SECTION 5.1

Exercise 4. Let f(u) = (f(u),g(u)) be an embedded curve such that f(u) > 0 for all u. The
surface of revolution obtained by rotating 8 around the z-axis has local parametrization

z(u,v) = (f(u)cosv, f(u)sinv, g(u))

where u varies as for 8, and v € J for J = (—m, ) and J = (0, 27).

Then
Tu = zu(u,v) = (f'(u) cosv, f'(u) sinv, g'(u))
Ty = xy(u,v) = (—f(u)sinwv, f(u) cosv,0)
Ty X Ty = (= f(u)g'(u) cosv, — f(u)g' (u) sinv, f(u) f'(u))
has length

[ x || = \/JC(U)QQ’(UV(COS2 v+ sin® v) + f(u)?f(u)?
= fwV f'(u)? + g'(u)?.
The parametrization x is regular if ||z, X x,| # 0, or equivalently, if 8'(u) = (f'(u), ¢’ (u)) # 0,
i.e., when (3 is regular.

Exercise 5. (TBW)

Exercise 6. (TBW)

SECTION 5.3

Exercise 1. The first fundamental form is

E =, 7= f(u)(cos” v +sin’ v) + g/ (u)’

= f'(w)® +¢'(u)?,

F=uxy 1y= f(u)f (u)(—cosvsinv + sinv cosv) + 0
—0

G =y -z, = f(u)?(sin® v + cos® v) + 0
= flu)?®.

Exercise 2. (TBW)

SECTION 5.4
Exercise 5. (TBW)

SECTION 5.5
Exercise 1. The unit normal vector at p = z(u,v) is
Ty X Ty (=f(u)g'(u) cosv, —f(u)g'(u) sinv, f(u)f'(u))
[ )/ f'(w)* + g (u)?
_ (=9 (uw)cosv, —g'(u) sinv, f'(u))
f'(u)? +g'(u)?

N, =




The second order partial derivatives are

Tuu = (f"(u) cosv, f"(u) sinv, g"(u))

Ty = (—f'(u) sinwv, f'(u) cosv,0)

Ty = (—f(u) cosv, — f(u) sinw,0),
so the second fundamental form is

—f"(u)g' (u) cos® v — f"(u)g' (u) sin® v + f'(u)g" (u)
f'(u)? + g'(u)?

f'(w)g"(w) — f"(u)g'(u)

VI (w)? + g (w)?

f(u)g'(u)sinvcosv — f'(u)g'(u) sinvcosv + 0

e=N zyu =

=N . Tyw =
d f(w)? +g'(u)?
=0
g=N -2y = f(u)g'(u) cos® v + f(u)g'(u) sin® v 4 0
fr(w)? +g'(u)?
g
f(w)? +g'(u)?
Hence
EG — F? = f(u)*(f'(u)* + ¢'(u)?)
and
g — f2— (f'(w)g" (u) — f"(u)g' (v)) f(u)g'(u)

f(w)? +g'(u)? ’
so the Gaussian curvature at p is

g (P ) — f(u)g (w)g ()
KO = 56— = (Pt i)

More concisely,
(f'9" = 1"9")g
()2 + ()]

K =

If K =0 then f'¢" — f"¢g’ = 0 or ¢ = 0. In the latter case, g = C is constant, so the
surface is contained in the plane z = C. If f/ = 0 then f” = 0 and f = C is constant, so the
surface is contained in the cylinder 22 + 32 = C2. If f’ # 0 and ¢’ # 0 then f"/f' = ¢"/g’, so

In|f'| =In|g'| + C. Hence f' = +e®

g = Ag and f = Ag+ B = A(g+ B/A) for some constants

A and B. In this case the surface is contained in the cone 22 + y? = A%(z + B/A)2.

Exercise 2. Let 0 < a < b. The torus is the surface of revolution of the curve f(u) =

(f(u), g(u)) with

Here

flu) =acosu+b

g(u) = asinu.



SO

K (a?sin? u + a? cos?® u)a cos u

(a2 sin? u + a2 cos? u)2(a cos u + b)
_ cos u
~alacosu+0b)’

Here acosu +b > —a + b > 0 for all u, so K has the same sign as cosu, i.e., K > 0 if
u € (—m/2,7/2) modulo 27, and K < 0 if u € (7/2,37/2) modulo 27w. The curvature is zero
when u = +7/2 modulo 27, i.e., at the top and the bottom of the torus (where z = +a).

Exercise 3. Suppose that 8 = « is parametrized by arc length, so that f'(u)? + ¢'(u)? = 1.
Differentiating (f')? + (¢')? = 1 we get 2f'f" +2¢'g" = 0 and ¢'g"” = —f'f". Hence
(79"~ "9 = £'9d" — £'(g)2 = (/P2 = f10 = () = 1",
so that
(f/g// _ f//g/)g/ —f
(2 + D2 f
If K is constant, we get f”/ = —K f. If K = k? > 0 then
F() = Acos(E(u — up))

K =

for some constants A and ug. Then f'(u) = — Ak sin(k(u — ug)), so

g (u) = i\/l — A2K sin?(k(u — ug)) .

Hence ¢ is an indefinite integral of the right hand side, with respect to w, which in general is an
elliptic integral (of the second kind).

To get a closed surface, as f(u) — 0 we must have ¢’(u) — 0, which implies A2K = 1, i.e.,
A =1/k. Then ¢'(u) = £cos(k(u —up)) and g(u) = (1/k) sin(k(u — up)) + C. Reparametrizing
with ug = 0, and possibly replacing v with —u, we conclude that

o) = (cos]({;ku)y sing{:u) Lo

parametrizes the circle with radius 1/k = 1/vK centered at (z,v, z) = (0,0, C), and the surface
of revolution is the sphere with radius 1/k centered at the same point.
If K =0 then

f(u) = Au+ B

for some constants A and B, so f'(u) = A, ¢'(u) = £V/1 — A% and g(u) = £vV1— A% -u+ C.
Hence

a(u) = (B,C)+ (A, V1 - A?%) - u

is a straight line. Hence the surface of revolution lines on a plane, a cylinder or a cone, and is
never closed.

If K = —k* <0 then
f(u) = Aek*  Be ™
for A, B >0 (not both zero). Then f'(u) = Ake** — Bke™** and

g (u) = :t\/l — (Akekv — Bke—ku)2

Again g(u) is given by an elliptic integral. These surfaces are never closed, since f(u) — oo as
u — £00.
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Exercise 4. (a) Let S7 be the surface of revolution obtained from the regular curve
B(w) = (u,In )
for u > 0, hence parametrized by
z(u,v) = (ucosv,usinv,lnu).
Here f(u) = u and g(u) = Inu, so f'(u) = 1, f’(u) =0, ¢'(u) = 1/u and ¢"(u) = —1/u?. Hence

L)
(1 u)2u (14 u?)?
is always negative. (Omitting the step-by-step method.)
(b) Let Sy be the helicoid (a ruled surface) parametrized by

y(u,v) = (ucosv,usinv,v)
for v > 0 and all v. We calculate
Yy = (cosv,sinv,0)

Yp = (—usinwv,ucosv, 1)

EF=1
F=0
G=1+u?

Yu X Yy = (sinw, — cos v, u)

|y X yoll = v 1+u?

(sinv, — cos v, u)

VI+u?

Yuu = (07070)

Yuv = (—sinwv, cos v, 0)

Yoy = (—ucosv, —usinw, 0)
e =

-1
I=ive
g=20
so that
o eg — f2 :—1/(1+u2): -1
EG — F? 1+ u2 (1 +u2)?

(¢) A smooth map f: Se — S; maps p = y(u,v) to a point ¢ = f(p) = x(u1,v1), where
uj > 0 and v; depend smoothly on u > 0 and v. For K(p) = —1/(1 4+ u?)? in Sy to be equal to
K(q) = —1/(1 +u2)? in S; we must have u; = u. Hence for any smooth function v; = h(u,v)
the map f taking y(u,v) to z(u, h(u,v)) will preserve the Gaussian curvature. For f to be a
local isometry, it must take the first fundamental form

1 0
0 1+ u?
of S5 to the first fundamental form
flw?+g@? 0] [1+1/u® 0
0 fw)?| — 0 u?

of 51, in the sense of Exercise 5.3.3. Here

Ly (u,v) = (u, h(u,v))
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has Jacobian
_ 1 0
J(CE 1fy): |:hu hv:| ,
so the condition is that
1 0 ] [1 h[t+1/2 0][1 O
0 14+u?| |0 hy 0 u?| |y ho|

There are no such functions h, and h,, as can be seen by multiplying out.



