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§3

3.1 See end of book.

3.4 Suppose that f is alternating. If σ ∈ Sk simply switches two elements
and leave the rest fixed, then sgn(σ) = −1 so the claim follows. Next suppose
that σf = −f whenever σ simply switches two successive elements and leave
the rest fixed. Every σ ∈ Sn may be written as a product σ = σm · ... · σ1 of
such permutations (prove it!). We then see that

σf = (−1)mf = sgn(σm) · ... · sgn(σ1)f = sgn(σ)f.

3.5 Suppose that f is alternating. Then if i < j and if vi = vj we have that

f(v1, .., vi, ..., vj , ..., vk) = −f(v1, ..., vj , ..., vi, ..., vk) = −f(v1, .., vi, ..., vj , ..., vk),

so f(v1, .., vi, ..., vj , ..., vk) = 0.
Suppose next that f satisfies the equality condition. Then

0 = f(u1, ..., ui + uj , ..., uj + ui, ..., uk)

= f(u1, ..., ui, ..., uj , ..., uk) + f(u1, ..., ui, ..., ui, ..., uk)

+ f(u1, ..., uj , ..., uj , ..., uk) + f(u1, ..., uj , ..., ui, ..., uk)

= f(u1, ..., ui, ..., uj , ..., uk) + f(u1, ..., uj , ..., ui, ..., uk)

Now use 3.4.

§4
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§5

5.1 (a) Consider the topological space X consisting of two disjoint copies of
R, and denote them by R1 and R2. Define a map p : X → S as follows: on
R1 \ {0} we set p(x) = x and for 0 ∈ R1 we set p(0) = A; on R2 \ {0} we set
p(x) = x and for 0 ∈ R2 we set p(0) = B. Then the quotient topology on S
coincides with the topology given in the problem.

Consider an interval (a, b)1 ⊂ R1. Then if b ≤ 0 we have that

p−1(p(a, b)) = (a, b)1 ∪ (a, b)2

which is open in X. Analogously, if 0 ≤ a we have p−1(p(a, b)) = (a, b)1∪ (a, b)2
which is is open. If a < 0 < b we have that

p−1(p(a, b)) = (a, 0)1 ∪ {A} ∪ (0, b)1 ∪ (a, b)2 \ {0}

which is open in X. It follows that p : R1 → S is a bijective continuous
open map onto its image, i.e., it is a homeomorphism onto its image. Similar
considerations hold for R2. It is now immediate that h is a homeomorphism
and that S is locally euclidean.

(b) By (a) we have that p : X → S is surjective continuous and open map;
it follows that S is second countable (see lecure/note about quotient maps).
However, we have that S is not Hausdorff because if (a, 0) ∪ {A} ∪ (0, b) and
(a′, 0) ∪ {B} ∪ (0, b′) are open sets containing A and B respectively, and their
intersection is (a, 0) ∩ (a′, 0) ∪ (0, b) ∩ (0, b′) which is always non-empty.

5.3 We have that φ4 maps U4 onto the open unit disk {(x, z) : x2 + z2 < 1}
in the (x, z)-plane. With the additional requirement that x > 0 we have that
φ4 maps U14 onto the half disk {(x, z) : x2 + z2 < 1, x > 0}.

We have that φ−14 (x, z) = (x,−
√

1− x2 − z2, z), and so

φ1 ◦ φ−14 (x, z) = (−
√

1− x2 − z2, z)

which is smooth since
√

1− x2 − z2 6= 0 on φ4(U14).

5.4 By perhaps having to chose a connected component of U we may assume
that U is an n-dimensional (sub) manifold (of M). Since (Uα, φα) is an atlas
there is a {(Uα, φα)} such that p ∈ Uα. Set V = Uα∩U and ψ = φα|V . Then ψ :
V → ψ(V ) is a homeomorphism since ψ is the restriction of a homeomorphism
to an open set. We now claim that (V, ψ) is compatible with the atlas. For if
(Uβ , φβ) is in the atlas we have that

φα ◦ φ−1β : φβ(Uα ∩ Uβ)→ Rn

is smooth. But now ψ ◦ φ−1β is just the restriction of φα ◦ φ−1β to φβ(V ∩Uβ) so

it is smooth. A similar argument shows that φβ ◦ ψ−1 is smooth. This shows
that (V, ψ) is compatible with the atlas, but then it is contained in the atlas
since the atlas is maximal.
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6.1 (a) If we had that (R, ψ) were in the maximal standard atlas for R, then
the map ψ ◦ φ−1 would be a diffeomorphism. But ψ ◦ φ−1(x) = x1/3 which is
not differentiable at 0.

(b) Set f(x) = x3. Then ψ ◦ f ◦ φ−1(x) = (x3)1/3 = x. Likewise φ ◦ f ◦
ψ−1(x) = (x3)1/3 = x. So f is a diffeomorphism.

6.2 Fix a point p ∈ M , and let (U, φ), (V, ψ) be charts around p and q0
respectively. Then

(φ× ψ) ◦ iq0 ◦ φ−1(x) = (x, ψ(q0))

which is a smooth map between Euclidean spaces.

6.4 Set φ(x, y, z) = (x, x2+y2+z2−1, z). We have that the rows of Jφ(x, y, z)
are the vectors v1(x) = (1, 0, 0), v2(x) = (2x, 2y, 2z) and v3 = (0, 0, 1). We see
that the rank of Jφ is three if and only if y 6= 0, so φ can serve as a coordinate
system near all points (x, y, z) such that y 6= 0.

§7

(a) For each x ∈ M we have that g(g−1(x)) = (gg−1)(x) = e(x) = x, so g is
surjective. If g(x1) = g(x2) then g−1(g(x1)) = g−1(g(x2)) so x1 = x2, and
g is injective.

(b) Since g is a continuous bijection it suffices to show that g is an open map.
So let U ⊂ M be open. Then g(U) = (g−1)−1(U) is open since g−1 is
continuous.

(c) For x ∈ M we have that ex = x so x ∼ x. If x ∼ y then gx = y for some
g ∈ G, and then g−1y = x, so y ∼ x. If x ∼ y and y ∼ z then g1x = y and
g2y = z for g1, g2 ∈ G, and then z = g2(g1x) = (g1g2)x, so x ∼ z.

(d) Let U ⊂M be an open set. Then

π−1(π(U)) =
⋃
g∈G

gU,

which is a union of open sets since gU is open, g being a homeomorphism.

(f) Let G = {g0, ..., gm}, where g0 = e. For distinct points [x0], [y0] ∈ M/ ∼
we set xj = gj(x0) and yj = gj(y0); these are then 2m+ 2 distinct points.
Since M is Hausdorff there are open sets Uj and Vj containing xj and yj
respectively, such that Ui ∩ Uj = ∅, Vi ∩ Vj = ∅ if i 6= j and Ui ∩ Vj = ∅
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for all i, j. Set Ũ0 = ∩jg−1j (Uj) and Ṽ0 = ∩jg−1j (Vj), and Ũj = gj(Ũ0)

and Ṽj = gj(Ṽ0). Then Ũi ∩ Ṽj = ∅ for all i, j, and π : Ũi → π(Ũi) and

π : Ṽj → π(Ṽj) are homeomorphisms onto disjoint open subsets separating
[x0] and [y0] (injective and separating by construction, and open by (d)).

(g) For each point [x0] in M/ ∼ Let Ũ0 be a set as constructed as above. For
any coordinate chart (W,φ) near x0 we use the homeomorphism

φ ◦ π−1 : π(W ∩ Ũ0)→ φ ◦ π−1(W ∩ Ũ0)

where π−1 is the unique left inverse of π with image in Ũ0, as a coordinate
chart near [x0]. Similarly we obtain charts by considering xj ∈ Ũj and
charts at xj . The charts are compatible since compositions of homeomor-
phisms are homeomorphisms (see also (h)).

(h) If [x] is a point in coordinate charts π(U) ∩ π(V ) where (U, φ) and (V, ψ)
are charts, then near φ(x) ∈ Rn the transition map is given by ψ ◦ g ◦φ−1
for some g ∈ G which is smooth since g is smooth.

§8

8.1. By Proposition 8.11 we have that

F∗
∂

∂x
|p =

∂f1
∂x

(p)
∂

∂u
|F (p) +

∂f2
∂x

(p)
∂

∂v
|F (p) +

∂f3
∂x

(p)
∂

∂w
|F (p)

=
∂

∂u
|F (p) + y

∂

∂w
|F (p).

8.2. Fix a derivation Xp =
∑n
j=1 aj

∂
∂xj
|p. Then if we set c(t) = p+ t ·a with

a = (a1, ..., an) we have that Xp = c′(0). Furthermore, if we set b(t) = L(c(t))

we have that L∗,pXp = b′(0), and we have seen b′(0) =
∑n
j=0

·
bj(0) ∂

∂xj
|b(0).

Finally
·
b(0) = d

dt |t=0L(c(0)) = L(
·
c(0)) by the chain rule and the fact that L is

linear; hence it coincides with its derivative.

8.4. Define F (r, θ) = (r cos θ, r sin θ) = (x, y). Then

F∗,(r,θ)
∂

∂r
|(r,θ) = cos(θ)

∂

∂x
|F (r,θ) + sin(θ)

∂

∂y
|F (r,θ)

=
x√

x2 + y2
∂

∂x
|(x,y) +

y√
x2 + y2

∂

∂y
|(x,y).
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Further

F∗,(r,θ)
∂

∂θ
|(r,θ) = −r sin θ

∂

∂x
|F (r,θ) + r cos θ

∂

∂y
|F (r,θ)

= x
∂

∂y
|(x,y) − y

∂

∂x
|(x,y)

8.7. See end of book.

8.8. See end of book.

§9

9.1 See end of book.

9.2 See end of book.

9.3 See end of book.

9.4 See end of book.

9.5 See end of book.

§11

11.1 For a point p ∈ Sn and a vector a ∈ TpRn+1 we have that a ∈ TpSn
if and only if there is a smooth curve c : (−ε, ε) → Sn such that c(0) = p

and c′(0) = a (or is represented by the vector a). Set ρ(x) =
∑n+1
j=1 x

2
j . Then

ρ(c(t)) ≡ 1 and so
d

dt
|t=0ρ(c(t)) = 2 · p · a = 0,

here · is the dot-product. So TpS
n is a subspace of

Ker{a 7→ p · a}.

Since the dimension of this kernel is n and the dimension of TpS
n is n they must

coincide.

11.3 See end of book.

11.6
(i) Write g(A) = det(A) − 1; then ∂g

∂xkl
(A) 6= 0. Replacing xkl by g we get

by Lemma 9.10 a coordinate chart (U, φ) near A such that

φ(U ∩ SL(n,R)) = {x ∈ φ(U) : xkl = 0}.
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This is an adapted chart, and it follows that (xij)(i,j)6=(k,l) is a coordinate chart
near A. The implicit function theorem says precisely that there is an open
subset U ⊂ Rn2−1 and a smooth function h on U such that

{xkl = h((xij))(i,j)6=(k,l), (xij) ∈ U}

is precisely the set of points near A such that g = 0.

(ii) Assume for simplicity that n = 2, and consider a point (A,B) ∈ SL(2,R)×
SL(2,R). Assume further for example that near A we have (k, l) = (1, 1),
near B we have (k, l) = (1, 2) and near AB we have (k, l) = (2, 1). Set x′ =
(x12, x21, x22) and x′′ = (x11, x21, x22) Then SL(2,R)×SL(2,R) is parametrized
near (A,B) by [

hA(x′) x12
x21 x22

]
×
[
x11 hB(x′′)
x21 x22

]
Then we see that in the local coordinates near (A,B) and AB in R3 × R3 and
R3 respectively, we have that the matrix multiplication is given by

(hA(x′) · x11 + x12 · x21, hA(x′) · hB(x′′) + x12 · x22, x21 · hB(x′′) · x222)

which is smooth.

§12

12.1 See end of book.

12.2
(a) We have seen that the transition map ψ̃ ◦ φ̃−1 is given by

ψ̃ ◦ φ̃−1(x, a) = (ψ ◦ φ−1(x), J(ψ ◦ φ−1(x))(a)).

The Jacobian is then

J(x, a) =

[
J(ψ ◦ φ−1)(x) 0

? J(ψ ◦ φ−1)(x)

]

(b) The determinant becomes

det J(ψ ◦ φ−1)(φ(p)) · det J(ψ ◦ φ−1)(φ(p)) = (det[
∂yi
∂xj

](p))2.

§13

13.1 See end of book.
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13.2 See end of book.

13.4 We have that

(F ∗h)−1(R∗) = F−1({h−1(R∗)}) ⊂ F−1({h−1(R∗)}) = F−1(supp(h)).

Then

supp(F ∗h) = (F ∗h)−1(R∗) ⊂ F−1(supp(h)) = F−1(supp(h)),

where the last equality holds because supp(h) is closed and F is continuous.

13.6
(a) Fix a point p ∈ N . Then there is a neighbourhood V of F (p) ∈ M and

α1, ..., αm such that supp(ρα) ∩ V 6= ∅ ⇒ α = αj for some j = 1, ...,m. Then
supp(F ∗ρα) ∩ F−1(V ) 6= ∅ ⇒ α = αj for some j = 1, ...,m.

(b) Since ρα ∈ C∞(M) it is clear that F ∗ρα ∈ C∞(N). We have supp(ρα) ⊂
Uα and so F−1(supp(ρα)) ⊂ F−1(Uα). By 13.4 we have that supp(F ∗ρα) ⊂
F−1(ρα). Finally, for any p ∈ N we have that∑

α

F ∗ρα(p) =
∑
α

ρα(F (p)) = 1.

§14

14.1 See end of book.

14.2 Set ρ(x, y) =
∑n
i=1 x

2
j + y2j . The tangent space at a point of a hyper-

surface in Rn is defined to be the orthogonal complement of a normal vector at
that point. The gradient of ρ is normal to S2n−1, i.e.,

∇ρ(x, y) = 2(x1, ..., xn, y1, ..., yn)

is normal at a point (x, y) ∈ S2n−1. Since (−y, x) · (x, y) = 0 it follows that
the vector (−y, x) is tangent to S2n−1 at (x, y). Writing the tangent field X =
(−y, x) as a vector field we have that X = −y ∂

∂x + x ∂
∂y . Finally, X is even

non-vanishing on R2n \ {0}.

14.9 Suppose f ∈ C∞cs(t0). Then

d

dt
|t=t0f(cs(t)) =

d

dt
|t=t0f(c(t− s))) = Xc(t0−s)f = Xcs(t0)f.

14.10 See end of book.

14.12 See end of book.
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15.3 See end of book.

15.5 See end of book.

15.7 See end of book.

§16

16.5 See end of book.

16.6 For g ∈ Rn we have that lgx = g + x = x + g for all x ∈ Rn. So
(lg)∗,0 = id. So (lg)∗,0A = A for any A ∈ T0Rn and every g ∈ Rn, and so any
left invariant vector field is constant.

16.7. We have seen that Ãmg = gAme (here the m means matrix-form). For

c(t) = etA
m
e we have seen that c′(t)mc(t) = etA

m
e Ame = c(t)Ame = Ãmc(t), and it

follows that c is an integral curve for Ã.
Next consider c̃(t) = lgc(t). Then c̃(0) = g. Morover

c̃′(t) = lg,∗c
′(t) = lg,∗Ãc(t) = lg,∗(lc(t))∗A = (lgc(t))∗A = Ãc̃(t),

which means that c̃ is an integral curve through g.

§17

17.2 See end of book.

17.5 We check (i). We have that

F ∗(ω + τ)Xp = (ω + τ)F∗Xp = ω(F∗Xp) + τ(F∗Xp) = F ∗ωXp + F ∗τXp.

17.6 This was covered in class (see slides).

§18

18.2 Proof similar to that in 17.5

18.3 Covered in class (see slides).

18.8 See end of book.
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§19

19.2 See end of book.

19.3 See end of book.

19.5 See end of book.

§21

21.3 Let A,B,G be oriented atlases, and consider the relation ∼ given in
the problem. It is clear that ∼ is reflexive. Suppose A ∼ B. Then

det(J(ψβ ◦ φ−1α )) =
1

det(J(φα ◦ ψ−1β ))

implies that B ∼ A. So we have symmetry. Suppose further that B ∼ G. Then

det(J(φα◦σ−1γ )) = det(J(φα◦ψ−1β ◦ψβ◦σ
−1
γ )) = det(J(φα◦ψ−1β )·det(J(ψβ◦σ−1γ ))

which shows that A ∼ G. So we have transitivity.

§22

22.4 See end of book.

22.6 See end of book.

§23

23.1 See end of book.

23.4 See end of book.

§24
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25.3 We show exactness at Hk(B). Fix a class [bk]. If [bk] ∈ Im(i∗) it means
there is [ak] such that [iak] = [bk] which means that iak − bk = dbk−1. Then
j(iak − bk) = d(jbk−1), and since j ◦ i = 0 this means that j(bk) = d(−jbk−1),
and so [jbk] = 0. This shows that Im(i) ⊂ Ker(j).

Suppose next that j∗[bk] = 0. This means that jbk = dck−1, and there is
a bk−1 with jbk−1 = ck−1. Then j(dbk−1) = jbk and so there is an ak−1 with
iak = dbk−1 − bk. By injectivity of i at level k+ 1 we have that dak = 0, and it
follows that [bk] = i∗[ak]. This shows that Ker(j) ⊂ Im(i).

§26

26.1 Let ω ∈ Ωk(M). If the restriction to both U and V is zero, it is clear
that ω is zero, so i is injective. Let (ω, τ) ∈ Ωk(U)⊕ Ωk(V ). If (ω, τ) is in the
image of i it means that ω = τ on U ∩ V so it is in the kernel of j. If (ω, τ) is
in the kernel of τ they are equal on U ∩ V and so they define a k-form on M
whose image under i is (ω, τ).

26.2 See end of book.

§27

We consider the sphere Sn = {x ∈ Rn+1 : ‖x‖ = 1} for n ≥ 2. We cover Sn

by two open sets Un± where

Un± = {x = (x1, ..., xn+1) ∈ Sn : xn+1 6= ±1}.

We let ϕ± : Un± → Rn denote the stereographic projections. Then ϕ± are
homeomorphisms between Un± and Rn (where Sn is endoved with the subspace
topology), and {(U±, ϕ±)} gives Sn the structure of a smooth manifold.

(a) Prove that Un+ ∩ Un− is diffeomorphic to Rn \ {0}.

(b) Construct a homotopy equivalence between Rn \ {0} and Sn−1.

(c) Compute Hk(Sn) for k = 0, 1, 2, ... by induction on n ≥ 1 (recall that we
already computed Hk(S1) so you don’t have to repeat that).
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