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1 Some definitions

If U ⊂ Rm is an open set and h : U → Rn a smooth map then ∂ih : U → Rn
will denote the ith partial derivative of h. In other words, if (u1, . . . , um)
are the standard coordinates on Rm then

∂ih =
∂h

∂ui
.

Let S ⊂ R3 be a regular surface and h : S → Rn a smooth map. The
differential of h at a point p ∈ S is the unique linear map

dph : TpS → Rn

such that for any smooth curve γ : (−ε, ε)→ S with γ(0) = p one has

dph(γ̇(0)) =
d

dt

∣∣∣∣
0

h(γ(t)).

A map X : S → R3 is called a vector field if X(p) ∈ TpS for all p ∈ S.
A map N : S → R3 is called a normal field if N(p) ⊥ TpS for all p ∈ S.
If in addition ‖N(p)‖ = 1 for all p then N is called a unit normal field.
One often writes Xp instead of X(p), and similarly for N .

For example, any local parametrization F : U → S gives rise to coordi-
nate vector fields X1, X2 on F (U) satisfying

Xi ◦ F = ∂iF.

Thus, if u ∈ U and p = F (u) then Xi(p) = ∂iF (u). Since X1(p), X2(p) is a
basis for TpS for every p ∈ F (U), we also get a smooth normal field

N =
X1 ×X2

‖X1 ×X2‖

on F (U).
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2 Gauss curvature

Let S ⊂ R3 be a regular surface. The Gauss curvature K : S → R
is defined as follows. Given p ∈ S, choose a smooth unit normal field N
defined in a neighbourhood W of p in S. We now look at the differential of
N as a map W → S2. Because

TN(p)S
2 = N(p)⊥ = TpS,

the differential
dNp : TpS → TN(p)S

2

is in fact an endomorphism of TpS. The Gauss curvature at p is defined to
be the determinant of this endomorphism, i.e.

K(p) = det(dNp).

Then K(p) is independent of the choice of N , because

det(d(−N)p) = det(−dNp) = det(dNp).

The linear map
Wp = −dNp : TpS → TpS

is called the Weingarten map. Clearly,

det(Wp) = det(dNp) = K(p).

The bilinear map

IIp : TpS × TpS → R, (u, v) 7→ 〈Wp(u), v〉

is called the second fundamental form.
Our next goal is to describe the second fundamental form and the Gauss

curvature in terms of a local parametrization F : U → S, where U ⊂ R2 is
an open set. Let N be a smooth unit normal field on F (U). We now look at
the second order partial derivatives ∂i∂jF of F . Whereas ∂iF (u) lies in the
tangent space TF (u)S for all u ∈ U , this need not be the case for ∂i∂jF (u).
To measure this, we introduce the real-valued functions

hij = 〈∂i∂jF, Ñ〉

on U , where Ñ = N ◦ F . Since ∂1∂2F = ∂2∂1F we have

h12 = h21.
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Proposition 2.1 If u ∈ U and p = F (u) then

hij(u) = 〈Wp(∂iF (u)), ∂jF (u)〉.

Proof. Since ∂jF (u) lies in the tangent space TpS whereas Ñ(u) is per-
pendicular to it, we have 〈∂jF, Ñ〉 = 0. Differentiating this equality we
get

0 = ∂i〈∂jF, Ñ〉 = 〈∂i∂jF, Ñ〉+ 〈∂jF, ∂iÑ〉,

hence
hij = −〈∂jF, ∂iÑ〉.

The chain rule gives

(∂iÑ)(u) = ∂i(N ◦ F )(u) = dNp(∂iF (u)) = −Wp(∂iF (u)),

from which the proposition follows.

Corollary 2.1 The Weingarten map Wp : TpS → TpS is self-adjoint, i.e.
for all v, w ∈ TpS one has

〈Wp(v), w〉 = 〈v,Wp(w)〉.

Proof. Let p = F (u). The corollary follows because h12 = h21 and
(∂1F (u), ∂F2(u)) is a basis for TpS.

As an application of this, let λ1, λ2 be the eigenvalues of Wp. Then

K(p) = det(Wp) = λ1λ2.

The components of the first and second fundamental forms make up two
symmetric 2 × 2 matrices G = (gij) and H = (hij). We now express the
Gauss curvature K of S in terms of the determinants of these matrices. Let

K̃ = K ◦ F.

Theorem 2.1 K̃ =
det(H)

det(G)
.

Proof. Let u ∈ U , p = F (u), and ei = ∂iF (u). Then (e1, e2) is a basis
for TpS, and

gij(u) = 〈ei, ej〉.

Let A = (aij) be the matrix of the Weingarten map Wp with respect to this
basis, so that

Wpej =
∑
i

aijei.
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Then
hij = 〈Wpei, ej〉 = 〈

∑
k

akiek, ej〉 =
∑
k

gjkaki.

We recognize the last sum as the (ji) entry of the matrix product GA. This
means that the transpose of H is

HT = GA,

hence
det(H) = det(HT ) = det(G) det(A).

Recalling thatK(p) = det(A) and det(G) > 0, this proves the theorem.

Proposition 2.2 Let S ⊂ R3 be a regular surface. Suppose p ∈ S and r > 0
is a constant such that

• ‖x‖ ≤ r for all x ∈ S,

• ‖p‖ = r.

Then

K(p) ≥ 1

r2
.

Proof. Let N be a smooth unit normal field defined in a neighbourhood
W of p in S. Let v ∈ TpS and choose a smooth curve γ : (−ε, ε)→ W such
that

γ(0) = p, γ′(0) = v.

We consider the function

f(t) =
1

2
‖γ(t)‖2.

The first two derivatives are

f ′(t) = 〈γ′(t), γ(t)〉,
f ′′(t) = 〈γ′′(t), γ(t)〉+ ‖γ′(t)‖2.

Because f has a maximum at t = 0, we have

(i) 0 = f ′(0) = 〈v, p〉,

(ii) 0 ≥ f ′′(0) = 〈γ′′(0), p〉+ ‖v‖2.
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Since (i) holds for all v ∈ TpS, we have p ⊥ TpS, so we may assume that
N(p) = −p/r. Now observe that

0 = 〈γ′(t), N(γ(t))〉

for all t, so

0 =
d

dt
〈γ′(t), N(γ(t))〉 = 〈γ′′(t), N(γ(t))〉+ 〈γ′(t), dNγ(t)(γ

′(t))〉.

For t = 0 we get

〈v,Wp(v)〉 = 〈γ′′(0), N(p)〉 = −1

r
〈γ′′(0), p〉 ≥ 1

r
‖v‖2,

where the inequality follows from (ii) above. If v is in fact an eigenvalue of
Wp, say Wp(v) = λv, then

λ‖v‖2 = 〈v,Wp(v) ≥ 1

r
‖v‖2,

so λ ≥ 1/r. Now let λ1, λ2 be the eigenvalues of Wp. Then

K(p) = λ1λ2 ≥
1

r2
.

Corollary 2.2 If S ⊂ R3 is a compact, non-empty surface then there is a
point p ∈ S such that K(p) > 0.

Proof. Let p be a point on S where the function

S → R, x 7→ ‖x‖2

has a maximum, and let r = ‖p‖. Since S is a surface, it cannot consist of
the origin alone, hence r > 0. Therefore,

K(p) ≥ 1

r2
> 0.

The following theorem describes a surface locally as the graph of a func-
tion.
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Theorem 2.2 Let S ⊂ R3 be a regular surface, p ∈ S, and ξ1, ξ2, ξ3 an
orthonormal basis for R3 such that ξ1, ξ2 ∈ TpS.

(i) There exists a local parametrization of S around p of the form

F (u1, u2) = p+ u1ξ1 + u2ξ2 + f(u1, u2)ξ3,

where f : U → R is a smooth function satisfying

f(0, 0) = 0; ∂if(0, 0) = 0 for i = 1, 2.

(ii) If F is any local parametrization as in (i) then the Gauss curvature of
S at p agrees with the determinant of the Hessian matrix of f at the
origin, i.e.

K(p) = det(Hess(0,0)f).

Proof. (i) Let the maps π, α : R3 → R2 be defined by

π(
3∑
i=1

aiξi) := (a1, a2), α(x) := π(x− p)

for ai ∈ R and x ∈ R3. Let

φ := α|S : S → R2

be the restriction of α to S. At any point x ∈ S the differential of φ is the
restriction of π, i.e.

dxφ(v) = π(v)

for v ∈ TxS. Therefore, dpφ maps the basis ξ1, ξ2 for TpS to the basis
(1, 0), (0, 1) for R2, so dpφ : TpS → R2 is an isomorphism. By the inverse
function theorem, φ maps some neighbourhood W of p in S to a neighbour-
hood U of (0, 0) in R2. Let

F := φ−1 : U →W.

Because α ◦ F = IdU , there is a smooth function f : U → R such that

F (u1, u2) = p+ u1ξ1 + u2ξ2 + f(u1, u2)ξ3.

Since F (0, 0) = p we have f(0, 0) = 0. The partial derivatives of F are

∂iF = ξi + ∂if · ξ3.
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Because the vectors ξ1, ξ2 and ∂iF (0, 0) lie in the tangent space TpS whereas
ξ3 does not, we must have ∂if(0, 0) = 0.

(ii) Let G = (gij) be the matrix of the first fundamental form. Since
∂iF (0, 0) = ξi we see that G is the identity matrix. Choose a smooth normal
field N defined in some neighbourhood of p in S such that N(p) = ξ3, and
let H = (hij) be the matrix of the second fundamental form relative to N .
The second order partial derivatives of F are

∂i∂jF = ∂i∂jf · ξ3,

hence
hij(0, 0) = 〈∂i∂jF (0, 0), N(p)〉 = ∂i∂jf(0, 0).

Thus, H(0, 0) is the Hessian matrix of f at the origin, so

K(p) =
det(H(0, 0))

det(G(0, 0))
= det(Hess(0,0)f).

If E is any affine plane in R3 then R3−E has two connected components.
A subset A ⊂ R3 is said to lie completely on one side of E if A is
contained in one of the connected components of R3 − E. From the last
theorem we obtain the following corollary.

Corollary 2.3 (i) If K(p) > 0 then p has a neighbourhood W in S such
that W − {p} lies completely on one side of the affine tangent plane
p+ TpS.

(ii) If K(p) < 0 then any neighbourhood of p in S contains points from both
sides of p+ TpS.

3 Vector fields

For any vector field X on S and smooth function h : S → Rn, the direc-
tional derivative

∂Xh : S → Rn

is defined by
(∂Xh)(p) := (dph)(Xp).

Proposition 3.1 If X is a smooth vector field on the surface S and h :
S → Rn is smooth then the directional derivative ∂Xh is also smooth.
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Proof. Given p ∈ S, we can find a neighbourhood V ⊂ R3 of p and
smooth functions

X̃ : V → R3, h̃ : V → Rn

such that on S ∩ V we have X̃ = X and h̃ = h. Let

X̃ = (X̃1, X̃2, X̃3)

be the components of X̃. For any point q ∈ S ∩ V we have

∂Xh(q) = dqh(Xq) = dqh̃(X̃q) =
∑
i

X̃i(q) · ∂ih̃(q).

Since the functions X̃i and ∂ih̃ are smooth, we conclude that ∂Xh is smooth
on S ∩ V .

Lemma 3.1 Let S be a regular surface, X a vector field on S. For any
smooth functions f : S → R, and g, h : S → Rn the following hold.

(i) ∂X(g + h) = ∂Xg + ∂Xh.

(ii) ∂X(fh) = (∂Xf)h+ f∂Xh.

(iii) ∂fXh = f∂Xh.

Proof. Parts (i) and (ii) are left as exercises for the reader. Part (iii)
follows from the linearity of the differential dph at any point p ∈ S:

(∂fXh)(p) = dph(f(p)X(p)) = f(p) · dph(X(p)) = (f∂Xh)(p).

Lemma 3.2 For any smooth map h : S → Rn and local parametrization
(U,F, V ) with coordinate vector fields X1, X2 the following holds for any
i, j.

(i) (∂Xih) ◦ F = ∂i(h ◦ F ).

(ii) (∂Xi∂Xjh) ◦ F = ∂i∂j(h ◦ F ).

(iii) (∂XiXj) ◦ F = ∂i∂jF .

Proof. (i) For u ∈ U and p = F (u) we have

(∂Xih)(p) = dph(Xi(p)) = dph(∂iF (u)) = ∂i(h ◦ F )(u),

where the last equality follows from the chain rule.
(ii) Applying (i) twice we get

(∂Xi∂Xjh) ◦ F = ∂i((∂Xjh) ◦ F ) = ∂i∂j(h ◦ F ).

(iii) Take h = Xj in (i).
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Corollary 3.1 ∂XiXj = ∂XjXi.

Proof. This follows from part (iii) of the lemma because ∂i∂jF = ∂j∂iF .

4 Lie brackets

Given smooth vector fields X,Y on a regular surface S ⊂ R3, the directional
derivative ∂XY will in general not be a vector field on S. However, the Lie
bracket

[X,Y ] := ∂XY − ∂YX (1)

turns out to be a vector field. This is a consequence of the following propo-
sition, which tells us how to compute the Lie bracket in local coordinates.

Proposition 4.1 Let X,Y be smooth vector fields on a regular surface S.
If X1, X2 are coordinate vector fields on an open subset W of S and

X|W =
∑
i

aiXi, Y |W =
∑
i

biXi, (2)

for (smooth) real-valued functions ai, bj on W then

[X,Y ]|W =
∑
ij

(ai∂Xib
j − bi∂Xia

j)Xj .

Proof. We calculate

(∂XY )|W =
∑
ij

ai∂Xi(b
jXj) =

∑
ij

((ai∂Xib
j)Xj + aibj∂XiXj).

Applying Corollory 3.1 to ∂XY − ∂YX, the terms involving directional
derivatives of the coordinate vector fields cancel out, and we obtain the
formula in the lemma.

Example By Corollory 3.1, one has

[Xi, Xj ] = 0

whenever X1, X2 are coordinate vector fields on an open set in S.

Proposition 4.2 For any smooth vector fields X,Y on a regular surface S
and smooth function f : S → R one has

∂[X,Y ]f = ∂X∂Y f − ∂Y ∂Xf. (3)
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Proof. In a neighbourhood of any point in S we can express X and Y in
terms of coordinate vector fields as in (2). In that neighbourhood we then
have

∂X∂Y f =
∑
ij

ai∂Xi(b
j∂Xjf) =

∑
ij

(ai∂Xib
j · ∂Xjf + aibj∂Xi∂Xjf).

By Lemma 3.2 (ii) we have ∂Xi∂Xjf = ∂Xj∂Xif . Applying this to ∂X∂Y f −
∂Y ∂Xf , the terms involving second order directional derivatives cancel out.
Comparing the resulting formula with the expression in Proposition 4.1 we
obtain (3).

Proposition 4.3 Let X,Y be smooth vector fields on a regular surface S
and f : S → R a smooth function. Prove the following.

(i) [fX, Y ] = f [X,Y ]− (∂Y f)X.

(ii) [X, fY ] = f [X,Y ] + (∂Xf)Y .

Proof. This follows easily from Lemma 3.1.

5 The covariant derivative

Let S ⊂ R3 be a regular surface. For any p ∈ S let

Πp : R3 → TpS

be the orthogonal projection. Given a function f : S → R3, the tangential
part of f is the vector field f tan on S defined by

f tan(p) := Πp(f(p)).

Proposition 5.1 If f : S → R3 is smooth then the tangential part f tan is
also smooth.

Proof. Given p ∈ S, we can find a smooth unit normal field N defined in
a neighbourhood W of p in S. Then on W one has

f tan = f − 〈f,N〉N,

proving that f tan is smooth.
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If X,Y are smooth vector fields on S then the covariant derivative
∇XY is the smooth vector field on S defined by

∇XY := (∂XY )tan.

One can also define the covariant derivative at a point: If p ∈ S and v ∈ TpS
then we define

∇p,vY := Πp(dpY (v)).

If v = Xp we therefore have (∇XY )(p) = ∇p,vY .

Proposition 5.2 For any smooth vector fields X,Y, Z on S and smooth
function f : S → R one has

(i) ∇X+Y Z = ∇XZ +∇Y Z

(ii) ∇fXZ = f∇XZ

(iii) ∇X(Y + Z) = ∇XY +∇XZ

(iv) ∇X(fY ) = (∂Xf) · Y + f∇XY

(v) ∇X〈Y,Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

Proposition 5.3 For any smooth vector fields X,Y, Z on S one has

∇XY −∇YX = [X,Y ].

Proof. Take horizontal parts on both sides in Definition 1.

Proposition 5.4 If X1, X2 are coordinate vector fields on an open set in S
then

∇XiXj = ∇XjXi.

Proof. This follows from Corollory 3.1 by taking horizontal parts.

Let X1, X2 be coordinate vector fields on an open subset W ⊂ S. Recall
that X1(p), X2(p) is a basis for the tangent space TpS for every p ∈W . Any
vector field X on W can therefore be expressed uniquely on the form

X =
∑
i

aiXi
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for some functions ai : W → R. In view of Proposition 5.2, the covariant
derivative on W is therefore complete determined by the collection of vector
fields ∇XiXj . On the other hand,

∇XiXj =
∑
k

ΓkijXk

for some smooth functions Γkij : W → R called Christoffel symbols. Note
that

Γkij = Γkji

by Proposition 5.4.

Proposition 5.5 Let S ⊂ R3 be a regular surface with local parametrization
(U,F, V ) and corresponding coordinate vector fields Xi. Let N be a unit
normal field on S ∩ V . Then

∂i∂jF =
∑
k

Γ̃kij∂kF + hijÑ ,

where
Γ̃kij = Γkij ◦ F, Ñ = N ◦ F

and (hij) are the components of the second fundamental form.

Proof. Let u ∈ U and p = F (u) ∈ S. Expressing ∂XiXj in terms of its
tangential and normal parts we get

∂i∂jF (u) = (∂XiXj)(p)

= (∇XiXj)(p) + 〈∂i∂jF (u), N(p)〉N(p)

=
∑
k

Γkij(p)Xk(p) + hij(u)N(p)

=
∑
k

Γ̃kij(u)∂kF (u) + hij(u)Ñ(u).

For the purposes of this section we define the components of the first
fundamental form by

gij = 〈Xi, Xj〉.

Let (gij) be the inverse matrix of the 2× 2 matrix (gij), so that

∑
j

gijg
jk =

{
1 if i = k,

0 else.
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Proposition 5.6 Γkij =
1

2

∑
`

gkl(∂Xigjl + ∂Xjgil − ∂X`
gij).

Proof. We calculate

∂Xigjk = ∂Xi〈Xj , Xk〉
= 〈∇iXj , Xk〉+ 〈Xj ,∇iXk〉

= 〈
∑
m

ΓmijXm, Xk〉+ 〈Xj ,
∑
m

ΓmikXm〉

=
∑
m

(
Γmij gmk + Γmik gjm

)
.

We now make cyclic permutations of the indices i, j, k to obtain three equa-
tions:

∂Xigjk =
∑
m

(
Γmij gmk + Γmik gjm

)
,

∂Xjgki =
∑
m

(
Γmjk gmi + Γmji gkm

)
,

∂Xk
gij =

∑
m

(
Γmki gmj + Γmkj gim

)
.

Adding the first two equations and subtracting the last one we see that four
terms cancel and we are left with

∂Xigjk + ∂Xjgki − ∂Xk
gij = 2

∑
m

Γmij gmk,

which yields

Γkij =
∑
`m

Γmij g
k`g`m =

1

2

∑
`

gkl(∂Xigjl + ∂Xjgil − ∂X`
gij).

6 Some algebra

Let E1, . . . , Ek, F be modules over a ring R. A map

T : E1 × · · · × Ek → F

is called R–multilinear (or multilinear over R) if it is linear in each
variable separately, i.e. if for any ai ∈ Ei, i = 1, . . . , k and index j the map

Ej → F, b 7→ T (a1, . . . , aj−1, b, aj+1, . . . , ak)
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is R–linear.
For any regular surface S, the collection C∞(S) of all smooth functions

S → R is a commutative ring where addition and multiplication are defined
pointwise: If f, g ∈ C∞(S) and p ∈ S then

(f + g)(p) = f(p) + g(p), (fg)(p) = f(p)g(p).

An example of a module over C∞(S) is the collection X(S) of all smooth
vector fields on S, where addition of vector fields as well as multiplication
of a vector field with a function are defined pointwise.

7 The Riemannian curvature tensor

As motivation, we first consider the case when S is an affine plane in R3.
Then ∇XY = ∂XY for any smooth vector fields X,Y on S. If Z is a third
smooth vector field on S then by applying Proposition 4.2 to each component
of Z we get

∇X∇Y Z −∇Y∇XZ = ∂X∂Y Z − ∂Y ∂XZ = ∂[X,Y ]Z = ∇[X,Y ]Z.

For an arbitrary regular surface S in R3, the Riemannian curvature ten-
sor associates to every triple X,Y, Z of smooth vector fields on S the smooth
vector field

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Thus, if S is an affine plane then R = 0. We are going to show that
the Riemannian curvature tensor is preserved by local isometries, hence it
provides a measure of how much a given surface deviates from being locally
isometric to a plane. We will also express the Gauss curvature K in terms of
R, proving that Gauss curvature is also preserved by local isometries. (This
is the famous Theorema Egregium of Gauss.)

Proposition 7.1 The map

X(S)× X(S)× X(S)→ X(S), (X,Y, Z) 7→ R(X,Y )Z

is multilinear over C∞(S).

Proof. This is a straightforward application of Propositions 4.3 and 5.2.
Additivity in each variable is obvious. Now let f ∈ C∞(S). Then

R(fX, Y )Z = f∇X∇Y Z −∇Y (f∇XZ)−∇f [X,Y ]−∂Y f ·X(Z)

= f∇X∇Y Z − ∂Y f · ∇XZ − f∇Y∇XZ − f∇[X,Y ]Z + ∂Y f · ∇XZ
= fR(X,Y )Z.
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Furthermore,

R(X, fY )Z = −R(fY,X)Z = −fR(Y,X)Z = fR(X,Y )Z.

The proof that R(X,Y )(fZ) = fR(X,Y )Z is left as an exercise.

Proposition 7.2 For all smooth vector fields X,Y, Z,W on S one has

〈R(X,Y )Z,W 〉 = −〈Z,R(X,Y )W 〉.

Proof. We calculate

∂X∂Y 〈Z,W 〉 = ∂X(〈∇Y ,W 〉+ 〈Z,∇Y ,W 〉)
= 〈∇X∇Y Z,W 〉+ 〈∇Y Z,∇XW 〉
+ 〈∇XZ,∇YW 〉+ 〈Z,∇X∇YW 〉).

In the final expression, the sum of the second and third terms is symmetric
in X and Y . If we make the same calculation with X and Y reversed and
subtract the results, the terms involving first-order covariant derivatives
therefore cancel out, and we obtain the following.

∂[X,Y ]〈Z,W 〉 = ∂X∂Y 〈Z,W 〉 − ∂Y ∂X〈Z,W 〉
= 〈∇X∇Y Z −∇Y∇XZ,W 〉+ 〈Z,∇X∇YW −∇Y∇XW 〉.

Combining this with

∂[X,Y ]〈Z,W 〉 = 〈∇[X,Y ]Z,W 〉+ 〈Z,∇[X,Y ]W 〉

we obtain the proposition.

The previous proposition makes it possible to define the Riemannian cur-
vature Rp at any point p in S, as we now explain. For any finite-dimensional
real vector space V equipped with a scalar product let so(V ) denote the space
of all skew-symmetric endomorphisms of V , i.e. linear maps A : V → V such
that

〈Ax, y〉 = −〈x,Ay〉

for all x, y ∈ V .

Proposition 7.3 Let S be a regular surface. For each point p ∈ S there is
a unique skew-symmetric bilinear map

Rp : TpS × TpS → so(Tp(S))
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such that for any smooth vector fields X,Y, Z defined in a neighbourhood of
p in S one has

[R(X,Y )Z]p = Rp(Xp, Yp)Zp.

Proof. The map Rp is unique because for every tangent vector v ∈ TpS
there exists a smooth vector field X defined in some neighbourhood of p in
S such that Xp = v. To prove existence, let X1, X2 be coordinate vector
fields in some neighbourhood W of p in S. We consider three smooth vector
fields on W given as

X =
∑
i

aiXi, Y =
∑
j

bjXj , Z =
∑
k

ckXk,

where ai, bj , ck are smooth functions on W . Then

R(X,Y )Z =
∑
ijk

aibjckR(Xi, Xj)Xk.

We can therefore define Rp in terms of the basis X1(p), X2(p) for TpS by

Rp(Xi(p), Xj(p))Xk(p) := [R(Xi, Xj))Xk](p).

Given coordinate vector fields X1, X2 on an open subset W of a regular
surface S, there are smooth, real-valued functions R`ijk on W such that

R(Xi, Xj)Xk =
∑
`

R`ijkX`.

These functions R`ijk are called the components of the curvature tensor.

Proposition 7.4 R`ijk = ∂XiΓ
`
jk − ∂XjΓ

`
ik +

∑
m

(
ΓmjkΓ

`
im − ΓmikΓ

`
jm

)
.

Proof. This is a straight-forward calculation:

∇Xi∇XjXk = ∇Xi

∑
`

Γ`jkX`

=
∑
`

(
∂XiΓ

`
jk ·X` + Γ`jk∇XiX`

)
=
∑
`

∂XiΓ
`
jk ·X` +

∑
`m

Γ`jkΓ
m
i`Xm.
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Interchanging ` and m in the last sum we obtain

∇Xi∇XjXk =
∑
`

(
∂XiΓ

`
jk +

∑
m

ΓmjkΓ
`
im

)
X`.

Now recall that [Xi, Xj ] = 0, hence

R(Xi, Xj)Xk = ∇Xi∇XjXk −∇Xj∇XiXk.

Putting this together, we get the formula of the proposition.

8 Theorema Egregium

Our next goal is to express the Gauss curvature of a regular surface in terms
of the Riemannian curvature tensor. This will lead to a proof of Gauss’s
Theorema Egregium (remarkable theorem), which asserts that the Gauss
curvature is preserved by local isometries.

Let S ⊂ R3 be a regular surface. The normal part of a function
f : S → R3 is the normal field fnor on S defined by

fnor := f − f tan.

Given smooth vector fields X,Y on S we define the normal field

α(X,Y ) := (∂XY )nor,

so that
∂XY = ∇XY + α(X,Y )

is the decomposition of ∂XY into its tangential and normal parts.

Proposition 8.1 α(X,Y ) = α(Y,X).

Proof. By definition of the Lie bracket we have

[X,Y ] = ∂XY − ∂YX.

Because [X,Y ] is a vector field, its normal part is zero, hence

0 = [X,Y ]nor = (∂XY )nor − (∂YX)nor = α(X,Y )− α(Y,X).

Let X⊥(S) be the set of all smooth normal fields on S, which is a module
over the ring C∞(S) of smooth functions on S.
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Proposition 8.2 The map

α : X(S)× X(S)→ X(S)⊥

is bilinear over C∞(S).

Proof. Biadditivity of α is obvious. For f ∈ C∞(S) we have

α(fX, Y ) = (∂fXY )nor = (f∂XY )nor = fα(X,Y ).

By symmetry of α we also have α(X, fY ) = fα(X,Y ).

Proposition 8.3 Let S be a regular surface. For any point p ∈ S there is
a unique symmetric bilinear map

αp : TpS × TpS → (TpS)⊥

such that if X,Y are smooth vector fields defined in some neighbourhood of
p in S then

[α(X,Y )]p = αp(Xp, Yp).

Proof. This is proved in the same way as the corresponding statement for
the Riemannian curvature tensor, see Proposition 7.3.

Proposition 8.4 If N : S → R3 is a smooth unit normal field and p ∈ S
then for all tangent vectors v, w ∈ TpS one has

αp(v, w) = IIp(v, w) ·Np,

where IIp is the second fundamental form relative to N .

Proof. Choose smooth vector fields X,Y defined in some neighbourhood of
p in S such that Xp = v and Yp = w. Then

0 = ∂X〈Y,N〉 = 〈∂XY,N〉+ 〈Y, ∂XN〉.

Evaluating at p we get

〈αp(v, w), Np〉 = 〈∂XY,N〉p = −〈Y, ∂XN〉p
= −〈w, dpN(v)〉 = 〈w,Wp(v)〉 = IIp(v, w),

where Wp is the Weingarten map.
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Theorem 8.1 (Gauss equation) For all smooth vector fields X,Y, Z,W
on S one has

−〈R(X,Y )Z,W 〉 = 〈α(X,Z), α(Y,W )〉 − 〈α(X,W ), α(Y,Z)〉.

Proof. We begin by calculating

〈∂X∂Y , Z,W 〉 = 〈∂X(∇Y Z + α(Y,Z)),W 〉
= 〈∇X∇Y ,W 〉+ 〈∂Xα(Y, Z),W 〉.

On the other hand,

0 = ∂X〈α(Y,Z),W 〉 = 〈∂Xα(Y,Z),W 〉+ 〈α(Y,Z), ∂XW 〉,

hence
〈∂Xα(Y,Z),W 〉 = −〈α(Y, Z), α(X,W )〉.

Altogether, we obtain

〈∂X∂Y Z,W 〉 = 〈∇X∇Y ,W 〉 − 〈α(Y,Z), α(X,W )〉.

Finally,

〈∇[X,Y ]Z,W 〉 = 〈∂X∂Y Z − ∂Y ∂XZ,W 〉
= 〈∇X∇Y Z −∇Y∇XZ,W 〉
− 〈α(Y,Z), α(X,W )〉+ 〈α(X,Z), α(Y,W )〉,

from which the theorem follows.

Theorem 8.2 Let S ⊂ R3 be a regular surface with Gauss curvature K and
Riemannian curvature tensor R. Then for any p ∈ S and orthonormal basis
v1, v2 for TpS one has

K(p) = −〈Rp(v1, v2)v1, v2〉.

Proof. Let (aij) be the matrix of the Weingarten map Wp : TpS → TpS with
respect to the basis v1, v2. Then

aij = 〈vi,Wp(vj)〉 = II(vi, vj).

By Proposition 8.4 we have

αp(vi, vj) = aijNp.

Since 〈Np, Np〉 = 1, the Gauss equation yields

−〈Rp(v1, v2)v1, v2〉 = a11a22 − a2
12 = detWp = K(p).
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Theorem 8.3 (Theorema Egregium) If φ : S → S̄ is an isometry be-
tween regular surfaces with Gauss curvatures K, K̄, respectively, then

K = K̄ ◦ φ.

Proof. Let p ∈ S and p̄ = φ(p). We must show that K(p) = K̄(p̄). Let F :
U → R3 be a local parametrization of S around p. Then F̄ := φ◦F : U → R3

is a local parametrization of S̄. Let gij , Γkij , R
`
ijk, Xi be the components of

the first fundemental form, Christoffel symbols, components of the curvature
tensor, and coordinate vector fields defined by F . Let ḡij , Γ̄kij , R̄

`
ijk, and X̄i

be the corresponding quantities defined by F̄ .
Suppose p = F (u), u ∈ U . The chain rule yields

AXi(p) = dpφ(∂iF (u)) = ∂i(φ ◦ F )(u) = ∂iF̄ (u) = X̄i(p̄).

Because the differential A := dpφ is an isometry,

gij(p) = 〈Xi(p), Xj(p)〉 = 〈AXi(p), AXj(p)〉 = 〈X̄i(p̄), X̄j(p̄)〉 = ḡij(p̄).

Proposition 5.6 then implies that Γkij(p) = Γ̄kij(p̄), and Proposition 7.4 yields

R`ijk(p) = R̄`ijk(p̄). Given tangent vectors v1, v2, v3 ∈ TpS, the equation

A(Rp(v1, v2)v3) = R̄p(Av1, Av2)Av3

therefore holds whenever each vi is one of the basis vectors Xj(p). By multi-
linearity of Rp, the same equation holds for all vi. If v1, v2 is an orthonormal
basis for TpS, then Av1, Av2 is an orthonormal basis for Tp̄S̄, and by Theo-
rem 8.2 we have

K(p) = −〈Rp(v1, v2)v1, v2〉 = −〈A(Rp(v1, v2)v1), Av2〉
= −〈Rp(Av1, Av2)Av1, Av2〉 = K̄(p̄).

9 Submanifols of Rn

For non-negative integers k, n, a subset M ⊂ Rn is called a k–dimensional
submanifold if for every point p ∈ S there is an open set U ⊂ Rk and a
smooth map F : U → Rn such that

(i) F maps U homeomorphically onto a neighbourhood of p in M , and

(ii) For any u ∈ U the derivative duF : Rk → Rn is injective.
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Such a map F is called a local parametrization of M , and the inverse
map F (U) → U is called a chart on M . By a manifold we will mean a
submanifold of some Euclidean space Rn. A 2–dimensional submanifold of
R3 is called a regular surface.

The notion of a smooth map between manifolds is defined just as for maps
between regular surfaces. Tangent spaces, differentials of smooth maps,
vector fields, and Lie brackets are also defined as before.

10 Differential forms

For ` ≥ 1, a differential form on M of degree ` is a rule φ that assigns to
every point p ∈M a multilinear alternating map

φp : TpM × · · ·TpM︸ ︷︷ ︸
` times

→ R.

By alternating we mean that for every permutation σ of the set {1, . . . , `}
and all tangent vectors v1, . . . , v` ∈ TpM one has

φp(vσ(1), . . . , vσ(`)) = sgn(σ)φp(v1, . . . , v`),

where sgn(σ) = ±1 is the sign of the permutation. By a differential form
on M of degree 0 we simply mean a real-valued function on M . Differential
forms of degree ` are often called `–forms. An `–form φ on M is smooth
if for all smooth vector fields X1, . . . , X` on M the function

φ(X1, . . . , X`) : M → R, p 7→ φp((X1)p, . . . , (X`)p)

is smooth. The set Ω`(M) of all smooth `–forms on M is a module over the
ring C∞(M) of smooth functions on M .

Note that a 1–form α assigns to every p ∈M a linear map αp : TpM → R,
whereas a 2–form β assigns to every p a bilinear skew-symmetric map

βp : TpM × TpM → R.

For any real vector space V let A2(V ) denote the real vector space of all
bilinear skew-symmetric maps V × V → R.

Lemma 10.1 If V has dimension 2 then A2(V ) has dimension 1.
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Proof. Let e1, e2 be a basis for V , and f ∈ A2(V ). Given elements
v, w ∈ V represented as

v = v1e1 + v2e2, w = w1e1 + w2e2,

where vi, wj ∈ R, we have

f(v, w) =
∑
ij

viwjf(ei, ej) = (v1w2 − v2w1)f(e1, e2).

This shows that the map

A2(V )→ R, f 7→ f(e1, e2)

is injective. It is also surjective, because for any t ∈ R the map

V × V → R, (v, w) 7→ t(v1w2 − v2w1)

belongs to A2(V ).
The wedge product

Ω`(M)× Ωm(M)→ Ω`+m(M), (φ, ψ) 7→ φ ∧ ψ

is a C∞(M)–bilinear map defined for all non-negative integers `,m, see
[5, 3]. We define it here for ` = m = 1. Given φ, ψ ∈ Ω1(M) we define
φ ∧ ψ ∈ Ω2(M) by

(φ ∧ ψ)p(v, w) := φp(v)ψp(w)− φp(w)ψp(v)

for p ∈M and v, w ∈ TpM . For vector fields X,Y on M one then has

(φ ∧ ψ)(X,Y ) = φ(X)ψ(Y )− φ(Y )ψ(X).

11 The exterior derivative

The exterior derivative

d : Ω`(M)→ Ω`+1(M)

is a real-linear map defined for all ` ≥ 0, see [5, 3]. We define it here for
` = 0, 1.

Given f ∈ Ω0(M) = C∞(M), the 1–form df on M is defined by

(df)p(v) := dpf(v),

for p ∈M , v ∈ TpM . Here, dpf : TpM → R is the differential of f at p. For
any smooth vector field X on M we then have

(df)(X) = ∂Xf.

23



Proposition 11.1 For any smooth 1–form α on M there is a unique smooth
2–form dα on M such that for all smooth vector fields X,Y on M one has

dα(X,Y ) = ∂X(α(Y ))− ∂Y (α(X))− α([X,Y ]). (4)

Proof. We claim that right hand side of Equation (4) defines a C∞(M)–
bilinear map

B : X(M)× X(M)→ C∞(M).

Given this, we can complete the proof of the proposition by arguing as in
the proof of Proposition 7.3.

The map B is obviously biadditive. Now let f ∈ C∞(M). Then

B(fX, Y ) = ∂fXα(Y )− ∂Y α(fX)− α([fX, Y ])

= f∂Xα(Y )− ∂Y (f · α(X))− α(f [X,Y ]− ∂Y f ·X)

= f∂Xα(Y )− ∂Y f · α(X)− f∂Y α(X)− fα([X,Y ]) + ∂Y f · α(X)

= f ·B(X,Y ).

Because B is skew-symmetric, we also have B(X, fY ) = f ·B(X,Y ).

Proposition 11.2 For any f, g ∈ Ω0(M) one has

d(fdg) = df ∧ dg.

Proof. For all smooth vector fields X,Y on M one has

[d(fdg)](X,Y ) = ∂X(f∂Y g)− ∂Y (f∂Xg)− f∂[X,Y ]g

= ∂Xf · ∂Y x+ f∂X∂Y g − ∂Y f · ∂Xg − f∂Y ∂Xg − f∂[X,Y ]g

= (df ∧ dg)(X,Y ),

where in the last equation we used Proposition 4.2, which holds on any
manifold.

Let x1, . . . , xk be standard coordinates on Rk. The ith coordinate xi is
a smooth map Rn → R whose differential dxi ∈ Ω1(Rk) is given by

(dxi)p(v) = vi

for any tangent vector v = (v1, . . . , vk) ∈ TpRk = Rk. On an open subset
U ⊂ Rk, any smooth 1–form α therefore has the form

α =
∑
i

fidx
i

for some fi ∈ C∞(U), and by Proposition 11.2 we have

dα =
∑
i

dfi ∧ dxi.
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12 Volume forms and orientations

Let S ⊂ R3 be an oriented regular surface with smooth unit normal field
N : S → R3. The (Riemannian) volume form on S is the smooth 2–form
µ defined by

µp(v, w) := det(v, w,Np) (5)

for v, w ∈ TpS.

Lemma 12.1 If µ is the volume form of an oriented surface S then

µp(v, w) = ±1

for any orthonormal basis (v, w) for TpS.

Proof. This holds because the 3 × 3 matrix with columns v, w,Np is
orthogonal and therefore has determinant ±1.

Conversely, any smooth 2–form µ on S satisfying the conclusion of the
lemma determines an orientation of S through the formula (5).

If S has volume form µ then an ordered basis (v, w) for TpS is called
positively oriented if µp(v, w) > 0; otherwise it is called negatively
oriented.

13 Frames

Let S ⊂ R3 be a regular surface. A frame on an open subset V ⊂ S is a
pair (E1, E2) of vector fields on V such that (E1(p), E2(p)) is a basis for TpS
for every p ∈ V . The frame is smooth if each Ei is smooth. By a local
frame on S we mean a frame on some open subset of S.

Example If F : U → S is a local parametrization then the associated
coordinate vector fields X1, X2 form a smooth frame on F (U).

A frame (E1, E2) on V ⊂ S is orthonormal if (E1(p), E2(p)) is an or-
thonormal basis for TpS for every p ∈ V . Note that applying the Gram-
Schmidt process to an arbitrary frame produces an orthonormal frame.
Hence, there is a smooth orthonormal frame on a neighbourhood of any
point on S.

If S is oriented then a frame (E1, E2) on V ⊂ S is positively oriented
if (E1(p), E2(p)) is a positively oriented basis for TpS for every p ∈ V ;
otherwise the frame is negatively oriented.
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14 Connection forms

Let S ⊂ R3 be a regular surface. To any smooth frame (E1, E2) on an open
subset V ⊂ S we can associate a 2× 2 matrix (ωji ) of smooth 1–forms on V
called connection forms. These are uniquely determined by the fact that

∇XEi =
∑
j

ωji (X) · Ej

for any vector field X on V .

Lemma 14.1 If the frame (E1, E2) is orthonormal then the matrix (ωji ) is
skew-symmetric, i.e.

ωji = −ωij
for all i, j.

Proof. Because 〈Ei, Ej〉 is a constant function on V we have

0 = ∂X〈Ei, Ej〉 = 〈∇XEi, Ej〉+ 〈Ei,∇XEj〉 = ωji (X) + ωij(X).

This means that the matrix (ωji ) is completely determined by the element
ω1

2, which we simply denote by ω and refer to as the connection form of
the frame. We then have

∇XE1 = ω2
1(X)E2 = −ω(X)E2,

∇XE2 = ω1
2(X)E1 = ω(X)E1

for any vector field X on V .

Proposition 14.1 Let S ⊂ R3 be an oriented surface with Gauss curvature
K and volume form µ. Let (E1, E2) be a positively oriented, orthonormal
frame on an open subset V ⊂ S and ω the corresponding connection form.
Then

dω = Kµ.

Proof. For any smooth vector fields X,Y on V we have

dω(X,Y ) = ∂Xω(Y )− ∂Y ω(X)− ω([X,Y ])

= ∂X〈∇YE2, E1〉 − ∂Y 〈∇XE2, E1〉 − 〈∇[X,Y ]E2, E1〉
= 〈∇X∇YE2, E1〉+ 〈∇YE2,∇XE1〉
− 〈∇Y∇XE2, E1〉 − 〈∇XE2,∇YE1〉 − 〈∇[X,Y ]E2, E1〉
= 〈R(X,Y )E2, E1〉.
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By Theorem 8.2 we therefore have

K = 〈R(E1, E2)E2, E1〉 = dω(E1, E2).

By Lemma 10.1 we can write dω = fµ for some real-valued function f on
V . Then f = dω(E1, E2) = K, and the proposition is proved.

15 Line integrals

Let M be a manifold and α ∈ Ω1(M). For any smooth curve c : [a, b]→M
we define ∫

c
α :=

∫ b

a
αc(t)(ċ(t))dt.

Lemma 15.1 Let α be a smooth 1–form on M and c : [a, b]→M a smooth
curve. If φ : [a′, b′] → [a, b] is a smooth function such that φ(a′) = a and
φ(b′) = b then ∫

c
α =

∫
c◦φ

α.

Proof. Exercise.

16 Surface integrals

Let M be a manifold. A curve c : I → M is called regular if c is smooth
and ċ(t) 6= 0 for all t ∈ I. A continuous, non-constant curve c : R → M is
called periodic if there exists a positive real number λ such that

c(t+ λ) = c(t)

for all t. The smallest such λ is then called the period of c.

Example The plane curve c(t) = (cos t, sin t) has period 2π.

For given L > 0, curves c : R → M of period L are in one-to-one
correspondence with maps f : S1 →M through the relation

c(t) = f(e2πit/L).

Moreover, c is smooth if and only if f is smooth. If f is injective, or equiva-
lently if c restricts to an injective map [0, L)→M , then c is called simple
periodic. In this case, f is a topological embedding. If in addition c is

27



regular then one can show that f is a diffeomorphism onto a submanifold of
M , see [5, 3].

Now let S be a regular surface and c : I → S a regular curve. By a
normal orientation of c we mean a smooth map N : I → S2 such that
N(t) ∈ Tc(t)S and N(t) ⊥ ċ(t) for all t. (In particular, N is a vector field on
S along c.)

By a smooth region in S we mean a compact subset R ⊂ S which is
the closure (in S) of an open subset of S and whose boundary ∂R is the
image of a simple periodic, regular curve c : R→ S. In this case, the curve
c has a canonical normal orientation N such that N(t) is inward-pointing
with respect to R for every t. (One can show that R is a 2–manifold-with-
boundary, and a precise definition of inward-pointing is then given in [5].)
If in addition S is oriented, we say c is positively oriented with respect
to R if (ċ(t), N(t)) is a positively oriented basis for Tc(t)S for every t. If c is
positively oriented and has period L then for ω ∈ Ω1(S) the integral∫

∂R
ω :=

∫ L

0
ωc(t)(ċ(t)) dt

is easily seen to be independent of the choice of c.
For a regular surface S (oriented or not) we refer to [1] for the definition

of the surface integral
∫
S f dA for integrable functions f : S → R. If S is

oriented with volume form µ then any 2–form φ on S can be expressed as
φ = fµ for a unique function f : S → R, and we define∫

S
φ :=

∫
S
f dA.

A definition of
∫
S φ which makes no reference to Riemannian metrics can be

found in [5].

Theorem 16.1 (Stokes) Let S be an oriented regular surface and R ⊂ S
a smooth region. For any ω ∈ Ω1(S) one then has∫

∂R
ω =

∫
R
dω.

If S is the xy–plane with the standard orientation then ω = f dx+ g dy
for some smooth functions f, g : R2 → R and

dω =

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy.

28



Stokes’s theorem now says that∫
∂R

(f dx+ g dy) =

∫
R

(
∂g

∂x
− ∂f

∂y

)
dxdy,

which is an instance of Green’s theorem.

17 Winding numbers

In this section we will state the Hopf Umlaufsatz, or rotation index theorem,
which will be used in the proof of the Gauss Bonnet theorem.

We will make use of the complex exponential function ez. Recall that if
z = x+ iy for real numbers x, y then

ez = ex(cos y + i sin y).

Lemma 17.1 Let I ⊂ R be an interval and f : I → C−{0} a continuously
differentiable function.

(i) There exists a continuously differentiable function g : I → C such that
f(t) = eg(t) for all t ∈ I.

(ii) If g1, g2 are two functions as in (i) then

g1 − g2 = 2πik

for some constant k ∈ Z.

Proof. Choose t0 ∈ I and a complex number a such that f(t0) = ea. To
prove (ii), suppose f = eg. Then

g(t0) = a+ 2πik

for some integer k. Moreover,

ḟ = ġeg = ġf,

so ġ = ḟ/f . Therefore,

g(t) = g(t0) +

∫ t

t0

ġ = a+ 2πik +

∫ t

t0

ḟ

f
,

proving (ii).
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To prove (i), define

g(t) := a+

∫ t

t0

ḟ

f
.

Then ġ = ḟ/f . Writing h := fe−g we have

ḣ = ḟ e−g − fġe−g = 0,

hence h is constant. Because h(t0) = 1, we have h ≡ 1, so f = eg.
Let c : R→ C be a continuously differentiable curve with period L, and

z0 a complex number not in the image of c. The winding number W (c; z0)
of c with respect to z0 is defined as follows. By Lemma 17.1 we can find a
continuously differentiable curve g : R→ C such that

c(t) = z0 + eg(t)

for all t. Then
g(t+ L) = g(t) + 2πik

for some constant integer k, and we define W (c; z0) := k. Part (ii) of the
lemma shows that this definition is independent of the choice of g.

Note that if c(t) = z0 + r(t)eiθ(t) for real-valued functions r, θ with r > 0
then

W (c; z0) =
1

2π
(θ(L)− θ(0)).

Let c : R→ C be a regular, periodic curve. The rotation index nc of c
(also called the tangent winding number) is the winding number of the
derivative ċ : R→ C with respect to the origin, i.e.

nc := W (ċ; 0).

If c is in fact simple periodic then one can show that its image C is a
submanifold of R2 diffeomorphic to S1. The Jordan curve theorem then
asserts that the complement R2−C has exactly two connected components,
and C is their common boundary. (A proof of the more general Jordan-
Brouwer separation theorem can be found in [2, p. 89].) Moreover, one
component (the “inside”) is bounded, whereas the other one (the “outside”)
is unbounded. We say c is positively oriented if it is positively oriented
with respect to the closure R of the bounded component.

Theorem 17.1 (Hopf) Any positively oriented, regular, simple periodic
curve in the plane has rotation index 1.

For the proof we refer to [1, 4].
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18 Geodesic curvature

Let S be a regular surface and γ : I → S a smooth curve of unit speed and
with normal orientation N . Because

0 =
d

dt
‖γ̇(t)‖2 = 2

〈
∇
dt
γ̇(t), γ̇(t)

〉
,

there is a unique smooth function κγ : I → R, the geodesic curvature of
γ, such that

∇
dt
γ̇(t) = κγ(t) ·N(t)

for all t. Clearly, κγ ≡ 0 if and only if γ is a geodesic.
The following lemma says that the geodesic curvature is invariant under

reparametrization in a certain sense.

Lemma 18.1 Let I, J ⊂ R be intervals. Let γ1 : I → S be a smooth curve
of unit speed and with normal orientation N . Suppose γ2 = γ1 ◦ φ : J → S
is a reparametrization of γ1 of unit speed, where φ : J → I is smooth.
Let γ2 have the normal orientation N2(t) := N1(φ(t)). Then the geodesic
curvatures of γ1, γ2 are related by

κγ2(t) = κγ1(φ(t)).

Proof. It is easy to see that φ(t) = εt + a for some constants ε = ±1,
a ∈ R, so that

γ2(t) = γ1(εt+ a).

Hence,
γ̇2(t) = εγ̇1(εt+ a), γ̈2(t) = γ̈1(εt+ a).

This yields

κγ2(t)N2(t) =
∇
dt
γ̇2(t) =

∇
ds

∣∣∣∣
s=φ(t)

γ̇1(s) = κγ1(φ(t))N1(φ(t)),

from which the lemma follows.

Corollary 18.1 Let S be a regular surface and R ⊂ S a smooth domain.
There is a unique smooth function κg : ∂R→ R with the following property.
Let γ : (−ε, ε)→ S be a smooth curve of unit speed such that γ(t) ∈ ∂R for
every t. If γ is given the inward-pointing normal orientation with respect to
R then

κg(γ(0)) = κγ(0).
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Proof. Let γ1, γ2 be smooth curves of unit speed taking values on ∂R,
both defined in open intervals containing 0. Then φ := γ−1

2 ◦ γ1 is defined
and smooth on a neighbourhood of 0. Now apply the lemma.

Let R ⊂ S be a smooth region. Let γ : R → S be a smooth, simply
periodic curve of unit speed and period L such that ∂R equals the trace of
γ. By the corollary, the integral∫

∂R
κg ds :=

∫ L

0
κγ(t) dt

will not depend on the choice of γ.

19 The local Gauss-Bonnet theorem, I

Theorem 19.1 Let S be a regular surface with Gauss curvature K. Suppose
R ⊂ S is a smooth region which is contained in a chart domain for S. Then∫

R
K dA+

∫
∂R
κg ds = 2π.

Proof. Let F : U → S be a local parametrization with R ⊂ F (U).
Let X1, X2 be the corresponding coordinate vector fields and (E1, E2) the
orthonormal frame on F (U) obtained from (X1, X2) by the Gram-Schmidt
process. We give F (U) the orientation for which F is orientation preserving.
Combining Proposition 14.1 and Stokes’s theorem we find that∫

R
K dA =

∫
R
dω =

∫
∂R
ω, (6)

where ω ∈ Ω1(F (U)) is the connection form of the frame (E1, E2). To
compute the line integral, choose a smooth, simply periodic curve γ : R→ S
of unit speed whose trace equals ∂R. Let N : R→ S2 be the inward-pointing
normal orientation of γ. By replacing γ(t) by γ(−t) if necessary, we can
arrange that γ is positively oriented.

We can write
γ̇(t) =

∑
i

βi(t)Ei(γ(t))

where each βi is a smooth funtion R → R. Then β := (β1, β2) is a smooth
curve in R2−{(0, 0}. By Lemma 17.1 there is a smooth function θ : R→ R
such that

β(t) = (cos θ(t), sin θ(t))
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for all t. Then

γ̇(t) = cos θ(t)E1(γ(t)) + sin θ(t)E2(γ(t)).

Furthermore the normal oriantation of γ is

N(t) = − sin θ(t)E1(γ(t)) + cos θ(t)E2(γ(t)),

as one can verify by computing µγ(t)(γ̇(t), N(t)) = 1, where µ is the volume
form on S. Now,

∇
dt
γ̇(t) =− θ̇(t) sin θ(t)E1(γ(t)) + cos θ(t)∇γ(t),γ̇(t)E1

+ θ̇(t) cos θ(t)E2(γ(t)) + sin θ(t)∇γ(t),γ̇(t)E2.

Inserting

∇γ(t),γ̇(t)E1 = −ωγ(t)(γ̇(t))E2(γ(t)),

∇γ(t),γ̇(t)E2 = ωγ(t)(γ̇(t))E1(γ(t)),

we get

∇
dt
γ̇(t) =

(
θ̇(t)− ωγ(t)(γ̇(t))

)
N(t).

Hence, the geodesic curvature of γ is

κγ(t) = θ̇(t)− ωγ(t)(γ̇(t)). (7)

If γ has period L then this yields∫
∂R
ω =

∫ L

0

(
θ̇(t)− κγ(t)

)
dt = θ(L)− θ(0)−

∫
∂R
κgds.

Combining this with (6) we obtain∫
R
K dA+

∫
∂R
κg ds = 2πW (β; 0).

It only remains to prove that the winding number W (β; 0) = 1. To this end
we compare γ with the plane curve α := F−1 ◦ γ. Clearly, α is regular and
simple periodic. Let α = (α1, α2). Since γ = F ◦ α, the chain rule yields

γ̇(t) =
∑
i

α̇i(t)∂iF (α(t)) =
∑
i

α̇i(t)Xi(γ(t)).
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For fixed t, and omitting t and γ from notation for a moment, we then have

γ̇ =
∑
i

α̇iXi =
∑
i

βiEi.

Recall that the Gram-Schmidt process transforms a basis by a triangular
matrix with positive entries on the diagonal. In our case,

Ej =
∑
i

cijXi,

where the matrix (cij) satisfies cii > 0, and cij = 0 for i > j. Therefore,

γ̇ =
∑
j

βj
∑
i

cijXi =
∑
i

∑
j

cijβ
j

Xi.

This shows that
α̇i =

∑
j

cijβ
j .

Since the matrix (cij) has only positive eigenvalues (namely cii), we see that
α̇(t) is never a negative real multiple of β(t). It is then a simple exercise to
show that the curves α̇ and β have the same winding number with respect
to the origin. Thus,

W (β; 0) = W (α̇; 0) = nα = 1,

where the last equality is the theorem of Hopf. This completes the proof of
the theorem.

As an example, let S2 be the unit sphere in R3, and let R ⊂ S2 be the
upper hemisphere. Since ∂R is a great circle, which can be parametrized by
a geodesic, we have κg = 0. Moreover, K = 1, so the theorem says that

2π =

∫
R
K dA+

∫
∂R
κg ds =

∫
R

1 dA = Area(R) =
1

2
Area(S2),

confirming that the area of S2 is 4π.

20 The local Gauss-Bonnet theorem, II

Given a manifold M , a continuous curve γ : I → M is called piecewise
regular if for all a, b ∈ I with a < b there exists a non-negative integer r
and a partition

a = a0 < a1 < · · · < ar = b
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such that the restriction of γ to the subinterval [ai−1, ai] is a regular curve
for i = 1, . . . , r.

Let S be a regular surface. By a polygonal region in S we mean a
compact subset R ⊂ S such that the following hold.

• R is the closure of an open subset of S.

• The boundary ∂R has finitely many components.

• Each component of ∂R is the image of a simple periodic, piecewise
regular curve R→ S.

A polygonal region R is called simple if R is contained in a chart domain
for S and ∂R has exactly one boundary component.

Let R ⊂ S be a polygonal region and γ : R → S a simple periodic,
piecewise regular curve of unit speed whose trace is a boundary component
of R. If t0 ∈ R is a point where γ is not smooth then γ(t0) is called a vertex
of ∂R. A vertex γ(t0) is called a cusp if the one-sided derivatives γ̇(t±0 ) of
γ at t0 satisfy

γ̇(t+0 ) = −γ̇(t−0 );

otherwise γ(t0) is called an ordinary vertex. If θ ∈ [0, 2π] is the interior
angle of ∂R at a vertex p then ε := π−θ ∈ [−π, π] is called the jump angle
at p. If γ is smooth on a non-empty open interval (t0, t1) but not smooth at
t0 or at t1 then the image of the closed interval [t0, t1] under γ is called an
edge of ∂R.

Let J ⊂ R be the largest open interval on which γ is smooth. Let
V := γ(R−J) be the set of vertices in ∂R, which is finite. For the restriction
of γ to J , the inward normal orientation and geodesic curvature can be
defined as before, and we obtain a smooth function

κg : ∂R− V → R

characterized as in Corollary 18.1.

Theorem 20.1 Let S be a regular surface with Gauss curvature K. Suppose
R ⊂ S is a simple polygonal region with jump angles ε1, . . . , εk at the vertices.
Then ∫

R
K dA+

∫
∂R
κg ds+

k∑
i=1

εi = 2π.
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Idea of proof. “Round off the corners” of ∂R to produce a smooth region
R′ ⊂ S to which Theorem 19.1 can be applied. Use Equation (7) to estimate
the integral

∫
∂R′ κg ds.

A simple polygonal region R ⊂ S is called a geodesic triangle if R
has exactly three vertices and each edge of ∂R can be parametrized by a
geodesic.

Theorem 20.2 Let R ⊂ S be a geodesic triangle with interior angles θi,
i = 1, 2, 3. Then ∫

R
K dA =

3∑
i=1

θi − π.

Proof. The jump angle at the ith vertex is εi = π − θi. Since κg = 0,
Theorem 20.1 gives∫

R
K dA = 2π −

3∑
i=1

(π − θi) =
3∑
i=1

θi − π.

If K is constant then the theorem says that

K ·Area(R) =
3∑
i=1

θi − π.

Note that the cases K = 0, 1,−1 correspond to Euclidean, spherical, and
hyperbolic triangles, respectively.
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