UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT4510 — Geometric structures.
Day of examination:	Monday, December 16, 2013.
Examination hours:	09.00-13.00.
This problem set consists of 2 pages.	
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Each item (1a, 1b, 2a, etc.) counts 10 points.

Problem 1

a) Let $f \in M\"ob^+(\mathbb{H})$ be defined by

$$f(z) = \frac{2}{2-z}.$$

Decide wether f is parabolic, hyperbolic or elliptic. Write f explicitly as a conjugate of a map on normal form.

b) Let $f \in \text{M\"ob}^-(\mathbb{H})$ be defined by

$$f(z) = \frac{4\bar{z} + 20}{5\bar{z} + 4}.$$

Find the fixpoints of f. Find an inversion $g \in \text{M\"ob}^-(\mathbb{H})$ and a hyperbolic transformation $k \in \text{M\"ob}^+(\mathbb{H})$ such that $f = g \circ k$ and $g \circ k = k \circ g$. g is an inversion in a \mathbb{H} -line ℓ , find ℓ .

Problem 2

- a) Find the hyperbolic area of the Euclidean triangle in \mathbb{H} with vertices i, i + 1 and 2i.
- b) Consider a hyperbolic triangle with the angles α , β and γ and opposite sides of hyperbolic length a, b and c respectively. Assume b = c. Show that $\beta = \gamma$.

Let C_1 and C_2 be the \mathbb{H} -lines $|z + 1| = \sqrt{2}$ and $|z - 1| = \sqrt{2}$, $z \in \mathbb{H}$ respectively. Let $z_1 \in C_1$ and $z_2 \in C_2$ be points such that $d_{\mathbb{H}}(z_1, i) = d_{\mathbb{H}}(z_2, i) = \ln(\sqrt{2} + \sqrt{3})$ and such that Re $z_1 < 0$ and

Re $z_2 > 0$. Let T be the hyperbolic triangle with vertices z_1, i and z_2 .

(Continued on page 2.)

- c) Calculate $\cosh(d_{\mathbb{H}}(z_1, z_2))$. (Hint: Apply the first law of cosine to T.)
- d) Calculate the hyperbolic area of T.

Problem 3

A regular surface $S \subset \mathbb{R}^3$ is parametrized by

$$\mathbf{x}(u,v) = (u,v,uv), \, u,v \in \mathbb{R}.$$

Another regular surface S' is parametrized by

 $\mathbf{y}(u, v) = (\cosh v \cos u, \cosh v \sin u, \sinh v), \, u, v \in \mathbb{R}.$

- a) Find the first fundamental form $Edu^2 + 2Fdudv + Gdv^2$ of S and of S' with respect to these parametrizations.
- b) Find the Gaussian curvature K_S and $K_{S'}$ of S and S' respectively. Does there exists an open neighborhood U of $(0,0,0) \in S$ which is isometric to some open set $V \subset S'$?
- c) Show that the curve given by $\alpha(t) = (t, t, t^2)$ is a geodesic on S. Also show that the curves $\beta(t) = (t, v_0, v_0 t)$, and the curves $\gamma(t) = (u_0, t, u_0 t)$ (where u_0 and v_0 are constants) are geodesics on S.
- d) Let $T_a = \{(u, v) | u \in [0, a], 0 \le v \le u\}$. Let R_a be the region in S parametrized over T_a . Let η_1, η_2 and η_3 be the interior angles of R_a at the points (0, 0, 0), (a, 0, 0) and (a, a, a^2) respectively. Show that $\eta_1 = \frac{\pi}{4}, \eta_2 = \frac{\pi}{2}$ and that $\cos \eta_3 = \sqrt{\frac{1+2a^2}{2+2a^2}}$. Apply The Gauss-Bonnet Theorem to R_a to show that

$$\lim_{a \to \infty} \iint_{T_a} \frac{dudv}{(1+u^2+v^2)^{3/2}} = \frac{\pi}{4}.$$

The End