Projective spaces

Kim A. Frøyshov

October 5, 2019

1 Real projective spaces

Let \mathbb{R}^{\times} be the multiplicative group of non-zero real numbers. For $n \geq 0$ we introduce an equivalence relation in $\mathbb{R}^{n+1} - \{0\}$ by declaring that $x \sim y$ if and only if $x = ty$ for some $t \in \mathbb{R}^{\times}$. The quotient space \mathbb{RP}^n is called real projective *n*–space. The equivalence class of a point (x_0, \ldots, x_n) in \mathbb{R}^{n+1} – $\{0\}$ will be denoted by $[x_0, \ldots, x_n]$. Note that there is a bijective correspondence between \mathbb{RP}^n and the set of lines in \mathbb{R}^{n+1} through the origin.

We are going to show that \mathbb{RP}^n is a compact connected *n*-manifold.

Lemma 1.1 The projection

$$
\pi: \mathbb{R}^{n+1} - \{0\} \to \mathbb{R}\mathbb{P}^n
$$

is an open map.

Proof. Let U be an open subset of $\mathbb{R}^{n+1} - \{0\}$. For every $t \in \mathbb{R}^{\times}$ the set

$$
tU := \{tx \mid x \in U\}
$$

is an open subset of $\mathbb{R}^{n+1} - \{0\}$. Therefore,

$$
\pi^{-1}\pi(U) = \bigcup_{t \in \mathbb{R}^\times} tU
$$

is open. Hence, $\pi(U)$ is open in \mathbb{RP}^n by definition of the quotient topology. \Box

Lemma 1.2 Let $f : X \rightarrow Y$ be a surjective, open, and continuous map between topological spaces. Let $\mathcal B$ be a basis for the topology on X. Then

$$
\{f(U) \, | \, U \in \mathcal{B}\}
$$

is a basis for the topology on Y .

Proof. Let $V \subset Y$ be open and $y \in V$. Choose $x \in f^{-1}(y)$. Since $f^{-1}(V)$ is open, there is a basis element $U \in \mathcal{B}$ such that

$$
x \in U \subset f^{-1}(V).
$$

It follows that

$$
y \in f(U) \subset V. \qquad \Box
$$

Lemma 1.3 \mathbb{RP}^n is second countable.

Proof. This follows from Lemmas 1.1 and 1.2 since $\mathbb{R}^{n+1} - \{0\}$ is second countable. \Box

Lemma 1.4 \mathbb{RP}^n is Hausdorff.

Proof. Let x, y be points in $\mathbb{R}^{n+1} - \{0\}$ representing distinct points in $\mathbb{R}P^n$. Then x, y are linearly independent, so there are linear maps S, T : $\mathbb{R}^{n+1} \to \mathbb{R}$ such that

$$
Sx = 1 = Ty, \quad Sy = 0 = Tx.
$$

Let

$$
A := \{ z \in \mathbb{R}^{n+1} - \{0\} \mid |Sz| > |Tz| \},
$$

$$
B := \{ z \in \mathbb{R}^{n+1} - \{0\} \mid |Sz| < |Tz| \}.
$$

Then A, B are disjoint neighbourhoods of x, y . Since A and B are both saturated, their images $\pi(A)$ and $\pi(B)$ are disjoint neighbourhoods of $\pi(x)$ and $\pi(y)$. \Box

Theorem 1.1 \mathbb{RP}^n is an n-manifold.

Proof. For $j = 0, \ldots, n$ let

$$
U_j := \{ [x_0, \dots, x_n] \in \mathbb{R} \mathbb{P}^n \, | \, x_j \neq 0 \}.
$$

Then $\{U_0, \ldots, U_n\}$ is an open covering of \mathbb{RP}^n . Let $\phi_j : U_j \to \mathbb{R}^n$ be defined by

$$
\phi_j([x_0,\ldots,x_n]):=\left(\frac{x_0}{x_j},\ldots,\frac{\widehat{x_j}}{x_j},\ldots,\frac{x_n}{x_j}\right),\,
$$

where the $\hat{}$ indicates a term that is to be omitted. Using Lemma 1.1 it is easy to see that ϕ_j is continuous. In fact, ϕ_j is a homeomorphism, the inverse map $\mathbb{R}^n \to U_j$ being given by

$$
\phi_j^{-1}(y_1,\ldots,y_n) = [y_1,\ldots,y_j,1,y_{j+1},\ldots,y_n].
$$

This shows that every point in \mathbb{RP}^n has a neighbourhood homeomorphic to \mathbb{R}^n . Since we have already verified that \mathbb{RP}^n is second countable and Hausdorff, it follows that \mathbb{RP}^n is an *n*-manifold. \Box

Theorem 1.2 \mathbb{RP}^n is compact and connected.

Proof. For $n = 0$ the statement is trivial since \mathbb{RP}^0 consists of just one point. For $n \geq 1$ observe that the projection map

$$
S^n\to\mathbb{R}\mathbb{P}^n
$$

is surjective and continuous. Since $Sⁿ$ is compact and connected, it follows that \mathbb{RP}^n has the same properties. \Box

Theorem 1.3 \mathbb{RP}^n is homeomorphic to the quotient space $S^n/\pm 1$ obtained by identifying antipodal points in $Sⁿ$.

Proof. Let $\rho: S^n \to \mathbb{R} \mathbb{P}^n$ be the projection. Two point x, y in S^n have the same image under ρ precisely when $x = \pm y$. Therefore, ρ induces a bijective and continuous map

$$
f: S^n/\pm 1 \to \mathbb{R}\mathbb{P}^n.
$$

Because $S^n / \pm 1$ is compact and \mathbb{RP}^n is Hausdorff, the map f is a homeomorphism. \Box

Example \mathbb{RP}^1 is homeomorphic to S^1 . To see this, we regard S^1 as the unit circle in the complex plane and consider the map

$$
f: S^1 \to S^1
$$
, $z \mapsto z^2$.

Arguing as in the proof of Theorem 1.3 we find that f descends to a homeomorphism $S^1/\pm 1 \rightarrow S^1$.

Theorem 1.4 For $n \geq 1$ the map

$$
\mathbb{R}\mathbb{P}^{n-1}\to\mathbb{R}\mathbb{P}^n, \quad [x_0,\ldots,x_{n-1}]\mapsto [x_0,\ldots,x_{n-1},0]
$$

is an embedding.

Proof. It is convenient to identify \mathbb{R}^n with $\mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$. The inclusion map $\mathbb{R}^n - \{0\} \to \mathbb{R}^{n+1} - \{0\}$ induces an injective continuous map

$$
g: \mathbb{RP}^{n-1} \to \mathbb{RP}^n.
$$

Because $\mathbb{R}^n - \{0\}$ is a closed subset of $\mathbb{R}^{n+1} - \{0\}$, the map g is closed, hence an embedding. \Box

Henceforth, we identify $\mathbb{R}\mathbb{P}^{n-1}$ with its image in $\mathbb{R}\mathbb{P}^n$.

Theorem 1.5 The complement $\mathbb{RP}^n - \mathbb{RP}^{n-1}$ is homeomorphic to \mathbb{R}^n .

Proof. The complement is just the domain of the homeomorphism ϕ_n : $U_n \to \mathbb{R}^n$ constructed in the proof of Theorem 1.1. \Box

2 Complex projective spaces

The *complex projective space* \mathbb{CP}^n is defined in the same way as \mathbb{RP}^n , except that the real numbers $\mathbb R$ are replaced with the complex numbers $\mathbb C$. To be explicit, \mathbb{CP}^n is the quotient of $\mathbb{C}^{n+1} - \{0\}$ obtained by identifying two points w, z whenever $w = tz$ for some non-zero complex number t. Arguing as before we find that \mathbb{CP}^n is a $(2n)$ -manifold. The reason why the dimension is 2n is that the homeomorphisms ϕ_j now take values in \mathbb{C}^n , which we identify with \mathbb{R}^{2n} as a real vector space via the map

$$
(x_1+iy_1,\ldots,x_n+iy_n)\mapsto (x_1,y_1,\ldots,x_n,y_n).
$$

The projection

$$
S^{2n+1}\to\mathbb{C}\mathbb{P}^n
$$

is continuous and surjective, hence \mathbb{CP}^n is compact and connected. Taking $n = 1$ we get the *Hopf* map

$$
S^3\to\mathbb{CP}^1.
$$

The space \mathbb{CP}^1 is known as the *Riemann sphere* because of the following result.

Theorem 2.1 \mathbb{CP}^1 is homeomorphic to S^2 .

Proof. As in the proof of Theorem 1.1 let

$$
U_1 := \{ [z_0, z_1] \in \mathbb{CP}^1 \mid z_1 \neq 0 \}.
$$

The complement of U_1 consists only of the point $[1, 0]$, and we have a homeomorphism

$$
\phi_1: U_1 \to \mathbb{C}, \quad [z_0, z_1] \mapsto z_0/z_1.
$$

On the other hand, stereographic projection provides a homeomorphism

$$
\tau : S^2 - \{N\} \to \mathbb{R}^2,
$$

where N is the "north pole". Since \mathbb{CP}^1 and S^2 are compact Hausdorff spaces, the composite homeomorphism

$$
\tau^{-1} \circ \phi_1 : U_1 \to S^2 - \{N\}
$$

extends to a homeomorphism $\mathbb{CP}^1 \to S^2$ (see [1, Theorem 29.1]). \Box

References

[1] J. R. Munkres. Topology. Prentice Hall, 2nd edition, 2000.