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1 Real projective spaces

Let R× be the multiplicative group of non-zero real numbers. For n ≥ 0
we introduce an equivalence relation in Rn+1 − {0} by declaring that x ∼ y
if and only if x = ty for some t ∈ R×. The quotient space RPn is called
real projective n–space. The equivalence class of a point (x0, . . . , xn) in
Rn+1 − {0} will be denoted by [x0, . . . , xn]. Note that there is a bijective
correspondence between RPn and the set of lines in Rn+1 through the origin.

We are going to show that RPn is a compact connected n–manifold.

Lemma 1.1 The projection

π : Rn+1 − {0} → RPn

is an open map.

Proof. Let U be an open subset of Rn+1 −{0}. For every t ∈ R× the set

tU := {tx |x ∈ U}

is an open subset of Rn+1 − {0}. Therefore,

π−1π(U) =
⋃

t∈R×

tU

is open. Hence, π(U) is open in RPn by definition of the quotient topology.

Lemma 1.2 Let f : X → Y be a surjective, open, and continuous map
between topological spaces. Let B be a basis for the topology on X. Then

{f(U) |U ∈ B}

is a basis for the topology on Y .
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Proof. Let V ⊂ Y be open and y ∈ V . Choose x ∈ f−1(y). Since f−1(V )
is open, there is a basis element U ∈ B such that

x ∈ U ⊂ f−1(V ).

It follows that
y ∈ f(U) ⊂ V.

Lemma 1.3 RPn is second countable.

Proof. This follows from Lemmas 1.1 and 1.2 since Rn+1−{0} is second
countable.

Lemma 1.4 RPn is Hausdorff.

Proof. Let x, y be points in Rn+1 − {0} representing distinct points in
RPn. Then x, y are linearly independent, so there are linear maps S, T :
Rn+1 → R such that

Sx = 1 = Ty, Sy = 0 = Tx.

Let

A := {z ∈ Rn+1 − {0} | |Sz| > |Tz|},
B := {z ∈ Rn+1 − {0} | |Sz| < |Tz|}.

Then A,B are disjoint neighbourhoods of x, y. Since A and B are both
saturated, their images π(A) and π(B) are disjoint neighbourhoods of π(x)
and π(y).

Theorem 1.1 RPn is an n–manifold.

Proof. For j = 0, . . . , n let

Uj := {[x0, . . . , xn] ∈ RPn |xj 6= 0}.

Then {U0, . . . , Un} is an open covering of RPn. Let φj : Uj → Rn be defined
by

φj([x0, . . . , xn]) :=

(
x0
xj
, . . . ,

x̂j
xj
, . . . ,

xn
xj

)
,

where the ̂ indicates a term that is to be omitted. Using Lemma 1.1 it
is easy to see that φj is continuous. In fact, φj is a homeomorphism, the
inverse map Rn → Uj being given by

φ−1j (y1, . . . , yn) = [y1, . . . , yj , 1, yj+1, . . . , yn].
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This shows that every point in RPn has a neighbourhood homeomorphic
to Rn. Since we have already verified that RPn is second countable and
Hausdorff, it follows that RPn is an n–manifold.

Theorem 1.2 RPn is compact and connected.

Proof. For n = 0 the statement is trivial since RP0 consists of just one
point. For n ≥ 1 observe that the projection map

Sn → RPn

is surjective and continuous. Since Sn is compact and connected, it follows
that RPn has the same properties.

Theorem 1.3 RPn is homeomorphic to the quotient space Sn/±1 obtained
by identifying antipodal points in Sn.

Proof. Let ρ : Sn → RPn be the projection. Two point x, y in Sn have
the same image under ρ precisely when x = ±y. Therefore, ρ induces a
bijective and continuous map

f : Sn/± 1→ RPn.

Because Sn/ ± 1 is compact and RPn is Hausdorff, the map f is a homeo-
morphism.

Example RP1 is homeomorphic to S1. To see this, we regard S1 as the
unit circle in the complex plane and consider the map

f : S1 → S1, z 7→ z2.

Arguing as in the proof of Theorem 1.3 we find that f descends to a home-
omorphism S1/± 1→ S1.

Theorem 1.4 For n ≥ 1 the map

RPn−1 → RPn, [x0, . . . , xn−1] 7→ [x0, . . . , xn−1, 0]

is an embedding.

Proof. It is convenient to identify Rn with Rn × {0} ⊂ Rn+1. The inclu-
sion map Rn − {0} → Rn+1 − {0} induces an injective continuous map

g : RPn−1 → RPn.

Because Rn−{0} is a closed subset of Rn+1−{0}, the map g is closed, hence
an embedding.

Henceforth, we identify RPn−1 with its image in RPn.
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Theorem 1.5 The complement RPn − RPn−1 is homeomorphic to Rn.

Proof. The complement is just the domain of the homeomorphism φn :
Un → Rn constructed in the proof of Theorem 1.1.

2 Complex projective spaces

The complex projective space CPn is defined in the same way as RPn, except
that the real numbers R are replaced with the complex numbers C. To be
explicit, CPn is the quotient of Cn+1−{0} obtained by identifying two points
w, z whenever w = tz for some non-zero complex number t. Arguing as
before we find that CPn is a (2n)–manifold. The reason why the dimension
is 2n is that the homeomorphisms φj now take values in Cn, which we
identify with R2n as a real vector space via the map

(x1 + iy1, . . . , xn + iyn) 7→ (x1, y1, . . . , xn, yn).

The projection
S2n+1 → CPn

is continuous and surjective, hence CPn is compact and connected. Taking
n = 1 we get the Hopf map

S3 → CP1.

The space CP1 is known as the Riemann sphere because of the following
result.

Theorem 2.1 CP1 is homeomorphic to S2.

Proof. As in the proof of Theorem 1.1 let

U1 := {[z0, z1] ∈ CP1 | z1 6= 0}.

The complement of U1 consists only of the point [1, 0], and we have a home-
omorphism

φ1 : U1 → C, [z0, z1] 7→ z0/z1.

On the other hand, stereographic projection provides a homeomorphism

τ : S2 − {N} → R2,

where N is the “north pole”. Since CP1 and S2 are compact Hausdorff
spaces, the composite homeomorphism

τ−1 ◦ φ1 : U1 → S2 − {N}

extends to a homeomorphism CP1 → S2 (see [1, Theorem 29.1]).
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