UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: \quad MAT4510 - Geometric structures
Day of examination: December 14th 2015
Examination hours: $09.00-13.00$
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Each of the eleven subproblems ($1 \mathrm{a}, 1 \mathrm{~b}, 2 \mathrm{a}$, etc.) carries equal weight. Please remember to justify all your answers.

Problem 1

Let x_{1}, x_{2} and $x_{3} \in \mathbb{R}$ be three pairwise distinct real numbers. The fractional linear transformation

$$
m(z)=\frac{z-x_{2}}{z-x_{3}} \cdot \frac{x_{1}-x_{3}}{x_{1}-x_{2}}
$$

satisfies $m\left(x_{1}\right)=1, m\left(x_{2}\right)=0$ and $m\left(x_{3}\right)=\infty$. Let $\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ be the upper half-plane.

1a
Consider the special case $x_{1}=-1, x_{2}=0$ and $x_{3}=+1$. Calculate $m(i)$, and explain why $m(\mathbb{H}) \neq \mathbb{H}$.

1b

Returning to the general case, find a condition on x_{1}, x_{2} and x_{3}, expressed in terms of the product

$$
\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right),
$$

such that $m(\mathbb{H})=\mathbb{H}$ if and only if the condition holds. You may use the fact that $m: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is invertible, and that it maps $\overline{\mathbb{C}}$-circles onto $\overline{\mathbb{C}}$-circles.

Problem 2

Let

$$
w=\cos (\pi / 3)+i \sin (\pi / 3)=(1+i \sqrt{3}) / 2 .
$$

Note that $w^{2}=w-1=(-1+i \sqrt{3}) / 2$. Let $\triangle A B C$ be the ideal $(=$ asymptotic) hyperbolic triangle with vertices $A=w, B=w^{2}$ and $C=0$. It

lies in the closure in $\overline{\mathbb{C}}$ of the upper half-plane model \mathbb{H} for the hyperbolic plane.

2a

What is the hyperbolic area of $\triangle A B C ?$

2b

The fractional linear transformation

$$
m_{1}(z)=-1 / z
$$

satisfies $m_{1}(\mathbb{H})=\mathbb{H}$. Is m_{1} of hyperbolic, parabolic or elliptic type? Let $D=i$ be the midpoint of the hyperbolic line segment $[A, B]$. What is the image of the hyperbolic line segment $[A, D]$ under m_{1} ? What is the image of $\triangle A B C$ under m_{1} ?

2c

The fractional linear transformation

$$
m_{2}(z)=z /(z+1)
$$

satisfies $m_{2}(\mathbb{H})=\mathbb{H}$. Is m_{2} of hyperbolic, parabolic or elliptic type? What is the image of the hyperbolic ray $\overrightarrow{B C}$ under m_{2} ? What is the image of $\triangle A B C$ under m_{2} ?

2d

Let $F=\square A D B C$ be the asymptotic hyperbolic quadrangle with vertices A, D, B and C. (As a set, it is equal to $\triangle A B C$.) Let $M=F / \sim$ be the quotient space where each boundary point $z \in[A, D]$ is identified with its image $m_{1}(z)$, and each boundary point $z \in \overrightarrow{B C}$ is identified with its image $m_{2}(z)$.

The space M is homeomorphic to exactly one of the standard closed surfaces $M_{g}=S(g, 0)$ for $g \geq 0$ and $N_{h}=S(0, h)$ for $h \geq 1$. Which one?
$2 e$
Does the closed surface M admit a hyperbolic structure?
Let M^{\prime} be the complement of the image of $\{A, B, C, D\} \subset F$ under the canonical map $F \rightarrow M$. Does the surface M^{\prime} admit a hyperbolic structure?

Problem 3

The helicoid is a regular surface S in \mathbb{R}^{3}, parametrized by

$$
x(u, v)=(u \cos v, u \sin v, v)
$$

for $(u, v) \in \mathbb{R}^{2}$. Let $R \subset S$ be the compact region parametrized by

$$
x^{-1}(R)=[0,1] \times[0,2 \pi] .
$$

The boundary ∂R is the union of four regular curves, namely the curve from $A=x(1,0)=(1,0,0)$ to $B=x(1,2 \pi)=(1,0,2 \pi)$ parametrized by

$$
\alpha(s)=x(1, s / \sqrt{2})=(\cos (s / \sqrt{2}), \sin (s / \sqrt{2}), s / \sqrt{2})
$$

for $s \in[0,2 \pi \sqrt{2}]$, and the three Euclidean line segments $[B, C],[C, D]$ and $[D, A]$, where $C=x(0,2 \pi)=(0,0,2 \pi)$ and $D=x(0,0)=(0,0,0)$.

3a
Calculate the tangent vectors x_{u} and x_{v}, the first fundamental form $E=$ $x_{u} \cdot x_{u}, F=x_{u} \cdot x_{v}$ and $G=x_{v} \cdot x_{v}$, the cross product $x_{u} \times x_{v}$ and the unit normal vector $N=\left(x_{u} \times x_{v}\right) /\left\|x_{u} \times x_{v}\right\|$.

3b

Calculate the second order partial derivatives $x_{u u}, x_{u v}$ and $x_{v v}$, the second fundamental form $e=N \cdot x_{u u}, f=N \cdot x_{u v}$ and $g=N \cdot x_{v v}$, and the Gaussian curvature $K=\left(e g-f^{2}\right) /\left(E G-F^{2}\right)$.

3c
Calculate $\alpha^{\prime}(s)$ and $\alpha^{\prime \prime}(s)$. Verify that α is parametrized by arc length. Calculate the geodesic curvature $k_{g}(s)=B(s) \cdot \alpha^{\prime \prime}(s)$ of α, where $B(s)=$ $n_{\alpha}(s)$ is the unit bitangent vector pointing into R at $\alpha(s)$.

3d

State the Gauss-Bonnet formula for $R \subset S$, as a relation between the four terms

$$
\iint_{R} K d A \quad, \quad \int_{\partial R} k_{g} d s \quad, \quad \sum_{k} \epsilon_{k} \quad \text { and } \quad 2 \pi \chi(R)
$$

Calculate each of these four terms directly, and verify that the formula is correct in this case. You may use that

$$
\int_{0}^{1} \frac{d u}{\left(1+u^{2}\right)^{3 / 2}}=\left[\frac{u}{\sqrt{1+u^{2}}}\right]_{0}^{1}=\frac{\sqrt{2}}{2}
$$

THE END

