UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in MAT4510 - Geometrical structures.

Day of examination: Wednesday, December 15, 2010.
Examination hours: 09.00-13.00.
This problem set consists of 2 pages.
Appendices:
None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Each item (1, 2a, 2b etc.) counts 10 points.

Problem 1

Let $f \in \operatorname{Möb}^{+}(\mathbb{H})$ be defined by

$$
f(z)=\frac{\sqrt{2} z+1}{z+\sqrt{2}}
$$

Decide wether f is parabolic, hyperbolic or elliptic. Write f explicitly as a conjugate of a map of normal form.

Problem 2

Let S be a Riemannian surface, $\mathbf{x}=\mathbf{x}(u, v): U \rightarrow S$ a parametrization, and $\beta(s)=\mathbf{x}(u(s), v(s))$ a smooth curve on S, parametrized by arc-length. The covariant second derivative $D \beta^{\prime \prime}(s)$ is defined as:

$$
\begin{aligned}
D \beta^{\prime \prime}(s) & =\left(u^{\prime \prime}+\left(u^{\prime}\right)^{2} \Gamma_{11}^{1}+2 u^{\prime} v^{\prime} \Gamma_{12}^{1}+\left(v^{\prime}\right)^{2} \Gamma_{22}^{1}\right) \mathbf{x}_{u} \\
& +\left(v^{\prime \prime}+\left(u^{\prime}\right)^{2} \Gamma_{11}^{2}+2 u^{\prime} v^{\prime} \Gamma_{12}^{2}+\left(v^{\prime}\right)^{2} \Gamma_{22}^{2}\right) \mathbf{x}_{v}
\end{aligned}
$$

where the $\Gamma_{i j}^{k}$ are given by

$$
\left[\begin{array}{ll}
E & F \\
F & G
\end{array}\right]\left[\begin{array}{ccc}
\Gamma_{11}^{1} & \Gamma_{12}^{1} & \Gamma_{22}^{1} \\
\Gamma_{11}^{2} & \Gamma_{12}^{2} & \Gamma_{22}^{2}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{2} E_{u} & \frac{1}{2} E_{v} & F_{v}-\frac{1}{2} G_{u} \\
F_{u}-\frac{1}{2} E_{v} & \frac{1}{2} G_{u} & \frac{1}{2} G_{v}
\end{array}\right]
$$

a) Let $S=\mathbb{H}$ with hyperbolic Riemannian metric, and let $\mathbf{x}(x, y)=x+y i$. Find the expression $D \beta^{\prime \prime}(s)$ for a curve $\beta(s)=x(s)+y(s) i$ in \mathbb{H}, parametrized by arc-length.
b) Let $C_{y_{0}}$ be the line in \mathbb{H}, given by $C_{y_{0}}=\left\{z=x+y i \mid y=y_{0}\right\}$. Explain why the geodesic curvature k_{g} of $C_{y_{0}}$ is constant along $C_{y_{0}}$. Compute k_{g}, when the unit normal vector along $C_{y_{0}}$ is chosen in the same direction as the imaginary axis.
c) Let R be the bounded region in \mathbb{H} bounded by the circle $\{z||z|=1\}$ and the line $C_{\frac{1}{2} \sqrt{2}}$. Calculate the hyperbolic area of R, by using the Gauss-Bonnet theorem.
d) Calculate the hyperbolic area of R in c), directly by integration (without using Gauss-Bonnet).

Problem 3

Consider a hyperbolic triangle T in \mathbb{D} with vertices $-r, r i, r, r \in(0,1)$. Find r such that the sum of the angles in T is equal $\frac{2 \pi}{3}$.
(Here you may use the second law of cosines for a hyperbolic triangle which is given by

$$
\cos \alpha=-\cos \beta \cos \gamma+\sin \beta \sin \gamma \cosh a .)
$$

Problem 4

Consider the surface

$$
S=\left\{(x, y, z) \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1\right.\right\} \subset \mathbb{R}^{3}
$$

where $a, b>0$. A parametrization of this surface is given by

$$
x=a \cos u \cos v, y=a \cos u \sin v, z=b \sin u
$$

a) Compute the metric

$$
d s^{2}=E(u, v) d u^{2}+2 F(u, v) d u d v+G(u, v) d v^{2}
$$

in these coordinates.
b) Compute the Gaussian curvature for S at a point $(x(u, v), y(u, v), z(u, v))$.
c) Show, by using the Gauss-Bonnet theorem, that

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{a b^{2} \cos u d u}{\left(a^{2} \sin ^{2} u+b^{2} \cos ^{2} u\right)^{\frac{3}{2}}}=2
$$

for any $a, b>0$.
d) Let $\mathbf{x}(u, v)=(g(u) \cos v, g(u) \sin v, h(u)), g(u)>0$ be a parametrization of a regular surface of rotation. Show that the curves $v=$ constant are always geodesics. When is a curve $u=$ constant a geodesic ?

The End

