MAT4510, Fall 2023 Solutions to assignment.

Problem 1. Let

$$
S:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x y z=1 \text { and } x, y, z>0\right\} .
$$

(i) Show that S is a regular surface.
(ii) Calculate the Gauss curvature of S.

Solution: (i) Let $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y, z)=x y z .
$$

The gradient of f is

$$
\nabla f(x, y, z)=(y z, x z, x y) .
$$

Because $\nabla f \neq 0$ at every point in $f^{-1}(1)$, it follows that $S=f^{-1}(1)$ is a regular surface.
(ii) The gradient of f is normal to S at every point on S, hence

$$
N(x, y, z):=\frac{(y z, x z, x y)}{\sqrt{y^{2} z^{2}+x^{2} z^{2}+x^{2} y^{2}}}
$$

is a smooth unit normal field on S. We obtain a global parametrization of S by regarding it as the graph of a function. Namely, let

$$
U:=\left\{(u, v) \in \mathbb{R}^{2} \mid u, v>0\right\}
$$

and define $F: U \rightarrow S$ by

$$
F(u, v):=\left(u, v, \frac{1}{u v}\right) .
$$

We now compute the corresponding matrix of the first fundamental form.

$$
\partial_{1} F=\left(1,0,-\frac{1}{u^{2} v}\right), \quad \partial_{2} F=\left(0,1,-\frac{1}{u v^{2}}\right) .
$$

This gives

$$
\begin{aligned}
& g_{11}=\left\|\partial_{1} F\right\|^{2}=1+\frac{1}{u^{4} v^{2}} \\
& g_{22}=\left\|\partial_{2} F\right\|^{2}=1+\frac{1}{u^{2} v^{4}} \\
& g_{12}=\left\langle\partial_{1} F, \partial_{2} F\right\rangle=\frac{1}{u^{3} v^{3}} .
\end{aligned}
$$

Therefore,

$$
\operatorname{det} G=g_{11} g_{22}-g_{12}^{2}=1+\frac{1}{u^{4} v^{2}}+\frac{1}{u^{2} v^{4}} .
$$

Next, we compute the matrix of the second fundamental form.

$$
\begin{aligned}
\partial_{1}^{2} F & =\left(0,0, \frac{2}{u^{3} v}\right), \\
\partial_{2}^{2} F & =\left(0,0, \frac{2}{u v^{3}}\right), \\
\partial_{1} \partial_{2} F & =\left(0,0, \frac{1}{u^{2} v^{2}}\right) .
\end{aligned}
$$

Let

$$
\tilde{N}(u, v):=N(F(u, v))=\frac{\left(v, u, u^{2} v^{2}\right)}{\sqrt{u^{2}+v^{2}+u^{4} v^{4}}} .
$$

Then $h_{i j}=\left\langle\partial_{i} \partial_{j} F, \tilde{N}\right\rangle$ is given by

$$
\begin{aligned}
& h_{11}=\frac{2 v}{u \sqrt{u^{2}+v^{2}+u^{4} v^{4}}}, \\
& h_{22}=\frac{2 u}{v \sqrt{u^{2}+v^{2}+u^{4} v^{4}}}, \\
& h_{12}=\frac{1}{\sqrt{u^{2}+v^{2}+u^{4} v^{4}}} .
\end{aligned}
$$

This yields

$$
\operatorname{det} H=\frac{3}{u^{2}+v^{2}+u^{4} v^{4}},
$$

so the Gauss curvature K on S is

$$
K(x, y, z)=K(F(x, y))=\frac{\operatorname{det} H(x, y)}{\operatorname{det} G(x, y)}=\frac{3 x^{4} y^{4}}{\left(x^{2}+y^{2}+x^{4} y^{4}\right)^{2}} .
$$

Problem 2.

Let a, b be real numbers with $0<b<a$, and let S be the surface of revolution obtained by revolving the circle

$$
\left\{(x, 0, z) \in \mathbb{R}^{3} \mid(x-a)^{2}+z^{2}=b^{2}\right\}
$$

about the z-axis. Describe the region in S where the Gauss curvature is positive and the region where it is negative.

Solution: We parametrize the circle C by $c: \mathbb{R} \rightarrow \mathbb{R}^{3}$,

$$
c(t)=(r(t), 0, h(t)),
$$

where

$$
r(t)=a+b \cos (t / b), \quad h(t)=b \sin (t / b) .
$$

For any open interval I of lenght at most $2 b \pi$ and any open interval J of length at most 2π the surface S has a local parametrization

$$
F: I \times J \rightarrow S, \quad(t, \theta) \mapsto(r(t) \cos \theta, r(t) \sin \theta, h(t))
$$

Since the curve c has unit speed, we can apply the results of Problem 4 for the 20th September, according to which the Gauss curvature K of S satisfies

$$
K(F(t, \theta))=-\frac{\ddot{r}(t)}{r(t)}=\frac{\cos (t / b)}{b(a+b \cos (t / b))},
$$

which has the same sign as $\cos (t / b)$. This means the the region in S obtained by revolving the (open) right semicircle of C has positive curvature, whereas the region obtained by revolving the left semicircle has negative curvature. In other words, if $(x, y, z) \in S$ then $K(x, y, z)$ has the same sign as $x^{2}+y^{2}-a^{2}$.

Problem 3.

Let S be the surface of revolution obtained by revolving a curve $\gamma: I \rightarrow \mathbb{R}^{3}$ about the z-axis, where γ has the form

$$
\gamma(t)=(r(t), 0, h(t))
$$

and $r>0$. Recall that S has a local parametrization $F: I \times J \rightarrow S$ given by

$$
F(t, \phi)=(r(t) \cos \phi, r(t) \sin \phi, h(t))
$$

for any open interval J of length 2π.
(i) For fixed $\phi \in J$ the curve $c: I \rightarrow S$ given by

$$
c(t):=F(t, \phi)
$$

is called a line of longitude. Show that c is a geodesic if and only if γ has constant speed.
(ii) For fixed $t \in I$ the curve $c: J \rightarrow S$ given by

$$
c(\phi):=F(t, \phi)
$$

is called a line of latitude. Show that c is a geodesic if and only if $\dot{r}(t)=0$.

Solution: (i) The curve c is a geodesic if and only if $\ddot{c}(t)=\partial_{1}^{2} F(t, \phi)$ is orthogonal to the tangent space $T_{c(t)} S$ for all $t \in I$. Since the vectors $\partial_{1} F(t, \phi), \partial_{2} F(t, \phi)$ form a basis for $T_{F(t, \phi)} S$, it follows that c is a geodesic if and only if

$$
\left\langle\partial_{1}^{2} F(t, \phi), \partial_{i} F(t, \phi)\right\rangle=0
$$

for $i=1,2$ and all $t \in I$. We calculate

$$
\begin{aligned}
\partial_{1} F(t, \phi) & =(\dot{r}(t) \cos \phi, \dot{r}(t) \sin \phi, \dot{h}(t)), \\
\partial_{2} F(t, \phi) & =(-r(t) \sin \phi, r(t) \cos \phi, 0), \\
\partial_{1}^{2} F(t, \phi) & =(\ddot{r}(t) \cos \phi, \ddot{r}(t) \sin \phi, \ddot{h}(t)) .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& \left\langle\partial_{1}^{2} F(t, \phi), \partial_{1} F(t, \phi)\right\rangle=\dot{r}(t) \ddot{r}(t)+\dot{h}(t) \ddot{h}(t)=\frac{1}{2} \frac{d}{d t}\|\dot{\gamma}(t)\|^{2}, \\
& \left\langle\partial_{1}^{2} F(t, \phi), \partial_{2} F(t, \phi)\right\rangle=0
\end{aligned}
$$

Therefore, c is a geodesic if and only if γ has constant speed.
(ii) We have

$$
\ddot{c}(t)=\partial_{2}^{2} F(t, \phi)=(-r(t) \cos \phi,-r(t) \sin \phi, 0),
$$

and

$$
\begin{aligned}
& \left\langle\partial_{2}^{2} F(t, \phi), \partial_{1} F(t, \phi)\right\rangle=-r(t) \dot{r}(t), \\
& \left\langle\partial_{2}^{2} F(t, \phi), \partial_{2} F(t, \phi)\right\rangle=0
\end{aligned}
$$

Since $r>0$, the curve c is a geodesic if and only if $\dot{r}(t)=0$.

Problem 4.

Let S be a regular surface. A 1 -form on S is a rule α that assigns to every point $p \in S$ a linear map $\alpha_{p}: T_{p} S \rightarrow \mathbb{R}$. A 1-form α is called smooth if for every smooth vector field X on S the map

$$
\alpha(X): S \rightarrow \mathbb{R}, \quad p \mapsto \alpha_{p}\left(X_{p}\right)
$$

is smooth.
(i) Show that for any smooth 1-form α on S the map

$$
d \alpha: \mathfrak{X}(S) \times \mathfrak{X}(S) \rightarrow C^{\infty}(S)
$$

given by

$$
d \alpha(X, Y)=\partial_{X}(\alpha(Y))-\partial_{Y}(\alpha(X))-\alpha([X, Y])
$$

is $C^{\infty}(S)$-bilinear.
(ii) Deduce from (i) that for any $p \in S$ there is a unique skew-symmetric, bilinear map

$$
(d \alpha)_{p}: T_{p} S \times T_{p} S \rightarrow \mathbb{R}
$$

such that for any smooth vector fields X, Y defined in a neighbourhood of p in S one has

$$
d \alpha(X, Y)=(d \alpha)_{p}\left(X_{p}, Y_{p}\right)
$$

Solution: See the proof of Proposition 11.1 in the lecture notes.

