Manifolds, Spring 2016: Assignment

To be returned no later than Thursday the 14th April at 14:30.

Problem 1. Compute the Lie bracket $[V, W]$ of the following vector fields on \mathbb{R}^{2} :

$$
\begin{aligned}
V & =y^{2} \frac{\partial}{\partial x}+\frac{\partial}{\partial y} \\
W & =x \frac{\partial}{\partial y}
\end{aligned}
$$

Problem 2. Compute the flow of the following vector field on \mathbb{R}^{2} :

$$
V=y \frac{\partial}{\partial x}+\frac{\partial}{\partial y}
$$

Problem 3. Let $G \subset M(3 \times 3, \mathbb{R})$ be the space of all matrices of the form

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

where $a, b, c \in \mathbb{R}$.
(i) Show that G is an embedded submanifold of $M(3 \times 3, \mathbb{R})$ diffeomorphic to \mathbb{R}^{3}.
(ii) Show that G is a group under matrix multiplication, and that this makes G a Lie group.
(iii) Find a basis v_{1}, v_{2}, v_{3} for the tangent space $T_{I} G$, where I is the identity matrix.
(iv) For $i<j$ express $\left[v_{i}, v_{j}\right]$ as a linear combination of v_{1}, v_{2}, v_{3}. (Here, $T_{I} G$ has the Lie algebra structure induced from the Lie algebra of G.)

Problem 4. Set

$$
L:=\left\{(x, y) \in \mathbb{R}^{2}: x^{3}=y^{5}\right\} .
$$

Show that $L \backslash\{(0,0)\}$ is an embedded submanifold of \mathbb{R}^{2}, but that L is not.

Problem 5. (i) Show that the map

$$
F: \mathbb{R} \times \mathbb{C} \rightarrow \mathbb{C}^{2}, \quad(t, z) \mapsto\left(z^{2}, t z\right)
$$

restricts to an immersion $f: S^{2} \rightarrow \mathbb{C}^{2}$, where

$$
S^{2}:=\left\{(t, z) \in \mathbb{R} \times \mathbb{C}: t^{2}+|z|^{2}=1\right\}
$$

(ii) Let $\pi: S^{2} \rightarrow \mathbb{R} \mathbb{P}^{2}$ be the projection. Show that there exists a unique map $g: \mathbb{R} \mathbb{P}^{2} \rightarrow \mathbb{C}^{2}$ such that

$$
f=g \circ \pi
$$

and that g is a smooth embedding.

