
Final exam Mat4510, 2014 – suggestions for solutions

Problem 1

1a) f(z) =
az + b

cz + d
must satisfy either (1) : f(0) = �1, f(1) = 1, or

(2) : f(0) = 1, f(1) = �1.

Case (1) gives b = �d 6= 0 and a = c 6= 0, or f(z) =
z + b

a

z + (� b
a)

. Since the

determinant must be positive, b
a < 0. Setting c = � b

a gives the first type.
A similar argument in case (2) gives the other. Alternatively, precompose
case (1) with h(z) = �1/z, which interchanges 0 and 1.

On the other hand, a simple calculation shows that both the two forms
of f(z) satisfy |f(it)| = 1, for t 2 R.

1b) Let f(z) = �z � c

z + c
where c < 0. Then the fixpoints of f are z =

1
2(�1�c±

p
c2 + 6c+ 1). The solutions of c2+6c+1 = 0 are c = �3±2

p
2,

and both are negative real numbers. Hence the classification is as follows:

• f parabolic : One real fixpoint, when c = �3± 2
p
2.

• f hyperbolic : Two real fixpoints. This happens when c2+6c+1 > 0,
i. e. c 2 (�1,�3� 2

p
2) [ (�3 + 2

p
2, 0)

• f elliptic : Two conjugate complex fixpoints, one in H; when c 2
(�3� 2

p
2,�3 +

p
2).

Assume f(i) = i, i. e. � i� c

i+ c
= i; c = �1. Then

f(z) = �z + 1

z � 1
=

cos(⇡4 )z + sin(⇡4 )

� sin(⇡4 )z + cos(⇡4 )

1c) An inversion in a circle C has the form g(z) = m +
r2

z �m
, where m is

the center and r is the radius of C. Again there are two cases:

(1): g(1) = 1 gives m = 1 and then g(0) = �1 gives r2 = 2, i. e.

g(z) = 1 +
2

z � 1
=

z + 1

z � 1
.

(2): g(1) = �1 gives m = �1 and then g(0) = 1 again gives r2 = 2, i. e.

g(z) = �1 +
2

z + 1
=

�z + 1

z + 1
.

Problem 2

2a) Substituting cos(⇡� �) = � cos � and the formula for cos(↵+ �) trans-
forms the formula

(⇤) cos(↵+ �)� cos(⇡ � �) = sin↵ sin�(cosh c� 1) into

cos↵ cos� � sin↵ sin� + cos � = sin↵ sin� cosh c� sin↵ sin�.

This is clearly equivalent to the usual formulation of the second law of
cosines.

In a triangle with angles ↵,�, � the sum of two angles is less than ⇡ (= 2
right angles). Since cos is decreasing in [0,⇡], it follows that the left hand
side is positive if and only if ↵+� < ⇡��, or ↵+�+� < ⇡. But cosh c > 1
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for c > 0, so this means that ↵ + � + � < ⇡ if and only if there is a c > 0
such that the stated second cosine relation holds. In terms of triangles; if
there is a hyperbolic triangle with angles ↵,�, �, then such a c exists (the
side opposite �), and hence ↵+ � + � < ⇡. Conversely, if ↵+ � + � < ⇡, we
can solve this equation for c (and the other sides), and thus construct the
triangle. Uniqueness follows, e. g. since the sides are uniquely determined.

Existence can also be proved by constructing the two rays [0, 1) and [0, ei↵)
in the Poincaré model, and then considering all rays [r, q) where r 2 (0, 1),
Im q > 0 and \(0 r q) = �. As r increases from 0 to 1, the latter ray will
first intersect [0, ei↵) at an angle decreasing from ⇡ � ↵ � � to 0, and then
not intersect at all. By continuity, at one point it intersects at the angle �.

2b) By (a) there is a triangle T with angles ⇡/3,⇡/4 and ⇡/4, unique up to
congruence. Joining six of these together at the ⇡/3-vertex (the ”center”)
in the obvious way constructs the hexagon. This is easiest to visualize if
we let the center be the origin in the Poincaré disk model.

Using this model, one could also start by constructing the six rays from
0 to e2⇡ki/6, k = 1, . . . , 6. Any circle with center 0 will cross these rays in
vertices of regular hexagons, and when the Euclidean radius of this circle
goes from 0 to 1, the vertex angle goes from 2⇡/3 to 0. By continuity, one
of the hexagons must have vertex angle ⇡/2.

The area of each of the triangles is ⇡ � (⇡/3 + ⇡/4 + ⇡/4) = ⇡/6, so the
total area is ⇡.

The side s of the hexagon is the side of T opposite to the angle ⇡/3. It is
determined by the second law of cosines:

cos
⇡

3
= � cos2

⇡

4
+ sin2

⇡

4
cosh s,

which gives cosh s = 2, or s = ln(2 +
p
22 � 1) = ln(2 +

p
3).

The radius R of the circumscribed circle is the common length of the
other sides of T , and is found for instance by using the hyperbolic sine law:

sinR

sin
⇡

4

=
sinh s

sin
⇡

3

.

Using sinh s =
p
cosh2 s� 1, this gives sinhR =

p
2 and R = ln(

p
2 +

p
3).

Problem 3

3a) The standard way of parametrizing surfaces of revolution gives

r(u, v) = (u, coshu cos v, coshu sin v).

Then ru = (1, sinhu cos v, sinhu sin v), rv = (0,� coshu sin v, coshu cos v).
Hence E = ru · ru = 1 + sinh2 u = cosh2 u, F = ru · rv = 0, and

G = rv · rv = cosh2 u.

The area of Sa is then
ZZ

Sa

p
EG� F 2 du dv =

Z 2⇡

0
[

Z a

0
cosh2 u du]dv =

⇡

2
sinh(2a) + ⇡a.
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3b) The Gauss map is a choice of unit normal vector N , considered as a
map from S to the unit sphere S2. For N we use the normalized vector
product of basis vectors ru and rv and get:

N(r(u, v)) =
ru ⇥ rv
|ru ⇥ rv|

=
(sinhu,� cos v,� sin v)

coshu
.

Assume that N(r(u, v)) = N(r(u0, v0)). Comparing the first components,
we see that then tanhu = tanhu0. But tanh is injective, so u = u0.

From the second and third components it now follows that cos v = cos v0

and sin v = sin v0, and then v � v0 must be a multiple of 2⇡. But then
r(u, v) = r(u0, v0).

To see what the image is, observe that tanhu can be anything in the
interval (�1, 1), but not ±1. However, if x 6= ±1 and x2 + y2 + z2 = 1, we
can set x = tanhu for some u. Then y2 + z2 = 1� tanh2 u = 1/ coshu, and
we can find v such that y = � cos v/ coshu, z = � sin v/ coshu.

Thus the image of N is S2 � {(±1, 0, 0)}.

3c) To compute the Gaussian curvature we use the formula K =
eg � f2

EG� F 2
.

First we need the second derivatives:

ruu = (0, coshu cos v, coshu sin v), ruv = (0,� sinhu sin v, sinhu cos v)
and rvv = (0,� coshu cos v,� cosh v sin v). Then

e = N · ruu = �1, f = N · ruv = 0 and g = N · rvv = 1.

Thus K(r(u, v)) =
�1

cosh4 u
. The integral over Sa is

ZZ

Sa

K dA =

Z a

u=0

Z 2⇡

v=0
K(r(u, v))

p
EG� F 2du dv

=

Z a

u=0

Z 2⇡

v=0

�1

cosh4 u
cosh2 u du dv = �2⇡ tanh a.

Clearly lima!1
RR

Sa
K dA = �2⇡.

3d) Since the curve lies in a plane, both its tangent and acceleration vectors
will lie in this plane. The curve will therefore be a geodesic if the surface
normal also lies in the plane. But in the plane x = 0, the parameter u = 0,
and then the x-component tanhu of N vanishes. Thus N indeed lies in the
same plane.

Evidently all rotations about the x-axis (corresponding to the maps (u, v) 7!
(u, v+ ✓) on parameters) are isometries of S. They also preserve the curves
Ca, hence also the geodesic curvature, since it is intrinsic. Therefore

Z

Ca
kg

a ds = kag`(Ca) = 2⇡kg cosh a.

Substituting this into the Gauss-Bonnet theorem
ZZ

Sa

K dA+

Z

Ca
kg

a ds = 2⇡�(Sa)

gives �2⇡ tanh a+ 2⇡kag cosh a = 0.
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Hence kag =
tanh a

cosh a
=

sinh a

cosh2 a
.

Problem 4

Let R stand for either of the two components. Since the boundary curve
is smooth and geodesic, the Gauss-Bonnet theorem takes its simplest form

ZZ

R
K dA = 2⇡�(R).

Since he curvature is negative, the left hand side is also negative. But if
R is either a disk or a Möbius band, the right hand side is 0 or 2⇡. This is
a contradiction.


