UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: MAT4510 — Geometric structures

Day of examination: Wednesdy, December 7, 2016

Examination hours: 09.00 – 13.00

This problem set consists of 2 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Let \mathbb{H} be the upper half plane in \mathbb{C} .

 \mathbf{a}

Show that a fractional linear transformation

$$f(z) = \frac{az+b}{cz+d}$$

maps \mathbb{H} to \mathbb{H} if and only if $a, b, c, d \in \mathbb{R}$ and ad - bc > 0.

b

The above FLTs form the group $\text{M\"ob}^+(\mathbb{H})$ and they come in three different types; parabolic, hyperbolic and elliptic. Explain how these types are defined.

 \mathbf{c}

Determine the type of

$$f(z) = \frac{1+z}{1-z}$$

and show that f maps the imaginary axis to the unit circle.

\mathbf{d}

The hyperbolic distance $d_{\mathbb{H}}(z,w)$ in \mathbb{H} may be defined as follows. There is a unique $g \in \text{M\"ob}^+(\mathbb{H})$ such that g(z) = i and $g(w) \in [i,\infty)$, i.e. g(w) = ti, where $t \geq 1$. Define $d_{\mathbb{H}}(z,w)$ to be $\ln |g(w)| = \ln t$. Let $w = e^{i\theta}$ with $\pi/2 \leq \theta < \pi$. Compute the hyperbolic distance from i to w.

Problem 2

State and give an outline of the proof of the existence part of the classification theorem for compact, connected two-dimensional topological manifolds.

Problem 3

Consider the curve

$$\alpha(u) = (e^u, \int_0^u \sqrt{1 - e^{2t}} dt)$$

for u < 0, in the xz plane and let S be the corresponding surface of rotation around the z-axis.

 \mathbf{a}

Compute the the fundamental form of S.

b

Find a formula for the Gauss map from S. What is its image?

 \mathbf{c}

Compute the Gaussian curvature of S.

END