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Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Christoffel

All problems (1a, 1b, 2a, 2b etc.) count for 10 points each. You have to
explain all answers, and show enough details so that it is easy to follow your
arguments. At the end of this document you will find some definitions that
might be handy. You may answer the exam in either English or Norwegian.

Problem 1
Let f ∈ Möb+(H) be the map

f(z) =
z − 1

z + 1
.

Determine whether f is hyperbolic, parabolic or elliptic.

Problem 2
Let S ⊂ R3 be a smooth regular surface. Explain what the Gauss map

N : S → S2 is, and use this to define Gaussian curvature.

Problem 3
Let S ⊂ R3 be a smooth regular surface, and let γ : [0, 1] → S be

a smooth curve. Explain geometrically what the covariant second order
derivative of γ is, and explain what it would mean that γ is a geodesic.
Problem 4

Let g(u) = u, h(u) = e−u, and let

x(u, v) = (g(u) cos(v), g(u) sin(v), h(u)),

for (u, v) ∈ (0,∞) × [0, 2π], parametrize the surface S of revolution around
the z-axis in R3 with coordinates (x, y, z).

(a) Compute the first fundamental form.

(b) Compute the Gaussian curvature.

(c) Prove that for a fixed v0, the curves x(u, v0) are geodesics.

(d) Prove that for a fixed u0, the curves x(u0, v) are not geodesics.

(Continued on page 2.)
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(e) Use the Gauss-Bonnet Theorem to prove that for any 0 < r < R <∞,
the Euler characteristic of the annulus A = x([r,R]× [0, 2π]) is zero.

Solution:
(a) We have that

xu = (cos(v), sin(v),−e−u),

and that
xv = (−u sin(v), u cos(v), 0).

So we get that

E = xu · xu = cos2(v) + sin2(v) + e−2u = 1 + e−2u,

F = xu · xv = cos(v) · (−u sin(v)) + sin(v) · u cos(v) + 0 = 0,

and
G = xv · xv = u2 sinv +u2 cos2 v = u2.

So the first fundamental form is

ds2 = (1 + e−2u)du2 + u2dv2.

(b) Here, the quickest is to remember the general formula for a surface
of revolution

K(x(u, v)) =
h′(u)(g′(u)h′′(u)− h′(u)g′′(u))

g(u)(g′(u)2 + h′(u)2)2
.

We have that h′(u) = −e−u, g(u) = u, g′(u) = 1, g′′(u) = 0, h′′(u) = e−u,
and so

K(x(u, v)) =
−e−u(1 · e−u − 0)

u(1 + e−2u)2
=

−e−2u

u(1 + e−2u)2
.

Alternatively, one can calculate the coefficients of the second fundamental
form e, f and g, and use the formula

K =
ef − g2

EF −G2
.

(c) First we calculate the Christoffel symbols with respect to the
parametrisation, using the fact at the end of the problem sheet. Here
E = 1 + e−2u, F = 0 and G = u2, so we see that[

1 + e−2u 0
0 u2

] [
Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

]
=

[
−e−2u 0 −u

0 u 0

]
So we get that for a curve α(t) = (u(t), v(t)) we have that

Dα′′(t) = (u′′(t) + u′(t)2Γ1
11 + v′(t)2Γ1

22)xu

+ (v′′(t) + u′(t)v′(t)Γ2
12)xv.

(Continued on page 3.)
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For the curve α(t) = (t, v0) we see that v′′(t) = v′(t) = 0, so Dα′′(t) is indeed
always a multiple of α′(t) = xu.

(d) If we consider the curve α(t) = (u1, t) (which is even a constant
speed curve), we see from (c) that the xu-component of Dα′′(t) is Γ1

22 · xu
which is never zero, so Dα′′(t) is never a multiple of α′(t) = xv.

(e) If we let αr denote the curve u = r and if we let αR denote the curve
u = R, the annular region A ⊂ S is bounded by the smooth curves x(αr)
and x(αR). We start by calculating the integral∫

∂A
kgds,

and so first we parametrise αr and αR by arc length. We get αr(t) = (r, t/r)
and αR(t) = (R, t/R). We get that

Dα′′r (t) = v′(t)2Γ1
22xu = (1/r)2(−r)(1 + e−2r)−1xu =

−1

r(1 + e−2r)
xu,

and similarly

Dα′′R(t) =
−1

R(1 + e−2R)
xu.

Now along αr the inward pointing unit normal is xu√
1+e−2r

and so krg becomes
−1

r(1+e−2r)1/2
, and if we consider αR the normal points the other way and kRg

becomes 1
R(1+e−2R)1/2

. It follows that∫
∂A
kgds = 2π(

1

(1 + e−2R)1/2
− 1

(1 + e−2r)1/2
).

Next we consider the integral∫ ∫
A
KdA.

This is calculated in local coordinates∫ ∫
A
KdA =

∫ 2π

0

∫ R

r

−e−2u

u(1 + e−2u)2

√
u2(1 + e−2u)dudv

=

∫ 2π

0

∫ R

r

−e−2u

(1 + e−2u)3/2
dudv

= 2π[−(1 + e−2u)−1/2]Rr

= −
∫
∂A
kgds.

The Gauss-Bonnet theorem states that∫ ∫
A
KdA+

∫
∂A
kgds+

∑
k

εk = χ(A),

where the εk’s are the turning angles, and χ(A) is the Euler characteristic.
In this case ∂A is smooth, and so there are no turning angles, and it follows
that χ(A) = 0.

Problem 5

(Continued on page 4.)
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(a) State the classification theorem for compact Riemannian surfaces.

(b) You may now take for granted that any compact Riemannian surface
admits a Riemannian metric with curvature constantly equal to -1, 0,
or 1. For each of the surfaces in the classification in (a), determine the
corresponding constant curvature.

The End

Some facts:

[
E F
F G

] [
Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

]
=

[
Eu/2 Ev/2 Fv −Gu/2

Fu − Ev/2 Gu/2 Gv/2

]


