
MAT4510: Exam 2011, suggested solution

Problem 1

f(z) =
√

3z−1
z . Here a =

√
3, b = −1, c = 1 and d = −0. Moreover (a + d)2 = 3, it

follows that f is of elliptic type. f(z) = z ⇔ z2 −
√

3z + 1 = 0⇔ z =
√

3
2 ±

i
2 . Let

h(z) = 2z −
√

3. Then h ∈Möb+(H) and h(
√

3
2 ±

i
2 ) = i.

Consider g = h ◦ f ◦ h−1. Now h, f and h−1 correspond to the matrices[
2 −

√
3

0 1

]
,

[√
3 −1

1 −0

]
and

[
1
√

3
0 2

]
.

Put g = h ◦ f ◦ h−1. So g corresponds to the matrix[
2 −

√
3

0 1

] [√
3 −1

1 −0

][
1
√

3
0 2

]
=

[√
3 −1

1
√

3

]
.

So g(z) =
√

3z−1
z+
√

3
=

−
√

3
2 z+ 1

2
−z
2 −

√
3

2

= cos θz+sin θ
− sin θz+cos θ with θ = 5π

2 , is an elliptic map on

normal form conjugate to f .

Problem 2

The first hyperbolic law of cosines is:

cosh a = cosh b cosh c− sinh b sinh c cosα.

The hyperbolic law of sines is:
sinα
sinh a

=
sinβ
sinh b

=
sin γ
sinh c

.

From the first and second hyperbolic law of cosines we get that cosh c = cosh a cosh b
and thus cosh b = cosh c

cosh a and cosβ = sinα cosh b (since cos γ = 0 ans sin γ = 1).
From the hyperbolic law of sines we get that sinα = sin γ

sinh c sinh a = sinh a
sinh c , and we

thus get that

cosβ = sinα cosh b =
sinh a
sinh c

cosh c
cosh a

=
sinh a
cosh a

/
sinh c
cosh c

=
tanh a
tanh c

.

Problem 3

The line x = 1
2

√
2 and |z| = 1 will intersect at a point cos θ + i sin θ where cos θ =

1
2

√
2 so θ = π

4 . This means that the inner angle α at this vertex of R is π
2 −

π
4 .

The line x = 1
2

√
2 and |z| =

√
2 will intersect at a point

√
2(cos θ + i sin θ) where√

2 cos θ = 1
2

√
2 so cos θ = 1

2 , θ = π
3 . This means that the inner angle β at this

vertex of R is π − π
3 = 2π

3 . From symmetry it is clear that the two other inner
angles of R is also α and β. Subdividing R into two hyperbolic triangles and
using the hyperbolic area formulae for such triangles, we see that the area of R is
2π− (α+α+β+β) = 2π− 11

6 π = π
6 . (This area may also be found by integration.)

Problem 4

a)

xu = (−v sinu, v cosu, u),xv = (cosu, sinu, 0),xu × xv = (−u sinu, u cosu,−v).
1



2

So E = xu·xu = u2 +v2, F = xu·xv = 0 and G = xv·xv = 1. The first fundamental
form is thus given by

ds2 = (u2 + v2)du2 + dv2.

Moreover N = (u sinu,−u cosu,v)√
u2+v2

, and we get that

e = xuu·N = (−v cosu,−v sinu, 1)·N =
v√

u2 + v2
,

f = xuv·N = (− sinu, cosu, 0)·N =
−u√
u2 + v2

and g = xvv·N = 0·N = 0.

It follows that the curvature is given by

K =
eg − f2

EG− F 2
=

−u2

(u2 + v2)2
.

b) Let E, F and G be the coefficients of the first fundamental form of S′ with
respect to the parametrization of y. Then

E = yu·yu = (−v sinu, v cosu, 0)·(−v sinu, v cosu, 0) = v2,

F = yu·yv = (−v sinu, v cosu, 0)·(cosu, sinu, 1) = 0,

G = yv·yv = (cosu, sinu, 1)·(cosu, sinu, 1) = 2.

Let E′, F ′ and G′ be the coefficients of the first fundamental form of U with respect
to the parametrization

z(u, v) = (
√

2v cos
u√
2
,
√

2v sin
u√
2
).

Then

E′ = zu·zu = (−v sin
u√
2
, v cos

u√
2
)·(−v sin

u√
2
, v cos

u√
2
) = v2,

F = zu·zv = (−v sin
u√
2
, v cos

u√
2
)·(
√

2 cos
u√
2
,
√

2 sin
u√
2
) = 0,

G′ = zv·zv = (
√

2 cos
u√
2
,
√

2 sin
u√
2
)·(
√

2 cos
u√
2
,
√

2 sin
u√
2
) = 2.

since E = E′, F = F ′ and G = G′ and f also is a diffeomorphism onto U , it follows
that F is an isometry. Since R2 and thus U have Gaussian curvature equal 0 and
f is an isometry, it follows from theorem Egregium that S′ must have constant
curvature equal 0. Since the curvature of S −u2

(u2+v2)2 is never 0, it follows again
from theorem Egregium that there cannot exist any local isometry between S and
S′.

c) The curves u = constant are straight lines on S′ and therefore geodesics. If
av(t) cos u(t)√

2
+ bv(t) sin u(t)√

2
= c, then a

√
2v(t) cos u(t)√

2
+ b
√

2v(t) sin u(t)√
2

= c
√

2.
This means that z(u, v) maps the curves (u(t), v(t) to the intersection of U and
the straight lines in R2 with equation ax + by =

√
2c. Since straight lines are

geodesics, the curves (u(t), v(t)) correspond to geodesics in U . Since isometries map
geodesics to geodesic and f and thus f−1 are isometries, the curves also correspond
to geodesics on S′.
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Problem 5

a) Since the line α has equation y = x + 1 and the circle |z + 1| = 2 has equation
(x+ 1)2 + y2 = 4, the circle and the line intersect when 2(x+ 1)2 = 4, x =

√
2− 1

and y =
√

2. The region R is therefore given by x + 1 ≤ y ≤
√

4− (x+ 1)2,
0 ≤ x ≤

√
2− 1. So the hyperbolic area of R is given by

A(R) =
∫ ∫

R

dxdy

y2
=
∫ √2−1

0

∫ √4−(x+1)2

x+1

dydx

y2
=
∫ √2−1

0

[
−1
y

]√4−(x+1)2

x+1

=

∫ √2−1

0

(
1

x+ 1
− 1√

4− (x+ 1)2
)dx =

[
ln(x+ 1)− arcsin

x+ 1
2

]√2−1

0

=
1
2

ln 2− arcsin
√

2
2

+ arcsin
1
2

=
1
2

ln 2− π

4
+
π

6
=

1
2

ln 2− π

12
.

b) The hyperbolic arc-length of the curve is given by

s(t0) =
∫ t0

0

√
x′(t)2 + y′(t)2

y(t)
dt =

∫ t0

0

√
2

t+ 1
dt =

[√
2 ln(t+ 1)

]t0
0

=
√

2 ln(t0 + 1).

We have s = s(t) =
√

2 ln(t+ 1)⇒ t = e
s√
2 − 1. So α(s) = (e

s√
2 − 1) + ie

s√
2 is the

parametrization of α by arc-length.

c) With x(s) = e
s√
2 − 1 and y(s) = e

s√
2 we get that

Dα′′(s) = (x′′ − 2
y
x′y′) + i(y′′ +

1
y
(x′)2 − 1

y
(y′)2) =

1
2
e

s√
2 (−1 + i).

SinceDα′′(s) and nα(s) point in the same direction, we get that kg(s) = ||Dα′′(s)||α(s) =
1
2

√
2e

s√
2

e
s√
2

= 1√
2
. So∫
α1

kgds =
1√
2
l(α1) =

1√
2

√
2 ln((

√
2− 1) + 1) =

1
2

ln 2.

d) The non-smooth points of R is p1 = (
√

2− 1) + i
√

2, p2 =
√

3i and p3 = i. Let
ε1, ε2 and ε3 be the outer angles at p1, p2 and p3 respectively. We see immeadiately
that ε1 = π

2 and ε3 = π− π
4 = 3π

4 . The unit normal of |z + 1| = 2 at p2 is 1
2 (1,
√

3).
This normal vector makes and angle π

6 with the imaginary axis (since cos π6 = 1
2

√
3).

The outer angle ε2 is therefore equal to π
2 + π

6 = 2π
3 . Since the boundary of R is

the union of α1 and two other curves which are H-lines and therefore geodesics, we
get that

∫
∂R
kg(s)ds =

∫
α1
kg(s)ds. Recall that the curvature in H is−1. From a)

and c) and above we get that∫
R

∫
KdA+

∫
∂R

kg(s)ds+ ε1 + ε2 + ε3 = −A(R) +
∫
∂R

kg(s)ds+ ε1 + ε2 + ε3

= −(
1
2

ln 2− π

12
) +

1
2

ln 2 +
π

2
+

2π
3

+
3π
4

= 2π.

On the other hand, it is clear that R is homeomorphic to a triangle and therefore
χ(R) = 1 − 3 + 3 = 1, so 2πχ(R) = 2π. This verifies the Gauss-Bonnet Theorem
for this region R in H.


