UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in	MAT4510 — Geometric structures.
Day of examination:	Friday, December 14, 2012.
Examination hours:	09.00-13.00.
This problem set consists of 2 pages.	
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Each item (1a, 1b, 2a, etc.) counts 10 points.

Problem 1

a) Let Q be a regular hyperbolic quadrilateral (a hyperbolic quadrilateral with all four sides of equal hyperbolic length and all four angles of equal measure) with angle equal α . Explain why the hyperbolic area of Q is equal $2\pi - 4\alpha$. Assume $\alpha = \frac{\pi}{3}$. Find the hyperbolic length of the side of Q in this case.

(Here the second law of cosine

 $\cos \alpha = -\cos\beta \cos\gamma + \sin\beta \sin\gamma \cosh a,$

may be useful, also recall that if $y = \cosh x$, $x \ge 0$ then $x = \ln(y + \sqrt{y^2 - 1})$

b) Let T be a simply asymptotic triangle in \mathbb{D} or \mathbb{H} , with the angles at the two vertices in \mathbb{D} or \mathbb{H} equal $\frac{\pi}{4}$ and $\frac{\pi}{2}$ respectively. Find the hyperbolic length of the finite segment between these two vertices.

(Here you may use that the second law of cosine is valid for simply asymptotic trangles.)

Problem 2

a) Let $h \in M\"ob^+(\mathbb{H})$ be defined by

$$h(z) = \frac{4z}{3z+1}.$$

Decide wether f is parabolic, hyperbolic or elliptic. Write f explicitly as a conjugate of a map on normal form.

(Continued on page 2.)

b) Let $f \in \text{M\"ob}^-(\mathbb{H})$ be defined by

$$f(z) = \frac{4\bar{z}}{5\bar{z}-1}.$$

Find the fixpoints of f. Find an inversion $g \in \text{M\"ob}^-(\mathbb{H})$ and a hyperbolic transformation $k \in \text{M\"ob}^+(\mathbb{H})$ such that $f = g \circ k$ and $g \circ k = k \circ g$. g is an inversion in a \mathbb{H} -line ℓ , find ℓ .

Problem 3

a) Let $\Omega(Y)$ be the bounded region in \mathbb{H} , bounded by the curve xy = 1, and the lines y = Y, x = 1, where Y > 1 is a constant and $z = x + yi \in \mathbb{H}$. Calculate the hyperbolic area $A((\Omega(Y))$ of $\Omega(Y)$ and find $\lim_{Y \to \infty} A(\Omega(Y))$.

b) Let

$$\alpha(t) = \left(\frac{1}{2}t\sqrt{1-t^2} + \frac{\arcsin t}{2}\right) + \frac{1}{2}t^2i, \ t \in \left[\frac{1}{2}, 1\right]$$

be a curve in \mathbb{H} . Calculate the hyperbolic arc-length of α . (Recall that $(\arcsin t)' = \frac{1}{\sqrt{1-t^2}}$.)

Problem 4

a) A regular surface $S \subset \mathbb{R}^3$ is parametrized by

$$\mathbf{x}(u,v) = ((\frac{1}{4}v^4 - \frac{1}{2}v^2 + \frac{1}{2})\cos u, (\frac{1}{4}v^4 - \frac{1}{2}v^2 + \frac{1}{2})\sin u, v), \ u, v \in \mathbb{R}.$$

Find the first fundamental form of S with respect to this parametrization and find the Gaussian curvature of S.

- b) Show that the curves given by v = -1, v = 0 and v = 1 are geodesics on S.
- c) Let α be the curve on S given by v = 2. Calculate the geodesic curvature of α , where we choose the normal vector $n_{\alpha}(s)$ in $T_{\alpha(s)}S$ with positive z- component.
- d) Let

$$R = \{ \mathbf{x}(u, v) \in S \mid u \in \mathbb{R}, \ -1 \le v \le 1 \}.$$

Use The Gauss-Bonnet Theorem to show that $\int_R \int K dA = 0$.

The End