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1 Some definitions

If U € R™ is an open set and h : U — R™ a smooth map then 9;h : U — R"
will denote the ith partial derivative of h. In other words, if (u!,...,u™)
are the standard coordinates on R™ then
oh
out’

Let S C R? be a regular surface and h : S — R” a smooth map. The
differential of h at a point p € S is the unique linear map

Oih =

dyh : T,S — R"
such that for any smooth curve v : (—¢,e) = S with v(0) = p one has

BGO) = G| 1)

A map X : S — R? is called a vector field if X (p) € T),S for all p € S.
A map N : S — R? is called a normal field if N(p) L T,S for all p € S.
If in addition ||N(p)|| = 1 for all p then N is called a unit normal field.
One often writes X, instead of X (p), and similarly for N.

For example, any local parametrization F': U — S gives rise to coordi-
nate vector fields X, Xy on F(U) satisfying

XZ‘OF:@'F.

Thus, if w € U and p = F(u) then X;(p) = 0;F(u). Since Xi(p), X2(p) is a
basis for T,,S for every p € F(U), we also get a smooth normal field
X1 X X2

N= 1%22
[ X1 x Xaf|

on F(U).



2 (Gauss curvature

Let S C R? be a regular surface. The Gauss curvature K : S — R
is defined as follows. Given p € S, choose a smooth unit normal field N
defined in a neighbourhood W of p in S. We now look at the differential of
N as a map W — S2. Because

Tn(p)S* = N(p)* =1T,8,

the differential
ANy : TpS = Ty (S

is in fact an endomorphism of 7,,S. The Gauss curvature at p is defined to
be the determinant of this endomorphism, i.e.

K(p) = det(dNp).
Then K (p) is independent of the choice of N, because
det(d(—N)p) = det(—dN,) = det(dNp).

The linear map
Wy = —dNp : T,S — T,S

is called the Weingarten map. Clearly,
det(W)) = det(dN,) = K(p).
The bilinear map
II, : T,S x T,S = R, (u,v) = (Wy(u),v)

is called the second fundamental form.

Our next goal is to describe the second fundamental form and the Gauss
curvature in terms of a local parametrization F : U — S, where U C R? is
an open set. Let N be a smooth unit normal field on F'(U). We now look at
the second order partial derivatives 0;0;F of F'. Whereas 0;F(u) lies in the
tangent space Tp(,)S for all u € U, this need not be the case for 9;0;F (u).
To measure this, we introduce the real-valued functions

hij = (0:0;F, N)
on U, where N = NoF. Since 0109 F = 0201 F we have

hia = hoy.



Proposition 2.1 Ifu € U and p = F(u) then
hij(u) = (Wp(0iF (w)), ;F (u)).

Proof. Since 9;F(u) lies in the tangent space 7},S whereas N(u) is per-
pendicular to it, we have (0;F, N) = 0. Differentiating this equality we
get 3 ~ R

0 = 0;(0; F, N) = <8¢8jF, N) + (0;F, O;iN),

hence B
hij = —(0;F,0;N).
The chain rule gives
(OiN)(u) = 0y(N o F)(u) = dNy(9;F (u)) = =Wp(9;F (u)),

from which the proposition follows. O

Corollary 2.1 The Weingarten map W), : T,S — T,S is self-adjoint, i.e.
for all v,w € T),S one has

(Wp(v), w) = (v, Wy(w)).

Proof. Let p = F(u). The corollary follows because hia = hg; and
(O1F (u),0F5(u)) is a basis for T,S. O
As an application of this, let A\j, A2 be the eigenvalues of W),. Then

K(p) = det(Wp) = )\1)\2.

The components of the first and second fundamental forms make up two
symmetric 2 X 2 matrices G = (g;;) and H = (h;;). We now express the
Gauss curvature K of S in terms of the determinants of these matrices. Let

K=KoPF.

det(H)

Th 2.1 K = .
eorem det(G)

Proof. Let w € U, p = F(u), and e; = 0;F(u). Then (e1,e2) is a basis
for T,,S, and
9ij(u) = (ei, €5).
Let A = (a;j) be the matrix of the Weingarten map W), with respect to this
basis, so that

Wpej: E A;jj€q.
7
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Then
hij = (Wyei e5) = (O arier, €5) = Y gjkani-
B B

We recognize the last sum as the (ji) entry of the matrix product GA. This
means that the transpose of H is

HT = GA,

hence
det(H) = det(HT) = det(G) det(A).

Recalling that K (p) = det(A) and det(G) > 0, this proves the theorem. O

Proposition 2.2 Let S C R? be a reqular surface. Supposep € S andr > 0
18 a constant such that

o |z|| <r forallx €S,

e lpl=r.

Then

1
K(p) > 2

Proof. Let N be a smooth unit normal field defined in a neighbourhood

W of pin S. Let v € T,,S and choose a smooth curve 7 : (—¢,€) — W such
that

¥(0)=p, +'(0) =w.

We consider the function
1 2
F#&) = 5llv@I
The first two derivatives are

) = (/' (1),(1)),

71 = ("0, v @) + 1Y O
Because f has a maximum at ¢ = 0, we have
(i) 0= f'(0) = (v,p),
(i) 0= f"(0) = (+(0),p) + [|v[|*.



Since (i) holds for all v € T,,S, we have p L T,S, so we may assume that
N(p) = —p/r. Now observe that

0= (y'(t), N(v(t)))
for all ¢, so

d

0=—
dt

(Y (), N(y(1)) = ("(8), N(v(1))) + (¥'(£), AN,y (' (1))

For ¢t = 0 we get

(0, W (o)) = (0(0), (o) = = ("(0),8) 2 o,

where the inequality follows from (ii) above. If v is in fact an eigenvalue of

Wy, say Wp(v) = Av, then
2 L2
Al = (v, W (o) > Lol

so A > 1/r. Now let A1, A2 be the eigenvalues of W,. Then

1
K(p) = A2 > ot O

Corollary 2.2 If S C R3 is a compact, non-empty surface then there is a
point p € S such that K(p) > 0.

Proof. Let p be a point on S where the function
SR, x|z

has a maximum, and let r = [|p||. Since S is a surface, it cannot consist of
the origin alone, hence r > 0. Therefore,

The following theorem describes a surface locally as the graph of a func-
tion.



Theorem 2.2 Let S C R? be a reqular surface, p € S, and &1,&2,&3 an
orthonormal basis for R such that &1,& € T,S.

(1) There exists a local parametrization of S around p of the form
_ 1 2 1,2
Fui,ug) =p+u & +ubo+ fu,u’)Es,
where f: U — R is a smooth function satisfying

£(0,0)=0; 8:f(0,0) =0 fori=1,2.

(i) If F is any local parametrization as in (i) then the Gauss curvature of
S at p agrees with the determinant of the Hessian matriz of f at the
origin, i.e.

K (p) = det(Hess(0)f)-

Proof. (i) Let the maps 7, a : R? — R? be defined by
3 .
n() &)= (a',a®), a(z):=n(z—p)
i=1

for a' € R and z € R3. Let
¢:=alg: S —R?

be the restriction of o to S. At any point x € S the differential of ¢ is the
restriction of 7, i.e.

deb('U) = W(U)

for v € T,S. Therefore, dy,¢ maps the basis £1,& for T},S to the basis
(1,0),(0,1) for R?, so dp¢ : T,S — R? is an isomorphism. By the inverse
function theorem, ¢ maps some neighbourhood W of p in S to a neighbour-
hood U of (0,0) in R2. Let

F=¢1:U—=W
Because o o F' = Idy, there is a smooth function f : U — R such that
Fu',v®) = p+u'& + v + f(u',u?)és.
Since F'(0,0) = p we have f(0,0) = 0. The partial derivatives of F are

OF =&+ 0;f - &.



Because the vectors &1, &2 and 0;F(0, 0) lie in the tangent space T},S whereas
&3 does not, we must have 9;£(0,0) = 0.

(ii) Let G = (gi;) be the matrix of the first fundamental form. Since
0;F(0,0) = & we see that G is the identity matrix. Choose a smooth normal
field N defined in some neighbourhood of p in S such that N(p) = &3, and
let H = (h;j) be the matrix of the second fundamental form relative to N.
The second order partial derivatives of F' are

0;0;F = 0;0;f - &3,

hence

hij(0,0) = (9;0;F(0,0), N(p)) = 9;9;f(0,0).
Thus, H(0,0) is the Hessian matrix of f at the origin, so

~ det(H(0,0))

K@) = 3eG0,0)

= det(Hessg0f). O

If E is any affine plane in R3 then R?— F has two connected components.
A subset A C R? is said to lie completely on one side of E if A is
contained in one of the connected components of R? — E. From the last
theorem we obtain the following corollary.

Corollary 2.3 (i) If K(p) > 0 then p has a neighbourhood W in S such
that W — {p} lies completely on one side of the affine tangent plane
p+1T,S.

(ii) If K(p) < 0 then any neighbourhood of p in S contains points from both
sides of p+T),S. d

3 Vector fields

For any vector field X on S and smooth function A : S — R"”, the direc-
tional derivative

(9xh : S — R"
is defined by
(Oxh)(p) := (dph)(Xp).

Proposition 3.1 If X is a smooth vector field on the surface S and h :
S — R"™ is smooth then the directional derivative Oxh is also smooth.



Proof. Given p € S, we can find a neighbourhood V C R? of p and

smooth functions } .
X: VSR, h:VoRY
such that on SNV we have X = X and h = h. Let
£ = (X028
be the components of X. For any point ¢ € SNV we have
Ixh(q) = dgh(Xy) = dqﬁ()zq) = ZXZ(Q) ) a?ﬁ(‘])'

Since the functions X* and 9;h are smooth, we conclude that dx h is smooth
on SNV. O

Lemma 3.1 Let S be a regular surface, X a vector field on S. For any
smooth functions f : S — R, and g,h : S — R" the following hold.

(Z') ax(g + h) = 0xg + Oxh.
(i) Ox(fh) = (Oxf)h+ foxh.
(iii) Opxh = fOxh.

Proof. Parts (i) and (ii) are left as exercises for the reader. Part (iii)
follows from the linearity of the differential d,h at any point p € S:

(Orxh)(p) = dph(f(P)X (p)) = f(p) - dph(X(p)) = (fOxh)(p). D

Lemma 3.2 For any smooth map h : S — R™ and local parametrization
(U, F, V') with coordinate vector fields X1, Xy the following holds for any

i,].
(1) (Ox,h) o F = 0;(hoF).
(ii) (9x,0x,h) o F = 8,0;(h o F).
(iii) (0x,X;) 0 F = 0;0;F.
Proof. (i) For v € U and p = F(u) we have
(Ox,1)(p) = dph(Xi(p)) = dyph(D,F (1)) = Oi(h o F)(u),

where the last equality follows from the chain rule.
(ii) Applying (i) twice we get

(0x,0x,h) o F = 0;((0x,h) o F) = 0;0j(h o F).
(iii) Take h = X; in (i). O



Corollary 3.1 8Xin = 8Xin-

Proof. This follows from part (iii) of the lemma because 0;0; F = 0;0;F.

4 Lie brackets

Given smooth vector fields X,Y on a regular surface S C R3, the directional
derivative OxY will in general not be a vector field on S. However, the Lie
bracket

(X, Y] :=0xY — oy X (1)

turns out to be a vector field. This is a consequence of the following propo-
sition, which tells us how to compute the Lie bracket in local coordinates.

Proposition 4.1 Let X,Y be smooth vector fields on a regular surface S.
If X1, X5 are coordinate vector fields on an open subset W of S and

Xlw=> a'X;, Ylw=> VX (2)
7 %

for (smooth) real-valued functions a', b/ on W then
[X, Y”W = Z(a’@xlb] — biaxiaj)Xj.
]
Proof. We calculate
OxY)lw =D _a'ox,(V X;) =Y ((a'0x,b) X; + a't 0x, X;).
ij ij
Applying Corollory 3.1 to 0xY — 0y X, the terms involving directional

derivatives of the coordinate vector fields cancel out, and we obtain the
formula in the lemma. O

Example By Corollory 3.1, one has
[Xi, X;] =0
whenever X1, Xs are coordinate vector fields on an open set in S.

Proposition 4.2 For any smooth vector fields X,Y on a reqular surface S
and smooth function f:S — R one has

Ixy1f =0x0y [ —OyOxf. (3)

10
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Proof. In a neighbourhood of any point in .S we can express X and Y in
terms of coordinate vector fields as in (2). In that neighbourhood we then
have

OxOvf = a'dx,(Vox,f) =D (a'dx,b! - Ox, f + a'bldx,0x, f).

i i

By Lemma 3.2 (ii) we have Ox,0x, f = Ox,0x,f. Applying this to Oxdy f —
Oy Ox f, the terms involving second order directional derivatives cancel out.
Comparing the resulting formula with the expression in Proposition 4.1 we
obtain (3). O

Proposition 4.3 Let X,Y be smooth vector fields on a reqular surface S
and f: S — R a smooth function. Prove the following.

(1) [fX, Y] = fIX, Y] = (Oy ) X.
(i) [X, fY] = fIX, Y]+ (Ox f)Y .

Proof. This follows easily from Lemma 3.1. O

5 The covariant derivative
Let S C R? be a regular surface. For any p € S let
I, : R® = T,S

be the orthogonal projection. Given a function f : S — R3, the tangential
part of f is the vector field f**" on S defined by

F0(p) = T,(f (p))-

Proposition 5.1 If f : S — R? is smooth then the tangential part f'* is
also smooth.

Proof. Given p € S, we can find a smooth unit normal field N defined in
a neighbourhood W of p in S. Then on W one has

fo=f = (f,N)N,

proving that f%% is smooth. O

11



If X,Y are smooth vector fields on S then the covariant derivative
VxY is the smooth vector field on S defined by

VxY = (0xY)™".

One can also define the covariant derivative at a point: If p € S and v € T),S

then we define
VoY :=11,(d,Y (v)).

If v = X,, we therefore have (VxY)(p) = V,.,Y.

Proposition 5.2 For any smooth vector fields X,Y,Z on S and smooth
function f: S — R one has

(i) Vx+yZ =VxZ +VyZ

(it) VixZ = fVxZ

(isi) Vx(Y +72)=VxY +VxZ

(iv) Vx(fY)=0xf) Y + fVxY

(v) Vx(Y,Z)=(VxY,Z) +(Y,VxZ)
Proposition 5.3 For any smooth vector fields X,Y,Z on S one has

VxY - VyX =[X,Y].
Proof. Take horizontal parts on both sides in Definition 1. O

Proposition 5.4 If X1, Xo are coordinate vector fields on an open set in S
then
Vx, X; =Vx, X,
Proof. This follows from Corollory 3.1 by taking horizontal parts. O

Let X1, X5 be coordinate vector fields on an open subset W C S. Recall
that X1 (p), X2(p) is a basis for the tangent space T),S for every p € W. Any
vector field X on W can therefore be expressed uniquely on the form

X = ZaiXi

12



for some functions a’ : W — R. In view of Proposition 5.2, the covariant
derivative on W is therefore complete determined by the collection of vector
fields Vx, X;. On the other hand,

Vx, Xj = Z % X
k

for some smooth functions I‘fj : W — R called Christoffel symbols. Note
that
Iy =Th

by Proposition 5.4.

Proposition 5.5 Let S C R3 be a reqular surface with local parametrization
(U, F, V) and corresponding coordinate vector fields X;. Let N be a unit
normal field on SNV. Then

0;0;F = Zr O F + hijN,

where 3 )
I}, =THoF, N=NoF

and (hi;) are the components of the second fundamental form.

Proof. Let w € U and p = F(u) € S. Expressing 0x,X; in terms of its
tangential and normal parts we get

9;0;F (u) = (9x,X;)(p)
= (Vx,X;)(p) + (9:0; F (u), N(p))N (p)
= ZF P) Xk (p) + hij(u)N(p)

_Zr w)OpF(u) + hij(u)N(u). O

For the purposes of this section we define the components of the first
fundamental form by
9ij = (Xi, Xj).
Let (g%) be the inverse matrix of the 2 x 2 matrix (g;;), so that

S gig?* = {1 iti =k,
ij =
j

0 else.

13



- 1
Proposition 5.6 Ffj =3 ngl(ﬁxigjl + 0x; 91 — 0x,9i5)-
l

Proof. We calculate

aXigjk - aXi <Xj>Xk>
= <V1XJ?XIC> + <Xj? VZXk>

= O T X, Xp) + (X5, > T X)
= Z (FZL Imk + F:Z gjm) .

We now make cyclic permutations of the indices i, j, k to obtain three equa-
tions:

0x,9ik = Y _ (T% gmk + T5i gjm)

m

O, Gki = Z (T5% 9mi + T Gom)

m

O0x,9ij = Z (TR 9mj + T Gim) -

m

Adding the first two equations and subtracting the last one we see that four
terms cancel and we are left with

Ox,9jk + Ox, 9k — 0x,9i5 = 2 Y _ T} Gk
m
which yields

1
Tf=> T7g" gum = 3 > g™ (Ox.gj1 + Ox,90 — Ox,9i)- O
Im 0

6 Some algebra
Let Eq,..., Ep, F be modules over a ring R. A map
T.-EFixX--xE, > F

is called R—multilinear (or multilinear over R) if it is linear in each
variable separately, i.e. if for any a; € E;, i = 1,...,k and index j the map

Ej—>F, b|—>T(al,...,aj_l,b,aj+1,...,ak)

14



is R-linear.

For any regular surface S, the collection C*°(.S) of all smooth functions
S — R is a commutative ring where addition and multiplication are defined
pointwise: If f,g € C*°(S) and p € S then

(f+9)p) = fp) +9), (f9)p)=f(p)g(p).

An example of a module over C*°(S) is the collection X(S5) of all smooth
vector fields on S, where addition of vector fields as well as multiplication
of a vector field with a function are defined pointwise.

7 The Riemannian curvature tensor

As motivation, we first consider the case when S is an affine plane in R3.
Then VxY = dxY for any smooth vector fields X,Y on S. If Z is a third
smooth vector field on S then by applying Proposition 4.2 to each component
of Z we get

VxVyZ — VyVxZ = 0x0y Z — dyOxZ = dx 17 = Vixy 2.

For an arbitrary regular surface S in R?, the Riemannian curvature ten-
sor associates to every triple X, Y, Z of smooth vector fields on .S the smooth
vector field

R(X,Y)Z = VXVYZ - VYVXZ - V[}Qy]Z

Thus, if S is an affine plane then R = 0. We are going to show that
the Riemannian curvature tensor is preserved by local isometries, hence it
provides a measure of how much a given surface deviates from being locally
isometric to a plane. We will also express the Gauss curvature K in terms of
R, proving that Gauss curvature is also preserved by local isometries. (This
is the famous Theorema Egregium of Gauss.)

Proposition 7.1 The map
X(9) x X(S) x X(5) = X(9), (X,V.2)— R(X,Y)Z
is multilinear over C*°(S).

Proof. This is a straightforward application of Propositions 4.3 and 5.2.
Additivity in each variable is obvious. Now let f € C°°(S). Then

R(fX,Y)Z = [VxVyZ —Vy(fVxZ) = Vjxy] oy 5x(Z)

=fVxVyZ =0y [ -VxZ - fVyVxZ - fVixy1Z+0vf -VxZ
— FR(X,Y)Z.

15



Furthermore,
R(X,fY)Z =—-R(fY,X)Z =—-fR(Y,X)Z = fR(X,Y)Z.
The proof that R(X,Y)(fZ) = fR(X,Y)Z is left as an exercise. O
Proposition 7.2 For all smooth vector fields X,Y,Z, W on S one has
(R(X,Y)Z, W) =—(Z,R(X,Y)W).
Proof. We calculate

axay<Z, W> = 8_)((<VY, W> + <Z7 Vv, W))
= <VvaZ, W> + <VyZ7 wa>
+ <sz, VyW> + <Z, VvaW>).
In the final expression, the sum of the second and third terms is symmetric
in X and Y. If we make the same calculation with X and Y reversed and

subtract the results, the terms involving first-order covariant derivatives
therefore cancel out, and we obtain the following.

Ox,y|(Z, W) = OxOy(Z, W) — Oy Ox(Z, W)
— (VxVyZ — VyVxZ, W) + (Z,VxVy W — Vy V).

Combining this with
Oxy){Z, W) = (Vixv)Z, W) +{Z,Vx )W)
we obtain the proposition. O

The previous proposition makes it possible to define the Riemannian cur-
vature It, at any point p in S, as we now explain. For any finite-dimensional
real vector space V' equipped with a scalar product let so(V') denote the space
of all skew-symmetric endomorphisms of V', i.e. linear maps A : V' — V such
that

(Az,y) = —(z, Ay)
for all z,y € V.

Proposition 7.3 Let S be a reqular surface. For each point p € S there is
a unique skew-symmetric bilinear map

R, : T,S x T,S — so(T,(S5))

16



such that for any smooth vector fields X,Y, Z defined in a neighbourhood of
p in S one has

[R(X,Y)Z]p = Rp(Xyp,Yp) Zp.
Proof. The map R, is unique because for every tangent vector v € T),S
there exists a smooth vector field X defined in some neighbourhood of p in
S such that X, = v. To prove existence, let X;, X> be coordinate vector

fields in some neighbourhood W of p in S. We consider three smooth vector
fields on W given as

X=) dX; Y=Y VX, z=> X,
i j k

where a’, b, ¢* are smooth functions on W. Then

R(X,Y)Z = Z 'V R(X;, Xj) Xy
ijk

We can therefore define R, in terms of the basis X1 (p), X2(p) for 7,5 by

Rp(Xi(p), X;(p) Xk (p) := [R(Xi, X;)) X](p). O

Given coordinate vector fields X1, X2 on an open subset W of a regular
surface S, there are smooth, real-valued functions Rfjk on W such that

R(Xi, X;) X = ZRfijg.
¢
These functions Rfjk are called the components of the curvature tensor.
Proposition 7.4 Rl = 0x,T% — 0x, T + > (r;?,;rfm - rgrgm).
m
Proof. This is a straight-forward calculation:
Vax,Vx, Xp = Vx, Y THX,
¢
=3 (OxTh - Xo + TV, X )

L
= Z aXing‘ - Xo+ ngkryg m-
L Im

17



Interchanging ¢ and m in the last sum we obtain

VXivXij = Z <8XZ.F§,€ + ZFﬂFfm> Xy.
m

L

Now recall that [X;, X;] = 0, hence
R(X;, X)Xy, = Vx,Vx; X — Vx,;Vx, Xg.

Putting this together, we get the formula of the proposition. O

8 Theorema Egregium

Our next goal is to express the Gauss curvature of a regular surface in terms
of the Riemannian curvature tensor. This will lead to a proof of Gauss’s
Theorema Egregium (remarkable theorem), which asserts that the Gauss
curvature is preserved by local isometries.

Let S Cc R3 be a regular surface. The normal part of a function
f: S — R3 is the normal field f™°" on S defined by

fnor = f o ftan‘
Given smooth vector fields X,Y on S we define the normal field
a(X,Y) = (0xY)",

so that
OxY =VxY +a(X,Y)

is the decomposition of JxY into its tangential and normal parts.
Proposition 8.1 «(X,Y) = «o(Y, X).
Proof. By definition of the Lie bracket we have
[X,Y] =0xY — 0y X.
Because [X,Y] is a vector field, its normal part is zero, hence
0=[X,Y]" = (0xY)" — (v X)"" =a(X,)Y) —a(Y,X). O

Let X+(S) be the set of all smooth normal fields on S, which is a module
over the ring C°°(S) of smooth functions on S.

18



Proposition 8.2 The map
o X(S) x £(9) — X(9)*
is bilinear over C*°(S5).
Proof. Biadditivity of « is obvious. For f € C*°(S) we have
a(fX,Y) = (0pxY)"" = (fOxY)™ = fa(X,Y).
By symmetry of @ we also have (X, fY) = fa(X,Y). O

Proposition 8.3 Let S be a reqular surface. For any point p € S there is
a unique symmetric bilinear map

ap : TpS x TS — (T,S)*

such that if X,Y are smooth vector fields defined in some neighbourhood of
p in S then
[a(X,Y)]p = ap(Xp, Yp).

Proof. This is proved in the same way as the corresponding statement for
the Riemannian curvature tensor, see Proposition 7.3. O

Proposition 8.4 If N : S — R? is a smooth unit normal field and p € S
then for all tangent vectors v,w € T,S one has

ap(v, w) = (v, w) - Np,
where I, is the second fundamental form relative to N.

Proof. Choose smooth vector fields X,Y defined in some neighbourhood of
p in S such that X, = v and Y}, = w. Then

0=0x(Y,N) = (0xY,N) + (Y,0x N).
Evaluating at p we get

(ap(v,w), Np) = (OxY,N)p = —(Y,0xN),
= _<w7de(U)> = <w7 WP(U» = IIp(v,w),

where W), is the Weingarten map. O
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Theorem 8.1 (Gauss equation) For all smooth vector fields X,Y, Z, W
on S one has

—(R(X, Y)Z, W) =(a(X,Z),a(Y,W)) — (a(X, W), (Y, Z)).
Proof. We begin by calculating

(Ox0y, Z,W) = (0x(VyZ + a(Y, Z)), W)
= (VxVy, W) + (Oxa(Y, Z),W).

On the other hand,
0=0x(x(Y,2),W) = (0xa(Y, Z),W) + (Y, Z),0x W),

hence
(Oxa(Y,2),W) = —(a(Y, Z), a(X, W)).

Altogether, we obtain
<6XayZ, W> = <VXVy, W> - <Oé(Y, Z), a(X, W)>
Finally,
<V[X’Y]Z, W) = (0x0yZ — OyOxZ, W)
=(VxVyZ - VyVxZ W)
- <CK(K Z)7 Oé(X, W)> + <C¥(X, Z)7 a(Ya W)>7

from which the theorem follows. O

Theorem 8.2 Let S C R? be a reqular surface with Gauss curvature K and
Riemannian curvature tensor R. Then for any p € S and orthonormal basis
v1,v2 for T,S one has

K(p) = —(Rp(v1,v2)v1, v2).

Proof. Let (a;;) be the matrix of the Weingarten map W), : T,S — T,,S with
respect to the basis v1,v2. Then

aij = (vi, Wp(vj)) = I (vi, vj).
By Proposition 8.4 we have
ap(vi, vj) = a;j Np.
Since (Np, Np) = 1, the Gauss equation yields

—(Rp(v1,v2)v1,v2) = ai1a2s — a%z = det W), = K(p). O
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Theorem 8.3 (Theorema Egregium) If ¢ : S — S is an isometry be-
tween regular surfaces with Gauss curvatures K, K, respectively, then

K=Ko¢.

Proof. Let p € S and p = ¢(p). We must show that K(z_)) = K(p). Let F:
U — R3 be alocal parametrization of S around p. Then F := ¢oF : U — R3

is a local parametrization of S. Let 9ij Ffj, Rfjk, X; be the components of

the first fundemental form, Christoffel symbols, components of the curvature

tensor, and coordinate vector fields defined by F. Let g;;, ffj, Rfjk, and X;

be the corresponding quantities defined by F.
Suppose p = F(u), u € U. The chain rule yields

AXi(p) = dpp(0iF () = 0i(¢ 0 F)(u) = 8iF(u) = X;(p).
Because the differential A := d,¢ is an isometry,
9ij(p) = (Xi(p), X;(p)) = (AXi(p), AX;(p)) = (Xi(P), X;(P)) = 3i; (D)-

Proposition 5.6 then implies that Ffj (p) = ffj (p), and Proposition 7.4 yields

Rfjk(p) = Rfjk(ﬁ). Given tangent vectors vy, v, v3 € T},5, the equation
A(Rp(vl, UQ)U?,) = Rp(Avl, AUQ)A’Ug

therefore holds whenever each v; is one of the basis vectors X;(p). By multi-

linearity of R, the same equation holds for all v;. If vy, v2 is an orthonormal

basis for 7},5, then Avy, Avs is an orthonormal basis for 755, and by Theo-

rem 8.2 we have

K(p) = —(Rp(vi,v2)v1,v2) = —(A(Rp(v1, v2)v1), Ava)
= —<Rp(A’l)1, A?)Q)A'Ul, A1)2> = K(ﬁ) O

9 Submanifols of R"

For non-negative integers k,n, a subset M C R" is called a k—dimensional
submanifold if for every point p € S there is an open set U C R* and a
smooth map F' : U — R" such that

(i) F maps U homeomorphically onto a neighbourhood of p in M, and

(ii) For any u € U the derivative d, F' : R¥ — R™ is injective.
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Such a map F is called a local parametrization of M, and the inverse
map F'(U) — U is called a chart on M. By a manifold we will mean a
submanifold of some Euclidean space R™. A 2-dimensional submanifold of
R3 is called a regular surface.

The notion of a smooth map between manifolds is defined just as for maps
between regular surfaces. Tangent spaces, differentials of smooth maps,
vector fields, and Lie brackets are also defined as before.

10 Differential forms

For ¢ > 1, a differential form on M of degree ¢ is a rule ¢ that assigns to
every point p € M a multilinear alternating map

¢p: TyM x ---T,M — R.
| S S

£ times
By alternating we mean that for every permutation o of the set {1,...,/¢}
and all tangent vectors v1,...,vp € T, M one has

(Vo (1 - - Vo(p)) = 8g0(0)Pp(v1, - - -, Vp),

where sgn(o) = +£1 is the sign of the permutation. By a differential form
on M of degree 0 we simply mean a real-valued function on M. Differential
forms of degree £ are often called /—forms. An {—form ¢ on M is smooth
if for all smooth vector fields X1,..., X, on M the function

H(X1,..., X)) : M =R, p—= dp((Xi)ps---, (Xe)p)

is smooth. The set Qf(M) of all smooth /~forms on M is a module over the
ring C°°(M) of smooth functions on M.

Note that a 1-form « assigns to every p € M a linear map ay, : T,M — R,
whereas a 2—form [ assigns to every p a bilinear skew-symmetric map

By : TyM x T,M — R,

For any real vector space V' let A2(V') denote the real vector space of all
bilinear skew-symmetric maps V x V' — R.

Lemma 10.1 IfV has dimension 2 then Ay(V') has dimension 1.
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Proof. Let e1,es be a basis for V, and f € As(V). Given elements
v,w € V represented as

v = vlel + U2€2, w = wlel + ’LU2€2,

where v*, w? € R, we have

Fo,w) = S v fles,e5) = ('w? — v?w) fler, e2).
]
This shows that the map
Aa(V) = R, [ fler,e2)
is injective. It is also surjective, because for any ¢ € R the map
VxV =R, (v,w) e tolw? —v?wh)

belongs to Ax(V). O
The wedge product

QLMY x Q™(M) — Q™ (M),  (¢,9) = ¢ A1)

is a C°°(M)-bilinear map defined for all non-negative integers ¢, m, see
[5, 3]. We define it here for £ = m = 1. Given ¢,¢ € Q'(M) we define
d N € Q2(M) by

(@ AN Y)p(v,w) 1= dp(v) (W) — Pp(w)Pp(v)
for p € M and v,w € T, M. For vector fields X,Y on M one then has
(@ NY)X,Y) = o(X)Y(Y) — o(Y)(X).

11 The exterior derivative

The exterior derivative
d: QY (M) — QFL(M)
is a real-linear map defined for all ¢ > 0, see [5, 3]. We define it here for
¢=0,1.
Given f € QO(M) = C>®(M), the 1-form df on M is defined by
(df)p(v) := dpf(v),

forpe M, v € T,M. Here, d,f : T,M — R is the differential of f at p. For
any smooth vector field X on M we then have

(df)(X) = Ox f.
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Proposition 11.1 For any smooth 1—form « on M there is a unique smooth
2—form da on M such that for all smooth vector fields X,Y on M one has

do(X,Y) = Ox (a(Y)) — Oy ((X)) — a([X, Y]). (4)

Proof. We claim that right hand side of Equation (4) defines a C*°(M)—
bilinear map

B : X(M) x (M) — C®(M).

Given this, we can complete the proof of the proposition by arguing as in
the proof of Proposition 7.3.
The map B is obviously biadditive. Now let f € C°>°(M). Then

B(fX.)Y) = 0rxa(Y) — dya(fX) — o([fX,Y])
= fOxa(Y) = Oy (f - (X)) —a(fIX, Y] = Oy [ - X)
— foxa(Y) = dy f - a(X) = fova(X) — fa([X,Y]) +d f - a(X)
— f-B(X,Y).
Because B is skew-symmetric, we also have B(X, fY) = f-B(X,Y). O
Proposition 11.2 For any f,g € Q°(M) one has
d(fdg) = df N dg.
Proof. For all smooth vector fields X,Y on M one has
[d(fdg)|(X,Y) = 0x(fOyg) — 9y (fOxg) — fOixy)9
=0x[f -Ovx+ fOxOvg — Oy [ -Oxg— fOvOxg — fOxy)9
= (df Ndg)(X,Y),

where in the last equation we used Proposition 4.2, which holds on any
manifold. O

Let ', ..., 2" be standard coordinates on R¥. The ith coordinate z’ is
a smooth map R™ — R whose differential dz’ € Q' (R¥) is given by

(da")p(v) = o'

for any tangent vector v = (vl,...,v*) € Tka = RF. On an open subset
U C R*, any smooth 1-form « therefore has the form

o= Z fidz!
%
for some f; € C*°(U), and by Proposition 11.2 we have

da =Y dfi Ada'.
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12 Volume forms and orientations

Let S C R3 be an oriented regular surface with smooth unit normal field
N : S — R3. The (Riemannian) volume form on S is the smooth 2—form
1 defined by

pp(v,w) = det(v, w, Np) (5)

for v,w € T,S.

Lemma 12.1 If u is the volume form of an oriented surface S then
pip (v, w) = £1

for any orthonormal basis (v,w) for T,S.

Proof. This holds because the 3 x 3 matrix with columns v, w, N, is
orthogonal and therefore has determinant 41. O

Conversely, any smooth 2—form p on S satisfying the conclusion of the
lemma determines an orientation of S through the formula (5).

If S has volume form g then an ordered basis (v, w) for T,S is called
positively oriented if p,(v,w) > 0; otherwise it is called negatively
oriented.

13 Frames

Let S C R? be a regular surface. A frame on an open subset V C S is a
pair (E1, Es) of vector fields on V' such that (E1(p), E2(p)) is a basis for T,
for every p € V. The frame is smooth if each E; is smooth. By a local
frame on S we mean a frame on some open subset of S.

Example If FF : U — S is a local parametrization then the associated
coordinate vector fields X, X» form a smooth frame on F(U).

A frame (Ep, Ez) on V C S is orthonormal if (E;(p), E2(p)) is an or-
thonormal basis for T,,S for every p € V. Note that applying the Gram-
Schmidt process to an arbitrary frame produces an orthonormal frame.
Hence, there is a smooth orthonormal frame on a neighbourhood of any
point on S.

If S is oriented then a frame (E;, E2) on V C S is positively oriented
if (Eq(p), E2(p)) is a positively oriented basis for TS for every p € V;
otherwise the frame is negatively oriented.
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14 Connection forms

Let S C R? be a regular surface. To any smooth frame (£, E2) on an open
subset V' C S we can associate a 2 x 2 matrix (w]) of smooth 1-forms on V/
called connection forms. These are uniquely determined by the fact that

J

for any vector field X on V.

J

Lemma 14.1 If the frame (E1, E3) is orthonormal then the matriz (w]) is

skew-symmetric, i.e.
J_
w; = —wj

for alli,j.
Proof. Because (E;, E;) is a constant function on V' we have

0=0x(E;, E;) = (VxE;, Bj) + (B, VX Ej) = 0! (X) + wi(X). O

This means that the matrix (w;) is completely determined by the element

w3, which we simply denote by w and refer to as the connection form of
the frame. We then have

VxE) =wi(X)By = —w(X)Es,

VxFEy=wi(X)F = w(X)E;

for any vector field X on V.

Proposition 14.1 Let S C R? be an oriented surface with Gauss curvature
K and volume form p. Let (Eq1, Ea) be a positively oriented, orthonormal
frame on an open subset V. C S and w the corresponding connection form.

Then
dw = Kp.

Proof. For any smooth vector fields X, Y on V we have
dw(X,Y) = 0xw(Y) — dyw(X) —w([X,Y])
= 0x(Vy FEs, Er) — Oy (Vx Ea, E1) — (Vx y)E2, E1)
= (VxVyFEs E1) + (VyEs,VxE)
—(VyVxEy, Ey) — (VxE2, VyEr) — (Vixy)E2, E1)
= (R(X,Y)Ey, En).
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By Theorem 8.2 we therefore have
K= <R(E1, EQ)EQ, E1> = dw(El, EQ).
By Lemma 10.1 we can write dw = fp for some real-valued function f on
V. Then f = dw(FE1, E2) = K, and the proposition is proved. O
15 Line integrals

Let M be a manifold and a € Q'(M). For any smooth curve ¢ : [a,b] — M

we define )
/ o= / oy (1)) .

Lemma 15.1 Let a be a smooth 1-form on M and c: [a,b] — M a smooth
curve. If ¢ : [a', V] — [a,b] is a smooth function such that ¢(a’) = a and

o(V') = b then
Jo= L

Proof. Exercise. d

16 Surface integrals

Let M be a manifold. A curve ¢: I — M is called regular if ¢ is smooth
and ¢(t) # 0 for all ¢t € I. A continuous, non-constant curve ¢ : R — M is
called periodic if there exists a positive real number A such that

ct+ ) =c(t)
for all £. The smallest such X is then called the period of c.

Example The plane curve ¢(t) = (cost,sint) has period 2.

For given L > 0, curves ¢ : R — M of period L are in one-to-one
correspondence with maps f : S' — M through the relation

C(t) — f(eth/L).

Moreover, ¢ is smooth if and only if f is smooth. If f is injective, or equiva-
lently if ¢ restricts to an injective map [0, L) — M, then c is called simple
periodic. In this case, f is a topological embedding. If in addition c¢ is
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regular then one can show that f is a diffeomorphism onto a submanifold of
M, see [5, 3.

Now let S be a regular surface and ¢ : I — S a regular curve. By a
normal orientation of ¢ we mean a smooth map N : I — S? such that
N(t) € TeryS and N(t) L ¢é(t) for all t. (In particular, N is a vector field on
S along c.)

By a smooth region in S we mean a compact subset R C .S which is
the closure (in S) of an open subset of S and whose boundary OR is the
image of a simple periodic, regular curve ¢ : R — S. In this case, the curve
¢ has a canonical normal orientation N such that N(t) is inward-pointing
with respect to R for every t. (One can show that R is a 2-manifold-with-
boundary, and a precise definition of inward-pointing is then given in [5].)
If in addition S is oriented, we say c is positively oriented with respect
to R if (¢(t), N(t)) is a positively oriented basis for TS for every t. If ¢ is
positively oriented and has period L then for w € Q!(S) the integral

ARw;iAﬂ%m@@»ﬁ

is easily seen to be independent of the choice of c.

For a regular surface S (oriented or not) we refer to [1] for the definition
of the surface integral |, g [ dA for integrable functions f : S — R. If S is
oriented with volume form p then any 2—form ¢ on S can be expressed as
¢ = fu for a unique function f: S — R, and we define

Lé:AfM'

A definition of |, g ¢ which makes no reference to Riemannian metrics can be
found in [5].

Theorem 16.1 (Stokes) Let S be an oriented reqular surface and R C S
a smooth region. For any w € Q1(S) one then has

/ w:/dw.
OR R

If S is the xy—plane with the standard orientation then w = fdx + gdy
for some smooth functions f, g : R> — R and

_ (99 Of
dw = (830_ ay)al:v/\aly.
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Stokes’s theorem now says that

_ [ (% _of
/BR(fdx+gdy) —/R <8:c 6y> dzdy,

which is an instance of Green’s theorem.

17 Winding numbers

In this section we will state the Hopf Umlaufsatz, or rotation index theorem,
which will be used in the proof of the Gauss Bonnet theorem.

We will make use of the complex exponential function e®. Recall that if
z = x + iy for real numbers x,y then

e =e"(cosy +isiny).

Lemma 17.1 Let I C R be an interval and f : I — C—{0} a continuously
differentiable function.

(i) There exists a continuously differentiable function g : I — C such that
f(t)=e9® foralltel.

(ii) If g1, g2 are two functions as in (i) then
g1 — g2 = 2mik
for some constant k € 7.

Proof. Choose ty € I and a complex number a such that f(tp) = e®. To
prove (ii), suppose f = e9. Then

g(to) = a + 2mik

for some integer k. Moreover,

f=ge! =4f,
so g = f/f. Therefore,

t

9

.

g(t)zg(to)+/tg:a+2mk:+/

to to

proving (ii).
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To prove (i), define
.
f
g(t) =a+ | =.
to f

Then g = f/f Writing h := fe™9 we have
h:feig_fgeig:(L

hence h is constant. Because h(ty) =1, we have h=1,s0 f =¢e9. O

Let ¢ : R — C be a continuously differentiable curve with period L, and
20 a complex number not in the image of ¢. The winding number W (¢; 2p)
of ¢ with respect to zy is defined as follows. By Lemma 17.1 we can find a
continuously differentiable curve g : R — C such that

ot) = 2o + 9V

for all ¢. Then
g(t+L)=g(t) + 2mik

for some constant integer k, and we define W(c;29) := k. Part (ii) of the
lemma shows that this definition is independent of the choice of g.

Note that if c(t) = 2o +r(t)e?®) for real-valued functions 7,6 with r > 0
then

W (cs20) = 5 (0(E) — 6(0))

Let ¢ : R — C be a regular, periodic curve. The rotation index n. of ¢
(also called the tangent winding number) is the winding number of the
derivative ¢ : R — C with respect to the origin, i.e.

ne := W(¢é;0).

If ¢ is in fact simple periodic then one can show that its image C is a
submanifold of R? diffeomorphic to S!. The Jordan curve theorem then
asserts that the complement R? — C has exactly two connected components,
and C' is their common boundary. (A proof of the more general Jordan-
Brouwer separation theorem can be found in [2, p.89].) Moreover, one
component (the “inside”) is bounded, whereas the other one (the “outside”)
is unbounded. We say c is positively oriented if it is positively oriented
with respect to the closure R of the bounded component.

Theorem 17.1 (Hopf) Any positively oriented, regular, simple periodic
curve in the plane has rotation index 1.

For the proof we refer to [1, 4].
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18 Geodesic curvature

Let S be a regular surface and v : I — S a smooth curve of unit speed and
with normal orientation N. Because

0= A5l =2 50,40,

there is a unique smooth function x, : I — R, the geodesic curvature of
v, such that
S0 = (8) - N (1)
for all t. Clearly, x, = 0 if and only if ~y is a geodesic.
The following lemma says that the geodesic curvature is invariant under
reparametrization in a certain sense.

Lemma 18.1 Let I,J C R be intervals. Let v1 : I — S be a smooth curve
of unit speed and with normal orientation N. Suppose v9 =~v10¢:J — S
is a reparametrization of v1 of unit speed, where ¢ : J — I is smooth.
Let o have the normal orientation Na(t) := N1(¢(t)). Then the geodesic
curvatures of v1,v2 are related by

Fina (1) = iy (6(2))-
Proof. 1t is easy to see that ¢(t) = et + a for some constants e = +1,
a € R, so that
Y2 (t) = v1(et + a).

Hence,

Jo(t) = ey(et +a), Ha(t) = H1(et + a).
This yields

V. v )
Ky (£) Na(t) = —A2(t) = — F1(8) = Ky (9(1)) N1(0(1)),
dt ds s=o(t)
from which the lemma follows. O

Corollary 18.1 Let S be a regular surface and R C S a smooth domain.
There is a unique smooth function kg : OR — R with the following property.
Let v : (—€,€) = S be a smooth curve of unit speed such that ~(t) € OR for
every t. If v is given the inward-pointing normal orientation with respect to
R then



Proof. Let 1,72 be smooth curves of unit speed taking values on OR,
both defined in open intervals containing 0. Then ¢ := v, Lo~ is defined
and smooth on a neighbourhood of 0. Now apply the lemma. O

Let R C S be a smooth region. Let v : R — S be a smooth, simply
periodic curve of unit speed and period L such that OR equals the trace of
~. By the corollary, the integral

L
/ kg ds = / K~ () dt
OR 0

will not depend on the choice of ~.

19 The local Gauss-Bonnet theorem, I

Theorem 19.1 Let S be a reqular surface with Gauss curvature K. Suppose
R C S is a smooth region which is contained in a chart domain for S. Then

/KdA—l—/ Kgds = 2.
R OR

Proof. Let F' : U — S be a local parametrization with R C F(U).
Let X1, X5 be the corresponding coordinate vector fields and (E7, Eq) the
orthonormal frame on F'(U) obtained from (X1, X2) by the Gram-Schmidt
process. We give F'(U) the orientation for which F is orientation preserving.
Combining Proposition 14.1 and Stokes’s theorem we find that

/RKdA:/Rdw:/aRw, (6)

where w € QYF(U)) is the connection form of the frame (Ei, E2). To
compute the line integral, choose a smooth, simply periodic curve v : R — §
of unit speed whose trace equals OR. Let N : R — S? be the inward-pointing
normal orientation of 7. By replacing ~(¢) by v(—t) if necessary, we can
arrange that « is positively oriented.

We can write

i) = 3 A OEG)

where each 3% is a smooth funtion R — R. Then 3 := (3!, 3?) is a smooth
curve in R? — {(0,0}. By Lemma 17.1 there is a smooth function 6 : R — R
such that

B(t) = (cos(t),sinb(t))
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for all ¢. Then
Y(t) = cos O(t) Er(v(t)) + sin 0(t) E2(v(1))-
Furthermore the normal oriantation of v is
N(t) = —sin0(t) Ev(v(t)) + cos 0(t) Ex(y(1)),

as one can verify by computing ji,)((t), N(t)) = 1, where p is the volume
form on S. Now,

%y(t) — (1) sin () B (4(£)) + c08 0(8)V.y 0y

+0(t) cos O(t) Ex(v(t)) + sin 0(t) V) 5y Ba-

Inserting

Voo a0 F1 = —wy @) (7(1) E2 (v (1)),
Va0 F2 = wye) (7(1) E1 (v (1)),

we get

%’W = (65) = oy (51 ) N ().

Hence, the geodesic curvature of v is

o (8) = 0(1) — wy ) (3(1)). (7)

If v has period L then this yields

/8Rw - /OL <é(t) B K7(t)> dt = 6(L) - 6(0) — /BR Kgds.

Combining this with (6) we obtain

/ KdA —I—/ kg ds = 2nW((;0).
R OR
It only remains to prove that the winding number W (3;0) = 1. To this end

we compare v with the plane curve a := F~! o+. Clearly, « is regular and
simple periodic. Let o = (a', a?). Since v = F o o, the chain rule yields

§(t) = S d AP (a(n) = 3 dOX ()
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For fixed ¢, and omitting ¢ and « from notation for a moment, we then have
= X~ A
i i

Recall that the Gram-Schmidt process transforms a basis by a triangular
matrix with positive entries on the diagonal. In our case,

Ej = Z C;-Xi,
%

where the matrix (03) satisfies ¢! > 0, and c;- = 0 for ¢ > j. Therefore,

F=8>dX;=> [> dpl | X
J i i J

This shows that

i i nj
o' —chﬁ.
J

Since the matrix (cé) has only positive eigenvalues (namely c!), we see that
&(t) is never a negative real multiple of 5(¢). It is then a simple exercise to
show that the curves & and 8 have the same winding number with respect
to the origin. Thus,

W(3;0) = W(&;0) = ng = 1,

where the last equality is the theorem of Hopf. This completes the proof of
the theorem. |

As an example, let S? be the unit sphere in R?, and let R C S? be the
upper hemisphere. Since R is a great circle, which can be parametrized by
a geodesic, we have k, = 0. Moreover, K = 1, so the theorem says that

1
2 = / KdA +/ Kgds = / 1dA = Area(R) = = Area(S?),
R OR R 2

confirming that the area of S? is 4.

20 The local Gauss-Bonnet theorem, I1

Given a manifold M, a continuous curve v : I — M is called piecewise
regular if for all a,b € I with a < b there exists a non-negative integer r
and a partition

a=ap<a1<---<ar=2»b
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such that the restriction of 7 to the subinterval [a;_1,a;] is a regular curve
fori=1,...,r.

Let S be a regular surface. By a polygonal region in S we mean a
compact subset R C S such that the following hold.

e R is the closure of an open subset of S.
e The boundary OR has finitely many components.

e Each component of OR is the image of a simple periodic, piecewise
regular curve R — §.

A polygonal region R is called simple if R is contained in a chart domain
for S and OR has exactly one boundary component.

Let R C S be a polygonal region and v : R — S a simple periodic,
piecewise regular curve of unit speed whose trace is a boundary component
of R. If typ € R is a point where 7 is not smooth then ~(t) is called a vertex
of dR. A vertex 7(to) is called a cusp if the one-sided derivatives 4(t5) of
v at to satisfy

Y(tg) = —(tg);
otherwise v(tp) is called an ordinary vertex. If 6 € [0, 27| is the interior
angle of OR at a vertex p then e := m—60 € [—7, 7] is called the jump angle
at p. If v is smooth on a non-empty open interval (tg,¢;) but not smooth at
to or at ¢; then the image of the closed interval [tg, ¢1] under « is called an
edge of OR.

Let J C R be the largest open interval on which « is smooth. Let
V := (R —J) be the set of vertices in OR, which is finite. For the restriction
of v to J, the inward normal orientation and geodesic curvature can be
defined as before, and we obtain a smooth function

kg:OR—=V =R
characterized as in Corollary 18.1.

Theorem 20.1 Let S be a regular surface with Gauss curvature K. Suppose

R C S is a simple polygonal region with jump angles €1, . .., € at the vertices.
Then
k
/ KdA—l—/ IigdS-f-ZGi = 2.
R oR —
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Idea of proof. “Round off the corners” of R to produce a smooth region
R’ C S to which Theorem 19.1 can be applied. Use Equation (7) to estimate
the integral [,p, kgds. O

A simple polygonal region R C S is called a geodesic triangle if R
has exactly three vertices and each edge of OR can be parametrized by a
geodesic.

Theorem 20.2 Let R C S be a geodesic triangle with interior angles 0;,

i1=1,2,3. Then
3
/ KdA=> 0;—.
R i=1

Proof. The jump angle at the ith vertex is ¢, = m — ;. Since x4, = 0,
Theorem 20.1 gives

3 3

/KdAZ27T—Z(7T—9¢)ZZ€i—7T. O
R

i=1 i=1
If K is constant then the theorem says that

3
K - Area(R) = ZGi — .
i=1

Note that the cases K = 0,1, —1 correspond to Euclidean, spherical, and
hyperbolic triangles, respectively.
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