UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT4510 — Geometric Structures

Day of examination: Friday, December 12, 2014

Examination hours: 09.00 – 13.00

This problem set consists of 2 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

1a

Show that the elements in $M\ddot{o}b^+(\mathbb{H})$ which map the imaginary axis to the \mathbb{H} -line |z|=1 are precisely the ones that can be written as one of the types

(1)
$$f(z) = \frac{z-c}{z+c}$$
 where $c > 0$, or (2) $f(z) = -\frac{z-c}{z+c}$ where $c < 0$.

1b

Discuss how the classification of transformations of type (2) varies with c. Which of these transformations have i as fixpoint? Write these on standard form.

1c

Find all possible *inversions* mapping the imaginary axis to |z|=1. Which \mathbb{H} -lines are they inversions in?

Problem 2

2a

In a hyperbolic triangle with angles α, β, γ , let c be the (hyperbolic) length of the side opposite to the angle γ . Show that the second law of cosines can be written in the form

$$\cos(\alpha + \beta) - \cos(\pi - \gamma) = \sin \alpha \sin \beta (\cosh c - 1).$$

Use this to show that if α, β and γ are positive numbers, there exists a hyperbolic triangle vith vertex angles α, β, γ if and only if $\alpha + \beta + \gamma < \pi$. Why is such a triangle unique up to congruence?

(Continued on page 2.)

2b

Show that there exists a regular hyperbolic hexagon (six edges and vertices) with vertex angle $\frac{\pi}{2}$.

Determine its area, the length of its edges and the radius of its circumscribed circle.

Problem 3

In this problem S is the *catenoid*, obtained by revolving the curve $y = \cosh x$ around the x-axis. If $a \in \mathbb{R}$, let \mathcal{C}_a be the intersection between S and the plane x = a, and let S_a the region of S bounded by \mathcal{C}_0 and \mathcal{C}_a .

3a

Find a parametrization of S and compute its fundamental form. Compute the area of S_a .

3b

Find a formula for the Gauss map from S and show that it is injective. What is its image?

3c

Compute the Gaussian curvature K of S.

Compute $\iint_{S_a} K dA$ and show that $\lim_{a\to\infty} \iint_{S_a} K dA$ is finite.

3d

Verify that C_0 is a geodesic on S.

Explain why the geodesic curvature k_g^a of the curve C_a is constant and compute k_g^a .

Problem 4

Assume that a closed geodesic C cuts a surface of negative curvature into two connected components R_1 and R_2 . Prove that none of these components can be homeomorphic to a disk or a Möbius band.

THE END