SAMPLE SOLUTION FOR MAT4520 SPRING 2013

JOHN ROGNES

PROBLEM 1 (20%)

(a) Let $U = \{(p,q) \in M \times M | \mid p \neq q\}$ and $V = \{(p,w) \in TM \mid w \neq 0\}$ be open submanifolds of $M \times M$ and TM. Let $f: U \sqcup V \to S^{N-1}$ be given by $f(p,q) = (p-q)/|p-q|$ and $f(p,w) = w/|w|$. Then $U \sqcup V$ is a smooth 2n-manifold with at most countably many components, and $f: U \sqcup V \to S^{N-1}$ is smooth, so the set of critical values of f has measure zero. Since $2n < N - 1$ this is the same as the set of values of f , so the image of f has measure zero, so we can find a vector $v \in S^{N-1}$ that is not in the image of f. Then no chord of M is parallel to v, and no tangent space T_nM contains v.

(b) The map $\pi | M : M \to \mathbb{R}^{N-1}$ is one-to-one because if $p, q \in M$ satisfy $\pi(p) =$ $\pi(q)$ then $p-q$ is parallel to v, and this does not happen for $p \neq q$. The differential $(\pi|M)_{*p} : T_pM \to \mathbb{R}^{N-1}$ equals the composite of the inclusion $T_pM \to T_p\mathbb{R}^N \cong \mathbb{R}^N$ followed by the projection $\pi \colon \mathbb{R}^N \to \mathbb{R}^{N-1}$. It is injective because if $(\pi | M)_{*p}(w) = 0$ then $\pi(w) = 0$, so $w \in T_pM$ is a non-zero multiple of v, which is impossible since the tangent space T_pM does not contain v.

(c) If M is a compact smooth n-manifold, there exists an embedding $M \hookrightarrow \mathbb{R}^N$ for some N, by Spivak, Chapter 2, Theorem 17. If $N > 2n + 1$ we can find a projection $\pi: \mathbb{R}^N \to \mathbb{R}^{N-1}$ as above, such that $\pi|M$ is an embedding $M \hookrightarrow \mathbb{R}^{N-1}$. By descending induction, we can repeat until $N = 2n+2$, when we get an embedding $M \hookrightarrow \mathbb{R}^{2n+1}$.

PROBLEM 2 (80%)

(a) Let $c(t) = A + tC$ be a curve through $c(0) = A$ with tangent vector $c'(0) = C$. Then $f_{*A}(C)$ is the tangent vector of

 $fc(t) = (A + tC) \cdot (A + tC)^{T} = A \cdot A^{T} + t(A \cdot C^{T} + C \cdot A^{T}) + t^{2}C \cdot C^{T}$ at $t = 0$, which is $(fc)'(0) = A \cdot C^T + C \cdot A^T$.

(b) We must prove that f_{*A} : $T_A M(3) \to T_I \text{Sym}(3) \cong \text{Sym}(3)$ is surjective for each $A \in O(3)$. Consider any $D \in \text{Sym}(3)$. Let $C = \frac{1}{2}D \cdot A$. Then $A \cdot C^T + C \cdot A^T =$ $\frac{1}{2}D^{T} + \frac{1}{2}D = D$, since D is symmetric. Hence $f_{*A}(C) = D$, so f_{*A} is surjective.

(c) I is a regular value of $f: M(3) \to \text{Sym}(3)$, so $O(3) = f^{-1}(I)$ is a submanifold of $M(3)$ of dimension $n - m = 9 - 6 = 3$, where $n = \dim M(3) = 9$ and $m =$ $\dim Sym(3) = 6$, by Spivak, Chapter 2, Proposition 12.

(d) The composite $fk: O(3) \rightarrow Sym(3)$ is constant at I, so $0 = (fk)_{*A}(v)$ $f_{*A}(k_{*A}(v))$ for any tangent vector $v \in T_A O(3)$. Hence $C = k_{*A}(v)$ satisfies 0 = $f_{*A}(C) = A \cdot C^{T} + C \cdot A^{T}$. Thus the image of k_{*A} is contained in the subspace $\{C \in M(3) \mid A \cdot C^T + C \cdot A^T = 0\}.$

2 JOHN ROGNES

The map $D \mapsto D \cdot A$ takes Skew $(3) \cong \mathbb{R}^3$ isomorphically to this subspace, since $A \cdot (D \cdot A)^{T} + (D \cdot A) \cdot A^{T} = D^{T} + D$ equals 0 if and only if D is skew-symmetric. Hence the image of $T_A O(3)$ in $\{C \in M(3) \mid A \cdot C^T + C \cdot A^T = 0\}$ is a 3-dimensional subspace in a 3-dimensional vector space, which implies that they are equal.

(e) The diffeomorphism $\ell : O(3) \rightarrow O(3)$ is the restriction of the linear map l: $M(3) \rightarrow M(3)$ given by $l(A) = B \cdot A$, so $l_{*A} : T_A M(3) \rightarrow T_{l(A)} M(3)$ is also the linear map given by $l_{*A}(C) = B \cdot C$. Hence $\ell_{*A} : T_A O(3) \to T_{\ell(A)}O(3)$ is also given by $\ell_{*A}(C) = B \cdot C$, under the identification of $T_A O(3)$ with a subspace of $T_A M(3) \cong M(3)$. Then

$$
(\ell_* X)_A = \ell_{* \ell^{-1}(A)} (X_{\ell^{-1}(A)})
$$

= $\ell_{*B^{-1} \cdot A} (B^{-1} \cdot A \cdot C) = B \cdot B^{-1} \cdot A \cdot C = A \cdot C = X_A$

for each $A \in O(3)$, so $\ell_* X = X$.

(f) It suffices to prove that e | Skew(3) factors through the submanifold $O(3) \subset$ $M(3)$, i.e., to show that $e(C) \cdot e(C)^{T} = I$ for $C \in \text{Skew}(3)$. Note that $e(C)^{T} = e(C^{T})$ from the series definition. Then $e(C)^T = e(C^T) = e(-C)$, so $e(C) \cdot e(C)^T =$ $e(C) \cdot e(-C) = e((1-1)C) = e(0C) = I$, as required. The derivative of $t \mapsto \exp(tC)$ at $t = 0$ is

$$
\lim_{t \to 0} \frac{\exp(tC) - \exp(0C)}{t} = \lim_{t \to 0} \sum_{n \ge 1} t^{n-1} \frac{C^n}{n!} = C
$$

in $T_IO(3) ≅ \text{Skew}(3)$.

(g) The map is well defined, because the product $A \cdot \exp(tC)$ of two orthogonal matrices is again orthogonal. We check that $\{\phi_t\}_t$ satisfies Spivak, Chapter 5, Theorem 6, i.e., that it satisfies the three conditions of Theorem 5 for all $t \in \mathbb{R}$.

(1) The map $\mathbb{R} \times O(3) \to O(3)$ given by $(t, A) \mapsto \phi_t(A) = A \cdot \exp(tC)$ is smooth, since exp and matrix multiplication is smooth.

(2) We have $\phi_{s+t}(A) = \phi_{t+s}(A) = A \cdot \exp((t+s)C) = A \cdot \exp(tC) \cdot \exp(sC) =$ $\phi_s(\phi_t(A))$ for all $s, t \in \mathbb{R}$ and $A \in O(3)$.

(3) The tangent vector of the curve $t \mapsto c(t) = \phi_t(A) = A \cdot \exp(tC)$ at $t = 0$ is $c'(0) = A \cdot C$, by the previous exercise (and the Leibniz rule), and this equals X_A at each point $A \in O(3)$.

(h) The diffeomorphism ϕ_t : $O(3) \rightarrow O(3)$ is the restriction of the linear map $p: M(3) \to M(3)$ given by $p(A) = A \cdot \exp(tC)$, so $p_{*A}: T_A M(3) \to T_{p(A)}M(3)$ is also the linear map given by $p_{*A}(D) = D \cdot \exp(tC)$. Hence $(\phi_t)_{*A} : T_A O(3) \to T_A O(3)$ is also given by $(\phi_t)_{*A}(D) = D \cdot \exp(tC)$. Then

$$
(\phi_t)_*(Y)_A = (\phi_t)_{*\phi_t^{-1}(A)}(Y_{\phi_t^{-1}(A)})
$$

=
$$
(\phi_t)_{*A \cdot \exp(tC)^{-1}}(A \cdot \exp(tC)^{-1} \cdot D) = A \cdot \exp(tC)^{-1} \cdot D \cdot \exp(tC).
$$

(i) For each $A \in O(3)$, the Lie derivative

$$
(L_X Y)_A = \lim_{h \to 0} \frac{1}{h} (Y_A - \phi_{h*}(Y)_A)
$$

=
$$
\lim_{h \to 0} \frac{1}{h} (A \cdot D - A \cdot \exp(hC)^{-1} \cdot D \cdot \exp(hC))
$$

=
$$
-\lim_{h \to 0} \frac{1}{h} (A \cdot \exp(hC)^{-1} \cdot D \cdot \exp(hC) - A \cdot D)
$$

(a limit formed in $T_A O(3) \subset T_A M(3) \cong M(3)$) equals $-c'(0)$, where

$$
c(t) = A \cdot \exp(tC)^{-1} \cdot D \cdot \exp(tC) = A \cdot \exp(-tC) \cdot D \cdot \exp(tC).
$$

By the Leibniz rule and part (f), $c'(0) = A \cdot (-C) \cdot D + A \cdot D \cdot C = A \cdot (-C \cdot D + D \cdot C)$, so $(L_X Y)_A = -c'(0) = A \cdot (C \cdot D - D \cdot C) = A \cdot [C, D] = X([C, D])_A$. Hence the vector field $L_{X(C)}X(D) = L_XY$ equals $X([C, D]).$

(j) The map ξ is the restriction of the linear map $M(3) \to \mathbb{R}^3$ taking A to (a_{23}, a_{13}, a_{12}) , hence ξ_{*I} is the restriction to Skew(3) $\cong T_I O(3) \subset T_I M(3) \cong M(3)$ of the same linear map. The matrices

$$
C' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}, D' = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \text{ and } E' = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

form a basis for Skew(3), and are mapped to the standard basis vectors $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$ for \mathbb{R}^3 by ξ_{*I} , hence ξ_{*I} is an isomorphism.

By the Inverse Function Theorem (or Spivak, Chapter 2, Theorem 9), ξ restricts to a diffeomorphism on an open neighborhood U of I .

(k) The vector $\partial/\partial x^i|_I$ in $T_I U \cong T_I O(3)$ maps under $x_{*I} = \xi_{*I}$ to the *i*-th standard basis vector e_i in $T_0 \mathbb{R}^3 \cong \mathbb{R}^3$. The matrices C', D' and E' in Skew(3) displayed above have this property, for $i = 1, 2$ and 3, respectively. Since $x * I = \xi * I$ is an isomorphism, this characterizes these vectors, so $C = C', D = D'$ and $E = E'$.

(l)

$$
C \cdot D = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = (D \cdot C)^{T}
$$

$$
D \cdot E = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} = (E \cdot D)^{T}
$$

$$
E \cdot C = \begin{bmatrix} 0 & 0 & +1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = (C \cdot E)^{T}
$$

so $[C, D] = E, [D, E] = C$ and $[E, C] = D$. Hence $L_{X(C)}X(D) = X(E), L_{X(D)}X(E) =$ $X(C)$ and $L_{X(E)}X(C) = X(D)$.

 $---$