MAT4510: Exam 2011, suggested solution

Problem 1

$f(z)=\frac{\sqrt{3} z-1}{z}$. Here $a=\sqrt{3}, b=-1, c=1$ and $d=-0$. Moreover $(a+d)^{2}=3$, it follows that f is of elliptic type. $f(z)=z \Leftrightarrow z^{2}-\sqrt{3} z+1=0 \Leftrightarrow z=\frac{\sqrt{3}}{2} \pm \frac{i}{2}$. Let $h(z)=2 z-\sqrt{3}$. Then $h \in \operatorname{Möb}^{+}(\mathbb{H})$ and $h\left(\frac{\sqrt{3}}{2} \pm \frac{i}{2}\right)=i$.

Consider $g=h \circ f \circ h^{-1}$. Now h, f and h^{-1} correspond to the matrices

$$
\left[\begin{array}{cc}
2 & -\sqrt{3} \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
\sqrt{3} & -1 \\
1 & -0
\end{array}\right] \text { and }\left[\begin{array}{cc}
1 & \sqrt{3} \\
0 & 2
\end{array}\right] .
$$

Put $g=h \circ f \circ h^{-1}$. So g corresponds to the matrix

$$
\left[\begin{array}{cc}
2 & -\sqrt{3} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\sqrt{3} & -1 \\
1 & -0
\end{array}\right]\left[\begin{array}{cc}
1 & \sqrt{3} \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right] .
$$

So $g(z)=\frac{\sqrt{3} z-1}{z+\sqrt{3}}=\frac{\frac{-\sqrt{3}}{2} z+\frac{1}{2}}{\frac{-z}{2}-\frac{\sqrt{3}}{2}}=\frac{\cos \theta z+\sin \theta}{-\sin \theta z+\cos \theta}$ with $\theta=\frac{5 \pi}{2}$, is an elliptic map on normal form conjugate to f.

Problem 2

The first hyperbolic law of cosines is:

$$
\cosh a=\cosh b \cosh c-\sinh b \sinh c \cos \alpha .
$$

The hyperbolic law of sines is:

$$
\frac{\sin \alpha}{\sinh a}=\frac{\sin \beta}{\sinh b}=\frac{\sin \gamma}{\sinh c} .
$$

From the first and second hyperbolic law of cosines we get that $\cosh c=\cosh a \cosh b$ and thus $\cosh b=\frac{\cosh c}{\cosh a}$ and $\cos \beta=\sin \alpha \cosh b($ since $\cos \gamma=0$ ans $\sin \gamma=1)$. From the hyperbolic law of sines we get that $\sin \alpha=\frac{\sin \gamma}{\sinh c} \sinh a=\frac{\sinh a}{\sinh c}$, and we thus get that

$$
\cos \beta=\sin \alpha \cosh b=\frac{\sinh a}{\sinh c} \frac{\cosh c}{\cosh a}=\frac{\sinh a}{\cosh a} / \frac{\sinh c}{\cosh c}=\frac{\tanh a}{\tanh c} .
$$

Problem 3

The line $x=\frac{1}{2} \sqrt{2}$ and $|z|=1$ will intersect at a point $\cos \theta+i \sin \theta$ where $\cos \theta=$ $\frac{1}{2} \sqrt{2}$ so $\theta=\frac{\pi}{4}$. This means that the inner angle α at this vertex of R is $\frac{\pi}{2}-\frac{\pi}{4}$. The line $x=\frac{1}{2} \sqrt{2}$ and $|z|=\sqrt{2}$ will intersect at a point $\sqrt{2}(\cos \theta+i \sin \theta)$ where $\sqrt{2} \cos \theta=\frac{1}{2} \sqrt{2}$ so $\cos \theta=\frac{1}{2}, \theta=\frac{\pi}{3}$. This means that the inner angle β at this vertex of R is $\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$. From symmetry it is clear that the two other inner angles of R is also α and β. Subdividing R into two hyperbolic triangles and using the hyperbolic area formulae for such triangles, we see that the area of R is $2 \pi-(\alpha+\alpha+\beta+\beta)=2 \pi-\frac{11}{6} \pi=\frac{\pi}{6}$. (This area may also be found by integration.)

Problem 4

a)

$$
\mathbf{x}_{u}=(-v \sin u, v \cos u, u), \mathbf{x}_{v}=(\cos u, \sin u, 0), \mathbf{x}_{u} \times \mathbf{x}_{v}=(-u \sin u, u \cos u,-v)
$$

So $E=\mathbf{x}_{u} \cdot \mathbf{x}_{u}=u^{2}+v^{2}, F=\mathbf{x}_{u} \cdot \mathbf{x}_{v}=0$ and $G=\mathbf{x}_{v} \cdot \mathbf{x}_{v}=1$. The first fundamental form is thus given by

$$
d s^{2}=\left(u^{2}+v^{2}\right) d u^{2}+d v^{2} .
$$

Moreover $N=\frac{(u \sin u,-u \cos u, v)}{\sqrt{u^{2}+v^{2}}}$, and we get that

$$
\begin{aligned}
& e=\mathbf{x}_{u u} \cdot N=(-v \cos u,-v \sin u, 1) \cdot N=\frac{v}{\sqrt{u^{2}+v^{2}}} \\
& f=\mathbf{x}_{u v} \cdot N=(-\sin u, \cos u, 0) \cdot N=\frac{-u}{\sqrt{u^{2}+v^{2}}} \text { and } g=\mathbf{x}_{v v} \cdot N=\mathbf{0} \cdot N=0 .
\end{aligned}
$$

It follows that the curvature is given by

$$
K=\frac{e g-f^{2}}{E G-F^{2}}=\frac{-u^{2}}{\left(u^{2}+v^{2}\right)^{2}} .
$$

b) Let E, F and G be the coefficients of the first fundamental form of S^{\prime} with respect to the parametrization of \mathbf{y}. Then

$$
\begin{aligned}
& E=\mathbf{y}_{u} \cdot \mathbf{y}_{u}=(-v \sin u, v \cos u, 0) \cdot(-v \sin u, v \cos u, 0)=v^{2} \\
& F=\mathbf{y}_{u} \cdot \mathbf{y}_{v}=(-v \sin u, v \cos u, 0) \cdot(\cos u, \sin u, 1)=0, \\
& G=\mathbf{y}_{v} \cdot \mathbf{y}_{v}=(\cos u, \sin u, 1) \cdot(\cos u, \sin u, 1)=2 .
\end{aligned}
$$

Let E^{\prime}, F^{\prime} and G^{\prime} be the coefficients of the first fundamental form of U with respect to the parametrization

$$
\mathbf{z}(u, v)=\left(\sqrt{2} v \cos \frac{u}{\sqrt{2}}, \sqrt{2} v \sin \frac{u}{\sqrt{2}}\right)
$$

Then

$$
\begin{aligned}
& E^{\prime}=\mathbf{z}_{u} \cdot \mathbf{z}_{u}=\left(-v \sin \frac{u}{\sqrt{2}}, v \cos \frac{u}{\sqrt{2}}\right) \cdot\left(-v \sin \frac{u}{\sqrt{2}}, v \cos \frac{u}{\sqrt{2}}\right)=v^{2} \\
& F=\mathbf{z}_{u} \cdot \mathbf{z}_{v}=\left(-v \sin \frac{u}{\sqrt{2}}, v \cos \frac{u}{\sqrt{2}}\right) \cdot\left(\sqrt{2} \cos \frac{u}{\sqrt{2}}, \sqrt{2} \sin \frac{u}{\sqrt{2}}\right)=0 \\
& G^{\prime}=\mathbf{z}_{v} \cdot \mathbf{z}_{v}=\left(\sqrt{2} \cos \frac{u}{\sqrt{2}}, \sqrt{2} \sin \frac{u}{\sqrt{2}}\right) \cdot\left(\sqrt{2} \cos \frac{u}{\sqrt{2}}, \sqrt{2} \sin \frac{u}{\sqrt{2}}\right)=2
\end{aligned}
$$

since $E=E^{\prime}, F=F^{\prime}$ and $G=G^{\prime}$ and f also is a diffeomorphism onto U, it follows that F is an isometry. Since \mathbf{R}^{2} and thus U have Gaussian curvature equal 0 and f is an isometry, it follows from theorem Egregium that S^{\prime} must have constant curvature equal 0 . Since the curvature of $S \frac{-u^{2}}{\left(u^{2}+v^{2}\right)^{2}}$ is never 0 , it follows again from theorem Egregium that there cannot exist any local isometry between S and S^{\prime}.
c) The curves $u=$ constant are straight lines on S^{\prime} and therefore geodesics. If $a v(t) \cos \frac{u(t)}{\sqrt{2}}+b v(t) \sin \frac{u(t)}{\sqrt{2}}=c$, then $a \sqrt{2} v(t) \cos \frac{u(t)}{\sqrt{2}}+b \sqrt{2} v(t) \sin \frac{u(t)}{\sqrt{2}}=c \sqrt{2}$. This means that $\mathbf{z}(u, v)$ maps the curves $(u(t), v(t)$ to the intersection of U and the straight lines in \mathbb{R}^{2} with equation $a x+b y=\sqrt{2} c$. Since straight lines are geodesics, the curves $(u(t), v(t))$ correspond to geodesics in U. Since isometries map geodesics to geodesic and f and thus f^{-1} are isometries, the curves also correspond to geodesics on S^{\prime}.

Problem 5

a) Since the line α has equation $y=x+1$ and the circle $|z+1|=2$ has equation $(x+1)^{2}+y^{2}=4$, the circle and the line intersect when $2(x+1)^{2}=4, x=\sqrt{2}-1$ and $y=\sqrt{2}$. The region R is therefore given by $x+1 \leq y \leq \sqrt{4-(x+1)^{2}}$, $0 \leq x \leq \sqrt{2}-1$. So the hyperbolic area of R is given by

$$
\begin{aligned}
A(R) & =\iint_{R} \frac{d x d y}{y^{2}}=\int_{0}^{\sqrt{2}-1} \int_{x+1}^{\sqrt{4-(x+1)^{2}}} \frac{d y d x}{y^{2}}=\int_{0}^{\sqrt{2}-1}\left[-\frac{1}{y}\right]_{x+1}^{\sqrt{4-(x+1)^{2}}}= \\
& \int_{0}^{\sqrt{2}-1}\left(\frac{1}{x+1}-\frac{1}{\sqrt{4-(x+1)^{2}}}\right) d x=\left[\ln (x+1)-\arcsin \frac{x+1}{2}\right]_{0}^{\sqrt{2}-1} \\
& =\frac{1}{2} \ln 2-\arcsin \frac{\sqrt{2}}{2}+\arcsin \frac{1}{2}=\frac{1}{2} \ln 2-\frac{\pi}{4}+\frac{\pi}{6}=\frac{1}{2} \ln 2-\frac{\pi}{12} .
\end{aligned}
$$

b) The hyperbolic arc-length of the curve is given by

$$
s\left(t_{0}\right)=\int_{0}^{t_{0}} \frac{\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}}{y(t)} d t=\int_{0}^{t_{0}} \frac{\sqrt{2}}{t+1} d t=[\sqrt{2} \ln (t+1)]_{0}^{t_{0}}=\sqrt{2} \ln \left(t_{0}+1\right)
$$

We have $s=s(t)=\sqrt{2} \ln (t+1) \Rightarrow t=e^{\frac{s}{\sqrt{2}}}-1$. So $\alpha(s)=\left(e^{\frac{s}{\sqrt{2}}}-1\right)+i e^{\frac{s}{\sqrt{2}}}$ is the parametrization of α by arc-length.
c) With $x(s)=e^{\frac{s}{\sqrt{2}}}-1$ and $y(s)=e^{\frac{s}{\sqrt{2}}}$ we get that

$$
D \alpha^{\prime \prime}(s)=\left(x^{\prime \prime}-\frac{2}{y} x^{\prime} y^{\prime}\right)+i\left(y^{\prime \prime}+\frac{1}{y}\left(x^{\prime}\right)^{2}-\frac{1}{y}\left(y^{\prime}\right)^{2}\right)=\frac{1}{2} e^{\frac{s}{\sqrt{2}}}(-1+i)
$$

Since $D \alpha^{\prime \prime}(s)$ and $n_{\alpha}(s)$ point in the same direction, we get that $k_{g}(s)=\left\|D \alpha^{\prime \prime}(s)\right\|_{\alpha(s)}=$ $\frac{1}{2} \frac{\sqrt{2} \frac{s}{\sqrt{2}}}{e^{\frac{s}{\sqrt{2}}}}=\frac{1}{\sqrt{2}}$. So

$$
\int_{\alpha_{1}} k_{g} d s=\frac{1}{\sqrt{2}} l\left(\alpha_{1}\right)=\frac{1}{\sqrt{2}} \sqrt{2} \ln ((\sqrt{2}-1)+1)=\frac{1}{2} \ln 2 .
$$

d) The non-smooth points of R is $p_{1}=(\sqrt{2}-1)+i \sqrt{2}, p_{2}=\sqrt{3} i$ and $p_{3}=i$. Let $\epsilon_{1}, \epsilon_{2}$ and ϵ_{3} be the outer angles at p_{1}, p_{2} and p_{3} respectively. We see immeadiately that $\epsilon_{1}=\frac{\pi}{2}$ and $\epsilon_{3}=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$. The unit normal of $|z+1|=2$ at p_{2} is $\frac{1}{2}(1, \sqrt{3})$. This normal vector makes and angle $\frac{\pi}{6}$ with the imaginary axis (since $\cos \frac{\pi}{6}=\frac{1}{2} \sqrt{3}$). The outer angle ϵ_{2} is therefore equal to $\frac{\pi}{2}+\frac{\pi}{6}=\frac{2 \pi}{3}$. Since the boundary of R is the union of α_{1} and two other curves which are H-lines and therefore geodesics, we get that $\int_{\partial R} k_{g}(s) d s=\int_{\alpha_{1}} k_{g}(s) d s$. Recall that the curvature in \mathbb{H} is-1. From a) and c) and above we get that

$$
\begin{aligned}
& \int_{R} \int K d A+\int_{\partial R} k_{g}(s) d s+\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=-A(R)+\int_{\partial R} k_{g}(s) d s+\epsilon_{1}+\epsilon_{2}+\epsilon_{3} \\
& =-\left(\frac{1}{2} \ln 2-\frac{\pi}{12}\right)+\frac{1}{2} \ln 2+\frac{\pi}{2}+\frac{2 \pi}{3}+\frac{3 \pi}{4}=2 \pi
\end{aligned}
$$

On the other hand, it is clear that R is homeomorphic to a triangle and therefore $\chi(R)=1-3+3=1$, so $2 \pi \chi(R)=2 \pi$. This verifies the Gauss-Bonnet Theorem for this region R in \mathbb{H}.

