UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: MAT4510 - Geometric structures.
Day of examination: Monday, December 16, 2013.
Examination hours: $09.00-13.00$.
This problem set consists of 2 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Each item (1a, 1b, 2a, etc.) counts 10 points.

Problem 1

a) Let $f \in \mathrm{Möb}^{+}(\mathbb{H})$ be defined by

$$
f(z)=\frac{2}{2-z} .
$$

Decide wether f is parabolic, hyperbolic or elliptic. Write f explicitly as a conjugate of a map on normal form.
b) Let $f \in \operatorname{Möb}^{-}(\mathbb{H})$ be defined by

$$
f(z)=\frac{4 \bar{z}+20}{5 \bar{z}+4} .
$$

Find the fixpoints of f. Find an inversion $g \in \operatorname{Möb}^{-}(\mathbb{H})$ and a hyperbolic transformation $k \in \operatorname{Möb}^{+}(\mathbb{H})$ such that $f=g \circ k$ and $g \circ k=k \circ g . g$ is an inversion in a \mathbb{H}-line ℓ, find ℓ.

Problem 2

a) Find the hyperbolic area of the Euclidean triangle in \mathbb{H} with vertices $i, i+1$ and $2 i$.
b) Consider a hyperbolic triangle with the angles α, β and γ and opposite sides of hyperbolic length a, b and c respectively. Assume $b=c$. Show that $\beta=\gamma$.
Let \mathcal{C}_{1} and \mathcal{C}_{2} be the \mathbb{H}-lines $|z+1|=\sqrt{2}$ and $|z-1|=\sqrt{2}, z \in \mathbb{H}$ respectively. Let $z_{1} \in \mathcal{C}_{1}$ and $z_{2} \in \mathcal{C}_{2}$ be points such that $d_{\mathbb{H}}\left(z_{1}, i\right)=$ $d_{\mathbb{H}}\left(z_{2}, i\right)=\ln (\sqrt{2}+\sqrt{3})$ and such that $\operatorname{Re} z_{1}<0$ and
$\operatorname{Re} z_{2}>0$. Let T be the hyperbolic triangle with vertices z_{1}, i and z_{2}.
c) Calculate $\cosh \left(d_{\mathbb{H}}\left(z_{1}, z_{2}\right)\right)$. (Hint: Apply the first law of cosine to T.)
d) Calculate the hyperbolic area of T.

Problem 3

A regular surface $S \subset \mathbb{R}^{3}$ is parametrized by

$$
\mathbf{x}(u, v)=(u, v, u v), u, v \in \mathbb{R} .
$$

Another regular surface S^{\prime} is parametrized by

$$
\mathbf{y}(u, v)=(\cosh v \cos u, \cosh v \sin u, \sinh v), u, v \in \mathbb{R} .
$$

a) Find the first fundamental form $E d u^{2}+2 F d u d v+G d v^{2}$ of S and of S^{\prime} with respect to these parametrizations.
b) Find the Gaussian curvature K_{S} and $K_{S^{\prime}}$ of S and S^{\prime} respectively. Does there exists an open neighborhood U of $(0,0,0) \in S$ which is isometric to some open set $V \subset S^{\prime}$?
c) Show that the curve given by $\alpha(t)=\left(t, t, t^{2}\right)$ is a geodesic on S. Also show that the curves $\beta(t)=\left(t, v_{0}, v_{0} t\right)$, and the curves $\gamma(t)=$ ($u_{0}, t, u_{0} t$) (where u_{0} and v_{0} are constants) are geodesics on S.
d) Let $T_{a}=\{(u, v) \mid u \in[0, a], 0 \leq v \leq u\}$. Let R_{a} be the region in S parametrized over T_{a}. Let η_{1}, η_{2} and η_{3} be the interior angles of R_{a} at the points $(0,0,0),(a, 0,0)$ and $\left(a, a, a^{2}\right)$ respectively. Show that $\eta_{1}=\frac{\pi}{4}, \eta_{2}=\frac{\pi}{2}$ and that $\cos \eta_{3}=\sqrt{\frac{1+2 a^{2}}{2+2 a^{2}}}$. Apply The Gauss-Bonnet Theorem to R_{a} to show that

$$
\lim _{a \rightarrow \infty} \iint_{T_{a}} \frac{d u d v}{\left(1+u^{2}+v^{2}\right)^{3 / 2}}=\frac{\pi}{4} .
$$

