Problem 1

1 a.

$$
m(i)=\frac{i-0}{i-1} \cdot \frac{-1-1}{-1-0}=\frac{2 i}{i-1}=1-i
$$

Since $i \in \mathbb{H}$ and $m(i) \notin \mathbb{H}$ we cannot have $m(\mathbb{H})=\mathbb{H}$.
1b. The map m takes the $\overline{\mathbb{C}}$-circle through x_{1}, x_{2} and x_{3} onto the $\overline{\mathbb{C}}$-circle through 1,0 and ∞, i.e., maps $\overline{\mathbb{R}}$ onto $\overline{\mathbb{R}}$. Hence it maps $\overline{\mathbb{C}} \backslash \overline{\mathbb{R}}=\mathbb{H} \cup(-\mathbb{H})$ onto itself, where $-\mathbb{H}$ denotes the lower half-plane. By continuity, $m(\mathbb{H})$ is either \mathbb{H} or $-\mathbb{H}$. Now

$$
m(z)=\frac{z-x_{2}}{z-x_{3}} \cdot \frac{x_{1}-x_{3}}{x_{1}-x_{2}}=\frac{a z+b}{c z+d}
$$

with $a=x_{1}-x_{3}, b=-x_{2}\left(x_{1}-x_{3}\right), c=x_{1}-x_{2}$ and $d=-x_{3}\left(x_{1}-x_{2}\right)$. Here

$$
m(i)=\frac{a i+b}{c i+d}=\frac{(a i+b)(-c i+d)}{(c i+d)(-c i+d)}=\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}
$$

lies in \mathbb{H} if and only if $a d-b c>0$, i.e., if and only if

$$
\left(x_{1}-x_{3}\right)\left(-x_{3}\right)\left(x_{1}-x_{2}\right)-\left(-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{2}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)>0
$$

The condition is that the product $\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)$ is positive.

Problem 2

2a. The points $A=w$ and $B=w^{2}$ have $|A|=1$ and $|B|=1$, hence lie on the Euclidean circle of radius 1 with center 0 . The points $A=w$ and $C=0$ have $|A-1|=1$ and $|C-1|=1$, hence lie on the Euclidean circle of radius 1 with center +1 . The points $B=w^{2}$ and $C=0$ have $|B+1|=1$ and $|C+1|=1$, hence lie on the Euclidean circle of radius 1 with center -1 .

The angle $\alpha=\angle B A C$ is the angle at w between the Euclidean unit circles centered at 0 and +1 . It equals the angle $\angle 0 w 1$ between the radii meeting at w of these two circles, hence equals $\pi / 3$. By symmetry about the imaginary axis, the angle $\beta=\angle A B C$ is also $\pi / 3$. The angle $\gamma=\angle A C B$ at the ideal vertex is 0 . Hence the area of $\triangle A B C$ is

$$
\pi-(\alpha+\beta+\gamma)=\pi-(\pi / 3+\pi / 3+0)=\pi / 3
$$

2b. The fixed points in $\overline{\mathbb{C}}$ of m_{1} are the z with $-1 / z=z$, i.e., with $z^{2}=-1$, so $z= \pm i$. Hence m_{1} has exactly one fixed point in \mathbb{H}, so m_{1} is of elliptic type. We have $m_{1}(A)=-1 / w=w^{2}=B$ and $m_{1}(D)=-1 / i=i=D$, so the image of $[A, D]$ is $[B, D]$. We have $m_{1}(B)=A$ and $m_{1}(C)=\infty$, so the image of $\triangle A B C$ is the ideal triangle $\triangle B A \infty$.

2c. The fixed points in $\overline{\mathbb{C}}$ of m_{2} are the z with $z /(z+1)=z$, i.e., with $z+1=1$, so $z=0$. The only fixed point lies in $\overline{\mathbb{R}}$, so m_{2} is of parabolic type. We have $m_{2}(B)=w^{2} /\left(w^{2}+1\right)=w=A$ and $m_{2}(C)=0=C$, so the image of $\overrightarrow{B C}$ is the ray $\overrightarrow{A C}$. We have

$$
m_{2}(A)=w /(w+1)=(3+i \sqrt{3}) / 6=E
$$

so the image of $\triangle A B C$ is the ideal triangle $\triangle E A C$.

2d. The edges $a=[A, D],[D, B], b=[B, C]$ and $[C, A]$ of the quadrangle F are identified according to the pattern $W=a a^{-1} b b^{-1}$, so $M=F / \sim \cong D^{2} / a a^{-1} b b^{-1} \cong D^{2} / a a^{-1} \# D^{2} / b b^{-1} \cong$ $S^{2} \# S^{2} \cong S^{2}$. Hence $M \cong M_{0}$ is the orientable surface S^{2} of genus $g=0$.

2e. No, M does not admit a hyperbolic structure. In the Gauss-Bonnet formula

$$
\iint_{M} K d A=2 \pi \chi(M)
$$

the Gaussian curvature of a hyperbolic closed surface is -1 at all points, so the Euler characteristic must be negative. This is not the case for $M \cong M_{0}=S^{2}$, which has Euler characteristic $\chi\left(S^{2}\right)=2$.

Yes, M^{\prime} does admit a hyperbolic structure. Let $F^{\prime}=F \backslash\{A, B, C, D\}$ be the complement of the four vertices in F, and consider the union

$$
P=F^{\prime} \cup m_{1}\left(F^{\prime}\right) \cup m_{2}\left(F^{\prime}\right) .
$$

We can realize M^{\prime} as the quotient space P / \approx, where the equivalence relation \approx is generated by $z \approx m_{1}(z)$ and $z \approx m_{2}(z)$ for all $z \in F^{\prime}$.

Let $Q=\operatorname{int}(P)$ be the interior of P in \mathbb{H}, i.e., the interior of the ideal hyperbolic polygon $A \propto B C E$ minus the point D. As an open subset of \mathbb{H}, the surface Q inherits a hyperbolic structure. We can also realize M^{\prime} as Q / \approx, where \approx denotes the restriction of the given equivalence relation on P to Q. Each point of M^{\prime} then has a neighborhood U that is homeomorphic to one, two or three neighborhoods V_{i} in Q, and the coordinate transformations between these neighborhoods V_{i} and V_{j} are given by m_{1}, m_{2}, their inverses and composites of these, i.e., by hyperbolic isometries. Hence the hyperbolic structure on Q descends to a hyperbolic structure on M^{\prime}.

Problem 3

3a.

$$
\begin{aligned}
x_{u} & =(\cos v, \sin v, 0) \\
x_{v} & =(-u \sin v, u \cos v, 1) \\
E & =\cos ^{2} v+\sin ^{2} v+0^{2}=1 \\
F & =(\cos v)(-u \sin v)+(\sin v)(u \cos v)+(0)(1)=0 \\
G & =(-u \sin v)^{2}+(u \cos v)^{2}+1^{2}=1+u^{2} \\
x_{u} \times x_{v} & =(\sin v,-\cos v,(\cos v)(u \cos v)-(\sin v)(-u \sin v))=(\sin v,-\cos v, u) \\
\left\|x_{u} \times x_{v}\right\| & =\sqrt{\sin ^{2} v+\cos ^{2} v+u^{2}}=\sqrt{1+u^{2}} \\
N & =\frac{(\sin v,-\cos v, u)}{\sqrt{1+u^{2}}} .
\end{aligned}
$$

3b.

$$
\begin{aligned}
x_{u u} & =(0,0,0) \\
x_{u v} & =(-\sin v, \cos v, 0) \\
x_{v v} & =(-u \cos v,-u \sin v, 0) \\
e & =0 \\
f & =\frac{-\sin ^{2} v-\cos ^{2} v+u \cdot 0}{\sqrt{1+u^{2}}}=-\frac{1}{\sqrt{1+u^{2}}} \\
g & =\frac{(\sin v)(-u \cos v)-(\cos v)(-u \sin v)+u \cdot 0}{\sqrt{1+u^{2}}}=0 \\
K & =\frac{\left(0 \cdot 0-\left(-1 / \sqrt{1+u^{2}}\right)^{2}\right)}{\left(1+u^{2}-0^{2}\right)}=\frac{-1 /\left(1+u^{2}\right)}{1+u^{2}}=-\frac{1}{\left(1+u^{2}\right)^{2}} .
\end{aligned}
$$

3c. We calculate

$$
\alpha^{\prime}(s)=\left(-\frac{1}{\sqrt{2}} \sin \left(\frac{s}{\sqrt{2}}\right), \frac{1}{\sqrt{2}} \cos \left(\frac{s}{\sqrt{2}}\right), \frac{1}{\sqrt{2}}\right)
$$

and

$$
\alpha^{\prime \prime}(s)=\left(-\frac{1}{2} \cos \left(\frac{s}{\sqrt{2}}\right),-\frac{1}{2} \sin \left(\frac{s}{\sqrt{2}}\right), 0\right) .
$$

We have

$$
\left\|\alpha^{\prime}(s)\right\|=\frac{1}{2} \sin ^{2}\left(\frac{s}{\sqrt{2}}\right)+\frac{1}{2} \cos ^{2}\left(\frac{s}{\sqrt{2}}\right)+\frac{1}{2}=1
$$

so $\alpha:[0,2 \pi \sqrt{2}] \rightarrow S$ is traversed at unit speed and parametrized by arc length.
The tangent plane $T_{p} S$ of S at $p=\alpha(s)=x(1, s / \sqrt{2})$ contains the tangent vectors

$$
x_{u}(1, s / \sqrt{2})=(\cos (s / \sqrt{2}), \sin (s / \sqrt{2}), 0)
$$

and

$$
x_{v}(1, s / \sqrt{2})=(-\sin (s / \sqrt{2}), \cos (s / \sqrt{2}), 1)
$$

These are orthogonal. The unit tangent vector $T(s)=\alpha^{\prime}(s)$ of α at p is parallel to the tangent vector $x_{v}(1, s / \sqrt{2})$. Hence the unit bitangent vector $B(s)$ is parallel to $x_{u}(1, s / \sqrt{2})=$ $(\cos (s / \sqrt{2}), \sin (s / \sqrt{2}), 0)$. This is a unit vector pointing out of R, so $B(s)$ is its negative:

$$
B(s)=(-\cos (s / \sqrt{2}),-\sin (s / \sqrt{2}), 0)
$$

Hence the geodesic curvature is

$$
k_{g}(s)=-\cos (s / \sqrt{2})\left(-\frac{1}{2} \cos (s / \sqrt{2})\right)-\sin (s / \sqrt{2})\left(-\frac{1}{2} \sin (s / \sqrt{2})\right)+0 \cdot 0=\frac{1}{2}
$$

for all values of s.
3d.

$$
\iint_{R} K d A+\int_{\partial R} k_{g} d s+\sum_{k} \epsilon_{k}=2 \pi \chi(R)
$$

The surface integral of the Gaussian curvature is

$$
\iint_{R} K d A=\int_{0}^{2 \pi} \int_{0}^{1} \frac{-1}{\left(1+u^{2}\right)^{2}}\left\|x_{u} \times x_{v}\right\| d u d v=2 \pi \int_{0}^{1} \frac{-1}{\left(1+u^{2}\right)^{3 / 2}} d u=-\pi \sqrt{2}
$$

The line integral of the geodesic curvature along the image of α is

$$
\int_{\alpha} k_{g} d s=\int_{0}^{2 \pi \sqrt{2}} \frac{1}{2} d s=\pi \sqrt{2}
$$

The three other parts of ∂R are geodesics, hence $k_{g}=0$ along these curves. Thus

$$
\int_{\partial R} k_{g} d s=\pi \sqrt{2}+0+0+0=\pi \sqrt{2}
$$

The angular change of direction at each corner A, B, C and D is $\epsilon_{k}=\pi / 2$. For example, at A, the tangent to the curve α is $\alpha^{\prime}(0)=(0,1,0)$ and the tangent to the line segment $[D, A]$ is $(1,0,0)$. Hence the interior angle at A is $\pi / 2$ and the change of direction is $\pi-\pi / 2=\pi / 2$. The other three cases are very similar. Hence

$$
\sum_{k} \epsilon_{k}=4 \cdot \pi / 2=2 \pi
$$

The Euler characteristic of R is 1 , e.g. because $R \cong[0,1] \times[0,2 \pi]$ can be triangulated with $v=4$ vertices, $e=5$ edges and $f=2$ faces, so $\chi(R)=4-5+2=1$. Hence

$$
2 \pi \chi(R)=2 \pi
$$

The Gauss-Bonnet formula asserts that

$$
-\pi \sqrt{2}+\pi \sqrt{2}+2 \pi=2 \pi
$$

which is correct.

