PROPOSED SOLUTION TO THE MANDATORY ASSIGNMENT FOR MAT4510 FALL 2015

Problem 1

(a) Robert Schumann.
(b) If $c=0$ then $a d=1$, so $m(z)=(a z+b) /(0 z+d)=a^{2} z+a b$ is the composite $m=m_{2} \circ m_{1}$ of $m_{1}(z)=a^{2} z$ with $a^{2}>0$ followed by $m_{2}(z)=z+a b$.

If $c \neq 0$ then $m(z)=(a z+b) /(c z+d)=(a / c)-1 /\left(c^{2} z+c d\right)$ is the composite $m=m_{2}^{\prime} \circ m_{3} \circ$ $m_{2} \circ m_{1}$ of $m_{1}(z)=c^{2} z$ with $c^{2}>0, m_{2}(z)=z+c d, m_{3}(z)=-1 / z$ and $m_{2}^{\prime}(z)=z+(a / c)$.
(c) In each case we can take S to be the unit sphere S^{2} in \mathbb{R}^{3}. For m_{1} let $T(x, y, z)=$ $(x, y, z+\alpha-1)$. For m_{2} let $T(x, y, z)=(x+\beta, y, z)$. For m_{3} let $T(x, y, z)=(-x, y,-z)$ be reflection ($=$ rotation by π radians) in the y-axis. In each case let $S^{\prime}=T(S)$.
(d) The FLTs preserving \mathbb{H} are realized as compositions $P_{S^{\prime}} \circ T \circ P_{S}^{-1}$ where S and S^{\prime} are admissible spheres with center in the $x z$-plane (i.e., with $y=0$), and T is a rigid motion preserving that plane.

Problem 2

(a) The unit circle S^{1}, with radius 1 , and the circle C, with radius R, meet at right angles at a point p. By the Pythagorean theorem for the triangle $\triangle 0 p x$ we have $1^{2}+R^{2}=x^{2}$, so $R=\sqrt{x^{2}-1}$.
(b) $\angle y 0 a=\angle 10 w=\pi / 8$ by the definition of w. The Euclidean angle $\angle y a 0$ equals the hyperbolic angle $\angle h a 0$, which by symmetry is half the hyperbolic angle $\angle h a b=\pi / 4$, hence $\angle y a 0=\pi / 8$. The radius $[x, a]$ is orthogonal to the tangent line L of C at a, hence also to the segment $[a, y]$, so $\angle x a y=\pi / 2$. Thus $\angle 0 y a=\pi-(\angle y 0 a+\angle y a 0)=\pi-(\pi / 8+\pi / 8)=3 \pi / 4$, so $\angle a y x=\pi-\angle 0 y a=\pi-3 \pi / 4=\pi / 4$, and $\angle y x a=\pi-(\angle x a y+\angle a y x)=\pi-(\pi / 2+\pi / 4)=\pi / 4$.
(c) The Euclidean length y of $[0, y]$ equals the length of $[y, a]$, since $\triangle 0 y a$ is isosceles with $\angle y 0 a=\pi / 8=\angle y a 0$. Likewise the length of $[y, a]$ equals the length R of $[x, a]$, since $\triangle a x y$ is right isosceles with $\angle a y x=\pi / 4=\angle y x a$. Hence $y=R=\sqrt{x^{2}-1}$.

By Pythagoras for $\triangle a x y$ the length of $[y, x]$ is $\sqrt{2} R=\sqrt{2} \sqrt{x^{2}-1}$. Splitting $[0, x]$ at y we get $x=y+\sqrt{2} R=(1+\sqrt{2}) \sqrt{x^{2}-1}$. Hence $x^{2}=(1+\sqrt{2})^{2}\left(x^{2}-1\right)$, so $(1+\sqrt{2})^{2}=3+2 \sqrt{2}=$ $(2+2 \sqrt{2}) x^{2}=2(1+\sqrt{2}) x^{2}$ and $x^{2}=(1+\sqrt{2}) / 2$, giving $x=\sqrt{(\sqrt{2}+1) / 2}$.

Splitting $\triangle 0 y a$ into two right triangles we find $r=2 \cos (\pi / 8) y$, hence $r^{2}=4 \cos ^{2}(\pi / 8) y^{2}$. From $\cos (2 t)=2 \cos ^{2} t-1$ we get $4 \cos ^{2} t=2(\cos (2 t)+1)$, so $4 \cos ^{2}(\pi / 8)=2(\sqrt{2} / 2+1)=\sqrt{2}+2$. Furthermore, $y^{2}=x^{2}-1=(\sqrt{2}+1) / 2-1=(\sqrt{2}-1) / 2$. Hence $r^{2}=(\sqrt{2}+2)(\sqrt{2}-1) / 2=\sqrt{2} / 2$ and $r=\sqrt{\sqrt{2} / 2}=1 / \sqrt[4]{2}$.
(d) The hyperbolic area of the octagon is 8 times the area of the hyperbolic triangle $\triangle 0 h a$, with interior angles $2 \pi / 8=\pi / 4$ at $0, \pi / 8$ at h and $\pi / 8$ at a. Hence $\triangle 0 h a$ has area $\pi-(\pi / 4+$ $\pi / 8+\pi / 8)=\pi / 2$, and the area of the octagon is $8 \cdot \pi / 2=4 \pi$.

The hyperbolic circumference is 8 times the length $d_{\mathbb{D}}(h, a)$ of the hyperbolic segment $[h, a]$, which satisfies

$$
\left.\cosh \left(d_{\mathbb{D}}(h, a)\right)\right)=1+\frac{2|a-h|^{2}}{\left(1-|h|^{2}\right)\left(1-|a|^{2}\right)}=1+\frac{2(2 r \sin (\pi / 8))^{2}}{\left(1-r^{2}\right)\left(1-r^{2}\right)}=5+4 \sqrt{2}
$$

so $d_{\mathbb{D}}(h, a)=\cosh ^{-1}(5+4 \sqrt{2})=3.057 \ldots$ and the circumference is $8 \cosh ^{-1}(5+4 \sqrt{2})=$ $24.457 \ldots \approx 24.46$.

