defines a smooth map K : S → R.

This definition does not depend on a choice x : V → S of local parametrization of S near
p. It appears to depend on a choice of unit normal vector field N near p, or equivalently an
orientation of S near p, but the opposite choice of unit normal vector field (namely, p 7→ −Np)
has differential d(−N)p = −dNp, and det(−dNp) = det(dNp) since TpS is 2-dimensional.
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Example 24.5. The Euclidean plane R2 ⊂ R3 has constant unit normal vector Np = (0, 0, 1)
at all p ∈ R2, so dNp = 0 is the zero map from TpR2 = R2 to itself. Its determinant is 0, so
K(p) = 0 for all p ∈ R2. The Euclidean plane has zero curvature everywhere.

Example 24.6. The sphere S of radius R > 0, centered at the origin, has unit normal vector
Np = p/R at p ∈ S, so N : S → S2 is the restriction of the linear map p 7→ p/R. Its derivative
dNp : TpS → Tp/RS

2 = TpS is also the linear map p 7→ p/R, with determinant 1/R2. Hence

K(p) = 1/R2 for all p ∈ S. The sphere of radius R has constant curvature 1/R2. In particular,
the unit sphere S2 has curvature +1.

25. November 18th lecture

25.1. The second fundamental form.

Definition 25.1. Let N : S → S2 be a smooth unit normal vector field, and let x : V → S be
a local parametrization. We write

Nu = (N ◦ x)u = ∂(N ◦ x)/∂u

Nv = (N ◦ x)v = ∂(N ◦ x)/∂v

for the partial derivatives of (u, v) 7→ Np, with p = x(u, v), viewed as a smooth map ι ◦ N ◦
x : V → S2 ⊂ R3. By definition of the differential of N at p, dNp(xu(u, v)) = Nu(u, v) and
dNp(xv(u, v)) = Nv(u, v). More briefly,

Nu = dN(xu) and Nv = dN(xv) .

Furthermore, we write
xuu , xuv = xvu and xvv

for the second order partial derivatives of x viewed as a smooth map ι ◦ x : V → S ⊂ R3. The
relation xuv = xvu holds because x is smooth. (It suffices that x is two times continuously
differentiable.)

Lemma 25.2. Nu · xu = −N · xuu, Nu · xv = −N · xuv = Nv · xu and Nv · xv = −N · xvu.

Proof. Since Np is normal to the plane TpS with basis xu(u, v) and xv(u, v), for p = x(u, v), we
have Np · xu(u, v) = 0 and Np · xv(u, v) = 0 for all (u, v) ∈ V . Differentiating each of these with
respect to u, and with respect to v, gives the stated relations. �

Definition 25.3. Define functions e, f and g : V → R by

e = N · xuu
f = N · xuv = N · xvu
g = N · xvv .

The second fundamental form of the parametrization x : V → S is the symmetric bilinear form
given by the symmetric matrix

II =

[
e f
f g

]
.

Example 25.4. The graph S ⊂ R3 of h : V → R has normal vectors

xu × xv = (−hu,−hv, 1)

and unit normal vectors

N =
(−hu,−hv, 1)√

1 + h2
u + h2

v

.

The second order partial derivatives are

xuu = (0, 0, huu)

xuv = (0, 0, huv)

xvv = (0, 0, hvv)
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and the second fundamental form has components

e =
huu√

1 + h2
u + h2

v

f =
huv√

1 + h2
u + h2

v

g =
hvv√

1 + h2
u + h2

v

.

At a critical point of h, where hu(u, v) = hv(u, v) = 0, we get Np = (0, 0, 1) and e = huu(u, v),
f = huv(u, v) and g = hvv(u, v). Hence the second order Taylor series of h at (u, v) is

T2h(u+ ∆u, v + ∆v) = h(u, v) +
1

2
(e∆u2 + 2f∆u∆v + g∆v2) .

The symmetric 2-form

e du2 + 2f dudv + g dv2

is also often called the second fundamental form of the parametrization x : V → S.
The curvature of a regular surface S at p can be conveniently expressed in terms of the first

and second fundamental form of a parametrization of S near p.

Proposition 25.5.

K =
eg − f2

EG− F 2
.

Proof. The curvature K(p) equals the determinant of the matrix representing dNp : TpS → TpS
for any choice of ordered basis for TpS. We use the basis (xu(u, v), xv(u, v)), with p = x(u, v).
The representing matrix [

α β
γ δ

]
,

with determinant αδ − βγ, is then determined by the relations

Nu = dN(xu) = αxu + βxv and Nv = dN(xv) = γxu + δxv .

Taking dot products with xu, and with xv, we get the relations

−e = −N · xuu = Nu · xu = αxu · xu + βxv · xu = αE + βF

−f = −N · xuv = Nu · xv = αxu · xv + βxv · xv = αF + βG

−f = −N · xvu = Nv · xu = γxu · xu + δxv · xu = γE + δF

−g = −N · xvv = Nv · xv = γxu · xv + δxv · xv = γF + δG .

Hence

−
[
e f
f g

]
=

[
α β
γ δ

] [
E F
F G

]
and

eg − f2 = (αδ − βγ)(EG− F 2) = K(EG− F 2) .

Dividing by EG− F 2 > 0 concludes the proof. �

Example 25.6. The graph of h : V → R has

eg − f2 =
huuhvv − h2

uv

1 + h2
u + h2

v

and

EG− F 2 = (1 + h2
u)(1 + h2

v)− (huhv)
2 = 1 + h2

u + h2
v

so

K =
huuhvv − h2

uv

(1 + h2
u + h2

v)
2
.
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Here the numerator

huuhvv − h2
uv = detH(h)

is the determinant of the Hessian

H(h) =

[
huu huv
hvu hvv

]
of h. At a critical point, where hu = hv = 0, the formula simplifies and the curvature is equal
to the determinant of the Hessian matrix.

25.2. Theorema egregium. Gauss called the following result a remarkable theorem, “Theo-
rema egregium” in Latin. It says that the curvature at a point of a regular surface only depends
on the Riemannian metric on the surface in a neighborhood of that point, or equivalently,
that it only depends on the components E, F and G of the first fundamental form, and their
derivatives, at that point.

Theorem 25.7 (Gauss). Curvature is intrinsic.

Proof. The result can be stated and proven for general Riemannian surfaces, but we only prove
it for regular surfaces in R3. As discussed above, if f : U → U ′ is an isometry between open
neighborhoods U ⊆ S and U ′ ⊆ S′ of p ∈ U and q = f(p) ∈ U ′, then we can find local
parametrizations x : V → U ⊂ S and x′ = f ◦ x : V → U ′ ⊂ S′ such that the first fundamental
forms of x and x′ are equal. Hence it suffices to prove that K(p) can be expressed in terms of
E, F and G in a neighborhood of (u, v) ∈ V with x(u, v) = p. We will prove that K(p) can be
expressed in terms of E, F , G and their partial derivatives, up to second order, at p.

Note that

‖xu × xv‖2 = ‖xu‖2‖xv‖2 − (xu · xv)2 = EG− F 2 ,

so ‖xu × xv‖ =
√
EG− F 2. From

K(EG− F 2) = eg − f2 = (N · xuu)(N · xvv)− (N · xuv)2 ,

where N = (xu × xv)/
√
EG− F 2, we obtain

K(EG− F 2)2 = ((xu × xv) · xuu)((xu × xv) · xvv)− ((xu × xv) · xuv)2 .

Using

(a× b) · c = det

ab
c


we can rewrite the right hand side as

(25.1) det

 xuxv
xuu

det

 xuxv
xvv

− det

 xuxv
xuv

2

= det

 xuxv
xuu

 xuxv
xvv

t − det

 xuxv
xuv

 xuxv
xuv

t

= det

 E F xu · xvv
F G xv · xvv

xuu · xu xuu · xv xuu · xvv

− det

 E F xu · xuv
F G xv · xuv

xuv · xu xuv · xv xuv · xuv

 .
Using the first lemma below, we can rewrite this difference as

(25.2) det

 E F Fv − 1
2Gu

F G 1
2Gv

1
2Eu Fv − 1

2Gu xuu · xvv

− det

 E F 1
2Ev

F G 1
2Gu

1
2Ev

1
2Gu xuv · xuv


= det

 E F Fv − 1
2Gu

F G 1
2Gv

1
2Eu Fv − 1

2Gu xuu · xvv − xuv · xuv

− det

 E F 1
2Ev

F G 1
2Gu

1
2Ev

1
2Gu 0

 .
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The last identity can be verified by expansion of the determinant along the last column. It
remains to see that xuu ·xvv−xuv ·xuv can be expressed in terms of the derivatives of E, F and
G. Using the second lemma below, the required formula is

xuu · xvv − xuv · xuv = Fuv −
1

2
Evv −

1

2
Guu .

�

Lemma 25.8. xu · xuu = 1
2Eu, xu · xuv = 1

2Ev, xu · xvv = Fv − 1
2Gu, xv · xuu = Fu − 1

2Ev,

xv · xuv = 1
2Gu and xv · xvv = 1

2Gv.

Proof. Taking partial derivatives of the definitions E = xu · xu, F = xu · xv and G = xv · xv
with respect to u, and to v, we get

Eu = 2xu · xuu
Ev = 2xu · xuv
Fu = xu · xuv + xv · xuu
Fv = xu · xvv + xv · xuv
Gu = 2xv · xuv
Gv = 2xv · xvv .

The claim follows by solving these linear equations. �

Lemma 25.9. xuu · xvv − xuv · xuv = −1
2Evv + Fuv − 1

2Guu.

Proof. Taking partial derivatives once more, we get

Euu = 2xu · xuuu + 2xuu · xuu
Euv = 2xu · xuuv + 2xuu · xuv
Evv = 2xu · xuvv + 2xuv · xuv
Fuu = xu · xuuv + xv · xuuu + 2xuu · xuv
Fuv = xu · xuvv + xv · xuuv + xuu · xvv + xuv · xuv
Fvv = xu · xvvv + xv · xuvv + 2xuv · xvv
Guu = 2xv · xuuv + 2xuv · xuv
Guv = 2xv · xuvv + 2xuv · xvv
Gvv = 2xv · xvvv + 2xvv · xvv .

Comparing the expressions for Evv, Fuv and Guu gives the result. �

26. November 20th lecture

26.1. Geodesics. We introduce geodesic curves on a surface as curves that do not change
direction, as seen from the surface. We concentrate on curves α = β ◦s−1 that are parametrized
by arc length.

Definition 26.1. Let S ⊂ R3 be a regular surface, and let α : [0, `]→ S be a smooth curve on
that surface, parametrized by arc length. For each s ∈ [0, `] let

T (s) = α′(s)

be the unit tangent vector of α at p = α(s). Let the unit bitangent vector

B(s) ∈ TpS

be chosen so that (T (s), B(s)) is an orthonormal basis for the tangent plane TpS. Let the unit
normal vector

N(s) = T (s)×B(s)
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be given by the cross product. Then (T (s), B(s), N(s)) is a positively oriented orthonormal
basis for R3. Let α′′(s) denote the second derivative at s of α, viewed as a smooth curve
ι ◦ α : [0, `]→ R3.

The term “bitangent” may not be standard. Jahren writes nα(s) for B(s). Orthonormality
means that ‖T (s)‖ = 1, T (s) · B(s) = 0 and ‖B(s)‖ = 0. If β parametrizes the boundary of a
region R ⊂ S we may assume that B(s) points into R. If S is oriented, we may choose B(s) so
that N(s) = Np is the preferred unit normal vector.

Lemma 26.2. T (s) · α′′(s) = 0 for all s ∈ [0, `].

Proof. By assumption, α is parametrized by arc length, so α′(s) ·α′(s) = ‖α′(s)‖2 = 1 for all s.
Differentiating we get 2α′(s) · α′′(s) = 0. �

Definition 26.3. Let α : [0, `]→ S be parametrized by arc length. Let

kg(s) = B(s) · α′′(s)

be the geodesic curvature of α at s, and let

ν(s) = N(s) · α′′(s)

be the component of α′′(s) that is normal to TpS. Then

α′′(s) = kg(s)B(s) + ν(s)N(s) .

We say that the curve α is a geodesic if kg(s) = 0 for all s.

In this case the summand kg(s)B(s) equals the covariant second derivative Dα′′(s) of α.
A curve parametrized by arc length is a geodesic precisely if its geodesic curvature is zero.
A general regular curve β : [a, b] → S is a geodesic if its reparametrization by arc length,
α = β ◦ s−1, is a geodesic.

Example 26.4. In the Euclidean plane R2, each straight line segment of length ` can be parame-
trized by α(s) = p+ sv with p ∈ R2 and ‖v‖ = 1. Then α′(s) = v and α′′(s) = 0, so kg(s) = 0
for all s. Hence these Euclidean line segments are geodesic curves.

Example 26.5. In the Euclidean plane R2, a circle of radiusR, centered at the origin, can be para-
metrized at unit speed by α(s) = (R cos(s/R), R sin(s/R)). Then α′(s) = (− sin(s/R), cos(s/R))
and α′′(s) = (−1/R)(cos(s/R), sin(s/R)). We can take B(s) = −(cos(s/R), sin(s/R)), so
kg(s) = 1/R for all s. The geodesic curvature equals the inverse of the radius of the circle.

Example 26.6. In the sphere S of radius R, centered at the origin, the curve

α(s) = cos(s/R)p+ sin(s/R)q

is parametrized by arc length if p and q are orthogonal vectors with ‖p‖ = ‖q‖ = R. Here
α′(s) = − sin(s/R)(p/R) + cos(s/R)(q/R) and α′′(s) = − cos(s/R)(p/R2) − sin(s/R)(q/R2).
Since α′′(s) = (−1/R2)α(s) = (−1/R)N(s), where N(s) = α(s)/R is the outward pointing unit
normal at α(s), we get kg(s) = 0 and ν(s) = −1/R for all s. Hence these segments of great
circles, with α(0) = p and α′(0) = q/R, are geodesics.

We shall see below that at any point p ∈ S and for any unit vector v ∈ TpS there is a geodesic
α : [0, `]→ S with α(0) = p and α′(0) = v, at least for ` sufficiently small, and that this geodesic
is essentially unique. The examples above will then show that the segments of straight lines and
great circles are the only unit speed geodesic curves, in the Euclidean plane and on the sphere
of radius R, respectively.
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26.2. The geodesic equations.

Definition 26.7. Let x : V → S be a local parametrization. At each point p = x(u, v) in
x(V ) the tangent vectors xu(u, v) and xv(u, v), together with the unit normal vector Np give
an ordered basis for R3. The second derivatives xuu, xuv and xvv, of x viewed as a smooth map
ι ◦ x : V → R3, can be written in terms of this basis, as

xuu = Γ1
11xu + Γ2

11xv + eN

xuv = Γ1
12xu + Γ2

12xv + fN

xvv = Γ1
22xu + Γ2

22xv + gN .

Here the smooth functions Γkij : V → R are called the Christoffel symbols (of the second kind)
of the parametrization.

The functions e, f and g are the components of the second fundamental form, as introduced
earlier.

Theorem 26.8. Consider a unit speed curve α : [0, `] → S, and assume that its image lies in
x(V ) for a local parametrization x : V → S, so that α(s) = x(u(s), v(s)) for smooth functions
(u, v) : [0, `]→ V . Then α is a geodesic if and only if u and v satisfy the system of differential
equations

u′′ + (u′)2Γ1
11 + 2u′v′Γ1

12 + (v′)2Γ1
22 = 0

v′′ + (u′)2Γ2
11 + 2u′v′Γ2

12 + (v′)2Γ2
22 = 0

(the geodesic equations).

Proof. Differentiating, we find
α′(s) = u′xu + v′xv

and
α′′(s) = u′′xu + v′′xv + (u′)2xuu + 2u′v′xuv + (v′)2xvv

(with u′, v′, u′′ and v′′ evaluated at s, and xu, xv, xuu, xuv and xvv evaluated at (u(s), v(s))).
In terms of the basis (xu, xv, N), we find

α′′(s) = (u′′ + (u′)2Γ1
11 + 2u′v′Γ1

12 + (v′)2Γ1
22)xu

+ (v′′ + (u′)2Γ2
11 + 2u′v′Γ2

12 + (v′)2Γ2
22)xv

+ (e(u′)2 + 2fu′v′ + g(v′)2)N .

The curve α is a (unit speed) geodesic if and only if the component of α′′(s) in TpS vanishes
for all s, where p = α(s). �

Lemma 26.9. [
E F
F G

] [
Γ1

11 Γ1
12 Γ1

22

Γ2
11 Γ2

12 Γ2
22

]
=

[
1
2Eu

1
2Ev Fv − 1

2Gu
Fu − 1

2Ev
1
2Gu

1
2Gv

]
.

Proof. Taking dot products of xu and xv with xuu, xuv and xvv, and recalling that xu · N =
xv ·N = 0, we get

xu · xuu = Γ1
11E + Γ2

11F

xu · xuv = Γ1
12E + Γ2

12F

xu · xvv = Γ1
22E + Γ2

22F

xv · xuu = Γ1
11F + Γ2

11G

xv · xuv = Γ1
12F + Γ2

12G

xv · xvv = Γ1
22F + Γ2

22G .

Here E, F and G are the components of the first fundamental form. Now use a lemma from
the proof of theorema egregrium. �
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Corollary 26.10. The Christoffel symbols and geodesic curves are intrinsic.

Proof. The Γkij can be expressed in terms of the first fundamental form and its derivatives,
hence are preserved by isometries. The system of geodesic equations is therefore also preserved
by isometries, and so are its solutions. �

Example 26.11. The upper half-plane model H for the hyperbolic plane is a Riemannian surface
with (local) trivialization with coordinates p = (u, v) with v > 0 and first fundamental form
E(u, v) = G(u, v) = 1/v2, F (u, v) = 0. By the lemma above[

1/v2 0
0 1/v2

] [
Γ1

11 Γ1
12 Γ1

22

Γ2
11 Γ2

12 Γ2
22

]
=

[
0 −1/v3 0

1/v3 0 −1/v3

]
,

so Γ1
11 = Γ1

22 = Γ2
12 = 0 and −Γ1

12 = Γ2
11 = −Γ2

22 = 1/v. The geodesic equations are:

u′′ − 2u′v′

v
= 0

v′′ +
(u′)2

v
− (v′)2

v
= 0 .

One set of solutions to this system of equations consists of vertical curves α(s) = (u(s), v(s)),
with u(s) = a and v(s) = bes, for constants a and b. These curves are parametrized by arc
length, since α′(s) = (0, bes), so ‖α′(s)‖p = bes/bes = 1 at p = α(s). Furthermore, u′ = u′′ = 0
and v = v′ = v′′, so both geodesic equations are satisfied. Hence for each point p = (a, b) ∈ H
there is a geodesic α : [0,∞)→ H with α(0) = (a, b) and α′(0) = (0, 1). In other words, segments
of the vertical H-lines are geodesics.

Each Möbius transformation γ : H→ H is an isometry, both in the metric and the Riemannian
sense, hence maps geodesics to geodesics. Since any H-line in H is the image of a vertical H-line
by a Möbius transformation, it follows that all segments of H-lines, vertical or not, are geodesics
in the hyperbolic plane.

26.3. The exponential map. The general theory of ordinary differential equations leads to
the following result.

Proposition 26.12. Let S be a Riemannian surface. For each point p ∈ S there is an ε > 0
such that for each unit vector v ∈ TpS there is a unique unit speed geodesic γpv : [−ε, ε]→ S such
that

γpv(0) = p and (γpv)′(0) = v .

Moreover, we can choose the same ε > 0 for each point q in a neighborhood U of p, and γqv(s)
depends smoothly on q, v ∈ TqS and s (with q ∈ U , ‖v‖q = 1 and |s| ≤ ε).

By the uniqueness, γpv(−s) = γp−v(s) for all |s| ≤ ε.

Definition 26.13. Let

Dp(ε) = {v ∈ TpS | ‖v‖p ≤ ε}
be the closed ε-disc around the origin in TpS. Define the exponential map

expp : Dp(ε) −→ S

by

expp(sv) = γpv(s)

for s ∈ [0, ε] and v ∈ TpS with ‖v‖p = 1. Here expp(0) = p and β : s 7→ expp(sv) for s ∈ [−ε, ε]
is a unit speed geodesic with β(0) = p and β′(0) = v.

Remark 26.14. The name “exponential map” comes from a corresponding construction for the
Lie groupGLn(R) of invertible real n×nmatrices, whose tangent space TIGLn(R) at the identity
matrix I can be identified with the vector space Mn(R). There is a map expI : TIGLn(R) →
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GLn(R), also defined in terms of unit speed geodesics, which in this case turns out to be given
by

expI(A) =
∑
n≥0

An

n!

for all A ∈Mn(R). In particular, for n = 1 this is the usual exponential function a 7→ exp(a) =
ea : R→ GL1(R).

Proposition 26.15. For every p ∈ S there is an ε > 0 such that expp is a diffeomorphism
between Dp(ε) and a neighborhood of p in S.

Sketch proof. The differential
d(expp)0 : T0(TpS)→ TpS

of expp at 0 ∈ TpS equals the canonical identification T0(TpS) ∼= TpS. Hence expp is a local
diffeomorphism near 0, by the inverse function theorem. �

27. November 25th lecture

27.1. Geodesic polar coordinates. The first fundamental form (E,F,G) for a local parame-
trization x : V → x(V ) ⊂ S simplifies to E = 1 and F = 0 if the coordinate curves u 7→ x(u, v)
have unit speed and meet the coordinate curves v 7→ x(u, v) at right angles. We now use the
exponential map to find such local parametrizations.

Definition 27.1. Let p be a point in a Riemannian surface S, with exponential map

expp : Dp(ε)→ S ,

and fix an ordered orthonormal basis (b1, b2) for the tangent plane TpS. Define a smooth map
x : [−ε, ε]× R −→ S by

x(r, θ) = expp(r cos(θ)b1 + r sin(θ)b2) .

When restricted to a subset V = (0, ε) × J , where J ⊂ R is an open interval of length ≤ 2π,
the map x : V → x(V ) ⊂ S is a local parametrization of S. In this case we call the pair (r, θ)
geodesic polar coordinates on x(V ).

The tangent vectors xr(r, θ) and xθ(r, θ) are defined for all |r| ≤ ε and θ ∈ R, but are not
linearly independent for r = 0. In fact xr(0, θ) = xθ(0, θ) = 0 at x(0, θ) = p.

Lemma 27.2 (Gauss’ lemma). In geodesic polar coordinates

E = xr · xr = 1 and F = xr · xθ = 0 .

Proof. For each fixed θ, with associated unit vector v = cos(θ)b1 +sin(θ)b2, the coordinate curve

r 7→ α(r) = x(r, θ)

(a geodesic radius) is a unit speed geodesic

α(r) = expp(rv) = γpv(r) .

From the fact that α is parametrized at unit speed we deduce that

E(r, θ) = xr(r, θ) · xr(r, θ) = ‖α′(r)‖2 = 1

for all r and θ. From the further fact that α is a geodesic we deduce that

xrr(r, θ) = α′′(r) = eNp

is orthogonal to TpS at p = x(r, θ), so

Γ1
11xr(r, θ) + Γ2

11xθ(r, θ) = 0

for all r and θ. Here xr(r, θ) and xθ(r, θ) are linearly independent for r 6= 0, so Γ1
11 = Γ2

11 = 0.
It follows that Fr − 1

2Eθ = FΓ1
11 +GΓ2

11 = 0, so Fr = 0 and F is independent of r. Hence

F (r, θ) = xr(r, θ) · xθ(r, θ) = xr(0, θ) · xθ(0, θ) = 0

by passage to the limit as r → 0+. �
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Definition 27.3. In geodesic polar coordinates we can write the first fundamental form as

ds2 = dr2 + h2 dθ2

where h = ‖xθ‖ and G = xθ · xθ = h2.

Example 27.4. For S = R2, with p = (0, 0), b1 = (1, 0) and b2 = (0, 1), the geodesic polar
coordinates

x(r, θ) = (r cos θ, r sin θ)

agree with the usual polar coordinates. The first fundamental form equals ds2 = dr2 + r2 dθ2.
For S = S2, with p = (0, 0, 1) and b1 and b2 as above, the geodesic polar coordinates

x(r, θ) = (sin r cos θ, sin r sin θ, cos r)

agree with spherical coordinates. The first fundamental form equals ds2 = dr2 + sin2 r dθ2.
For S = D (the Poincaré disc model), with p = (0, 0) and b1 and b2 as above, the geodesic

polar coordinates are
x(r, θ) = (tanh(r/2) cos θ, tanh(r/2) sin θ) .

The first fundamental form equals ds2 = dr2 + sinh2 r dθ2.

27.2. Geodesics as shortest curves.

Theorem 27.5. Let S be a Riemannian surface. Each point p ∈ S has a neighborhood U such
that any point q ∈ U \ {p} can be connected to p by a unique shortest curve, and this curve is a
geodesic.

Proof. Let ε > 0 be such that expp : Dp(ε) → S is a diffeomorphism onto its image U ⊂ S.
Then any q ∈ U \ {p} is of the form expp(ρv) for a unique ρ ∈ (0, ε) and ‖v‖ = 1, and the curve

γpv : [0, ρ]→ S is a geodesic of length ρ from p to q.
Let β : [a, b] → S be another curve from p to q. We may assume that β(t) 6= p for every

t ∈ (a, b], and that the image of β lies in U ⊂ S. [[See Jahren’s notes for details.]] Then we can
write β(t) = x(r(t), θ(t)) for smooth functions r : [a, b]→ [0, ε) and θ : [a, b]→ R, with r(a) = 0
and r(b) = ρ. Then

β′(t) = r′(t)xr + θ′(t)xθ
and

‖β′(t)‖ =
√
r′(t)2 + θ′(t)2h2 ≥ |r′(t)|

so

length(β) =

∫ b

a
‖β′(t)‖ dt ≥

∫ b

a
|r′(t)| dt ≥

∫ b

a
r′(t) dt = r(b)− r(a) = ρ .

We have equality only if r′(t) ≥ 0 and θ′(t) = 0, meaning that β is a reparametrization of the
unit speed geodesic γpv . �

27.3. Calculations. Let S ⊂ R3 be a regular surface and let U = x(V ) ⊂ S be parametrized
by geodesic polar coordinates (r, θ) 7→ x(r, θ) ∈ S. Write the first fundamental form as

ds2 = dr2 + h2 dθ2

with h > 0, so that xr and xθ/h form an orthonormal basis for each tangent plane.

Proposition 27.6. (a) The Gaussian curvature is given by the formula

K = −hrr
h
.

(b) The Christoffel symbols are[
Γ1

11 Γ1
12 Γ1

22

Γ2
11 Γ2

12 Γ2
22

]
=

[
0 0 −hhr
0 hr/h hθ/h

]
.

(c) Let s 7→ α(s) = x(r(s), θ(s)) be a curve in U , parametrized by arc length, and let φ(s) be
the angle between the geodesic radius and the curve at α(s). The geodesic curvature of α is then

kg = φ′ + hrθ
′ .
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Proof. (a) From the proof of theorema egregium, with E = 1, F = 0 and G = h2, we get

K(h2)2 = det

1 0 −hhr
0 h2 hhθ
0 −hhr −h2

r − hhrr

− det

1 0 0
0 h2 hhr
0 hhr 0

 = −h3hrr .

(b) From the proof that Christoffel symbols are intrinsic, we get[
1 0
0 h2

] [
Γ1

11 Γ1
12 Γ1

22

Γ2
11 Γ2

12 Γ2
22

]
=

[
0 0 −hhr
0 hhr hhθ

]
.

(c) By assumption, α is parametrized by arc length, so α′ = r′xr + θ′xθ has unit length.
Hence

α′ = r′xr + hθ′
xθ
h

= cos(φ)xr + sin(φ)
xθ
h

for a smooth function s 7→ φ(s), giving the angle between the geodesic radius (with tangent
vector xr) and the curve (with tangent vector α′). The unit bitangent vector field s 7→ B(s) is
then

B = − sin(φ)xr + cos(φ)
xθ
h
.

Differentiating r′ = cosφ and hθ′ = sinφ gives

r′′ = − sin(φ)φ′ and (hrr
′ + hθθ

′)θ′ + hθ′′ = cos(φ)φ′ .

In terms of Christoffel symbols, the second derivative is

α′′ ≡ (r′′ + (θ′)2(−hhr))xr + (θ′′ + 2r′θ′
hr
h

+ (θ′)2hθ
h

)xθ

= (r′′ − (hθ′)(hrθ
′))xr + (hθ′′ + hrr

′θ′ + hθ(θ
′)2 + hrθ

′r′)
xθ
h

= (− sin(φ)φ′ − sin(φ)hrθ
′)xr + (cos(φ)φ′ + hrθ

′ cos(φ))
xθ
h

= (φ′ + hrθ
′)B

plus a multiple of the unit normal N , so the geodesic curvature is kg = B · α′′ = φ′ + hrθ
′. �

28. November 27th lecture

28.1. Line and surface integrals.

Definition 28.1. If β : [a, b] → R3 is a regular curve, and f : C → R is a map defined on the
image C = β([a, b]) of β, then the line integral of f along C is defined to be∫

C
f ds =

∫ b

a
f(β(t))s′(t) dt .

Here s′(t) = ‖β′(t)‖ is the length of the tangent vector β′(t), and the line integral is indepen-
dent of the (simple) parametrization β of C. If C is a union of finitely many smooth curves,
the line integral over C is defined to be the sum of the line integrals over the smooth pieces.

Definition 28.2. If x : V → S is a local parametrization and a map f : R→ R is defined on a
nice compact region R ⊂ x(V ), the surface integral of f over R is defined to be∫∫

R
f dA =

∫∫
x−1(R)

f(x(u, v))
√
EG− F 2 du dv .

Here
√
EG− F 2 = ‖xu×xv‖ is the area of the parallelogram spanned by the tangent vectors

xu and xv. The region is nice if it is bounded by finitely many smooth curves. The surface
integral is independent of the choice of local parametrization. If the region R ⊆ S is not
contained in a single coordinate patch, subdivide it into smaller pieces and define the surface
integral as the sum over the pieces.
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28.2. The Gauss–Bonnet theorem. Let S be a regular surface in R3, and suppose that
R ⊆ S is a nice compact region, with boundary ∂R.

For each smooth piece of ∂R, parametrized by αk : [0, `] → S, we choose the unit bitangent
vector B(s) ∈ TpS at p = αk(s) ∈ ∂R that points into R. For each non-smooth point pk of
∂R, let ηk ∈ [0, 2π] be the interior angle between the two smooth curves meeting at pk. Let
εk = π − ηk ∈ [−π, π] be the angular change of direction at pk.

Let K : S → R be the Gaussian curvature, let kg : ∂R → R be the geodesic curvature, and
let χ(R) ∈ Z be the Euler characteristic of R.

Theorem 28.3 (Gauss–Bonnet).∫∫
R
K dA+

∫
∂R
kg ds+

∑
i

εi = 2πχ(R) .

Remark 28.4. The left hand side is analytical and depends on geometric information, while the
right hand side only depends on topological information. The right hand side only takes values
that are integer multiples of 2π, which is not evident from the form of the left hand side.

If ∂R is smooth (as a collection of closed curves), the formula simplifies to∫∫
R
K dA+

∫
∂R
kg ds = 2πχ(R) .

If ∂R consists of finitely many geodesics, the formula simplifies to∫∫
R
K dA+

∑
i

εi = 2πχ(R) .

If S is compact (a closed regular surface) we may take R = S with ∂R empty, and the Gauss–
Bonnet formula simplifies to ∫∫

S
K dA = 2πχ(S) .

Proof of the Gauss-Bonnet theorem. The region R can be written as the union of a finite col-
lection {Ti}i of f smoothly embedded triangles, where the intersection of two triangles is either
a common face, a common vertex, or empty.

We may assume that each triangle Ti is small enough to be contained in a coordinate patch
Ui = xi(Vi) parametrized by geodesic polar coordinates xi : Vi → S. Here Ui is contained in a
larger neighborhood Wi which also contains the center x(0, θ) of the geodesic polar coordinate
system. The local parametrization xi specifies an orientation in Ui.

We first prove the theorem for R = Ti equal to one of these triangles. The boundary ∂Ti
is the union of three smooth curves αi,j : [0, `j ] → S, for j = 1, 2, 3 (mod 3), traversed in
counterclockwise order and parametrized by arc length. Let εi,j be the angle between α′i,j(`j)

and α′i,j+1(0).

Recall that kg = φ′ + hrθ
′ in geodesic polar coordinates, where α(s) = x(r(s), θ(s)), and φ

gives the angle between the geodesic radius and the curve. The two parts of the integral∫
∂Ti

kg ds =

∫
∂Ti

φ′ ds+

∫
∂Ti

hrθ
′ ds

are computed separately.
First, write φj for the function φ associated to αi,j . Then (“Hopf’s Umlaufsatz”):∫
∂Ti

φ′ ds =

∫
αi,1

φ′1 ds+

∫
αi,2

φ′2 ds+

∫
αi,3

φ′3 ds

= (φ1(`1)− φ1(0)) + (φ2(`2)− φ2(0)) + (φ3(`3)− φ3(0)) = 2π − (εi,1 + εi2 + εi,3) .

The term 2π comes from the fact that ∂Ti is traversed once in the clockwise direction. The
terms εi,1 + εi,2 + εi,3 measure the contributions to this clockwise rotation that are omitted at
the three vertices of Ti.
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Second, by Green’s theorem∫
∂Ti

hrθ
′ ds =

∫
∂Ti

hr dθ =

∫∫
Ti

hrr dr dθ =

∫∫
Ti

hrr
h
h dr dθ = −

∫∫
Ti

K dA .

This uses that K = −hrr/h and
√
EG− F 2 = h.

Taken together, we get ∫∫
Ti

K dA+

∫
∂Ti

kg ds+
3∑
j=1

εi,j = 2π .

This proves the Gauss-Bonnet formula for R = Ti, since χ(Ti) = 1 is the Euler characteristic of
any triangular region. Summing over all f triangles we get∫∫

R
K dA+

∑
i

∫
∂Ti

kg ds+
∑
i,j

εi,j = 2πf .

Each interior edge in the smooth triangulation of R contributes twice to the sum
∑

i

∫
∂Ti

kg ds,
but the two terms cancel, because the unit bitangent vectors B point in opposite directions on
the two occasions (into Ti when parametrized as αi,j , into Ti′ when parametrized as αi′,j′),
so that the geodesic curvatures kg occur with opposite signs. Hence only the boundary edges
αk = αi,j in ∂R contribute, and we can write∑

i

∫
∂Ti

kg ds =
∑
k

∫
αk

kg ds =

∫
∂R
kg ds .

Let ηi,j = π − εi,j be the interior angle at the j-th vertex of Ti. At each interior vertex of R
the interior angles add up to 2π. At each boundary vertex the interior angles add up to π if
the vertex is a smooth point of ∂R, or to ηk = π− εk if the vertex is a non-smooth point of ∂R.
Summing, ∑

i,j

ηi,j = 2π(v − v∂) + πv∂ −
∑
k

εk

where v is the total number of vertices in the triangulation of R and v∂ is the number of vertices
in ∂R. Each of the f triangles contributes three terms to the sum on the left hand side, so∑

i,j

ηi,j = 3πf −
∑
i,j

εi,j

and ∑
i,j

εi,j = 3πf − 2πv + πv∂ +
∑
k

εk .

Each triangle has three edges, each interior edge lies in two triangles and each boundary edge
lies in one triangle, so

3f = 2(e− e∂) + e∂ = 2e− e∂ ,
where e is the total number of edges in the triangulation and e∂ is the number of edges in ∂R.
Furthermore v∂ = e∂ , since ∂R is a union of closed loops. Hence

3f − 2v + v∂ = 2e− e∂ − 2v + v∂ = 2(e− v) .

Thus ∑
i,j

εi,j = 2π(e− v) +
∑
k

εk

and ∫∫
R
K dA+

∫
∂R
kg ds+ 2π(e− v) +

∑
k

εk = 2πf .

Subtracting 2π(e − v) on both sides gives the general Gauss-Bonnet formula, with 2πχ(R) =
2πf − 2π(e− v) = 2π(v − e+ f). �

28.3. Applications. [[ETC]]
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