
MAT4510, Fall 2023
Solutions to assignment.

Problem 1. Let

S := {(x, y, z) ∈ R3 |xyz = 1 and x, y, z > 0}.

(i) Show that S is a regular surface.

(ii) Calculate the Gauss curvature of S.

Solution: (i) Let h : R3 → R be defined by

f(x, y, z) = xyz.

The gradient of f is
∇f(x, y, z) = (yz, xz, xy).

Because ∇f ̸= 0 at every point in f−1(1), it follows that S = f−1(1) is a
regular surface.

(ii) The gradient of f is normal to S at every point on S, hence

N(x, y, z) :=
(yz, xz, xy)√

y2z2 + x2z2 + x2y2

is a smooth unit normal field on S. We obtain a global parametrization of S
by regarding it as the graph of a function. Namely, let

U := {(u, v) ∈ R2 |u, v > 0}

and define F : U → S by

F (u, v) := (u, v,
1

uv
).

We now compute the corresponding matrix of the first fundamental form.

∂1F = (1, 0,− 1

u2v
), ∂2F = (0, 1,− 1

uv2
).
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This gives

g11 = ∥∂1F∥2 = 1 +
1

u4v2

g22 = ∥∂2F∥2 = 1 +
1

u2v4

g12 = ⟨∂1F, ∂2F ⟩ = 1

u3v3
.

Therefore,

detG = g11g22 − g212 = 1 +
1

u4v2
+

1

u2v4
.

Next, we compute the matrix of the second fundamental form.

∂2
1F = (0, 0,

2

u3v
),

∂2
2F = (0, 0,

2

uv3
),

∂1∂2F = (0, 0,
1

u2v2
).

Let

Ñ(u, v) := N(F (u, v)) =
(v, u, u2v2)√
u2 + v2 + u4v4

.

Then hij = ⟨∂i∂jF, Ñ⟩ is given by

h11 =
2v

u
√
u2 + v2 + u4v4

,

h22 =
2u

v
√
u2 + v2 + u4v4

,

h12 =
1√

u2 + v2 + u4v4
.

This yields

detH =
3

u2 + v2 + u4v4
,

so the Gauss curvature K on S is

K(x, y, z) = K(F (x, y)) =
detH(x, y)

detG(x, y)
=

3x4y4

(x2 + y2 + x4y4)2
.
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Problem 2.

Let a, b be real numbers with 0 < b < a, and let S be the surface of revolution
obtained by revolving the circle

{(x, 0, z) ∈ R3 | (x− a)2 + z2 = b2}

about the z–axis. Describe the region in S where the Gauss curvature is
positive and the region where it is negative.

Solution: We parametrize the circle C by c : R → R3,

c(t) = (r(t), 0, h(t)),

where
r(t) = a+ b cos(t/b), h(t) = b sin(t/b).

For any open interval I of lenght at most 2bπ and any open interval J of
length at most 2π the surface S has a local parametrization

F : I × J → S, (t, θ) 7→ (r(t) cos θ, r(t) sin θ, h(t)).

Since the curve c has unit speed, we can apply the results of Problem 4 for
the 20th September, according to which the Gauss curvature K of S satisfies

K(F (t, θ)) = − r̈(t)

r(t)
=

cos(t/b)

b(a+ b cos(t/b))
,

which has the same sign as cos(t/b). This means the the region in S obtained
by revolving the (open) right semicircle of C has positive curvature, whereas
the region obtained by revolving the left semicircle has negative curvature. In
other words, if (x, y, z) ∈ S then K(x, y, z) has the same sign as x2+ y2−a2.

Problem 3.

Let S be the surface of revolution obtained by revolving a curve γ : I → R3

about the z–axis, where γ has the form

γ(t) = (r(t), 0, h(t))

and r > 0. Recall that S has a local parametrization F : I×J → S given by

F (t, ϕ) = (r(t) cosϕ, r(t) sinϕ, h(t))

for any open interval J of length 2π.
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(i) For fixed ϕ ∈ J the curve c : I → S given by

c(t) := F (t, ϕ)

is called a line of longitude. Show that c is a geodesic if and only if γ
has constant speed.

(ii) For fixed t ∈ I the curve c : J → S given by

c(ϕ) := F (t, ϕ)

is called a line of latitude. Show that c is a geodesic if and only if
ṙ(t) = 0.

Solution: (i) The curve c is a geodesic if and only if c̈(t) = ∂2
1F (t, ϕ) is

orthogonal to the tangent space Tc(t)S for all t ∈ I. Since the vectors
∂1F (t, ϕ), ∂2F (t, ϕ) form a basis for TF (t,ϕ)S, it follows that c is a geodesic if
and only if

⟨∂2
1F (t, ϕ), ∂iF (t, ϕ)⟩ = 0

for i = 1, 2 and all t ∈ I. We calculate

∂1F (t, ϕ) = (ṙ(t) cosϕ, ṙ(t) sinϕ, ḣ(t)),

∂2F (t, ϕ) = (−r(t) sinϕ, r(t) cosϕ, 0),

∂2
1F (t, ϕ) = (r̈(t) cosϕ, r̈(t) sinϕ, ḧ(t)).

Furthermore,

⟨∂2
1F (t, ϕ), ∂1F (t, ϕ)⟩ = ṙ(t)r̈(t) + ḣ(t)ḧ(t) =

1

2

d

dt
∥γ̇(t)∥2,

⟨∂2
1F (t, ϕ), ∂2F (t, ϕ)⟩ = 0.

Therefore, c is a geodesic if and only if γ has constant speed.

(ii) We have

c̈(t) = ∂2
2F (t, ϕ) = (−r(t) cosϕ,−r(t) sinϕ, 0),

and

⟨∂2
2F (t, ϕ), ∂1F (t, ϕ)⟩ = −r(t)ṙ(t),

⟨∂2
2F (t, ϕ), ∂2F (t, ϕ)⟩ = 0.
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Since r > 0, the curve c is a geodesic if and only if ṙ(t) = 0.

Problem 4.

Let S be a regular surface. A 1–form on S is a rule α that assigns to every
point p ∈ S a linear map αp : TpS → R. A 1–form α is called smooth if for
every smooth vector field X on S the map

α(X) : S → R, p 7→ αp(Xp)

is smooth.

(i) Show that for any smooth 1–form α on S the map

dα : X(S)× X(S) → C∞(S)

given by

dα(X, Y ) = ∂X(α(Y ))− ∂Y (α(X))− α([X, Y ])

is C∞(S)–bilinear.

(ii) Deduce from (i) that for any p ∈ S there is a unique skew-symmetric,
bilinear map

(dα)p : TpS × TpS → R

such that for any smooth vector fields X, Y defined in a neighbourhood
of p in S one has

dα(X, Y ) = (dα)p(Xp, Yp).

Solution: See the proof of Proposition 11.1 in the lecture notes.
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