
Problem 1

1a.

m(i) =
i− 0

i− 1
· −1− 1

−1− 0
=

2i

i− 1
= 1− i .

Since i ∈ H and m(i) /∈ H we cannot have m(H) = H.

1b. The map m takes the C̄-circle through x1, x2 and x3 onto the C̄-circle through 1, 0 and ∞,
i.e., maps R̄ onto R̄. Hence it maps C̄ \ R̄ = H ∪ (−H) onto itself, where −H denotes the lower
half-plane. By continuity, m(H) is either H or −H. Now

m(z) =
z − x2
z − x3

· x1 − x3
x1 − x2

=
az + b

cz + d

with a = x1 − x3, b = −x2(x1 − x3), c = x1 − x2 and d = −x3(x1 − x2). Here

m(i) =
ai+ b

ci+ d
=

(ai+ b)(−ci+ d)

(ci+ d)(−ci+ d)
=

(ac+ bd) + i(ad− bc)
c2 + d2

lies in H if and only if ad− bc > 0, i.e., if and only if

(x1 − x3)(−x3)(x1 − x2)− (−x2)(x1 − x3)(x1 − x2) = (x1 − x2)(x1 − x3)(x2 − x3) > 0 .

The condition is that the product (x1 − x2)(x1 − x3)(x2 − x3) is positive.

Problem 2

2a. The points A = w and B = w2 have |A| = 1 and |B| = 1, hence lie on the Euclidean circle
of radius 1 with center 0. The points A = w and C = 0 have |A − 1| = 1 and |C − 1| = 1,
hence lie on the Euclidean circle of radius 1 with center +1. The points B = w2 and C = 0 have
|B + 1| = 1 and |C + 1| = 1, hence lie on the Euclidean circle of radius 1 with center −1.

The angle α = ∠BAC is the angle at w between the Euclidean unit circles centered at 0 and
+1. It equals the angle ∠0w1 between the radii meeting at w of these two circles, hence equals
π/3. By symmetry about the imaginary axis, the angle β = ∠ABC is also π/3. The angle
γ = ∠ACB at the ideal vertex is 0. Hence the area of 4ABC is

π − (α+ β + γ) = π − (π/3 + π/3 + 0) = π/3 .

2b. The fixed points in C̄ ofm1 are the z with−1/z = z, i.e., with z2 = −1, so z = ±i. Hencem1

has exactly one fixed point in H, so m1 is of elliptic type. We have m1(A) = −1/w = w2 = B
and m1(D) = −1/i = i = D, so the image of [A,D] is [B,D]. We have m1(B) = A and
m1(C) =∞, so the image of 4ABC is the ideal triangle 4BA∞.

2c. The fixed points in C̄ of m2 are the z with z/(z+ 1) = z, i.e., with z+ 1 = 1, so z = 0. The
only fixed point lies in R̄, so m2 is of parabolic type. We have m2(B) = w2/(w2 + 1) = w = A

and m2(C) = 0 = C, so the image of
−−→
BC is the ray

−→
AC. We have

m2(A) = w/(w + 1) = (3 + i
√

3)/6 = E ,

so the image of 4ABC is the ideal triangle 4EAC.

2d. The edges a = [A,D], [D,B], b = [B,C] and [C,A] of the quadrangle F are identified
according to the pattern W = aa−1bb−1, so M = F/∼ ∼= D2/aa−1bb−1 ∼= D2/aa−1#D2/bb−1 ∼=
S2#S2 ∼= S2. Hence M ∼= M0 is the orientable surface S2 of genus g = 0.
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2e. No, M does not admit a hyperbolic structure. In the Gauss-Bonnet formula∫∫
M
K dA = 2πχ(M)

the Gaussian curvature of a hyperbolic closed surface is −1 at all points, so the Euler charac-
teristic must be negative. This is not the case for M ∼= M0 = S2, which has Euler characteristic
χ(S2) = 2.

Yes, M ′ does admit a hyperbolic structure. Let F ′ = F \ {A,B,C,D} be the complement of
the four vertices in F , and consider the union

P = F ′ ∪m1(F
′) ∪m2(F

′) .

We can realize M ′ as the quotient space P/≈, where the equivalence relation ≈ is generated by
z ≈ m1(z) and z ≈ m2(z) for all z ∈ F ′.

Let Q = int(P ) be the interior of P in H, i.e., the interior of the ideal hyperbolic polygon
A∞BCE minus the point D. As an open subset of H, the surface Q inherits a hyperbolic struc-
ture. We can also realize M ′ as Q/≈, where ≈ denotes the restriction of the given equivalence
relation on P to Q. Each point of M ′ then has a neighborhood U that is homeomorphic to
one, two or three neighborhoods Vi in Q, and the coordinate transformations between these
neighborhoods Vi and Vj are given by m1, m2, their inverses and composites of these, i.e., by
hyperbolic isometries. Hence the hyperbolic structure on Q descends to a hyperbolic structure
on M ′.

Problem 3

3a.

xu = (cos v, sin v, 0)

xv = (−u sin v, u cos v, 1)

E = cos2 v + sin2 v + 02 = 1

F = (cos v)(−u sin v) + (sin v)(u cos v) + (0)(1) = 0

G = (−u sin v)2 + (u cos v)2 + 12 = 1 + u2

xu × xv = (sin v,− cos v, (cos v)(u cos v)− (sin v)(−u sin v)) = (sin v,− cos v, u)

‖xu × xv‖ =
√

sin2 v + cos2 v + u2 =
√

1 + u2

N =
(sin v,− cos v, u)√

1 + u2
.

3b.

xuu = (0, 0, 0)

xuv = (− sin v, cos v, 0)

xvv = (−u cos v,−u sin v, 0)

e = 0

f =
− sin2 v − cos2 v + u · 0√

1 + u2
= − 1√

1 + u2

g =
(sin v)(−u cos v)− (cos v)(−u sin v) + u · 0√

1 + u2
= 0

K =
(0 · 0− (−1/

√
1 + u2)2)

(1 + u2 − 02)
=
−1/(1 + u2)

1 + u2
= − 1

(1 + u2)2
.
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3c. We calculate
α′(s) = (− 1√

2
sin(

s√
2

),
1√
2

cos(
s√
2

),
1√
2

)

and
α′′(s) = (−1

2
cos(

s√
2

),−1

2
sin(

s√
2

), 0) .

We have
‖α′(s)‖ =

1

2
sin2(

s√
2

) +
1

2
cos2(

s√
2

) +
1

2
= 1 ,

so α : [0, 2π
√

2]→ S is traversed at unit speed and parametrized by arc length.
The tangent plane TpS of S at p = α(s) = x(1, s/

√
2) contains the tangent vectors

xu(1, s/
√

2) = (cos(s/
√

2), sin(s/
√

2), 0)

and
xv(1, s/

√
2) = (− sin(s/

√
2), cos(s/

√
2), 1) .

These are orthogonal. The unit tangent vector T (s) = α′(s) of α at p is parallel to the tan-
gent vector xv(1, s/

√
2). Hence the unit bitangent vector B(s) is parallel to xu(1, s/

√
2) =

(cos(s/
√

2), sin(s/
√

2), 0). This is a unit vector pointing out of R, so B(s) is its negative:

B(s) = (− cos(s/
√

2),− sin(s/
√

2), 0) .

Hence the geodesic curvature is

kg(s) = − cos(s/
√

2)(−1

2
cos(s/

√
2))− sin(s/

√
2)(−1

2
sin(s/

√
2)) + 0 · 0 =

1

2
for all values of s.

3d. ∫∫
R
K dA+

∫
∂R
kg ds+

∑
k

εk = 2πχ(R) .

The surface integral of the Gaussian curvature is∫∫
R
K dA =

∫ 2π

0

∫ 1

0

−1

(1 + u2)2
‖xu × xv‖ du dv = 2π

∫ 1

0

−1

(1 + u2)3/2
du = −π

√
2 .

The line integral of the geodesic curvature along the image of α is∫
α
kg ds =

∫ 2π
√
2

0

1

2
ds = π

√
2 .

The three other parts of ∂R are geodesics, hence kg = 0 along these curves. Thus∫
∂R
kg ds = π

√
2 + 0 + 0 + 0 = π

√
2 .

The angular change of direction at each corner A, B, C and D is εk = π/2. For example, at
A, the tangent to the curve α is α′(0) = (0, 1, 0) and the tangent to the line segment [D,A] is
(1, 0, 0). Hence the interior angle at A is π/2 and the change of direction is π−π/2 = π/2. The
other three cases are very similar. Hence∑

k

εk = 4 · π/2 = 2π .

The Euler characteristic of R is 1, e.g. because R ∼= [0, 1] × [0, 2π] can be triangulated with
v = 4 vertices, e = 5 edges and f = 2 faces, so χ(R) = 4− 5 + 2 = 1. Hence

2πχ(R) = 2π .

The Gauss-Bonnet formula asserts that

−π
√

2 + π
√

2 + 2π = 2π ,

which is correct.
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