PROBLEM 1

1a.

i—0 —1—1 2
i-1 -1-0 i—1
Since i € H and m(i) ¢ H we cannot have m(H) = H.

m(i) = =1—1.

1b. The map m takes the C-circle through z1, x3 and x3 onto the C-circle through 1, 0 and oo,
i.e.,, maps R onto R. Hence it maps C\ R = HU (—H) onto itself, where —H denotes the lower
half-plane. By continuity, m(H) is either H or —H. Now

z—Ty X1—x3 az+b

m(z) = =
(2) Z—T3 X1 — X2 cz+d

with a = 1 — 23, b = —x9(x1 — x3), ¢ = x1 — 29 and d = —z3(x; — x2). Here

ai+b  (ai+0b)(—ci+d) (ac+ bd)+i(ad — bc)
ci+d (ci+d)(—ci+d) 2+ d?

m(i) =
lies in H if and only if ad — bc > 0, i.e., if and only if

(3:1 — .%‘3)(—563)(1‘1 — xg) — (—:Eg)(ﬁl — 1‘3)(1‘1 — $2) = (1’1 — $2)($1 — 1}3)($2 — .'L’g) >0.

The condition is that the product (x1 — x2)(z1 — z3)(x2 — x3) is positive.

PROBLEM 2

2a. The points A = w and B = w? have |A| = 1 and |B| = 1, hence lie on the Euclidean circle
of radius 1 with center 0. The points A = w and C = 0 have |[A — 1| =1 and |[C — 1| = 1,
hence lie on the Euclidean circle of radius 1 with center +1. The points B = w? and C' = 0 have
|B+ 1] =1 and |C + 1| = 1, hence lie on the Euclidean circle of radius 1 with center —1.

The angle o = ZBAC is the angle at w between the Euclidean unit circles centered at 0 and
+1. It equals the angle Z0w1 between the radii meeting at w of these two circles, hence equals
m/3. By symmetry about the imaginary axis, the angle § = ZABC is also 7/3. The angle
v = /ZACB at the ideal vertex is 0. Hence the area of AABC is

T—(a+B8+7)=nm—(r/3+7/3+0)=mn/3.

2b. The fixed points in C of my are the z with —1/z = z, i.e., with 22 = —1, s0 z = 4i. Hence m;
has exactly one fixed point in H, so mj is of elliptic type. We have m;(A) = —1/w = w? = B
and mi(D) = —1/i = i = D, so the image of [A, D] is [B,D]. We have m;(B) = A and
m1(C) = oo, so the image of AABC is the ideal triangle ABAoc.

2c. The fixed points in C of my are the z with z/(z+1) = z, i.e,, with z+1 =1, 50 2 = 0. The
only fixed point lies in R, so my is of parabolic type. We have ma(B) = w?/(w? +1) =w = A
and ma(C) =0 = C, so the image of lﬁ is the ray ﬁ We have

ma(A) = w/(w+1) = (3+iV3)/6 = E,
so the image of AABC' is the ideal triangle AFEAC.
2d. The edges a = [A, D], [D,B], b = [B,C] and [C, A] of the quadrangle F are identified
according to the pattern W = aa='bb™!, so M = F/~ = D?/aa= b~ = D?/aa™'#D? /bb~! =

52452 2 82 Hence M = M is the orientable surface S? of genus g = 0.
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2e. No, M does not admit a hyperbolic structure. In the Gauss-Bonnet formula

/ K dA = 27y (M)
M

the Gaussian curvature of a hyperbolic closed surface is —1 at all points, so the Euler charac-
teristic must be negative. This is not the case for M = My = S?, which has Euler characteristic
X(8%) =2.

Yes, M’ does admit a hyperbolic structure. Let F' = F'\ {A, B,C, D} be the complement of
the four vertices in F', and consider the union

P:F,Um1<F,)Um2(F/).

We can realize M’ as the quotient space P/~, where the equivalence relation = is generated by
2z~ mq(z) and z = my(z) for all z € F'.

Let @ = int(P) be the interior of P in H, i.e., the interior of the ideal hyperbolic polygon
AocoBCE minus the point D. As an open subset of H, the surface @) inherits a hyperbolic struc-
ture. We can also realize M’ as @Q/~, where ~ denotes the restriction of the given equivalence
relation on P to ). Each point of M’ then has a neighborhood U that is homeomorphic to
one, two or three neighborhoods V; in @), and the coordinate transformations between these
neighborhoods V; and V; are given by mj, mao, their inverses and composites of these, i.e., by
hyperbolic isometries. Hence the hyperbolic structure on () descends to a hyperbolic structure
on M'.

PROBLEM 3
3a.
x,, = (cosw,sinwv,0)
xy = (—usinv,ucosv, 1)
E =cos?v +sinv+0% =1
F = (cosv)(—usinv) + (sinv)(ucosv) + (0)(1) =0
G = (—usinv)? + (ucosv)* + 12 = 1 +u?
Ty X Ty = (sinv, — cosw, (cosv)(ucosv) — (sinv)(—usinv)) = (sinwv, — cos v, u)
| zu X 2] = Vsin? v + cos? v + u? = /1 + u?
N (sinw, — cos v, u)
V14 u? .
3b.
Zyu, = (0,0,0)

—sinwv, cos v, 0)

(
= (—ucosv, —usinv,0)
0

e =
_—sin2v—0082v+u~0_ 1

= e T e
_ (sinv)(—ucosv) — (cosv)(—usinv) +u -0 _o

! Vit

K (0-0—(=1/Vi+u?)’) —1/(1+u?) _ 1

(1+u?—02) 1+u? (14 u2)?



3c. We calculate

'(s) = —Lsini Lcosi 1

a’(s) (\/5 (ﬁ)’ﬂ (\/i)’ 5)
and

a’(s) = (—% COS(%), —;sin(\%),()).
We have

1 S
o(s)|| = = sin?(—=) +
lod (s)]] = 5 sin™( \/5)
so a: [0, 2#\@] — S is traversed at unit speed and parametrized by arc length.
The tangent plane T,,S of S at p = a(s) = z(1, s/+/2) contains the tangent vectors

zu(L,8/V2) = (cos(s/V2),sin(s/v2),0)

and
20(1,5/V2) = (= sin(s/V2), cos(s/v/2),1).

These are orthogonal. The unit tangent vector T'(s) = o/(s) of a at p is parallel to the tan-
gent vector x,(1,5/v/2). Hence the unit bitangent vector B(s) is parallel to z,(1,5/v?2) =
(cos(s/v/2),sin(s/+/2),0). This is a unit vector pointing out of R, so B(s) is its negative:

B(s) = (— cos(s/V/2), —sin(s/v2),0).
Hence the geodesic curvature is

ko(s) = — cos(s/\/ﬁ)(—% cos(s/V2)) — sin(s/\/i)(—% sin(s/v2))+0-0= %

for all values of s.

//KdA+/ kgds+Zek:27rx(R).
R OR .

The surface integral of the Gaussian curvature is

2 pl -1 1 -1

The line integral of the geodesic curvature along the image of « is

271'\/51
/k:gds:/ 5d8:ﬂ-\/§'
« 0

The three other parts of OR are geodesics, hence k; = 0 along these curves. Thus
/ kgds:ﬁx/ﬁ+0+0+0:7r\/§.
OR

The angular change of direction at each corner A, B, C' and D is €, = 7/2. For example, at
A, the tangent to the curve « is o/(0) = (0,1,0) and the tangent to the line segment [D, A] is
(1,0,0). Hence the interior angle at A is 7/2 and the change of direction is 7 —7/2 = 7/2. The
other three cases are very similar. Hence

Zek:4'7r/2:2ﬂ'.

k

The Euler characteristic of R is 1, e.g. because R = [0,1] x [0,27] can be triangulated with
v = 4 vertices, e = 5 edges and f = 2 faces, so x(R) =4 —5+2=1. Hence

2rx(R) = 2.
The Gauss-Bonnet formula asserts that
—mV2 4 7V2 4+ 2 = 27,

which is correct.



