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Submission deadline

Thursday 22th April 2021, 14:30 in Canvas.

Instructions

The assignment must be submitted as a single PDF file. Scanned pages must be
clearly legible. The submission must contain your name, course and assignment
number. Submission in LATEXis preferred.

It is expected that you give a clear presentation with all necessary explanations.
Remember to include all relevant plots and figures. Students who fail the assign-
ment, but have made a genuine effort at solving the exercises, are given a second
attempt at revising their answers. All aids, including collaboration, are allowed,
but the submission must be written by you and reflect your understanding of
the subject. If we doubt that you have understood the content you have handed
in, we may request that you give an oral account.

In exercises where you are asked to write a computer program, you need to
hand in the code along with the rest of the assignment. It is important that the
submitted program contains a trial run, so that it is easy to see the result of the
code.

Application for postponed delivery

If you need to apply for a postponement of the submission deadline due to
illness or other reasons, you have to contact the Student Administration at the
Department of Mathematics (e-mail: studieinfo@math.uio.no) well before the
deadline.

All mandatory assignments in this course must be approved in the same semester,
before you are allowed to take the final examination.

Complete guidelines about delivery of mandatory assignments:

uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html

GOOD LUCK!

mailto:studieinfo@math.uio.no
http://www.uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html


Problem 1. Let V be a 3-dimensional vector space over R with a basis B =
{e1, e2, e3}. We will consider the graded algebra ⊕∞k=0Ak(V ) (here A0(V ) = R,
and Ak(V ) = 0 for k > 3). Let {e∗1, e∗2, e∗3} be the dual basis to B, and recall
that

{e∗1 ∧ e∗2, e∗1 ∧ e∗3, e∗2 ∧ e∗3} and {e∗1 ∧ e∗2 ∧ e∗3}

are bases for A2(V ) and A3(V ) respectively.

We will now define a map ? : ⊕3
k=0Ak(V )→ ⊕3

k=0Ak(V ). Define ? : A1(V )→
A2(V ) by setting ?e∗1 = e∗2 ∧ e∗3, ?e∗2 = −e∗1 ∧ e∗3, ?e∗3 = e∗1 ∧ e∗2, and extend by
linearity. Define ? : A2(V ) → A1(V ) such that ?2 = id. Define ? : A0(V ) →
A3(V ) by setting ?λ = λe∗1 ∧ e∗2 ∧ e∗3 for λ ∈ R, and define ? : A3(V )→ A0(V )
such that ?2 = id. (This operator is called the Hodge-? operator.) Finally, for
each k = 0, 1, 2, 3, and α, β ∈ Ak(V ), we define 〈α, β〉 = ?(α ∧ ?β).

(a) Show that for each k we have that 〈·, ·〉 defines a symmetric bilinear form

〈·, ·〉 : Ak(V )×Ak(V )→ R.

Solution: k = 0. We have 〈λ, µ〉 = ?(λµe∗1 ∧ e∗2 ∧ e∗3 = λµ).

k = 1. Write α = a1e
∗
1 + b1e

∗
2 + c1e

∗
3 and β = a2e

∗
1 + b2e

∗
2 + c2e

∗
3. Then

?β = a2e
∗
2 ∧ e∗3 − b2e

∗
1 ∧ e∗3 + c2e

∗
2 ∧ e∗3,

and so

α ∧ ?β = a1e
∗
1 ∧ a2e

∗
2 ∧ e∗3 − b1e

∗
2 ∧ b2e

∗
1 ∧ e∗3 + c1e

∗
3 ∧ c2e

∗
1 ∧ e∗2

= (a1a2 + b1b2 + c1c2)e∗1 ∧ e∗2 ∧ e∗3,

and so ?(α ∧ ?β) = a1a2 + b1b2 + c1c2.

k = 2. Similar to k = 1.

k = 3. Similar to k = 0.

(b) Show that for each k we have that 〈·, ·〉 is an inner product on Ak(V ), and
find an orthonormal basis for each Ak(V ).

Solution: By (a) we see that with respect to the given bases, these are
just the Euclidean inner products on R and R3 respectively.

(c) For α, β ∈ A1(V ) we now define [α, β] = ?(α ∧ β). Show that [·, ·] is an
anticommutative bilinear form on A1(V ) (it is in fact a Lie bracket).

Solution: Since ∧ is anticommutative and bilinear and since ? is linear,
we get that [·, ·] anticommutative and bilinear .

(d) For V = R3 and B the standard basis on R3, express the relation between
[·, ·] and the cross-product on R3.
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Solution: Write α = a1e
∗
1 + b1e

∗
2 + c1e

∗
3 and β = a2e

∗
1 + b2e

∗
2 + c2e

∗
3. Then

α ∧ β = a1b2e
∗
1 ∧ e∗2 + a1c2e

∗
1 ∧ e∗3

+ b1a2e
∗
2 ∧ e∗1 + b1c2e

∗
2 ∧ e∗3

+ c1a2e
∗
3 ∧ e∗1 + c1b2e

∗
3 ∧ e∗2

= (a1b2 − b1a2)e∗1 ∧ e∗2 + (a1c2 − c1a2)e∗1 ∧ e∗3 + (b1c2 − c1b2)e∗2 ∧ e∗3.

So

?(α ∧ β) = (a1b2 − b1a2)e∗3 − (a1c2 − c1a2)e∗2 + (b1c2 − c1b2)e∗1.

So if l : V → V ∗ is defined by l(ej) = e∗j we see that for v, w ∈ V we have
that v × w = l−1[l(v), l(w)].

Problem 2. Let M be a smooth manifold, and let {(Uα, φα)} be an atlas on
M . Suppose that for any pair α, β with Uβα = Uβ ∩ Uα nonempty, we have a
smooth map φβα : Uβα → GL(n,R), we assume that φαα = id for all α, and we
assume that for all α, β, γ we have that

φαγ(x) ◦ φγβ(x) ◦ φβα(x) = id,

whenever x ∈ Uγβα 6= ∅. On the disjoint union of the sets Uα × Rn we define
a relation ∼ by declaring that (x, v)α ∼ (y, w)β if and only if x = y and
φβα(x)(v) = w.

(a) Show that ∼ is an equivalence relation. (Hint: show first that φαβ◦φβα = id
for all α, β.)

(b) Equip
E = (tα(Uα × Rn))/ ∼

with the quotient topology, and define a natural projection p : E → M .
Show that for each x ∈ M we have that Ex = p−1(x) has a natural
structure of an n-dimensional real vector space.

Solution: We define a map p : E →M by p([(x, v)α]) = x. This is clearly
well defined. For a fixed α with x ∈ Uα, the map lαx : Rn → Ex defined by
lαx (v) = [(x, v)α] is a bijection; surjective because for any (x,w)β we have
that (x,w)β ∼ (x, φαβ(x)(w))α, and injective because φαα = id. Give Ex
a linear structure by declaring that lαx is an isomorphism, and check that
this is independent of α since the φαβ(x)’s are linear maps.

(c) Show that E has the natural structure of a smooth manifold. (Hint: for
each α, define a local chart by [(x, v)α] 7→ (φα(x), v).)

Solution:
A few words about the topology on E. We claim first that

π : tα(Uα × Rn)→ E
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is an open map. For let W ⊂ tα(Uα×Rn) be an open set; this means that
Wα = W ∩ (Uα × Rn) is an open set for each α. For any β with Uαβ 6= ∅
we have that

π−1(π(Wα))∩(Uβ×Rn) = {(x,w)β ; (x, v)α ∈Wα, x ∈ Uαβ , w = φβα(x)(v)},

and this is open in Uβ×Rn. Taking the union over all β, and then repeating
for all α gives the claim. Note also that p : E →M is continuous.

Note further that since φαα = id we have that π : Uα × Rn → E is an
injection, hence by the openness a homeomorphism onto its image for each
α. Defining Φα : Uα × Rn → Rn × Rn by Φα((x, v)α) = (φ(x), v) we see
that Uα × Rn is Euclidean, hence E is locally Euclidean.

Let [(x, v)α], [(y, w)β ] ∈ E be distinct. If x 6= y there are disjoint open sets
separating them since M is Hausdorff and p is continuous. If x = y there
are disjoint open sets separating them since Uα × Rn is Hausdorff.

Since M is second countable we may assume that {Uα} is countable, and
since Uα × Rn is second countable it follows that E is second countable.

This shows that E is a topological manifold, and since the transition maps

Φβ ◦ Φ−1
α : φα(Uαβ)× Rn → φβ(Uαβ)× Rn

are given by

Φβ ◦ Φ−1
α (r, v) = (φβ ◦ φ−1

α (r), φβα(φ−1
α (r))(v))

which are all smooth, we see that E has the structure of a smooth manifold.

(d) Such an object E is called a vector bundle over M . Show that TM is a
vector bundle.

Solution: Let {(Uα, φα)} be an atlas for M . For φα = (x1, ..., xn) and
φβ = (y1, ..., yn) we set φβα(x) = ( ∂yi

∂xj
)(x). Check that the compatibility

conditions above are satisfied. By the formulas for transition maps on the
tangent bundle, the vector bundle E constructed above becomes isomorphic
and diffeomorphic to the tangent bundle.
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