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1 Real projective spaces

Let R* be the multiplicative group of non-zero real numbers. For n > 0
we introduce an equivalence relation in R**! — {0} by declaring that = ~ y
if and only if x = ty for some ¢t € R*. The quotient space RP" is called
real projective n—space. The equivalence class of a point (zg,...,x,) in
R+ — {0} will be denoted by [zo,...,7,]. Note that there is a bijective
correspondence between RP" and the set of lines in R"*! through the origin.
We are going to show that RP" is a compact connected n—manifold.

Lemma 1.1 The projection
m:R™ — {0} — RP"
1S an open map.
Proof. Let U be an open subset of R"*! — {0}. For every ¢t € R* the set
tU :={tx |z e U}
is an open subset of R"*! — {0}. Therefore,

n(U) = U tUu

teR>

is open. Hence, w(U) is open in RP" by definition of the quotient topology.
U

Lemma 1.2 Let f : X — Y be a surjective, open, and continuous map
between topological spaces. Let B be a basis for the topology on X. Then

{f(U)|U € B}

s a basis for the topology on Y .



Proof. Let V. C Y be open and y € V. Choose z € f~!(y). Since f~1(V)
is open, there is a basis element U € B such that

reUcfHV).

It follows that
ye f(U)CV. O

Lemma 1.3 RP" is second countable.

Proof. This follows from Lemmas 1.1 and 1.2 since R** — {0} is second

countable. O
Lemma 1.4 RP" is Hausdorff.

Proof. Let z,y be points in R"*! — {0} representing distinct points in
RP™. Then z,y are linearly independent, so there are linear maps S,7T :
R"*t! — R such that

Sr=1=Ty, Sy=0=Tx.
Let

A:={z¢€ R — {0} | |Sz| > |T=|},
B:={z¢€ R — {0} ] 1Sz < |T=z|}.

Then A, B are disjoint neighbourhoods of z,y. Since A and B are both
saturated, their images w(A) and w(B) are disjoint neighbourhoods of 7 (x)
and w(y). O

Theorem 1.1 RP" is an n—manifold.
Proof. For j =0,...,n let
U; = {[zo,...,zn] € RP"|z; # 0}.
Then {Uy, ...,U,} is an open covering of RP". Let ¢; : U; — R™ be defined

by .
i([20,- -, wn]) 1= (”0 "“”J"“’”)

TR T
where the ™ indicates a term that is to be omitted. Using Lemma 1.1 it

is easy to see that ¢; is continuous. In fact, ¢; is a homeomorphism, the
inverse map R™ — U; being given by

gbj_l(ylw . ayn) = [ylv" . 7yj>17yj+17' . 7yn]



This shows that every point in RP™ has a neighbourhood homeomorphic
to R™. Since we have already verified that RP™ is second countable and
Hausdorf, it follows that RP" is an n—manifold. O

Theorem 1.2 RP" is compact and connected.

Proof. For n = 0 the statement is trivial since RPY consists of just one
point. For n > 1 observe that the projection map

S — RP"

is surjective and continuous. Since S™ is compact and connected, it follows
that RP™ has the same properties. O

Theorem 1.3 RP" is homeomorphic to the quotient space S™/+1 obtained
by identifying antipodal points in S™.

Proof. Let p : S™ — RP" be the projection. Two point z,y in S™ have
the same image under p precisely when x = +y. Therefore, p induces a
bijective and continuous map

f:8"/+1— RP".

Because S™/ + 1 is compact and RP" is Hausdorff, the map f is a homeo-
morphism. a

Example RP! is homeomorphic to S'. To see this, we regard S! as the
unit circle in the complex plane and consider the map

f:8t =8t 222

Arguing as in the proof of Theorem 1.3 we find that f descends to a home-
omorphism S/ +1 — St

Theorem 1.4 Forn > 1 the map
an_l —>R]Pn, [CEo,...,I‘n,l] — [Zto,...,xn,l,O]
18 an embedding.

Proof. Tt is convenient to identify R™ with R™ x {0} ¢ R**!. The inclu-
sion map R”® — {0} — R**! — {0} induces an injective continuous map
g:RP"! — RP"™.

Because R — {0} is a closed subset of R**1 — {0}, the map g is closed, hence
an embedding. O
Henceforth, we identify RP" ! with its image in RP".



Theorem 1.5 The complement RP™ — RP" ! is homeomorphic to R™.

Proof. The complement is just the domain of the homeomorphism ¢,, :
U, — R" constructed in the proof of Theorem 1.1. |

2 Complex projective spaces

The complex projective space CP" is defined in the same way as RP", except
that the real numbers R are replaced with the complex numbers C. To be
explicit, CP" is the quotient of C"*! —{0} obtained by identifying two points
w, z whenever w = tz for some non-zero complex number ¢t. Arguing as
before we find that CP" is a (2n)-manifold. The reason why the dimension
is 2n is that the homeomorphisms ¢; now take values in C", which we
identify with R?" as a real vector space via the map
(x1+ Y1, oy T+ 1Yn) = (T1, Y1y« s Ty Yn)-

The projection
SZnJrl — CP"

is continuous and surjective, hence CP" is compact and connected. Taking
n =1 we get the Hopf map

S3 — CP.
The space CP! is known as the Riemann sphere because of the following
result.

Theorem 2.1 CP' is homeomorphic to S2.
Proof. As in the proof of Theorem 1.1 let
U = {[20,21] € CP! ‘ 21 # 0}.

The complement of U consists only of the point [1,0], and we have a home-
omorphism
¢1: U1 — C,  [20,21] — 20/21.

On the other hand, stereographic projection provides a homeomorphism
7: 8% - {N} = R?

where N is the “north pole”. Since CP' and S? are compact Hausdorff
spaces, the composite homeomorphism

T_logbl:Ul—)SQ—{N}

extends to a homeomorphism CP' — S2 (see [1, Theorem 29.1]). O
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