MAT4510: Exam 2013, suggested solution

Problem 1

a) $f(z)=\frac{2}{2-z} \cdot f(z)=z \Leftrightarrow z^{2}-2 z+2=0 \Leftrightarrow z=1 \pm i$. Since f has complex fixpoints, it follows that f is elliptic.
Let $p=1+i$ and $h(z)=\frac{z-\operatorname{Re} p}{\operatorname{Im} p}=z-1$. Then $h \in \mathrm{Möb}^{+}(\mathbb{H})$ and $h(p)=i$.
Consider $g=h \circ f \circ h^{-1}$. Now h, f and h^{-1} correspond to the matrices

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 2 \\
-1 & 2
\end{array}\right] \text { and }\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Put $g=h \circ f \circ h^{-1}$. So g corresponds to the matrix

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 2 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

So $g(z)=\frac{z+1}{-z+1}=\frac{\frac{\sqrt{2}}{2} z+\frac{\sqrt{2}}{2}}{\frac{-\sqrt{2}}{2} z+\frac{\sqrt{2}}{2}}=\frac{\cos \theta z+\sin \theta}{-\sin \theta z+\cos \theta}$ with $\theta=\frac{\pi}{4}$, is an elliptic map on normal form conjugate to f.
b) $f(z)=\frac{4 \bar{z}+20}{5 \bar{z}+4}$. Let $z=x+i y . \quad f(z)=z \Leftrightarrow 5|z|^{2}+4(z-\bar{z})-20=0 \Leftrightarrow$ $5\left(x^{2}+y^{2}\right)=20,8 y=0 \Leftrightarrow z= \pm 2$. So the fixpoints are $z= \pm 2$. Let $h(z)=\frac{z-2}{z+2}$. Then $h \in \operatorname{Möb}^{+}(\mathbb{H})$ and $h(2)=0, h(-2)=\infty$. Let $f^{\prime}=h \circ f \circ h^{-1}$. Then f^{\prime} corresponds to the matrix:

$$
\left[\begin{array}{cc}
1 & -2 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
4 & 20 \\
5 & 4
\end{array}\right]\left[\begin{array}{cc}
2 & 2 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
-24 & 0 \\
0 & 56
\end{array}\right]
$$

So $f^{\prime}(z)=-\frac{24}{56} \bar{z}=-\frac{3}{7} \bar{z}$. Put $g^{\prime}(z)=-\bar{z}$ and $k^{\prime}(z)=\frac{3}{7} z$. Then g^{\prime} is an inversion, $k^{\prime} \in \mathrm{Möb}^{+}(\mathbb{H})$ and $g^{\prime} \circ k^{\prime}=k^{\prime} \circ g^{\prime}=f^{\prime}$. Put $g=h^{-1} \circ g^{\prime} \circ h$ and $k=h^{-1} \circ k^{\prime} \circ h$.
It follows that g and k will have the desired properties.
Now g corresponds to the matrix

$$
\left[\begin{array}{cc}
2 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 8 \\
2 & 0
\end{array}\right] .
$$

So $g(z)=\frac{8}{2 \bar{z}}=\frac{4}{\bar{z}}$. We see that when $|z|=2$ then $g(z)=\frac{4 z}{\bar{z} z}=\frac{4 z}{|z|^{2}}=\frac{4 z}{4}=z$. So g is the inversion in the \mathbb{H}-line $|z|=2$.
k corresponds to the matrix

$$
\left[\begin{array}{cc}
2 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 7
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
20 & 16 \\
4 & 20
\end{array}\right] .
$$

So $k(z)=\frac{20 z+16}{4 z+20}=\frac{5 z+4}{z+5}$.

Problem 2

a)
$A=\int_{0}^{1} \int_{1}^{-x+2} \frac{d y d x}{y^{2}}=\int_{0}^{1}\left[-\frac{1}{y}\right]_{1}^{-x+2} d x=\int_{0}^{1}\left(1-\frac{1}{2-x}\right) d x=[x+\ln (2-x)]_{0}^{1}=1-\ln 2$.
b) From the first hyperbolic law of cosine, we have $\cosh b=\cosh a \cosh c-\sinh a \sinh c \cos \beta$ hence

$$
\cos \beta=\frac{\cosh a \cosh c-\cosh b}{\sinh _{1} a \sinh c}
$$

Similarly, we get that

$$
\cos \gamma=\frac{\cosh a \cosh b-\cosh c}{\sinh a \sinh b}
$$

Using that $b=c$, we get that

$$
\cos \gamma=\frac{\cosh a \cosh b-\cosh c}{\sinh a \sinh b}=\frac{\cosh a \cosh c-\cosh b}{\sinh a \sinh c}=\cos \beta
$$

Since $\beta, \gamma \in(0, \pi)$ and \cos is 1-1 in this interval, we must have $\beta=\gamma$.
c) Let us denote the angles of T at i, z_{2} and z_{1} by α, β and γ respectively . Let the hyperbolic length of the opposite sides be a, b and c. Then $\cosh b=\frac{1}{2}(\sqrt{2}+$ $\left.\sqrt{3}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)=\sqrt{3}=\cosh c$. Furthermore $\sinh b=\sqrt{\cosh ^{2} b-1}=\sqrt{2}=\sinh c$.
It is clear that the angle α is the same as the angle at i of the Euclidean triangle with vertices $-1, i, 1$. This angle is equal $\frac{\pi}{2}$ (since the two other angles both are $\frac{\pi}{4}$). Now the first hyperbolic law of cosine give us (since $\alpha=\frac{\pi}{2}$ hence $\cos \alpha=0$)

$$
\cosh \left(z_{1}, z_{2}\right)=\cosh a=\cosh b \cosh c=3
$$

d) From c) we get that $\sinh a=\sqrt{9-1}=2 \sqrt{2}$. From b) and c) we get that

$$
\cos \beta=\frac{\cosh a \cosh c-\cosh b}{\sinh a \sinh c}=\frac{3 \sqrt{3}-\sqrt{3}}{4}=\frac{\sqrt{3}}{2}
$$

It follows that $\beta=\frac{\pi}{6}$ and from b) we also get that $\gamma=\frac{\pi}{6}$. From the area formulae of a geodesic triangle, we get that the area of T is equal to $\pi-\frac{\pi}{2}-2 \frac{\pi}{6}=\frac{\pi}{6}$.

Problem 3

a)

$$
\left.\mathbf{x}_{u}=(1,0, v), \mathbf{x}_{v}=(0,1, u)\right)
$$

So $E=\mathbf{x}_{u} \cdot \mathbf{x}_{u}=1+v^{2}, F=\mathbf{x}_{u} \cdot \mathbf{x}_{v}=u v$ and $G=\mathbf{x}_{v} \cdot \mathbf{x}_{v}=1+u^{2}$. The first fundamental form is thus given by

$$
d s^{2}=\left(1+v^{2}\right) d u^{2}+2 u v d u d v+\left(1+u^{2}\right) d v^{2}
$$

Moreover

$$
\mathbf{y}_{u}=(-\cosh v \sin u, \cosh v \cos u, 0), \mathbf{y}_{v}=(\sinh v \cos u, \sinh v \sin u, \cosh v)
$$

So $E=\mathbf{y}_{u} \cdot \mathbf{y}_{u}=\cosh ^{2} v, F=\mathbf{y}_{u} \cdot \mathbf{y}_{v}=0$ and $G=\mathbf{y}_{v} \cdot \mathbf{y}_{v}=\cosh ^{2} v+\sinh ^{2} v$. The first fundamental form is thus given by

$$
d s^{2}=\cosh ^{2} v d u^{2}+\left(\cosh ^{2} v+\sinh ^{2} v\right) d v^{2}
$$

b) We have
$\mathbf{x}_{u} \times \mathbf{x}_{v}=(-v,-u, 1), N_{S}=\frac{(-v,-u, 1)}{\sqrt{1+u^{2}+v^{2}}}$.
Moreover $x_{u u}=\mathbf{0}, x_{u v}=(0,0,1)$ and $x_{v v}=\mathbf{0}$. Hence $e=g=0$ and $f=\mathbf{x}_{u v} \cdot N_{S}=$ $\frac{1}{\sqrt{1+u^{2}+v^{2}}}$. It follows that

$$
K_{S}=\frac{e g-f^{2}}{E G-F^{2}}=\frac{-1}{\left(1+u^{2}+v^{2}\right)^{2}}
$$

Similarly
$\mathbf{y}_{u} \times \mathbf{y}_{v}=\left(\cosh ^{2} v \cos u, \cosh ^{2} v \sin u,-\cosh v \sinh v\right)$ so $N_{S^{\prime}}=\frac{(\cosh v \cos u, \cosh v \sin u,-\sinh v)}{\sqrt{\cosh ^{2} v+\sinh ^{2} v}}$.

Furthermore $\mathbf{y}_{u u}=(-\cosh v \cos u,-\cosh v \sin u, 0), \mathbf{y}_{u v}=(-\sinh v \sin u, \sinh v \cos u, 0)$ and $\mathbf{y}_{v v}=(\cosh v \cos u, \cosh v \sin u, \sinh v)$.

$$
\begin{aligned}
& e=\mathbf{y}_{u u} \cdot N_{S^{\prime}}=\frac{-\cosh ^{2} v}{\sqrt{\cosh ^{2} v+\sinh ^{2} v}} \\
& f=\mathbf{x}_{u v} \cdot N_{S^{\prime}}=0 \text { and } g=\mathbf{x}_{v v} \cdot N=\frac{\cosh ^{2} v-\sinh ^{2} v}{\sqrt{\cosh ^{2} v+\sinh ^{2} v}}=\frac{1}{\sqrt{\cosh ^{2} v+\sinh ^{2} v}}
\end{aligned}
$$

Now, for S^{\prime}, we have that $E G-F^{2}=\cosh ^{2} v\left(\cosh ^{2} v+\sinh ^{2} v\right)$. It follows that the curvature is given by

$$
K_{S^{\prime}}=\frac{e g-f^{2}}{E G-F^{2}}=\frac{-1}{\left(\cosh ^{2} v+\sinh ^{2} v\right)^{2}}
$$

Since $K_{S}=\frac{-1}{\left(1+u^{2}+v^{2}\right)^{2}}$, it follows that $(0,0,0)$ is the only point in S with Gaussian curvature equal -1 . Now if there exists some isometry $\phi: U \rightarrow \phi(U) \subset S^{\prime}$, it follows from Theorem Egregium that $\phi(0,0,0)$ must have Gaussian curvature equal -1 . Now the points in S^{\prime} with Gaussian curvature equal -1 are the points on the circle given by $v=0$. So $\phi(U)$ must contain more than one point (actually infinitely many points) with Gaussian curvature equal -1 . Since $(0,0,0)$ is the only point in S with Gaussian curvature equal -1 and ϕ preserves the Gaussian curvature (again by Theorem Egregium), we will get a contradiction. It follows that we cannot have a local isometry defined around $(0,0,0)$.
c) We have that $\alpha^{\prime}(t)=(1,1,2 t), \alpha^{\prime \prime}(t)=(0,0,2)$ and $N_{S}(\alpha(t))=\frac{(-t,-t, 1)}{\sqrt{1+2 t^{2}}}$. So

$$
\operatorname{det}\left[\begin{array}{c}
\alpha^{\prime}(t) \\
\alpha^{\prime \prime}(t) \\
N_{S}(\alpha(t))
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
1 & 1 & 2 t \\
0 & 0 & 2 \\
\frac{-t}{\sqrt{1+2 t^{2}}} & \frac{-t}{\sqrt{1+2 t^{2}}} & \frac{1}{\sqrt{1+2 t^{2}}}
\end{array}\right]=0
$$

and it follows that $\alpha(t)$ is a geodesic. Furthermore, $\beta(t)$ and $\gamma(t)$ are straight lines and it follows that these curves also are geodesics.
d) The boundary of R_{a} consists of the curves $\beta(t)=(t, 0,0), t \in[0, a], \gamma(t)=$ $(a, t, a t), t \in[0, a]$ and $\alpha(t)=\left(a-t, a-t,(a-t)^{2}\right), t \in[0, a]$. It follows from c$)$ that these curves all are geodesics.
Now $\cos \eta_{1}=\frac{\beta^{\prime}(0) \cdot\left(-\alpha^{\prime}(a)\right)}{\left\|\beta^{\prime}(0)\right\|\left\|\alpha^{\prime}(0)\right\|}=\frac{(1,0,0) \cdot(1,1,0)}{\sqrt{2}}=\frac{1}{\sqrt{2}}$, and $\cos \eta_{2}=\frac{-\beta^{\prime}(a) \cdot\left(\gamma^{\prime}(0)\right)}{\left\|\beta^{\prime}(a)\right\|\left\|\gamma^{\prime}(0)\right\|}=$ $\frac{(-1,0,0) \cdot(0,1, a)}{\sqrt{1+a^{2}}}=0$. It is geometrically obvious that η_{1} and η_{2} are angles in the interval $[0, \pi]$ (where \cos is $1-1$), hence $\eta_{1}=\frac{\pi}{4}$ and $\eta_{2}=\frac{\pi}{2}$. Finally $\cos \eta_{3}=$ $\frac{\alpha^{\prime}(0) \cdot\left(-\gamma^{\prime}(a)\right)}{\left\|\alpha^{\prime}(0)\right\|\left\|\gamma^{\prime}(a)\right\|}=\frac{(-1,-1,-2 a) \cdot(0,-1,-a)}{\sqrt{2+4 a^{2}} \sqrt{1+a^{2}}}=\frac{1+2 a^{2}}{\sqrt{2+4 a^{2}} \sqrt{1+a^{2}}}=\sqrt{\frac{1+2 a^{2}}{2+2 a^{2}}}$. Let $\epsilon_{i} i=1,2,3$ be the exteriour angles at $(0,0,0),(a, 0,0)$ and $\left(a, a, a^{2}\right)$. It is clear that $\epsilon_{1}=\frac{3 \pi}{4}$ and that $\epsilon_{2}=\frac{\pi}{2}$. By a) and b) we have that

$$
\iint_{R_{a}} K_{S} d A=\iint_{T_{a}} K_{S}(u, v) \sqrt{E G-F^{2}} d u d v=\iint_{T_{a}} \frac{-d u d v}{\left(1+u^{2}+v^{2}\right)^{\frac{3}{2}}}
$$

moreover R_{a} is homemorphic to the triangle T_{a} hence $\chi\left(R_{a}\right)=2 \pi$. So by the Gauss Bonnet Theorem we get that (using that the boundary of T_{a} consists of geodesics)

$$
\iint_{T_{a}} \frac{d u d v}{\left(1+u^{2}+v^{2}\right)^{\frac{3}{2}}}=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}-2 \pi
$$

Since $\lim _{a \rightarrow \infty} \cos \eta_{3}=\lim _{a \rightarrow \infty} \sqrt{\frac{1+2 a^{2}}{2+2 a^{2}}}=1, \lim _{a \rightarrow \infty} \eta_{3}=0$ and $\lim _{a \rightarrow \infty} \epsilon_{3}=\pi$. We thus get that

$$
\lim _{a \rightarrow \infty} \iint_{T_{a}} \frac{d u d v}{\left(1+u^{2}+v^{2}\right)^{\frac{3}{2}}}=\frac{3 \pi}{4}+\frac{\pi}{2}+\pi-2 \pi=\frac{\pi}{4}
$$

