SAMPLE SOLUTION FOR MAT4520 SPRING 2013

JOHN ROGNES

PROBLEM 1 (20%)

(a) Let U = {(p,q) € M x M| | p # q} and V = {(p,w) € TM | w # 0}
be open submanifolds of M x M and TM. Let f: ULV — S¥~! be given by
fp,¢) =—q)/|lp—¢q| and f(p,w) = w/|w|. Then ULV is a smooth 2n-manifold
with at most countably many components, and f: U UV — S¥~! is smooth, so
the set of critical values of f has measure zero. Since 2n < N — 1 this is the same
as the set of values of f, so the image of f has measure zero, so we can find a vector
v € SN~ that is not in the image of f. Then no chord of M is parallel to v, and
no tangent space T, M contains v.

(b) The map «|M: M — RN~ is one-to-one because if p,q € M satisfy 7(p) =
m(q) then p — g is parallel to v, and this does not happen for p # ¢. The differential
(m|M)sp: T,M — RN~ equals the composite of the inclusion 7, M — T,RY = RN
followed by the projection m: RY — RN =1 Tt is injective because if (7| M )., (w) = 0
then 7(w) = 0, so w € T,M is a non-zero multiple of v, which is impossible since
the tangent space 1, M does not contain v.

(c) If M is a compact smooth n-manifold, there exists an embedding M — RV
for some N, by Spivak, Chapter 2, Theorem 17. If N > 2n + 1 we can find a
projection 7: RY — RN¥~1 as above, such that 7| M is an embedding M — RN~1,
By descending induction, we can repeat until N = 2n+2, when we get an embedding
M — R?HL

PROBLEM 2 (80%)

(a) Let ¢(t) = A+tC be a curve through ¢(0) = A with tangent vector ¢/(0) = C.
Then f,4(C) is the tangent vector of

fet)=(A+tC)- (A+tC) T =A- AT +t(A-CT +C-AT)+t2C . CT
at t = 0, which is (fc)/(0) =A-CT 4 C - AT.

(b) We must prove that f.a: TaM(3) — T; Sym(3) = Sym(3) is surjective for
each A € O(3). Consider any D € Sym(3). Let C = D-A. Then A-CT+C AT =
DT + 3D = D, since D is symmetric. Hence f,4(C) = D, so f.a is surjective.

() I is a regular value of f: M(3) — Sym(3), so O(3) = f~1(I) is a submanifold
of M(3) of dimension n —m = 9 —6 = 3, where n = dimM(3) = 9 and m =
dim Sym(3) = 6, by Spivak, Chapter 2, Proposition 12.

(d) The composite fk: O(3) — Sym(3) is constant at I, so 0 = (fk).a(v) =
fra(ksa(v)) for any tangent vector v € T4O(3). Hence C = k. 4(v) satisfies 0 =
fea(C) = A-CT 4+ C - AT. Thus the image of k.4 is contained in the subspace
{CeM@B)|A-CT+C- AT =0}.
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The map D — D - A takes Skew(3) =2 R? isomorphically to this subspace, since
A-(D-A)T +(D-A)- AT = DT + D equals 0 if and only if D is skew-symmetric.
Hence the image of T4O(3) in {C € M(3) | A-CT +C - AT = 0} is a 3-dimensional
subspace in a 3-dimensional vector space, which implies that they are equal.

(e) The diffeomorphism ¢: O(3) — O(3) is the restriction of the linear map
I: M(3) — M(3) given by I(A) = B - A, so lua: TaM(3) — Tya)M(3) is also
the linear map given by l,4(C) = B - C. Hence £,4: TaO(3) — Ty4)O(3) is also
given by £,4(C) = B - C, under the identification of T4O(3) with a subspace of
T4 M(3) = M(3). Then

(leX)a = lug—10a)(Xp-10a))
=l 1.4(B'-A-C)=B-B'A-C=A-C=X,4
for each A € O(3), so £, X = X.

(f) Tt suffices to prove that e| Skew(3) factors through the submanifold O(3) C
M (3), i.e., to show that e(C)-e(C)T = I for C € Skew(3). Note that e(C)T = e(CT)
from the series definition. Then e(C)T = e(CT) = e(-0C), so e(C) - e(C)T =
e(C)-e(—C) =e((1-1)C) = e(0C) = I, as required. The derivative of ¢ — exp(tC')
at t =01is

lim exp(tC) — exp(0C) — lim Z - o

t—0 t t—0
n>1
in TrO(3) = Skew(3).

(g) The map is well defined, because the product A - exp(tC) of two orthogonal
matrices is again orthogonal. We check that {¢:}: satisfies Spivak, Chapter 5,
Theorem 6, i.e., that it satisfies the three conditions of Theorem 5 for all ¢t € R.

(1) The map R x O(3) — O(3) given by (¢, A) — ¢+(A) = A-exp(tC) is smooth,
since exp and matrix multiplication is smooth.

(2) We have ¢ +(A) = ¢drys(A) = A-exp((t + 5)C) = A - exp(tC) - exp(sC) =
ds(pt(A)) for all s,t € R and A € O(3).

(3) The tangent vector of the curve ¢t — ¢(t) = ¢+(A) = A-exp(tC) at t =0 is
c'(0) = A - C, by the previous exercise (and the Leibniz rule), and this equals X 4
at each point A € O(3).

(h) The diffeomorphism ¢,: O(3) — O(3) is the restriction of the linear map
p: M(3) — M(3) given by p(A) = A-exp(tC), 50 pxa: TaM(3) — T,(a)M(3) is also
the linear map given by p.a(D) = D - exp(tC). Hence (¢¢).a: TaO(3) = T4O(3)
is also given by (¢¢)«a(D) = D - exp(tC'). Then

(P1)«(Y)a = (¢t)*¢;1(A)(Y¢;1(A))
= ((i)t):k,ﬁl‘exp(tC)_1 (A ’ exp(tC)_l ’ D) =A- exp(tC)_l -D- exp(tC) :
(i) For each A € O(3), the Lie derivative
(LxY)a = lim h(YA — On(Y)a)
= lim — (A D — A-exp(hC)™! - D -exp(hC))
h—0 h

= — lim — (A exp(hC)™t- D -exp(hC) — A- D)

h—0 h
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(a limit formed in T4O(3) C TaM(3) = M (3)) equals —¢/(0), where

c(t) = A-exp(tC)™' - D -exp(tC) = A-exp(—tC) - D - exp(tC) .
By the Leibniz rule and part (f), ¢/(0) = A-(-=C)-D+A-D-C = A-(—C-D+D-C),
s0 (LxY)s =—-d(0)=A-(C-D—-D-C)=A-[C,D] = X(|C,D])a. Hence the
vector field Lx X (D) = LxY equals X ([C, D]).

(j) The map ¢ is the restriction of the linear map M(3) — R? taking A to
(ag3, a1, a12), hence &,1 is the restriction to Skew(3) = T;0(3) C TTM (3) = M (3)
of the same linear map. The matrices

0 0 0 0 0 1 0 1 0
C’=10 0 1| ,D'=]0 0 O0f andE'={-1 0 0
0 -1 0 -1 0 0 0 0 0

form a basis for Skew(3), and are mapped to the standard basis vectors e; = (1,0, 0),
ez = (0,1,0) and e3 = (0,0, 1) for R? by &,7, hence &, is an isomorphism.

By the Inverse Function Theorem (or Spivak, Chapter 2, Theorem 9), & restricts
to a diffeomorphism on an open neighborhood U of I.

(k) The vector 8/0x%|; in T;U = T;O(3) maps under x,; = & to the i-th
standard basis vector e; in ToR® 22 R3. The matrices €/, D’ and E’ in Skew(3)
displayed above have this property, for ¢ = 1, 2 and 3, respectively. Since z.; = &g
is an isomorphism, this characterizes these vectors, so C = C’, D = D' and E = E'.

()

0 00
C-D=|-1 0 0|=(D-O)"
[0 0 0
0 0 0]
D-E=|0 0 0|=(E-D)T
0 -1 0
[0 0 +1]
E-C=10 0 0|=(C-E)T

00 0

so[C,D]=E,[D,E] = Cand[E,C] = D. Hence Lxc)X(D) = X(E), Lx(p)X(E) =
X(C) and Ly X(C) = X(D).



