MAT4510: Exam 2011, suggested solution

Problem 1

flz) = @ Here @ = v/3,b = —1,¢ = 1 and d = —0. Moreover (a + d)? = 3, it
follows that f is of elliptic type. f(z) = z < 2% — \/gz +1=0&2= § + 5. Let
h(z) = 2z — /3. Then h €Mab* (H) and h(§ +2)=i.
Consider g = ho foh™'. Now h, f and h~! correspond to the matrices
2 —V3| V3 -1 IRRVE]
, and .
0 1 1 -0 0 2

Put g=ho foh™!. So g corresponds to the matrix

L -

V3 1 .
_ V3Bz—1 _ 5—2+3 _ cosfz+sin6 . __ 5w I
So g(z) = ShVE T i T Tsinbetoosd with § = =7, is an elliptic map on

normal form conjugate to f.

Problem 2
The first hyperbolic law of cosines is:

cosh a = cosh b cosh ¢ — sinh bsinh c cos .
The hyperbolic law of sines is:

sin sin 8 sin 7y

sinha sinhb  sinhe’
From the first and second hyperbolic law of cosines we get that cosh ¢ = cosh a cosh b

and thus coshb = % and cos @ = sinacoshb (since cosy = 0 ans siny = 1).

sinh a
sinh¢?

sin y

> and we
sinh ¢

From the hyperbolic law of sines we get that sina = sinha =

thus get that

. sinh a cosh ¢ sinha ,sinhc¢ tanha
cos 3 = sinacoshb = — = / =
sinhc cosha  cosha

coshe  tanhe’
Problem 3

The line z = $v/2 and |z| = 1 will intersect at a point cos 6 + isin 6 where cosf =

s s us

%\/5 so § = 7. This means that the inner angle « at this vertex of R is § — 7.
The line = $v/2 and |z| = v/2 will intersect at a point v/2(cos@ + isin6) where
V2cos = $v/2 50 cosf = %, 0 = Z. This means that the inner angle (3 at this

3
vertex of Ris m — § = %’T From symmetry it is clear that the two other inner
angles of R is also a and . Subdividing R into two hyperbolic triangles and
using the hyperbolic area formulae for such triangles, we see that the area of R is

21— (a+a+ 8+ 3) = 2 — tx = Z. (This area may also be found by integration.)
Problem 4
a)

X, = (—vsinu, v cosu,u), X, = (cosu,sinu, 0),x, X X, = (—usinu, wcosu, —v).
1



2

So E =xyXy = u?+v%, F = x,%X, = 0 and G = XX, = 1. The first fundamental
form is thus given by
ds* = (u* + v?)du® + dv*.

_ (usinu,—u cos u,v)

Moreover N N Tt and we get that

e =Xy N = (—vcosu,—vsinu,1)-N = ﬁ,
_ and g =X,,N =0-N =0.

f=%uyN = (—sinu,cosu,0)-N =

2 2

u* +v

It follows that the curvature is given by

- eg — f? B —u?
 EG—-F?2  (u?+02)?

b) Let E, F and G be the coefficients of the first fundamental form of S’ with

respect to the parametrization of y. Then
E =y, yu = (—vsinu,vcosu,0)-(—vsinu, vcosu,0) = v?,
F=y,y, = (—vsinu,vcosu,0)-(cosu,sinu,1) =0,
G =y, Yy = (cosu,sinu, 1)-(cosu, sinu, 1) = 2.
Let E', F’ and G’ be the coefficients of the first fundamental form of U with respect

to the parametrization

z(u,v) = (V2v cos %, V2usin

)
V2
Then

E =2,2, = (—vsinl vcosl)(—vsin—

V22

U u u u
F = 2,2, = (—vsin —, v cos — )-(vV/2 cos —, v/2sin — ) = 0,
( 7 \/5)( 7 \/é)

G' = 2,2, = (V2cos 75 V2sin ﬁ)-(\/ﬁcos 75 V2sin ﬁ) =2.

since E = FE',F = F' and G = G’ and f also is a diffeomorphism onto U, it follows
that F is an isometry. Since R? and thus U have Gaussian curvature equal 0 and
f is an isometry, it follows from theorem Egregium that S’ must have constant
curvature equal 0. Since the curvature of S ﬁ is never 0, it follows again
from theorem Egregium that there cannot exist any local isometry between S and
S’

¢) The curves u = constant are straight lines on S’ and therefore geodesics. If
av(t) cos % + bu(t) sin % = ¢, then av/2v(t)cos % + bv/2v(t) sin % = V2.
This means that z(u,v) maps the curves (u(t),v(t) to the intersection of U and
the straight lines in R? with equation axz 4+ by = v/2¢. Since straight lines are
geodesics, the curves (u(t), v(t)) correspond to geodesics in U. Since isometries map
geodesics to geodesic and f and thus f~! are isometries, the curves also correspond

to geodesics on S’.



Problem 5

a) Since the line o has equation y = = + 1 and the circle |z + 1| = 2 has equation
(x +1)? +y? = 4, the circle and the line intersect when 2(z +1)? = 4,2 = /2 — 1
and y = v/2. The region R is therefore given by = + 1 < y < /4 — (z +1)2,
0 < x < +v/2— 1. So the hyperbolic area of R is given by

A(R) // dzdy /f l/mdyd:c /ﬁl[ l}m
0

Y

x+1
V2-1
1 1
/ ( )dx = {ln(w—i— 1) — arcsin vt }
0 r+1 4—(x+1) 0
1 2 1 1
= 71n27arcsin£+arcsinf = 71n277+z = 2 .
2 2 2 2 4 6 2 12

b) The hyperbolic arc-length of the curve is given by
to /x/(t)2 + y’(t)2 to ﬂ
) /0 ") dt /O L [\f n(t + )] =V2In(ty + 1).

We have s = s(t) = vV2In(t+ 1) =t =ev2 — 1. So a(s) = (e¥3 — 1) +ieV7 is the

parametrization of « by arc-length.

¢) With z(s) = eV —1 and y(s) = eV? we get that
1

2 1 1 =
Dal(s) = (2" = 2a'y') 4 i(y" + (@) — L)) = LoV (-1 +i)
y y y 2
Since Do’ (s) and na(s) point in the same direction, we get that ky(s) = || Do’ (5)|]a(s) =
13V _ 1
27 s vz

/ kds-—( 1)2%\/5111((\/5—1)4-1):%1112.

d) The non-smooth points of R is p; = (v/2 — 1) +4v/2, p» = v/3i and p3 = i. Let
€1, €2 and e3 be the outer angles at p;, p2 and ps respectively. We see immeadiately
that e; = Z and €3 = m — T = 3%, The unit normal of |z + 1| = 2 at py is 2(1,V/3).
This normal vector makes and angle Z with the imaginary axis (since cos = £1/3).
The outer angle €3 is therefore equal to § + & = %’“ Since the boundary of R is
the union of oy and two other curves which are H-lines and therefore geodesics, we
get that [, kg(s)ds = [ kg(s)ds. Recall that the curvature in H is—1. From a)
and ¢) and above we get that

//KdA+ kg(s)ds+ €1 + €2 + €3 = —A(R) + kg(s)ds + €1 + €2 + €3
OR OR

1 T 1 T 2w 37
(22— —)+=In2+4 = + = + 2= =2r.
(2n 12)—1—211 +2+3+4 v

On the other hand, it is clear that R is homeomorphic to a triangle and therefore

X(R) =1—-3+4+3 =1, so 2mx(R) = 2n. This verifies the Gauss-Bonnet Theorem

for this region R in H.



