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Preface to the Second Edition

This is a completely revised edition, with more than fifty pages of new material

scattered throughout. In keeping with the conventional meaning of chapters and

sections, I have reorganized the book into twenty-nine sections in seven chapters.

The main additions are Section 20 on the Lie derivative and interior multiplication,

two intrinsic operations on a manifold too important to leave out, new criteria in

Section 21 for the boundary orientation, and a new appendix on quaternions and the

symplectic group.

Apart from correcting errors and misprints, I have thought through every proof

again, clarified many passages, and added new examples, exercises, hints, and solu-

tions. In the process, every section has been rewritten, sometimes quite drastically.

The revisions are so extensive that it is not possible to enumerate them all here. Each

chapter now comes with an introductory essay giving an overview of what is to come.

To provide a timeline for the development of ideas, I have indicated whenever possi-

ble the historical origin of the concepts, and have augmented the bibliography with

historical references.

Every author needs an audience. In preparing the second edition, I was partic-

ularly fortunate to have a loyal and devoted audience of two, George F. Leger and

Jeffrey D. Carlson, who accompanied me every step of the way. Section by section,

they combed through the revision and gave me detailed comments, corrections, and

suggestions. In fact, the two hundred pages of feedback that Jeff wrote was in itself a

masterpiece of criticism. Whatever clarity this book finally achieves results in a large

measure from their effort. To both George and Jeff, I extend my sincere gratitude. I

have also benefited from the comments and feedback of many other readers, includ-

ing those of the copyeditor, David Kramer. Finally, it is a pleasure to thank Philippe

Courrège, Mauricio Gutierrez, and Pierre Vogel for helpful discussions, and the In-

stitut de Mathématiques de Jussieu and the Université Paris Diderot for hosting me

during the revision. As always, I welcome readers’ feedback.

Paris, France Loring W. Tu

June 2010





Preface to the First Edition

It has been more than two decades since Raoul Bott and I published Differential

Forms in Algebraic Topology. While this book has enjoyed a certain success, it does

assume some familiarity with manifolds and so is not so readily accessible to the av-

erage first-year graduate student in mathematics. It has been my goal for quite some

time to bridge this gap by writing an elementary introduction to manifolds assuming

only one semester of abstract algebra and a year of real analysis. Moreover, given

the tremendous interaction in the last twenty years between geometry and topology

on the one hand and physics on the other, my intended audience includes not only

budding mathematicians and advanced undergraduates, but also physicists who want

a solid foundation in geometry and topology.

With so many excellent books on manifolds on the market, any author who un-

dertakes to write another owes to the public, if not to himself, a good rationale. First

and foremost is my desire to write a readable but rigorous introduction that gets the

reader quickly up to speed, to the point where for example he or she can compute

de Rham cohomology of simple spaces.

A second consideration stems from the self-imposed absence of point-set topol-

ogy in the prerequisites. Most books laboring under the same constraint define a

manifold as a subset of a Euclidean space. This has the disadvantage of making

quotient manifolds such as projective spaces difficult to understand. My solution

is to make the first four sections of the book independent of point-set topology and

to place the necessary point-set topology in an appendix. While reading the first

four sections, the student should at the same time study Appendix A to acquire the

point-set topology that will be assumed starting in Section 5.

The book is meant to be read and studied by a novice. It is not meant to be

encyclopedic. Therefore, I discuss only the irreducible minimum of manifold theory

that I think every mathematician should know. I hope that the modesty of the scope

allows the central ideas to emerge more clearly.

In order not to interrupt the flow of the exposition, certain proofs of a more

routine or computational nature are left as exercises. Other exercises are scattered

throughout the exposition, in their natural context. In addition to the exercises em-

bedded in the text, there are problems at the end of each section. Hints and solutions
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to selected exercises and problems are gathered at the end of the book. I have starred

the problems for which complete solutions are provided.

This book has been conceived as the first volume of a tetralogy on geometry

and topology. The second volume is Differential Forms in Algebraic Topology cited

above. I hope that Volume 3, Differential Geometry: Connections, Curvature, and

Characteristic Classes, will soon see the light of day. Volume 4, Elements of Equiv-

ariant Cohomology, a long-running joint project with Raoul Bott before his passing

away in 2005, is still under revision.

This project has been ten years in gestation. During this time I have bene-

fited from the support and hospitality of many institutions in addition to my own;

more specifically, I thank the French Ministère de l’Enseignement Supérieur et de

la Recherche for a senior fellowship (bourse de haut niveau), the Institut Henri

Poincaré, the Institut de Mathématiques de Jussieu, and the Departments of Mathe-

matics at the École Normale Supérieure (rue d’Ulm), the Université Paris 7, and the

Université de Lille, for stays of various length. All of them have contributed in some

essential way to the finished product.

I owe a debt of gratitude to my colleagues Fulton Gonzalez, Zbigniew Nitecki,

and Montserrat Teixidor i Bigas, who tested the manuscript and provided many use-

ful comments and corrections, to my students Cristian Gonzalez-Martinez, Christo-

pher Watson, and especially Aaron W. Brown and Jeffrey D. Carlson for their de-

tailed errata and suggestions for improvement, to Ann Kostant of Springer and her

team John Spiegelman and Elizabeth Loew for editing advice, typesetting, and man-

ufacturing, respectively, and to Steve Schnably and Paul Gérardin for years of un-

wavering moral support. I thank Aaron W. Brown also for preparing the List of

Notations and the TEX files for many of the solutions. Special thanks go to George

Leger for his devotion to all of my book projects and for his careful reading of many

versions of the manuscripts. His encouragement, feedback, and suggestions have

been invaluable to me in this book as well as in several others. Finally, I want to

mention Raoul Bott, whose courses on geometry and topology helped to shape my

mathematical thinking and whose exemplary life is an inspiration to us all.

Medford, Massachusetts Loring W. Tu

June 2007
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A Brief Introduction

Undergraduate calculus progresses from differentiation and integration of functions

on the real line to functions in the plane and in 3-space. Then one encounters vector-

valued functions and learns about integrals on curves and surfaces. Real analysis

extends differential and integral calculus from R3 to Rn. This book is about the

extension of calculus from curves and surfaces to higher dimensions.

The higher-dimensional analogues of smooth curves and surfaces are called man-

ifolds. The constructions and theorems of vector calculus become simpler in the

more general setting of manifolds; gradient, curl, and divergence are all special cases

of the exterior derivative, and the fundamental theorem for line integrals, Green’s

theorem, Stokes’s theorem, and the divergence theorem are different manifestations

of a single general Stokes’s theorem for manifolds.

Higher-dimensional manifolds arise even if one is interested only in the three-

dimensional space that we inhabit. For example, if we call a rotation followed

by a translation an affine motion, then the set of all affine motions in R3 is a six-

dimensional manifold. Moreover, this six-dimensional manifold is not R6.

We consider two manifolds to be topologically the same if there is a homeomor-

phism between them, that is, a bijection that is continuous in both directions. A

topological invariant of a manifold is a property such as compactness that remains

unchanged under a homeomorphism. Another example is the number of connected

components of a manifold. Interestingly, we can use differential and integral calculus

on manifolds to study the topology of manifolds. We obtain a more refined invariant

called the de Rham cohomology of the manifold.

Our plan is as follows. First, we recast calculus on Rn in a way suitable for

generalization to manifolds. We do this by giving meaning to the symbols dx, dy,

and dz, so that they assume a life of their own, as differential forms, instead of being

mere notations as in undergraduate calculus.

While it is not logically necessary to develop differential forms on Rn before

the theory of manifolds—after all, the theory of differential forms on a manifold in

Chapter 5 subsumes that on Rn, from a pedagogical point of view it is advantageous

to treat Rn separately first, since it is on Rn that the essential simplicity of differential

forms and exterior differentiation becomes most apparent.
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2 A Brief Introduction

Another reason that we do not delve into manifolds right away is so that in a

course setting the students without a background in point-set topology can read Ap-

pendix A on their own while studying the calculus of differential forms on Rn.

Armed with the rudiments of point-set topology, we define a manifold and derive

various conditions for a set to be a manifold. A central idea of calculus is the approx-

imation of a nonlinear object by a linear object. With this in mind, we investigate

the relation between a manifold and its tangent spaces. Key examples are Lie groups

and their Lie algebras.

Finally, we do calculus on manifolds, exploiting the interplay of analysis and

topology to show on the one hand how the theorems of vector calculus generalize,

and on the other hand, how the results on manifolds define new C∞ invariants of a

manifold, the de Rham cohomology groups.

The de Rham cohomology groups are in fact not merely C∞ invariants, but also

topological invariants, a consequence of the celebrated de Rham theorem that es-

tablishes an isomorphism between de Rham cohomology and singular cohomology

with real coefficients. To prove this theorem would take us too far afield. Interested

readers may find a proof in the sequel [4] to this book.



Chapter 1

Euclidean Spaces

The Euclidean space Rn is the prototype of all manifolds. Not only is it the simplest,

but locally every manifold looks like Rn. A good understanding of Rn is essential in

generalizing differential and integral calculus to a manifold.

Euclidean space is special in having a set of standard global coordinates. This

is both a blessing and a handicap. It is a blessing because all constructions on Rn

can be defined in terms of the standard coordinates and all computations carried out

explicitly. It is a handicap because, defined in terms of coordinates, it is often not ob-

vious which concepts are intrinsic, i.e., independent of coordinates. Since a manifold

in general does not have standard coordinates, only coordinate-independent concepts

mension n, it is not possible to integrate functions, because the integral of a function

depends on a set of coordinates. The objects that can be integrated are differential

forms. It is only because the existence of global coordinates permits an identification

of functions with differential n-forms on Rn that integration of functions becomes

possible on Rn.

Our goal in this chapter is to recast calculus on Rn in a coordinate-free way suit-

able for generalization to manifolds. To this end, we view a tangent vector not as an

arrow or as a column of numbers, but as a derivation on functions. This is followed

by an exposition of Hermann Grassmann’s formalism of alternating multilinear func-

tions on a vector space, which lays the foundation for the theory of differential forms.

Finally, we introduce differential forms on Rn, together with two of their basic oper-

ations, the wedge product and the exterior derivative, and show how they generalize

and simplify vector calculus in R3.

§1 Smooth Functions on a Euclidean Space

∞

manifolds. For this reason, we begin with a review of C∞ functions on Rn.

will make sense on a manifold. For example, it turns out that on a manifold of di-

The calculus of C functions will be our primary tool for studying higher-dimensional

3L.W. Tu, An Introduction to Manifolds, Universitext, DOI 10.1007/978-1-4419-7400-6_2,
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4 §1 Smooth Functions on a Euclidean Space

1.1 C∞ Versus Analytic Functions

Write the coordinates on Rn as x1, . . . ,xn and let p = (p1, . . . , pn) be a point in an

open set U in Rn. In keeping with the conventions of differential geometry, the

indices on coordinates are superscripts, not subscripts. An explanation of the rules

for superscripts and subscripts is given in Subsection 4.7.

Definition 1.1. Let k be a nonnegative integer. A real-valued function f : U → R is

said to be Ck at p ∈U if its partial derivatives

∂ j f

∂xi1 · · ·∂xi j

of all orders j ≤ k exist and are continuous at p. The function f : U → R is C∞

at p if it is Ck for all k ≥ 0; in other words, its partial derivatives ∂ j f /∂xi1 · · ·∂xi j

of all orders exist and are continuous at p. A vector-valued function f : U → Rm

is said to be Ck at p if all of its component functions f 1, . . . , f m are Ck at p. We

say that f : U → Rm is Ck on U if it is Ck at every point in U . A similar definition

holds for a C∞ function on an open set U . We treat the terms “C∞” and “smooth” as

synonymous.

Example 1.2.

(i) A C0 function on U is a continuous function on U .

(ii) Let f : R→R be f (x) = x1/3. Then

f ′(x) =

{
1
3
x−2/3 for x 6= 0,

undefined for x = 0.

Thus the function f is C0 but not C1 at x = 0.

(iii) Let g : R→R be defined by

g(x) =

∫ x

0
f (t)dt =

∫ x

0
t1/3 dt =

3

4
x4/3.

Then g′(x) = f (x) = x1/3, so g(x) is C1 but not C2 at x = 0. In the same way one

can construct a function that is Ck but not Ck+1 at a given point.

(iv) The polynomial, sine, cosine, and exponential functions on the real line are all

C∞.

A neighborhood of a point in Rn is an open set containing the point. The function

f is real-analytic at p if in some neighborhood of p it is equal to its Taylor series

at p:

f (x) = f (p)+∑
i

∂ f

∂xi
(p)(xi− pi)+

1

2!
∑
i, j

∂ 2 f

∂xi∂x j
(p)(xi− pi)(x j− p j)

+ · · ·+ 1

k!
∑

i1,...,ik

∂ k f

∂xi1 · · ·∂xik
(p)(xi1 − pi1) · · · (xik − pik)+ · · · ,
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in which the general term is summed over all 1≤ i1, . . . , ik ≤ n.

A real-analytic function is necessarily C∞, because as one learns in real anal-

ysis, a convergent power series can be differentiated term by term in its region of

convergence. For example, if

f (x) = sinx = x− 1

3!
x3 +

1

5!
x5−·· · ,

then term-by-term differentiation gives

f ′(x) = cosx = 1− 1

2!
x2 +

1

4!
x4−·· · .

The following example shows that a C∞ function need not be real-analytic. The

idea is to construct a C∞ function f (x) on R whose graph, though not horizontal, is

“very flat” near 0 in the sense that all of its derivatives vanish at 0.

x

y

1

Fig. 1.1. A C∞ function all of whose derivatives vanish at 0.

Example 1.3 (A C∞ function very flat at 0). Define f (x) on R by

f (x) =

{
e−1/x for x > 0,

0 for x≤ 0.

(See Figure 1.1.) By induction, one can show that f is C∞ on R and that the deriva-

tives f (k)(0) are equal to 0 for all k ≥ 0 (Problem 1.2).

The Taylor series of this function at the origin is identically zero in any neigh-

borhood of the origin, since all derivatives f (k)(0) equal 0. Therefore, f (x) cannot

be equal to its Taylor series and f (x) is not real-analytic at 0.

1.2 Taylor’s Theorem with Remainder

Although a C∞ function need not be equal to its Taylor series, there is a Taylor’s

theorem with remainder for C∞ functions that is often good enough for our purposes.

In the lemma below, we prove the very first case, in which the Taylor series consists

of only the constant term f (p).
We say that a subset S of Rn is star-shaped with respect to a point p in S if for

every x in S, the line segment from p to x lies in S (Figure 1.2).
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b

b

b

p

q
x

Fig. 1.2. Star-shaped with respect to p, but not with respect to q.

Lemma 1.4 (Taylor’s theorem with remainder). Let f be a C∞ function on an open

subset U of Rn star-shaped with respect to a point p = (p1, . . . , pn) in U. Then there

are functions g1(x), . . . ,gn(x) ∈C∞(U) such that

f (x) = f (p)+
n

∑
i=1

(xi− pi)gi(x), gi(p) =
∂ f

∂xi
(p).

Proof. Since U is star-shaped with respect to p, for any x in U the line segment

p+ t(x− p), 0 ≤ t ≤ 1, lies in U (Figure 1.3). So f (p + t(x− p)) is defined for

0≤ t ≤ 1.

b

b

p

x U

Fig. 1.3. The line segment from p to x.

By the chain rule,

d

dt
f (p+ t(x− p)) = ∑(xi− pi)

∂ f

∂xi
(p+ t(x− p)).

If we integrate both sides with respect to t from 0 to 1, we get

f (p+ t(x− p))
]1

0
= ∑(xi− pi)

∫ 1

0

∂ f

∂xi
(p+ t(x− p))dt. (1.1)

Let

gi(x) =

∫ 1

0

∂ f

∂xi
(p+ t(x− p))dt.
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Then gi(x) is C∞ and (1.1) becomes

f (x)− f (p) = ∑(xi− pi)gi(x).

Moreover,

gi(p) =
∫ 1

0

∂ f

∂xi
(p)dt =

∂ f

∂xi
(p). ⊓⊔

In case n = 1 and p = 0, this lemma says that

f (x) = f (0)+ xg1(x)

for some C∞ function g1(x). Applying the lemma repeatedly gives

gi(x) = gi(0)+ xgi+1(x),

where gi, gi+1 are C∞ functions. Hence,

f (x) = f (0)+ x(g1(0)+ xg2(x))

= f (0)+ xg1(0)+ x2(g2(0)+ xg3(x))

...

= f (0)+g1(0)x+ g2(0)x
2 + · · ·+ gi(0)x

i + gi+1(x)x
i+1. (1.2)

Differentiating (1.2) repeatedly and evaluating at 0, we get

gk(0) =
1

k!
f (k)(0), k = 1,2, . . . , i.

So (1.2) is a polynomial expansion of f (x) whose terms up to the last term agree

with the Taylor series of f (x) at 0.

Remark. Being star-shaped is not such a restrictive condition, since any open ball

B(p,ε) = {x ∈ Rn | ‖x− p‖< ε}

is star-shaped with respect to p. If f is a C∞ function defined on an open set U

containing p, then there is an ε > 0 such that

p ∈ B(p,ε)⊂U.

When its domain is restricted to B(p,ε), the function f is defined on a star-shaped

neighborhood of p and Taylor’s theorem with remainder applies.

NOTATION. It is customary to write the standard coordinates on R2 as x, y, and the

standard coordinates on R3 as x, y, z.
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Problems

1.1. A function that is C2 but not C3

Let g : R→ R be the function in Example 1.2(iii). Show that the function h(x) =
∫ x

0 g(t)dt is

C2 but not C3 at x = 0.

1.2.* A C∞ function very flat at 0

Let f (x) be the function on R defined in Example 1.3.

(a) Show by induction that for x > 0 and k ≥ 0, the kth derivative f (k)(x) is of the form

p2k(1/x)e−1/x for some polynomial p2k(y) of degree 2k in y.

(b) Prove that f is C∞ on R and that f (k)(0) = 0 for all k ≥ 0.

1.3. A diffeomorphism of an open interval with R

Let U ⊂ Rn and V ⊂ Rn be open subsets. A C∞ map F : U →V is called a diffeomorphism if

it is bijective and has a C∞ inverse F−1 : V →U .

(a) Show that the function f : ]−π/2,π/2[→ R, f (x) = tanx, is a diffeomorphism.

(b) Let a,b be real numbers with a< b. Find a linear function h : ]a,b[→ ]−1,1[, thus proving

that any two finite open intervals are diffeomorphic.

The composite f ◦ h : ]a,b[→ R is then a diffeomorphism of an open interval with R.

(c) The exponential function exp : R→ ]0,∞[ is a diffeomorphism. Use it to show that for any

real numbers a and b, the intervals R, ]a,∞[, and ]−∞,b[ are diffeomorphic.

1.4. A diffeomorphism of an open cube with Rn

Show that the map

f :
]
−π

2
,

π

2

[n

→ Rn, f (x1, . . . ,xn) = (tanx1, . . . , tanxn),

is a diffeomorphism.

1.5. A diffeomorphism of an open ball with Rn

Let 0 = (0,0) be the origin and B(0,1) the open unit disk in R2. To find a diffeomorphism

between B(0,1) and R2, we identify R2 with the xy-plane in R3 and introduce the lower open

hemisphere

S : x2 +y2 +(z−1)2 = 1, z < 1,

in R3 as an intermediate space (Figure 1.4). First note that the map

f : B(0,1)→ S, (a,b) 7→ (a,b,1−
√

1−a2−b2),

is a bijection.

(a) The stereographic projection g : S → R2 from (0,0,1) is the map that sends a point

(a,b,c) ∈ S to the intersection of the line through (0,0,1) and (a,b,c) with the xy-plane.

Show that it is given by

(a,b,c) 7→ (u,v) =

(
a

1−c
,

b

1−c

)
, c = 1−

√
1−a2−b2,

with inverse

(u,v) 7→
(

u√
1+u2 +v2

,
v√

1+u2 +v2
,1− 1√

1+u2 +v2

)
.
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b

b b

b

b

b b

S S(0,0,1)

(a,b,0)

(a,b,c) (a,b,c)

(u,v,0)
B(0,1) R2 ⊂ R3

0 0
( )

Fig. 1.4. A diffeomorphism of an open disk with R2.

(b) Composing the two maps f and g gives the map

h = g ◦ f : B(0,1)→ R2, h(a,b) =

(
a√

1−a2−b2
,

b√
1−a2−b2

)
.

Find a formula for h−1(u,v) = ( f−1 ◦ g−1)(u,v) and conclude that h is a diffeomorphism

of the open disk B(0,1) with R2.

(c) Generalize part (b) to Rn.

1.6.* Taylor’s theorem with remainder to order 2

Prove that if f : R2→ R is C∞, then there exist C∞ functions g11, g12, g22 on R2 such that

f (x,y) = f (0,0)+
∂ f

∂x
(0,0)x+

∂ f

∂y
(0,0)y

+x2g11(x,y)+xyg12(x,y)+y2g22(x,y).

1.7.* A function with a removable singularity

Let f : R2→ R be a C∞ function with f (0,0) = ∂ f /∂x(0,0) = ∂ f/∂y(0,0) = 0. Define

g(t,u) =





f (t, tu)

t
for t 6= 0,

0 for t = 0.

Prove that g(t,u) is C∞ for (t,u) ∈ R2. (Hint: Apply Problem 1.6.)

1.8. Bijective C∞ maps

Define f : R→ R by f (x) = x3. Show that f is a bijective C∞ map, but that f−1 is not

C∞. (This example shows that a bijective C∞ map need not have a C∞ inverse. In complex

analysis, the situation is quite different: a bijective holomorphic map f : C→ C necessarily

has a holomorphic inverse.)
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§2 Tangent Vectors in Rn as Derivations

In elementary calculus we normally represent a vector at a point p in R3 algebraically

as a column of numbers

v =




v1

v2

v3




or geometrically as an arrow emanating from p (Figure 2.1).

b

p

v

Fig. 2.1. A vector v at p.

Recall that a secant plane to a surface in R3 is a plane determined by three points

of the surface. As the three points approach a point p on the surface, if the corre-

sponding secant planes approach a limiting position, then the plane that is the lim-

iting position of the secant planes is called the tangent plane to the surface at p.

Intuitively, the tangent plane to a surface at p is the plane in R3 that just “touches”

the surface at p. A vector at p is tangent to a surface in R3 if it lies in the tangent

plane at p (Figure 2.2).

b

p v

Fig. 2.2. A tangent vector v to a surface at p.

Such a definition of a tangent vector to a surface presupposes that the surface is

embedded in a Euclidean space, and so would not apply to the projective plane, for

example, which does not sit inside an Rn in any natural way.

Our goal in this section is to find a characterization of tangent vectors in Rn that

will generalize to manifolds.

2.1 The Directional Derivative

In calculus we visualize the tangent space Tp(R
n) at p in Rn as the vector space of

all arrows emanating from p. By the correspondence between arrows and column
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vectors, the vector space Rn can be identified with this column space. To distinguish

between points and vectors, we write a point in Rn as p = (p1, . . . , pn) and a vector

in the tangent space Tp(R
n) as

v =




v1

...

vn


 or 〈v1, . . . ,vn〉.

We usually denote the standard basis for Rn or Tp(R
n) by e1, . . . ,en. Then v = ∑viei

for some vi ∈ R. Elements of Tp(R
n) are called tangent vectors (or simply vectors)

at p in Rn. We sometimes drop the parentheses and write TpR
n for Tp(R

n).
The line through a point p = (p1, . . . , pn) with direction v = 〈v1, . . . ,vn〉 in Rn has

parametrization

c(t) = (p1 + tv1, . . . , pn + tvn).

Its ith component ci(t) is pi + tvi. If f is C∞ in a neighborhood of p in Rn and v is a

tangent vector at p, the directional derivative of f in the direction v at p is defined to

be

Dv f = lim
t→0

f (c(t))− f (p)

t
=

d

dt

∣∣∣∣
t=0

f (c(t)).

By the chain rule,

Dv f =
n

∑
i=1

dci

dt
(0)

∂ f

∂xi
(p) =

n

∑
i=1

vi ∂ f

∂xi
(p). (2.1)

In the notation Dv f , it is understood that the partial derivatives are to be evaluated

at p, since v is a vector at p. So Dv f is a number, not a function. We write

Dv = ∑vi ∂

∂xi

∣∣∣∣
p

for the map that sends a function f to the number Dv f . To simplify the notation we

often omit the subscript p if it is clear from the context.

The association v 7→Dv of the directional derivative Dv to a tangent vector v offers

a way to characterize tangent vectors as certain operators on functions. To make

this precise, in the next two subsections we study in greater detail the directional

derivative Dv as an operator on functions.

2.2 Germs of Functions

A relation on a set S is a subset R of S×S. Given x,y in S, we write x∼ y if and only

if (x,y) ∈ R. The relation R is an equivalence relation if it satisfies the following

three properties for all x,y,z ∈ S:

(i) (reflexivity) x∼ x,

(ii) (symmetry) if x∼ y, then y∼ x,
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(iii) (transitivity) if x∼ y and y∼ z, then x∼ z.

As long as two functions agree on some neighborhood of a point p, they will have

the same directional derivatives at p. This suggests that we introduce an equivalence

relation on the C∞ functions defined in some neighborhood of p. Consider the set of

all pairs ( f ,U), where U is a neighborhood of p and f : U→R is a C∞ function. We

say that ( f ,U) is equivalent to (g,V ) if there is an open set W ⊂U ∩V containing p

such that f = g when restricted to W . This is clearly an equivalence relation because

it is reflexive, symmetric, and transitive. The equivalence class of ( f ,U) is called the

germ of f at p. We write C∞
p (R

n), or simply C∞
p if there is no possibility of confusion,

for the set of all germs of C∞ functions on Rn at p.

Example. The functions

f (x) =
1

1− x

with domain R−{1} and

g(x) = 1+ x+ x2+ x3 + · · ·

with domain the open interval ]−1,1[ have the same germ at any point p in the open

interval ]−1,1[.

An algebra over a field K is a vector space A over K with a multiplication map

µ : A×A→ A,

usually written µ(a,b) = a ·b, such that for all a,b,c ∈ A and r ∈ K,

(i) (associativity) (a ·b) · c = a · (b · c),
(ii) (distributivity) (a+b) · c = a · c+b · c and a · (b+ c) = a ·b+ a · c,

(iii) (homogeneity) r(a ·b) = (ra) ·b = a · (rb).

Equivalently, an algebra over a field K is a ring A (with or without multiplicative

identity) that is also a vector space over K such that the ring multiplication satisfies

the homogeneity condition (iii). Thus, an algebra has three operations: the addition

and multiplication of a ring and the scalar multiplication of a vector space. Usually

we omit the multiplication sign and write ab instead of a ·b.

A map L : V →W between vector spaces over a field K is called a linear map or

a linear operator if for any r ∈ K and u,v ∈V ,

(i) L(u+ v) = L(u)+L(v);
(ii) L(rv) = rL(v).

To emphasize the fact that the scalars are in the field K, such a map is also said to be

K-linear.

If A and A′ are algebras over a field K, then an algebra homomorphism is a linear

map L : A→ A′ that preserves the algebra multiplication: L(ab) = L(a)L(b) for all

a,b ∈ A.

The addition and multiplication of functions induce corresponding operations on

C∞
p , making it into an algebra over R (Problem 2.2).
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2.3 Derivations at a Point

For each tangent vector v at a point p in Rn, the directional derivative at p gives a

map of real vector spaces

Dv : C∞
p →R.

By (2.1), Dv is R-linear and satisfies the Leibniz rule

Dv( f g) = (Dv f )g(p)+ f (p)Dvg, (2.2)

precisely because the partial derivatives ∂/∂xi|p have these properties.

In general, any linear map D : C∞
p → R satisfying the Leibniz rule (2.2) is called

a derivation at p or a point-derivation of C∞
p . Denote the set of all derivations at p

by Dp(R
n). This set is in fact a real vector space, since the sum of two derivations at

p and a scalar multiple of a derivation at p are again derivations at p (Problem 2.3).

Thus far, we know that directional derivatives at p are all derivations at p, so

there is a map

φ : Tp(R
n)→Dp(R

n), (2.3)

v 7→Dv = ∑vi ∂

∂xi

∣∣∣∣
p

.

Since Dv is clearly linear in v, the map φ is a linear map of vector spaces.

Lemma 2.1. If D is a point-derivation of C∞
p , then D(c) = 0 for any constant function

c.

Proof. Since we do not know whether every derivation at p is a directional derivative,

we need to prove this lemma using only the defining properties of a derivation at p.

By R-linearity, D(c) = cD(1). So it suffices to prove that D(1) = 0. By the

Leibniz rule (2.2),

D(1) = D(1 ·1) = D(1) ·1+1 ·D(1)= 2D(1).

Subtracting D(1) from both sides gives 0 = D(1). ⊓⊔

The Kronecker delta δ is a useful notation that we frequently call upon:

δ i
j =

{
1 if i = j,

0 if i 6= j.

Theorem 2.2. The linear map φ : Tp(R
n)→ Dp(R

n) defined in (2.3) is an isomor-

phism of vector spaces.

Proof. To prove injectivity, suppose Dv = 0 for v ∈ Tp(R
n). Applying Dv to the

coordinate function x j gives

0 = Dv(x
j) = ∑

i

vi ∂

∂xi

∣∣∣∣
p

x j = ∑
i

viδ j
i = v j.
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Hence, v = 0 and φ is injective.

To prove surjectivity, let D be a derivation at p and let ( f ,V ) be a representative

of a germ in C∞
p . Making V smaller if necessary, we may assume that V is an open

ball, hence star-shaped. By Taylor’s theorem with remainder (Lemma 1.4) there are

C∞ functions gi(x) in a neighborhood of p such that

f (x) = f (p)+∑(xi− pi)gi(x), gi(p) =
∂ f

∂xi
(p).

Applying D to both sides and noting that D( f (p)) = 0 and D(pi) = 0 by Lemma 2.1,

we get by the Leibniz rule (2.2)

D f (x) = ∑(Dxi)gi(p)+∑(pi− pi)Dgi(x) = ∑(Dxi)
∂ f

∂xi
(p).

This proves that D = Dv for v = 〈Dx1, . . . ,Dxn〉. ⊓⊔

This theorem shows that one may identify the tangent vectors at p with the deriva-

tions at p. Under the vector space isomorphism Tp(R
n)≃Dp(R

n), the standard basis

e1, . . . ,en for Tp(R
n) corresponds to the set ∂/∂x1|p, . . . ,∂/∂xn|p of partial deriva-

tives. From now on, we will make this identification and write a tangent vector

v = 〈v1, . . . ,vn〉= ∑viei as

v = ∑vi ∂

∂xi

∣∣∣∣
p

. (2.4)

The vector space Dp(R
n) of derivations at p, although not as geometric as ar-

rows, turns out to be more suitable for generalization to manifolds.

2.4 Vector Fields

A vector field X on an open subset U of Rn is a function that assigns to each point p

in U a tangent vector Xp in Tp(R
n). Since Tp(R

n) has basis {∂/∂xi|p}, the vector Xp

is a linear combination

Xp = ∑ai(p)
∂

∂xi

∣∣∣∣
p

, p ∈U, ai(p) ∈ R.

Omitting p, we may write X = ∑ai ∂/∂xi, where the ai are now functions on U . We

say that the vector field X is C∞ on U if the coefficient functions ai are all C∞ on U .

Example 2.3. On R2−{0}, let p = (x,y). Then

X =
−y√

x2 + y2

∂

∂x
+

x√
x2 + y2

∂

∂y
=

〈
−y√

x2 + y2
,

x√
x2 + y2

〉

is the vector field in Figure 2.3(a). As is customary, we draw a vector at p as an

arrow emanating from p. The vector field Y = x∂/∂x− y∂/∂y = 〈x,−y〉, suitably

rescaled, is sketched in Figure 2.3(b).



2.4 Vector Fields 15

2
0

2

1

1

0-2

-1

-1

-2

◦

(a) The vector field X on R2−{0} (b) The vector field 〈x,−y〉 on R2

Fig. 2.3. Vector fields on open subsets of R2.

One can identify vector fields on U with column vectors of C∞ functions on U :

X = ∑ai ∂

∂xi
←→




a1

...

an


 .

This is the same identification as (2.4), but now we are allowing the point p to move

in U .

The ring of C∞ functions on an open set U is commonly denoted by C∞(U) or

F(U). Multiplication of vector fields by functions on U is defined pointwise:

( f X)p = f (p)Xp, p ∈U.

Clearly, if X = ∑ai ∂/∂xi is a C∞ vector field and f is a C∞ function on U , then

f X = ∑( f ai)∂/∂xi is a C∞ vector field on U . Thus, the set of all C∞ vector fields on

U , denoted by X(U), is not only a vector space over R, but also a module over the

ring C∞(U). We recall the definition of a module.

Definition 2.4. If R is a commutative ring with identity, then a (left) R-module is an

abelian group A with a scalar multiplication map

µ : R×A→ A,

usually written µ(r,a) = ra, such that for all r,s ∈ R and a,b ∈ A,

(i) (associativity) (rs)a = r(sa),

(ii) (identity) if 1 is the multiplicative identity in R, then 1a = a,

(iii) (distributivity) (r+ s)a = ra+ sa, r(a+ b) = ra+ rb.
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If R is a field, then an R-module is precisely a vector space over R. In this sense,

a module generalizes a vector space by allowing scalars in a ring rather than a field.

Definition 2.5. Let A and A′ be R-modules. An R-module homomorphism from A

to A′ is a map f : A→ A′ that preserves both addition and scalar multiplication: for

all a, b ∈ A and r ∈ R,

(i) f (a+b) = f (a)+ f (b),
(ii) f (ra) = r f (a).

2.5 Vector Fields as Derivations

If X is a C∞ vector field on an open subset U of Rn and f is a C∞ function on U , we

define a new function X f on U by

(X f )(p) = Xp f for any p ∈U.

Writing X = ∑ai ∂/∂xi, we get

(X f )(p) = ∑ai(p)
∂ f

∂xi
(p),

or

X f = ∑ai ∂ f

∂xi
,

which shows that X f is a C∞ function on U . Thus, a C∞ vector field X gives rise to

an R-linear map

C∞(U)→C∞(U),

f 7→ X f .

Proposition 2.6 (Leibniz rule for a vector field). If X is a C∞ vector field and f

and g are C∞ functions on an open subset U of Rn, then X( f g) satisfies the product

rule (Leibniz rule):

X( f g) = (X f )g+ f Xg.

Proof. At each point p ∈U , the vector Xp satisfies the Leibniz rule:

Xp( f g) = (Xp f )g(p)+ f (p)Xpg.

As p varies over U , this becomes an equality of functions:

X( f g) = (X f )g+ f Xg. ⊓⊔

If A is an algebra over a field K, a derivation of A is a K-linear map D : A→ A

such that

D(ab) = (Da)b+aDb for all a,b ∈ A.
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The set of all derivations of A is closed under addition and scalar multiplication and

forms a vector space, denoted by Der(A). As noted above, a C∞ vector field on an

open set U gives rise to a derivation of the algebra C∞(U). We therefore have a map

ϕ : X(U)→ Der(C∞(U)),

X 7→ ( f 7→ X f ).

Just as the tangent vectors at a point p can be identified with the point-derivations of

C∞
p , so the vector fields on an open set U can be identified with the derivations of the

algebra C∞(U); i.e., the map ϕ is an isomorphism of vector spaces. The injectivity of

ϕ is easy to establish, but the surjectivity of ϕ takes some work (see Problem 19.12).

Note that a derivation at p is not a derivation of the algebra C∞
p . A derivation at p

is a map from C∞
p to R, while a derivation of the algebra C∞

p is a map from C∞
p to C∞

p .

Problems

2.1. Vector fields

Let X be the vector field x∂/∂x+y∂/∂y and f (x,y,z) the function x2 +y2 + z2 on R3. Com-

pute X f .

2.2. Algebra structure on C∞
p

Define carefully addition, multiplication, and scalar multiplication in C∞
p . Prove that addition

in C∞
p is commutative.

2.3. Vector space structure on derivations at a point

Let D and D′ be derivations at p in Rn, and c ∈ R. Prove that

(a) the sum D+D′ is a derivation at p.

(b) the scalar multiple cD is a derivation at p.

2.4. Product of derivations

Let A be an algebra over a field K. If D1 and D2 are derivations of A, show that D1 ◦ D2 is not

necessarily a derivation (it is if D1 or D2 = 0), but D1 ◦D2−D2 ◦D1 is always a derivation of

A.
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§3 The Exterior Algebra of Multicovectors

As noted in the introduction, manifolds are higher-dimensional analogues of curves

and surfaces. As such, they are usually not linear spaces. Nonetheless, a basic

principle in manifold theory is the linearization principle, according to which every

manifold can be locally approximated by its tangent space at a point, a linear object.

In this way linear algebra enters into manifold theory.

Instead of working with tangent vectors, it turns out to be more fruitful to adopt

the dual point of view and work with linear functions on a tangent space. After all,

there is only so much that one can do with tangent vectors, which are essentially

arrows, but functions, far more flexible, can be added, multiplied, scalar-multiplied,

and composed with other maps. Once one admits linear functions on a tangent space,

it is but a small step to consider functions of several arguments linear in each argu-

ment. These are the multilinear functions on a vector space. The determinant of a

matrix, viewed as a function of the column vectors of the matrix, is an example of

a multilinear function. Among the multilinear functions, certain ones such as the

determinant and the cross product have an antisymmetric or alternating property:

they change sign if two arguments are switched. The alternating multilinear func-

tions with k arguments on a vector space are called multicovectors of degree k, or

k-covectors for short.

Hermann Grassmann

(1809–1877)

It took the genius of Hermann Grassmann, a

nineteenth-century German mathematician, linguist,

and high-school teacher, to recognize the impor-

tance of multicovectors. He constructed a vast ed-

ifice based on multicovectors, now called the exte-

rior algebra, that generalizes parts of vector calcu-

lus from R3 to Rn. For example, the wedge prod-

uct of two multicovectors on an n-dimensional vec-

tor space is a generalization of the cross product in

R3 (see Problem 4.6). Grassmann’s work was little

appreciated in his lifetime. In fact, he was turned

down for a university position and his Ph.D. thesis

rejected, because the leading mathematicians of his

day such as Möbius and Kummer failed to under-

stand his work. It was only at the turn of the twenti-

eth century, in the hands of the great differential ge-

ometer Élie Cartan (1869–1951), that Grassmann’s

exterior algebra found its just recognition as the algebraic basis of the theory of dif-

ferential forms. This section is an exposition, using modern terminology, of some of

Grassmann’s ideas.
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3.1 Dual Space

If V and W are real vector spaces, we denote by Hom(V,W ) the vector space of all

linear maps f : V →W . Define the dual space V∨ of V to be the vector space of all

real-valued linear functions on V :

V∨ = Hom(V,R).

The elements of V∨ are called covectors or 1-covectors on V .

In the rest of this section, assume V to be a finite-dimensional vector space. Let

e1, . . . ,en be a basis for V . Then every v in V is uniquely a linear combination

v = ∑viei with vi ∈ R. Let α i : V → R be the linear function that picks out the

ith coordinate, α i(v) = vi. Note that α i is characterized by

α i(e j) = δ i
j =

{
1 for i = j,

0 for i 6= j.

Proposition 3.1. The functions α1, . . . ,αn form a basis for V∨.

Proof. We first prove that α1, . . . ,αn span V∨. If f ∈V∨ and v = ∑viei ∈V , then

f (v) = ∑vi f (ei) = ∑ f (ei)α
i(v).

Hence,

f = ∑ f (ei)α
i,

which shows that α1, . . . ,αn span V∨.

To show linear independence, suppose ∑ciα
i = 0 for some ci ∈ R. Applying

both sides to the vector e j gives

0 = ∑
i

ciα
i(e j) = ∑

i

ciδ
i
j = c j, j = 1, . . . ,n.

Hence, α1, . . . ,αn are linearly independent. ⊓⊔

This basis α1, . . . ,αn for V∨ is said to be dual to the basis e1, . . . ,en for V .

Corollary 3.2. The dual space V∨ of a finite-dimensional vector space V has the

same dimension as V .

Example 3.3 (Coordinate functions). With respect to a basis e1, . . . ,en for a vector

space V , every v ∈ V can be written uniquely as a linear combination v = ∑bi(v)ei,

where bi(v) ∈ R. Let α1, . . . ,αn be the basis of V∨ dual to e1, . . . ,en. Then

α i(v) = α i

(
∑

j

b j(v)e j

)
= ∑

j

b j(v)α i(e j) = ∑
j

b j(v)δ i
j = bi(v).

Thus, the dual basis to e1, . . . ,en is precisely the set of coordinate functions b1, . . . ,bn

with respect to the basis e1, . . . ,en.
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3.2 Permutations

Fix a positive integer k. A permutation of the set A= {1, . . . ,k} is a bijection σ : A→
A. More concretely, σ may be thought of as a reordering of the list 1,2, . . . ,k from its

natural increasing order to a new order σ(1),σ(2), . . . ,σ(k). The cyclic permutation,

(a1 a2 · · · ar) where the ai are distinct, is the permutation σ such that σ(a1) = a2,

σ(a2) = a3, . . . , σ(ar−1) = (ar), σ(ar) = a1, and σ fixes all the other elements of

A. A cyclic permutation (a1 a2 · · · ar) is also called a cycle of length r or an r-cycle.

A transposition is a 2-cycle, that is, a cycle of the form (a b) that interchanges a and

b, leaving all other elements of A fixed. Two cycles (a1 · · ·ar) and (b1 · · ·bs) are said

to be disjoint if the sets {a1, . . . ,ar} and {b1, . . . ,bs} have no elements in common.

The product τσ of two permutations τ and σ of A is the composition τ ◦ σ : A→ A,

in that order; first apply σ , then τ .

A simple way to describe a permutation σ : A→ A is by its matrix
[

1 2 · · · k

σ(1) σ(2) · · · σ(k)

]
.

Example 3.4. Suppose the permutation σ : {1,2,3,4,5} → {1,2,3,4,5} maps 1,2,
3,4,5 to 2,4,5,1,3 in that order. As a matrix,

σ =

[
1 2 3 4 5

2 4 5 1 3

]
. (3.1)

To write σ as a product of disjoint cycles, start with any element in {1,2,3,4,5},
say 1, and apply σ to it repeatedly until we return to the initial element; this gives

a cycle: 1 7→ 2 7→ 4→ 1. Next, repeat the procedure beginning with any of the

remaining elements, say 3, to get a second cycle: 3 7→ 5 7→ 3. Since all elements of

{1,2,3,4,5} are now accounted for, σ equals (1 2 4)(3 5):

1

4 2

3

5

From this example, it is easy to see that any permutation can be written as a product

of disjoint cycles (a1 · · · ar)(b1 · · · bs) · · · .
Let Sk be the group of all permutations of the set {1, . . . ,k}. A permutation is

even or odd depending on whether it is the product of an even or an odd number of

transpositions. From the theory of permutations we know that this is a well-defined

concept: an even permutation can never be written as the product of an odd number

of transpositions and vice versa. The sign of a permutation σ , denoted by sgn(σ) or

sgnσ , is defined to be +1 or −1 depending on whether the permutation is even or

odd. Clearly, the sign of a permutation satisfies

sgn(στ) = sgn(σ)sgn(τ) (3.2)

for σ ,τ ∈ Sk.
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Example 3.5. The decomposition

(1 2 3 4 5) = (1 5)(1 4)(1 3)(1 2)

shows that the 5-cycle (1 2 3 4 5) is an even permutation.

More generally, the decomposition

(a1 a2 · · · ar) = (a1 ar)(a1 ar−1) · · · (a1 a3)(a1 a2)

shows that an r-cycle is an even permutation if and only if r is odd, and an odd per-

mutation if and only if r is even. Thus one way to compute the sign of a permutation

is to decompose it into a product of cycles and to count the number of cycles of even

length. For example, the permutation σ = (1 2 4)(3 5) in Example 3.4 is odd because

(1 2 4) is even and (3 5) is odd.

An inversion in a permutation σ is an ordered pair (σ(i),σ( j)) such that i < j

but σ(i)> σ( j). To find all the inversions in a permutation σ , it suffices to scan the

second row of the matrix of σ from left to right; the inversions are the pairs (a,b)
with a > b and a to the left of b. For the permutation σ in Example 3.4, from its

matrix (3.1) we can read off its five inversions: (2,1), (4,1), (5,1), (4,3), and (5,3).

Exercise 3.6 (Inversions).* Find the inversions in the permutation τ = (1 2 3 4 5) of Exam-

ple 3.5.

A second way to compute the sign of a permutation is to count the number of

inversions, as we illustrate in the following example.

Example 3.7. Let σ be the permutation of Example 3.4. Our goal is to turn σ into

the identity permutation 1 by multiplying it on the left by transpositions.

(i) To move 1 to its natural position at the beginning of the second row of the matrix

of σ , we need to move it across the three elements 2,4,5. This can be accom-

plished by multiplying σ on the left by three transpositions: first (5 1), then

(4 1), and finally (2 1):

σ =

[
1 2 3 4 5

2 4 5 1 3

]
(5 1)−−−→

[

2 4 1 5 3

]
(4 1)−−−→

[

2 1 4 5 3

]
(2 1)−−−→

[

1 2 4 5 3

]
.

The three transpositions (5 1), (4 1), and (2 1) correspond precisely to the three

inversions of σ ending in 1.

(ii) The element 2 is already in its natural position in the second row of the matrix.

(iii) To move 3 to its natural position in the second row, we need to move it across

two elements 4, 5. This can be accomplished by

[
1 2 3 4 5

1 2 4 5 3

]
(5 3)−−−→

[

1 2 4 3 5

]
(4 3)−−−→

[

1 2 3 4 5

]
= 1.

Thus,

(4 3)(5 3)(2 1)(4 1)(5 1)σ = 1. (3.3)
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Note that the two transpositions (5 3) and (4 3) correspond to the two inversions

ending in 3. Multiplying both sides of (3.3) on the left by the transpositions

(4 3), then (5 3), then (2 1), and so on eventually yields

σ = (5 1)(4 1)(2 1)(5 3)(4 3).

This shows that σ can be written as a product of as many transpositions as the number

of inversions in it.

With this example in mind, we prove the following proposition.

Proposition 3.8. A permutation is even if and only if it has an even number of inver-

sions.

Proof. We will obtain the identity permutation 1 by multiplying σ on the left by a

number of transpositions. This can be achieved in k steps.

(i) First, look for the number 1 among σ(1),σ(2), . . . ,σ(k). Every number preced-

ing 1 in this list gives rise to an inversion, for if 1 = σ(i), then (σ(1),1), . . .,
(σ(i−1),1) are inversions of σ . Now move 1 to the beginning of the list across

the i−1 elements σ(1), . . . ,σ(i−1). This requires multiplying σ on the left by

i−1 transpositions:

σ1 = (σ(1) 1) · · · (σ(i−1) 1)σ =

[

1 σ(1) · · · σ(i− 1) σ(i+ 1) · · · σ(k)

]
.

Note that the number of transpositions is the number of inversions ending in 1.

(ii) Next look for the number 2 in the list: 1,σ(1), . . . ,σ(i− 1),σ(i+ 1), . . . ,σ(k).
Every number other than 1 preceding 2 in this list gives rise to an inversion

(σ(m),2). Suppose there are i2 such numbers. Then there are i2 inversions

ending in 2. In moving 2 to its natural position 1,2,σ(1),σ(2), . . . , we need to

move it across i2 numbers. This can be accomplished by multiplying σ1 on the

left by i2 transpositions.

Repeating this procedure, we see that for each j = 1, . . . ,k, the number of trans-

positions required to move j to its natural position is the same as the number of in-

versions ending in j. In the end we achieve the identity permutation, i.e, the ordered

list 1,2, . . . ,k, from σ(1),σ(2), . . . ,σ(k) by multiplying σ by as many transpositions

as the total number of inversions in σ . Therefore, sgn(σ) = (−1)# inversions in σ . ⊓⊔

3.3 Multilinear Functions

Denote by V k =V ×·· ·×V the Cartesian product of k copies of a real vector space

V . A function f : V k→ R is k-linear if it is linear in each of its k arguments:

f (. . . ,av+bw, . . .) = a f (. . . ,v, . . .)+ b f (. . . ,w, . . .)

for all a,b ∈ R and v,w ∈ V . Instead of 2-linear and 3-linear, it is customary to say

“bilinear” and “trilinear.” A k-linear function on V is also called a k-tensor on V . We

will denote the vector space of all k-tensors on V by Lk(V ). If f is a k-tensor on V ,

we also call k the degree of f .
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Example 3.9 (Dot product on Rn). With respect to the standard basis e1, . . . ,en for

Rn, the dot product, defined by

f (v,w) = v • w = ∑
i

viwi, where v = ∑viei, w = ∑wiei,

is bilinear.

Example. The determinant f (v1, . . . ,vn) = det[v1 · · · vn], viewed as a function of the

n column vectors v1, . . . ,vn in Rn, is n-linear.

Definition 3.10. A k-linear function f : V k→ R is symmetric if

f
(
vσ(1), . . . ,vσ(k)

)
= f (v1, . . . ,vk)

for all permutations σ ∈ Sk; it is alternating if

f
(
vσ(1), . . . ,vσ(k)

)
= (sgnσ) f (v1, . . . ,vk)

for all σ ∈ Sk.

Examples.
(i) The dot product f (v,w) = v • w on Rn is symmetric.

(ii) The determinant f (v1, . . . ,vn) = det[v1 · · · vn] on Rn is alternating.

(iii) The cross product v×w on R3 is alternating.

(iv) For any two linear functions f , g : V → R on a vector space V , the function

f ∧g : V ×V →R defined by

( f ∧g)(u,v) = f (u)g(v)− f (v)g(u)

is alternating. This is a special case of the wedge product, which we will soon

define.

We are especially interested in the space Ak(V ) of all alternating k-linear func-

tions on a vector space V for k > 0. These are also called alternating k-tensors,

k-covectors, or multicovectors of degree k on V . For k = 0, we define a 0-covector to

be a constant, so that A0(V ) is the vector space R. A 1-covector is simply a covector.

3.4 The Permutation Action on Multilinear Functions

If f is a k-linear function on a vector space V and σ is a permutation in Sk, we define

a new k-linear function σ f by

(σ f )(v1, . . . ,vk) = f
(
vσ(1), . . . ,vσ(k)

)
.

Thus, f is symmetric if and only if σ f = f for all σ ∈ Sk and f is alternating if and

only if σ f = (sgnσ) f for all σ ∈ Sk.

When there is only one argument, the permutation group S1 is the identity group

and a 1-linear function is both symmetric and alternating. In particular,

A1(V ) = L1(V ) =V∨.
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Lemma 3.11. If σ ,τ ∈ Sk and f is a k-linear function on V , then τ(σ f ) = (τσ) f .

Proof. For v1, . . . ,vk ∈V ,

τ(σ f )(v1, . . . ,vk) = (σ f )
(
vτ(1), . . . ,vτ(k)

)

= (σ f )(w1, . . . ,wk) (letting wi = vτ(i))

= f
(
wσ(1), . . . ,wσ(k)

)

= f
(
vτ(σ(1)), . . . ,vτ(σ(k))

)
= f

(
v(τσ)(1), . . . ,v(τσ)(k)

)

= (τσ) f (v1, . . . ,vk). ⊓⊔

In general, if G is a group and X is a set, a map

G×X→ X ,

(σ ,x) 7→ σ · x

is called a left action of G on X if

(i) e · x = x, where e is the identity element in G and x is any element in X , and

(ii) τ · (σ · x) = (τσ) · x for all τ,σ ∈G and x ∈ X .

The orbit of an element x ∈ X is defined to be the set Gx := {σ · x ∈ X | σ ∈ G}. In

this terminology, we have defined a left action of the permutation group Sk on the

space Lk(V ) of k-linear functions on V . Note that each permutation acts as a linear

function on the vector space Lk(V ) since σ f is R-linear in f .

A right action of G on X is defined similarly; it is a map X×G→ X such that

(i) x · e = x, and

(ii) (x ·σ) · τ = x · (στ)

for all σ ,τ ∈ G and x ∈ X .

Remark. In some books the notation for σ f is f σ . In that notation, ( f σ )τ = f τσ , not

f στ .

3.5 The Symmetrizing and Alternating Operators

Given any k-linear function f on a vector space V , there is a way to make a symmetric

k-linear function S f from it:

(S f )(v1, . . . ,vk) = ∑
σ∈Sk

f
(
vσ(1), . . . ,vσ(k)

)

or, in our new shorthand,

S f = ∑
σ∈Sk

σ f .

Similarly, there is a way to make an alternating k-linear function from f . Define

A f = ∑
σ∈Sk

(sgnσ)σ f .
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Proposition 3.12. If f is a k-linear function on a vector space V , then

(i) the k-linear function S f is symmetric, and

(ii) the k-linear function A f is alternating.

Proof. We prove (ii) only, leaving (i) as an exercise. For τ ∈ Sk,

τ(A f ) = ∑
σ∈Sk

(sgnσ)τ(σ f )

= ∑
σ∈Sk

(sgnσ)(τσ) f (by Lemma 3.11)

= (sgnτ) ∑
σ∈Sk

(sgnτσ)(τσ) f (by (3.2))

= (sgnτ)A f ,

since as σ runs through all permutations in Sk, so does τσ . ⊓⊔
Exercise 3.13 (Symmetrizing operator).* Show that the k-linear function S f is symmetric.

Lemma 3.14. If f is an alternating k-linear function on a vector space V , then A f =
(k!) f .

Proof. Since for alternating f we have σ f = (sgnσ) f , and sgnσ is ±1, we must

have

A f = ∑
σ∈Sk

(sgnσ)σ f = ∑
σ∈Sk

(sgnσ)(sgnσ) f = (k!) f . ⊓⊔

Exercise 3.15 (Alternating operator).* If f is a 3-linear function on a vector space V and

v1,v2,v3 ∈V , what is (A f )(v1,v2,v3)?

3.6 The Tensor Product

Let f be a k-linear function and g an ℓ-linear function on a vector space V . Their

tensor product is the (k+ ℓ)-linear function f ⊗ g defined by

( f ⊗g)(v1, . . . ,vk+ℓ) = f (v1, . . . ,vk)g(vk+1, . . . ,vk+ℓ).

Example 3.16 (Bilinear maps). Let e1, . . . ,en be a basis for a vector space V , α1, . . .,
αn the dual basis in V∨, and 〈 , 〉 : V×V→R a bilinear map on V . Set gi j = 〈ei,e j〉 ∈
R. If v = ∑viei and w = ∑wiei, then as we observed in Example 3.3, vi = α i(v) and

wj = α j(w). By bilinearity, we can express 〈 , 〉 in terms of the tensor product:

〈v,w〉 = ∑viwj〈ei,e j〉= ∑α i(v)α j(w)gi j = ∑gi j(α
i⊗α j)(v,w).

Hence, 〈 , 〉 = ∑gi jα
i⊗α j. This notation is often used in differential geometry to

describe an inner product on a vector space.

Exercise 3.17 (Associativity of the tensor product). Check that the tensor product of multi-

linear functions is associative: if f ,g, and h are multilinear functions on V , then

( f ⊗g)⊗h = f ⊗ (g⊗h).
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3.7 The Wedge Product

If two multilinear functions f and g on a vector space V are alternating, then we

would like to have a product that is alternating as well. This motivates the definition

of the wedge product, also called the exterior product: for f ∈ Ak(V ) and g ∈ Aℓ(V ),

f ∧g =
1

k!ℓ!
A( f ⊗ g); (3.4)

or explicitly,

( f ∧g)(v1, . . . ,vk+ℓ)

=
1

k!ℓ! ∑
σ∈Sk+ℓ

(sgnσ) f
(
vσ(1), . . . ,vσ(k)

)
g
(
vσ(k+1), . . . ,vσ(k+ℓ)

)
. (3.5)

By Proposition 3.12, f ∧g is alternating.

When k = 0, the element f ∈ A0(V ) is simply a constant c. In this case, the

wedge product c∧g is scalar multiplication, since the right-hand side of (3.5) is

1

ℓ! ∑
σ∈Sℓ

(sgnσ)cg
(
vσ(1), . . . ,vσ(ℓ)

)
= cg(v1, . . . ,vℓ) .

Thus c∧g = cg for c ∈ R and g ∈ Aℓ(V ).
The coefficient 1/k!ℓ! in the definition of the wedge product compensates for

repetitions in the sum: for every permutation σ ∈ Sk+ℓ, there are k! permutations τ
in Sk that permute the first k arguments vσ(1), . . . ,vσ(k) and leave the arguments of g

alone; for all τ in Sk, the resulting permutations στ in Sk+ℓ contribute the same term

to the sum, since

(sgnστ) f
(
vστ(1), . . . ,vστ(k)

)
= (sgnστ)(sgn τ) f

(
vσ(1), . . . ,vσ(k)

)

= (sgnσ) f
(
vσ(1), . . . ,vσ(k)

)
,

where the first equality follows from the fact that (τ(1), . . . ,τ(k)) is a permutation of

(1, . . . ,k). So we divide by k! to get rid of the k! repeating terms in the sum coming

from permutations of the k arguments of f ; similarly, we divide by ℓ! on account of

the ℓ arguments of g.

Example 3.18. For f ∈ A2(V ) and g ∈ A1(V ),

A( f ⊗g)(v1,v2,v3) = f (v1,v2)g(v3)− f (v1,v3)g(v2)+ f (v2,v3)g(v1)

− f (v2,v1)g(v3)+ f (v3,v1)g(v2)− f (v3,v2)g(v1).

Among these six terms, there are three pairs of equal terms, which we have lined up

vertically in the display above:

f (v1,v2)g(v3) =− f (v2,v1)g(v3), and so on.

Therefore, after dividing by 2,

( f ∧g)(v1,v2,v3) = f (v1,v2)g(v3)− f (v1,v3)g(v2)+ f (v2,v3)g(v1).
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One way to avoid redundancies in the definition of f ∧g is to stipulate that in the

sum (3.5), σ(1), . . . ,σ(k) be in ascending order and σ(k+1), . . . ,σ(k+ ℓ) also be in

ascending order. We call a permutation σ ∈ Sk+ℓ a (k, ℓ)-shuffle if

σ(1)< · · ·< σ(k) and σ(k+ 1)< · · ·< σ(k+ ℓ).

By the paragraph before Example 3.18, one may rewrite (3.5) as

( f ∧g)(v1, . . . ,vk+ℓ)

= ∑
(k,ℓ)-shuffles

σ

(sgnσ) f
(
vσ(1), . . . ,vσ(k)

)
g
(
vσ(k+1), . . . ,vσ(k+ℓ)

)
. (3.6)

Written this way, the definition of ( f ∧ g)(v1, . . . ,vk+ℓ) is a sum of
(

k+ℓ
k

)
terms, in-

stead of (k+ ℓ)! terms.

Example 3.19 (Wedge product of two covectors).* If f and g are covectors on a

vector space V and v1, v2 ∈V , then by (3.6),

( f ∧g)(v1,v2) = f (v1)g(v2)− f (v2)g(v1).

Exercise 3.20 (Wedge product of two 2-covectors). For f ,g∈A2(V ), write out the definition

of f ∧g using (2,2)-shuffles.

3.8 Anticommutativity of the Wedge Product

It follows directly from the definition of the wedge product (3.5) that f ∧g is bilinear

in f and in g.

Proposition 3.21. The wedge product is anticommutative: if f ∈ Ak(V ) and g ∈
Aℓ(V ), then

f ∧g = (−1)kℓg∧ f .

Proof. Define τ ∈ Sk+ℓ to be the permutation

τ =

[
1 · · · ℓ ℓ+1 · · · ℓ+ k

k+1 · · · k+ ℓ 1 · · · k

]
.

This means that

τ(1) = k+1, . . . ,τ(ℓ) = k+ ℓ,τ(ℓ+1) = 1, . . . ,τ(ℓ+ k) = k.

Then

σ(1) = στ(ℓ+1), . . . ,σ(k) = στ(ℓ+ k),

σ(k+1) = στ(1), . . . ,σ(k+ ℓ) = στ(ℓ).

For any v1, . . . ,vk+ℓ ∈V ,
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A( f ⊗g)(v1, . . . ,vk+ℓ)

= ∑
σ∈Sk+ℓ

(sgnσ) f
(
vσ(1), . . . ,vσ(k)

)
g
(
vσ(k+1), . . . ,vσ(k+ℓ)

)

= ∑
σ∈Sk+ℓ

(sgnσ) f
(
vστ(ℓ+1), . . . ,vστ(ℓ+k)

)
g
(
vστ(1), . . . ,vστ(ℓ)

)

= (sgnτ) ∑
σ∈Sk+ℓ

(sgnστ)g
(
vστ(1), . . . ,vστ(ℓ)

)
f
(
vστ(ℓ+1), . . . ,vστ(ℓ+k)

)

= (sgnτ)A(g⊗ f )(v1, . . . ,vk+ℓ).

The last equality follows from the fact that as σ runs through all permutations in

Sk+ℓ, so does στ .

We have proven

A( f ⊗g) = (sgnτ)A(g⊗ f ).

Dividing by k!ℓ! gives

f ∧g = (sgnτ)g∧ f .

Exercise 3.22 (Sign of a permutation).* Show that sgnτ = (−1)kℓ. ⊓⊔

Corollary 3.23. If f is a multicovector of odd degree on V , then f ∧ f = 0.

Proof. Let k be the degree of f . By anticommutativity,

f ∧ f = (−1)k2
f ∧ f =− f ∧ f ,

since k is odd. Hence, 2 f ∧ f = 0. Dividing by 2 gives f ∧ f = 0. ⊓⊔

3.9 Associativity of the Wedge Product

The wedge product of a k-covector f and an ℓ-covector g on a vector space V is by

definition the (k+ ℓ)-covector

f ∧g =
1

k!ℓ!
A( f ⊗ g).

To prove the associativity of the wedge product, we will follow Godbillon [14] by

first proving a lemma on the alternating operator A.

Lemma 3.24. Suppose f is a k-linear function and g an ℓ-linear function on a vector

space V . Then

(i) A(A( f )⊗g) = k!A( f ⊗g), and

(ii) A( f ⊗A(g)) = ℓ!A( f ⊗g).

Proof. (i) By definition,

A(A( f )⊗g) = ∑
σ∈Sk+ℓ

(sgnσ)σ

(
∑

τ∈Sk

(sgnτ)(τ f )⊗ g

)
.



3.9 Associativity of the Wedge Product 29

We can view τ ∈ Sk also as a permutation in Sk+ℓ fixing k+1, . . . ,k+ ℓ. Viewed this

way, τ satisfies

(τ f )⊗g = τ( f ⊗ g).

Hence,

A(A( f )⊗g) = ∑
σ∈Sk+ℓ

∑
τ∈Sk

(sgnσ)(sgnτ)(στ)( f ⊗ g). (3.7)

For each µ ∈ Sk+ℓ and each τ ∈ Sk, there is a unique element σ = µτ−1 ∈ Sk+ℓ such

that µ = στ , so each µ ∈ Sk+ℓ appears once in the double sum (3.7) for each τ ∈ Sk,

and hence k! times in total. So the double sum (3.7) can be rewritten as

A(A( f )⊗g) = k! ∑
µ∈Sk+ℓ

(sgn µ)µ( f ⊗g) = k!A( f ⊗ g).

The equality in (ii) is proved in the same way. ⊓⊔
Proposition 3.25 (Associativity of the wedge product). Let V be a real vector

space and f ,g,h alternating multilinear functions on V of degrees k, ℓ,m, respec-

tively. Then

( f ∧g)∧h = f ∧ (g∧h).

Proof. By the definition of the wedge product,

( f ∧g)∧h =
1

(k+ ℓ)!m!
A(( f ∧g)⊗h)

=
1

(k+ ℓ)!m!

1

k!ℓ!
A(A( f ⊗ g)⊗h)

=
(k+ ℓ)!

(k+ ℓ)!m!k!ℓ!
A(( f ⊗ g)⊗h) (by Lemma 3.24(i))

=
1

k!ℓ!m!
A(( f ⊗g)⊗h).

Similarly,

f ∧ (g∧h) =
1

k!(ℓ+m)!
A

(
f ⊗ 1

ℓ!m!
A(g⊗ h)

)

=
1

k!ℓ!m!
A( f ⊗ (g⊗ h)).

Since the tensor product is associative, we conclude that

( f ∧g)∧h = f ∧ (g∧h). ⊓⊔

By associativity, we can omit the parentheses in a multiple wedge product such

as ( f ∧g)∧h and write simply f ∧g∧h.

Corollary 3.26. Under the hypotheses of the proposition,

f ∧g∧h =
1

k!ℓ!m!
A( f ⊗ g⊗h).
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This corollary easily generalizes to an arbitrary number of factors: if fi ∈
Adi

(V ), then

f1∧·· ·∧ fr =
1

(d1)! · · · (dr)!
A( f1⊗·· ·⊗ fr). (3.8)

In particular, we have the following proposition. We use the notation [bi
j] to denote

the matrix whose (i, j)-entry is bi
j.

Proposition 3.27 (Wedge product of 1-covectors). If α1, . . . ,αk are linear func-

tions on a vector space V and v1, . . . ,vk ∈V, then

(α1∧·· ·∧αk)(v1, . . . ,vk) = det[α i(v j)].

Proof. By (3.8),

(α1∧·· ·∧αk)(v1, . . . ,vk) = A(α1⊗·· ·⊗αk)(v1, . . . ,vk)

= ∑
σ∈Sk

(sgnσ)α1
(
vσ(1)

)
· · ·αk

(
vσ(k)

)

= det[α i(v j)]. ⊓⊔

An algebra A over a field K is said to be graded if it can be written as a direct

sum A =
⊕∞

k=0 Ak of vector spaces over K such that the multiplication map sends

Ak×Aℓ to Ak+ℓ. The notation A =
⊕∞

k=0 Ak means that each nonzero element of A is

uniquely a finite sum

a = ai1 + · · ·+ aim ,

where ai j
6= 0 ∈ Aij . A graded algebra A = ⊕∞

k=0Ak is said to be anticommutative or

graded commutative if for all a ∈ Ak and b ∈ Aℓ,

ab = (−1)kℓba.

A homomorphism of graded algebras is an algebra homomorphism that preserves

the degree.

Example. The polynomial algebra A = R[x,y] is graded by degree; Ak consists of all

homogeneous polynomials of total degree k in the variables x and y.

For a finite-dimensional vector space V , say of dimension n, define

A∗(V ) =
∞⊕

k=0

Ak(V ) =
n⊕

k=0

Ak(V ).

With the wedge product of multicovectors as multiplication, A∗(V ) becomes an an-

ticommutative graded algebra, called the exterior algebra or the Grassmann algebra

of multicovectors on the vector space V .
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3.10 A Basis for k-Covectors

Let e1, . . . ,en be a basis for a real vector space V , and let α1, . . . ,αn be the dual basis

for V∨. Introduce the multi-index notation

I = (i1, . . . , ik)

and write eI for (ei1 , . . . ,eik ) and α I for α i1 ∧·· ·∧α ik .

A k-linear function f on V is completely determined by its values on all k-tuples

(ei1 , . . . ,eik ). If f is alternating, then it is completely determined by its values on

(ei1 , . . . ,eik ) with 1 ≤ i1 < · · · < ik ≤ n; that is, it suffices to consider eI with I in

strictly ascending order.

Lemma 3.28. Let e1, . . . ,en be a basis for a vector space V and let α1, . . . ,αn be its

dual basis in V∨. If I = (1 ≤ i1 < · · ·< ik ≤ n) and J = (1 ≤ j1 < · · ·< jk ≤ n) are

strictly ascending multi-indices of length k, then

α I(eJ) = δ I
J =

{
1 for I = J,

0 for I 6= J.

Proof. By Proposition 3.27,

α I(eJ) = det[α i(e j)]i∈I, j∈J .

If I = J, then [α i(e j)] is the identity matrix and its determinant is 1.

If I 6= J, we compare them term by term until the terms differ:

i1 = j1, . . . , iℓ−1 = jℓ−1, iℓ 6= jℓ, . . . .

Without loss of generality, we may assume iℓ < jℓ. Then iℓ will be different from

j1, . . . , jℓ−1 (because these are the same as i1, . . . , iℓ, and I is strictly ascending), and

iℓ will also be different from jℓ, jℓ+1, . . . , jk (because J is strictly ascending). Thus,

iℓ will be different from j1, . . . , jk , and the ℓth row of the matrix [ai(e j)] will be all

zero. Hence, det[ai(e j)] = 0. ⊓⊔

Proposition 3.29. The alternating k-linear functions α I , I = (i1 < · · · < ik), form a

basis for the space Ak(V ) of alternating k-linear functions on V .

Proof. First, we show linear independence. Suppose ∑cIα
I = 0, cI ∈ R, and I runs

over all strictly ascending multi-indices of length k. Applying both sides to eJ , J =
( j1 < · · ·< jk), we get by Lemma 3.28,

0 = ∑
I

cIα
I(eJ) = ∑

I

cIδ
I
J = cJ ,

since among all strictly ascending multi-indices I of length k, there is only one equal

to J. This proves that the α I are linearly independent.

To show that the α I span Ak(V ), let f ∈ Ak(V ). We claim that
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f = ∑ f (eI)α
I ,

where I runs over all strictly ascending multi-indices of length k. Let g = ∑ f (eI)α
I .

By k-linearity and the alternating property, if two k-covectors agree on all eJ , where

J = ( j1 < · · ·< jk), then they are equal. But

g(eJ) = ∑ f (eI)α
I(eJ) = ∑ f (eI)δ

I
J = f (eJ).

Therefore, f = g = ∑ f (eI)α
I . ⊓⊔

Corollary 3.30. If the vector space V has dimension n, then the vector space Ak(V )
of k-covectors on V has dimension

(
n
k

)
.

Proof. A strictly ascending multi-index I = (i1 < · · ·< ik) is obtained by choosing a

subset of k numbers from 1, . . . ,n. This can be done in
(

n
k

)
ways. ⊓⊔

Corollary 3.31. If k > dimV, then Ak(V ) = 0.

Proof. In α i1 ∧·· ·∧α ik , at least two of the factors must be the same, say α j = αℓ =
α . Because α is a 1-covector, α∧α = 0 by Corollary 3.23, so α i1 ∧·· ·∧α ik = 0. ⊓⊔

Problems

3.1. Tensor product of covectors

Let e1, . . . ,en be a basis for a vector space V and let α1, . . . ,αn be its dual basis in V∨. Suppose

[gi j] ∈ Rn×n is an n×n matrix. Define a bilinear function f : V ×V → R by

f (v,w) = ∑
1≤i, j≤n

gi jv
iw j

for v = ∑viei and w = ∑w je j in V . Describe f in terms of the tensor products of α i and α j ,

1≤ i, j ≤ n.

3.2. Hyperplanes

(a) Let V be a vector space of dimension n and f : V → R a nonzero linear functional. Show

that dimker f = n−1. A linear subspace of V of dimension n−1 is called a hyperplane

in V .

(b) Show that a nonzero linear functional on a vector space V is determined up to a multi-

plicative constant by its kernel, a hyperplane in V . In other words, if f and g : V → R are

nonzero linear functionals and ker f = kerg, then g = c f for some constant c ∈ R.

3.3. A basis for k-tensors

Let V be a vector space of dimension n with basis e1, . . . ,en. Let α1, . . . ,αn be the dual basis

for V∨. Show that a basis for the space Lk(V ) of k-linear functions on V is {α i1 ⊗·· ·⊗α ik}
for all multi-indices (i1, . . . , ik) (not just the strictly ascending multi-indices as for Ak(L)). In

particular, this shows that dimLk(V ) = nk . (This problem generalizes Problem 3.1.)
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3.4. A characterization of alternating k-tensors

Let f be a k-tensor on a vector space V . Prove that f is alternating if and only if f changes

sign whenever two successive arguments are interchanged:

f (. . . ,vi+1,vi, . . .) =− f (. . . ,vi,vi+1, . . .)

for i = 1, . . . ,k−1.

3.5. Another characterization of alternating k-tensors

Let f be a k-tensor on a vector space V . Prove that f is alternating if and only if f (v1, . . . ,vk) =
0 whenever two of the vectors v1, . . . ,vk are equal.

3.6. Wedge product and scalars

Let V be a vector space. For a,b∈R, f ∈Ak(V ), and g∈Aℓ(V ), show that a f ∧bg=(ab) f ∧g.

3.7. Transformation rule for a wedge product of covectors

Suppose two sets of covectors on a vector space V , β 1, . . . ,β k and γ1, . . . ,γk, are related by

β i =
k

∑
j=1

ai
jγ

j, i = 1, . . . ,k,

for a k×k matrix A = [ai
j]. Show that

β 1 ∧·· ·∧β k = (det A)γ1 ∧·· ·∧ γk.

3.8. Transformation rule for k-covectors

Let f be a k-covector on a vector space V . Suppose two sets of vectors u1, . . . ,uk and v1, . . . ,vk

in V are related by

u j =
k

∑
i=1

ai
jvi, j = 1, . . . ,k,

for a k×k matrix A = [ai
j]. Show that

f (u1, . . . ,uk) = (det A) f (v1, . . . ,vk).

3.9. Vanishing of a covector of top degree

Let V be a vector space of dimension n. Prove that if an n-covector ω vanishes on a basis

e1, . . . ,en for V , then ω is the zero covector on V .

3.10.* Linear independence of covectors

Let α1, . . . ,αk be 1-covectors on a vector space V . Show that α1 ∧ ·· ·∧αk 6= 0 if and only if

α1, . . . ,αk are linearly independent in the dual space V∨.

3.11.* Exterior multiplication

Let α be a nonzero 1-covector and γ a k-covector on a finite-dimensional vector space V .

Show that α ∧ γ = 0 if and only if γ = α ∧β for some (k−1)-covector β on V .
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§4 Differential Forms on Rn

Just as a vector field assigns a tangent vector to each point of an open subset U of Rn,

so dually a differential k-form assigns a k-covector on the tangent space to each point

of U . The wedge product of differential forms is defined pointwise as the wedge

product of multicovectors. Since differential forms exist on an open set, not just

at a single point, there is a notion of differentiation for differential forms. In fact,

there is a unique one, called the exterior derivative, characterized by three natural

properties. Although we define it using the standard coordinates of Rn, the exterior

derivative turns out to be independent of coordinates, as we shall see later, and is

therefore intrinsic to a manifold. It is the ultimate abstract extension to a manifold

of the gradient, curl, and divergence of vector calculus in R3. Differential forms

extend Grassmann’s exterior algebra from the tangent space at a point globally to an

entire manifold. Since its creation around the turn of the twentieth century, generally

credited to É. Cartan [5] and H. Poincaré [34], the calculus of differential forms has

had far-reaching consequences in geometry, topology, and physics. In fact, certain

physical concepts such as electricity and magnetism are best formulated in terms of

differential forms.

In this section we will study the simplest case, that of differential forms on an

open subset of Rn. Even in this setting, differential forms already provide a way to

unify the main theorems of vector calculus in R3.

4.1 Differential 1-Forms and the Differential of a Function

The cotangent space to Rn at p, denoted by T ∗p (R
n) or T ∗p R

n, is defined to be the

dual space (TpR
n)∨ of the tangent space Tp(R

n). Thus, an element of the cotangent

space T ∗p (R
n) is a covector or a linear functional on the tangent space Tp(R

n). In

parallel with the definition of a vector field, a covector field or a differential 1-form

on an open subset U of Rn is a function ω that assigns to each point p in U a covector

ωp ∈ T ∗p (R
n),

ω : U →
⋃

p∈U

T ∗p (R
n),

p 7→ ωp ∈ T ∗p (R
n).

Note that in the union
⋃

p∈U T ∗p (R
n), the sets T ∗p (R

n) are all disjoint. We call a

differential 1-form a 1-form for short.

From any C∞ function f : U → R, we can construct a 1-form df , called the dif-

ferential of f , as follows. For p ∈U and Xp ∈ TpU , define

(df )p(Xp) = Xp f .

A few words may be in order about the definition of the differential. The directional

derivative of a function in the direction of a tangent vector at a point p sets up a

bilinear pairing
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Tp(R
n)×C∞

p (R
n)→R,

(Xp, f ) 7→ 〈Xp, f 〉= Xp f .

One may think of a tangent vector as a function on the second argument of this

pairing: 〈Xp, · 〉. The differential (df )p at p is a function on the first argument of the

pairing:

(df )p = 〈 · , f 〉.
The value of the differential df at p is also written df |p.

Let x1, . . . ,xn be the standard coordinates on Rn. We saw in Subsection 2.3 that

the set {∂/∂x1|p, . . . ,∂/∂xn|p} is a basis for the tangent space Tp(R
n).

Proposition 4.1. If x1, . . . ,xn are the standard coordinates on Rn, then at each point

p ∈Rn, {(dx1)p, . . . ,(dxn)p} is the basis for the cotangent space T ∗p (R
n) dual to the

basis {∂/∂x1|p, . . . ,∂/∂xn|p} for the tangent space Tp(R
n).

Proof. By definition,

(dxi)p

(
∂

∂x j

∣∣∣∣
p

)
=

∂

∂x j

∣∣∣∣
p

xi = δ i
j. ⊓⊔

If ω is a 1-form on an open subset U of Rn, then by Proposition 4.1, at each point

p in U , ω can be written as a linear combination

ωp = ∑ai(p)(dxi)p,

for some ai(p) ∈ R. As p varies over U , the coefficients ai become functions on U ,

and we may write ω = ∑ai dxi. The covector field ω is said to be C∞ on U if the

coefficient functions ai are all C∞ on U .

If x,y, and z are the coordinates on R3, then dx, dy, and dz are 1-forms on R3. In

this way, we give meaning to what was merely a notation in elementary calculus.

Proposition 4.2 (The differential in terms of coordinates). If f : U → R is a C∞

function on an open set U in Rn, then

df =∑
∂ f

∂xi
dxi. (4.1)

Proof. By Proposition 4.1, at each point p in U ,

(df )p = ∑ai(p)(dxi)p (4.2)

for some real numbers ai(p) depending on p. Thus, df = ∑ai dxi for some real

functions ai on U . To find a j, apply both sides of (4.2) to the coordinate vector

field ∂/∂x j:

df

(
∂

∂x j

)
= ∑

i

ai dxi

(
∂

∂x j

)
= ∑

i

aiδ
i
j = a j.

On the other hand, by the definition of the differential,

df

(
∂

∂x j

)
=

∂ f

∂x j
. ⊓⊔
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Equation (4.1) shows that if f is a C∞ function, then the 1-form df is also C∞.

Example. Differential 1-forms arise naturally even if one is interested only in tangent

vectors. Every tangent vector Xp ∈ Tp(R
n) is a linear combination of the standard

basis vectors:

Xp = ∑
i

bi(Xp)
∂

∂xi

∣∣∣∣
p

.

In Example 3.3 we saw that at each point p ∈ Rn, we have bi(Xp) = (dxi)p(Xp).
Hence, the coefficient bi of a vector at p with respect to the standard basis ∂/∂x1|p,

. . ., ∂/∂xn|p is none other than the dual covector dxi|p on Rn. As p varies, bi = dxi.

4.2 Differential k-Forms

More generally, a differential form ω of degree k or a k-form on an open subset U

of Rn is a function that assigns to each point p in U an alternating k-linear function

on the tangent space Tp(R
n), i.e., ωp ∈ Ak(TpR

n). Since A1(TpR
n) = T ∗p (R

n), the

definition of a k-form generalizes that of a 1-form in Subsection 4.1.

By Proposition 3.29, a basis for Ak(TpR
n) is

dxI
p = dxi1

p ∧·· ·∧dxik
p , 1≤ i1 < · · ·< ik ≤ n.

Therefore, at each point p in U , ωp is a linear combination

ωp = ∑aI(p)dxI
p, 1≤ i1 < · · ·< ik ≤ n,

and a k-form ω on U is a linear combination

ω = ∑aI dxI ,

with function coefficients aI : U → R. We say that a k-form ω is C∞ on U if all the

coefficients aI are C∞ functions on U .

Denote by Ωk(U) the vector space of C∞ k-forms on U . A 0-form on U assigns

to each point p in U an element of A0(TpR
n) = R. Thus, a 0-form on U is simply a

function on U , and Ω0(U) =C∞(U).
There are no nonzero differential forms of degree > n on an open subset of Rn.

This is because if degdxI > n, then in the expression dxI at least two of the 1-forms

dxiα must be the same, forcing dxI = 0.

The wedge product of a k-form ω and an ℓ-form τ on an open set U is defined

pointwise:

(ω ∧ τ)p = ωp∧ τp, p ∈U.

In terms of coordinates, if ω = ∑I aI dxI and τ = ∑J bJ dxJ , then

ω ∧ τ = ∑
I,J

(aIbJ)dxI ∧dxJ.

In this sum, if I and J are not disjoint on the right-hand side, then dxI ∧ dxJ = 0.

Hence, the sum is actually over disjoint multi-indices:
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ω ∧ τ = ∑
I,J disjoint

(aIbJ)dxI ∧dxJ ,

which shows that the wedge product of two C∞ forms is C∞. So the wedge product

is a bilinear map

∧ : Ωk(U)×Ωℓ(U)→Ωk+ℓ(U).

By Propositions 3.21 and 3.25, the wedge product of differential forms is anticom-

mutative and associative.

In case one of the factors has degree 0, say k = 0, the wedge product

∧ : Ω0(U)×Ωℓ(U)→Ωℓ(U)

is the pointwise multiplication of a C∞ ℓ-form by a C∞ function:

( f ∧ω)p = f (p)∧ωp = f (p)ωp,

since as we noted in Subsection 3.7, the wedge product with a 0-covector is scalar

multiplication. Thus, if f ∈C∞(U) and ω ∈Ωℓ(U), then f ∧ω = f ω .

Example. Let x, y, z be the coordinates on R3. The C∞ 1-forms on R3 are

f dx+ gdy+hdz,

where f ,g,h range over all C∞ functions on R3. The C∞ 2-forms are

f dy∧dz+gdx∧dz+ hdx∧dy

and the C∞ 3-forms are

f dx∧dy∧dz.

Exercise 4.3 (A basis for 3-covectors).* Let x1, x2, x3, x4 be the coordinates on R4 and p a

point in R4. Write down a basis for the vector space A3(Tp(R
4)).

With the wedge product as multiplication and the degree of a form as the grading,

the direct sum Ω∗(U) =
⊕n

k=0 Ωk(U) becomes an anticommutative graded algebra

over R. Since one can multiply C∞ k-forms by C∞ functions, the set Ωk(U) of C∞ k-

forms on U is both a vector space over R and a module over C∞(U), and so the direct

sum Ω∗(U) =
⊕n

k=0 Ωk(U) is also a module over the ring C∞(U) of C∞ functions.

4.3 Differential Forms as Multilinear Functions on Vector Fields

If ω is a C∞ 1-form and X is a C∞ vector field on an open set U in Rn, we define a

function ω(X) on U by the formula

ω(X)p = ωp(Xp), p ∈U.

Written out in coordinates,
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ω = ∑ai dxi, X = ∑b j ∂

∂x j
for some ai,b

j ∈C∞(U),

so

ω(X) =
(
∑ai dxi

)(
∑b j ∂

∂x j

)
= ∑aib

i,

which shows that ω(X) is C∞ on U . Thus, a C∞ 1-form on U gives rise to a map

from X(U) to C∞(U).
This function is actually linear over the ring C∞(U); i.e., if f ∈ C∞(U), then

ω( f X) = f ω(X). To show this, it suffices to evaluate ω( f X) at an arbitrary point

p ∈U :

(ω( f X))p = ωp( f (p)Xp) (definition of ω( f X))

= f (p)ωp(Xp) (ωp is R-linear)

= ( f ω(X))p (definition of f ω(X)).

Let F(U) = C∞(U). In this notation, a 1-form ω on U gives rise to an F(U)-
linear map X(U)→ F(U), X 7→ ω(X). Similarly, a k-form ω on U gives rise to a

k-linear map over F(U),

X(U)×·· ·×X(U)︸ ︷︷ ︸
k times

→ F(U),

(X1, . . . ,Xk) 7→ ω(X1, . . . ,Xk).

Exercise 4.4 (Wedge product of a 2-form with a 1-form).* Let ω be a 2-form and τ a 1-

form on R3. If X ,Y,Z are vector fields on M, find an explicit formula for (ω ∧ τ)(X ,Y,Z) in

terms of the values of ω and τ on the vector fields X ,Y,Z.

4.4 The Exterior Derivative

To define the exterior derivative of a C∞ k-form on an open subset U of Rn, we first

define it on 0-forms: the exterior derivative of a C∞ function f ∈C∞(U) is defined to

be its differential df ∈Ω1(U); in terms of coordinates, Proposition 4.2 gives

df =∑
∂ f

∂xi
dxi.

Definition 4.5. For k ≥ 1, if ω = ∑I aI dxI ∈Ωk(U), then

dω = ∑
I

daI ∧dxI = ∑
I

(
∑

j

∂aI

∂x j
dx j

)
∧dxI ∈Ωk+1(U).

Example. Let ω be the 1-form f dx+gdy on R2, where f and g are C∞ functions on

R2. To simplify the notation, write fx = ∂ f/∂x, fy = ∂ f/∂y. Then
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dω = df ∧dx+dg∧dy

= ( fx dx+ fy dy)∧dx+(gx dx+ gy dy)∧dy

= (gx− fy)dx∧dy.

In this computation dy∧dx = −dx∧dy and dx∧dx = dy∧dy = 0 by the anticom-

mutative property of the wedge product (Proposition 3.21 and Corollary 3.23).

Definition 4.6. Let A =⊕∞
k=0Ak be a graded algebra over a field K. An antideriva-

tion of the graded algebra A is a K-linear map D : A→ A such that for a ∈ Ak and

b ∈ Aℓ,

D(ab) = (Da)b+(−1)kaDb. (4.3)

If there is an integer m such that the antiderivation D sends Ak to Ak+m for all k, then

we say that it is an antiderivation of degree m. By defining Ak = 0 for k < 0, we can

extend the grading of a graded algebra A to negative integers. With this extension,

the degree m of an antiderivation can be negative. (An example of an antiderivation

of degree−1 is interior multiplication, to be discussed in Subsection 20.4.)

Proposition 4.7.

(i) The exterior differentiation d : Ω∗(U)→Ω∗(U) is an antiderivation of degree 1:

d(ω ∧ τ) = (dω)∧ τ +(−1)degω ω ∧dτ.

(ii) d2 = 0.

(iii) If f ∈C∞(U) and X ∈ X(U), then (df )(X) = X f .

Proof.

(i) Since both sides of (4.3) are linear in ω and in τ , it suffices to check the equality

for ω = f dxI and τ = gdxJ . Then

d(ω ∧ τ) = d( f gdxI ∧dxJ)

= ∑
∂ ( f g)

∂xi
dxi∧dxI ∧dxJ

= ∑
∂ f

∂xi
gdxi∧dxI ∧dxJ +∑ f

∂g

∂xi
dxi∧dxI ∧dxJ.

In the second sum, moving the 1-form (∂g/∂xi)dxi across the k-form dxI results in

the sign (−1)k by anticommutativity. Hence,

d(ω ∧ τ) = ∑
∂ f

∂xi
dxi∧dxI ∧gdxJ +(−1)k ∑ f dxI ∧ ∂g

∂xi
dxi∧dxJ

= dω ∧ τ +(−1)kω ∧dτ.

(ii) Again by the R-linearity of d, it suffices to show that d2ω = 0 for ω = f dxI . We

compute:
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d2( f dxI) = d

(
∑

∂ f

∂xi
dxi∧dxI

)
= ∑

∂ 2 f

∂x j∂xi
dx j ∧dxi∧dxI .

In this sum if i = j, then dx j ∧ dxi = 0; if i 6= j, then ∂ 2 f/∂xi∂x j is symmetric in i

and j, but dx j∧dxi is alternating in i and j, so the terms with i 6= j pair up and cancel

each other. For example,

∂ 2 f

∂x1∂x2
dx1∧dx2 +

∂ 2 f

∂x2∂x1
dx2∧dx1

=
∂ 2 f

∂x1∂x2
dx1∧dx2 +

∂ 2 f

∂x1∂x2
(−dx1∧dx2) = 0.

Therefore, d2( f dxI) = 0.

(iii) This is simply the definition of the exterior derivative of a function as the differ-

ential of the function. ⊓⊔

Proposition 4.8 (Characterization of the exterior derivative). The three proper-

ties of Proposition 4.7 uniquely characterize exterior differentiation on an open set

U in Rn; that is, if D : Ω∗(U)→Ω∗(U) is (i) an antiderivation of degree 1 such that

(ii) D2 = 0 and (iii) (D f )(X) = X f for f ∈C∞(U) and X ∈ X(U), then D = d.

Proof. Since every k-form on U is a sum of terms such as f dxi1 ∧ ·· · ∧ dxik , by

linearity it suffices to show that D = d on a k-form of this type. By (iii), D f = df

on C∞ functions. It follows that Ddxi = DDxi = 0 by (ii). A simple induction on k,

using the antiderivation property of D, proves that for all k and all multi-indices I of

length k,

D(dxI) = D(dxi1 ∧·· ·∧dxik) = 0. (4.4)

Finally, for every k-form f dxI ,

D( f dxI) = (D f )∧dxI + f D(dxI) (by (i))

= (d f )∧dxI (by (ii) and (4.4))

= d( f dxI) (definition of d).

Hence, D = d on Ω∗(U). ⊓⊔

4.5 Closed Forms and Exact Forms

A k-form ω on U is closed if dω = 0; it is exact if there is a (k−1)-form τ such that

ω = dτ on U . Since d(dτ) = 0, every exact form is closed. In the next section we

will discuss the meaning of closed and exact forms in the context of vector calculus

on R3.

Exercise 4.9 (A closed 1-form on the punctured plane). Define a 1-form ω on R2−{0} by

ω =
1

x2 +y2
(−ydx+xdy).

Show that ω is closed.
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A collection of vector spaces {V k}∞
k=0 with linear maps dk : V k→V k+1 such that

dk+1 ◦ dk = 0 is called a differential complex or a cochain complex. For any open

subset U of Rn, the exterior derivative d makes the vector space Ω∗(U) of C∞ forms

on U into a cochain complex, called the de Rham complex of U :

0→Ω0(U)
d→Ω1(U)

d→Ω2(U)→ ··· .

The closed forms are precisely the elements of the kernel of d, and the exact forms

are the elements of the image of d.

4.6 Applications to Vector Calculus

The theory of differential forms unifies many theorems in vector calculus on R3. We

summarize here some results from vector calculus and then show how they fit into

the framework of differential forms.

By a vector-valued function on an open subset U of R3, we mean a function

F = 〈P,Q,R〉 : U → R3. Such a function assigns to each point p ∈U a vector Fp ∈
R3 ≃ Tp(R

3). Hence, a vector-valued function on U is precisely a vector field on U .

Recall the three operators gradient, curl, and divergence on scalar- and vector-valued

functions on U :

{scalar func.} grad−−→ {vector func.} curl−−→ {vector func.} div−→ {scalar func.},

grad f =




∂/∂x

∂/∂y

∂/∂ z


 f =




fx

fy

fz


 ,

curl




P

Q

R


=




∂/∂x

∂/∂y

∂/∂ z


×




P

Q

R


=




Ry−Qz

−(Rx−Pz)
Qx−Py


 ,

div




P

Q

R


=




∂/∂x

∂/∂y

∂/∂ z


 ·




P

Q

R


= Px +Qy +Rz.

Since every 1-form on U is a linear combination with function coefficients of dx,

dy, and dz, we can identify 1-forms with vector fields on U via

Pdx+Qdy+Rdz ←→




P

Q

R


 .

Similarly, 2-forms on U can also be identified with vector fields on U :

Pdy∧dz+Qdz∧dx+Rdx∧dy ←→




P

Q

R


 ,
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and 3-forms on U can be identified with functions on U :

f dx∧dy∧dz ←→ f .

In terms of these identifications, the exterior derivative of a 0-form f is

df =
∂ f

∂x
dx+

∂ f

∂y
dy+

∂ f

∂ z
dz ←→




∂ f/∂x

∂ f/∂y

∂ f/∂x


= grad f ;

the exterior derivative of a 1-form is

d(Pdx+Qdy+Rdz)

= (Ry−Qz)dy∧dz− (Rx−Pz)dz∧dx+(Qx−Py)dx∧dy, (4.5)

which corresponds to

curl




P

Q

R


=




Ry−Qz

−(Rx−Pz)
Qx−Py


 ;

the exterior derivative of a 2-form is

d(Pdy∧dz+Qdz∧dx+Rdx∧dy)

= (Px +Qy +Rz)dx∧dy∧dz, (4.6)

which corresponds to

div




P

Q

R


= Px +Qy +Rz.

Thus, after appropriate identifications, the exterior derivatives d on 0-forms, 1-

forms, and 2-forms are simply the three operators grad, curl, and div. In summary,

on an open subset U of R3, there are identifications

Ω0(U)
d−−−−→ Ω1(U)

d−−−−→ Ω2(U)
d−−−−→ Ω3(U)

≃
y ≃

y ≃
y ≃

y

C∞(U) −−−−→
grad

X(U) −−−−→
curl

X(U) −−−−→
div

C∞(U).

Under these identifications, a vector field 〈P,Q,R〉 on R3 is the gradient of a C∞

function f if and only if the corresponding 1-form Pdx+Qdy+Rdz is df .

Next we recall three basic facts from calculus concerning grad, curl, and div.

Proposition A. curl(grad f ) =




0

0

0


.
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Proposition B. div

(
curl




P

Q

R



)

= 0.

Proposition C. On R3, a vector field F is the gradient of some scalar function f if

and only if curl F = 0.

Propositions A and B express the property d2 = 0 of the exterior derivative on

open subsets of R3; these are easy computations. Proposition C expresses the fact

that a 1-form on R3 is exact if and only if it is closed. Proposition C need not be

true on a region other than R3, as the following well-known example from calcu-

lus shows.

Example. If U = R3−{z-axis}, and F is the vector field

F =

〈 −y

x2 + y2
,

x

x2 + y2
, 0

〉

on R3, then curlF = 0, but F is not the gradient of any C∞ function on U . The reason

is that if F were the gradient of a C∞ function f on U , then by the fundamental

theorem for line integrals, the line integral

∫

C
− y

x2 + y2
dx+

x

x2 + y2
dy

over any closed curve C would be zero. However, on the unit circle C in the (x,y)-
plane, with x = cost and y = sin t for 0≤ t ≤ 2π , this integral is

∫

C
−ydx+ xdy =

∫ 2π

0
−(sin t)d cost +(cost)d sin t = 2π .

In terms of differential forms, the 1-form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy

is closed but not exact on U . (This 1-form is defined by the same formula as the

1-form ω in Exercise 4.9, but is defined on a different space.)

It turns out that whether Proposition C is true for a region U depends only on

the topology of U . One measure of the failure of a closed k-form to be exact is the

quotient vector space

Hk(U) :=
{closed k-forms on U}
{exact k-forms on U} ,

called the kth de Rham cohomology of U .

The generalization of Proposition C to any differential form on Rn is called the

Poincaré lemma: for k ≥ 1, every closed k-form on Rn is exact. This is of course
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equivalent to the vanishing of the kth de Rham cohomology Hk(Rn) for k ≥ 1. We

will prove it in Section 27.

The theory of differential forms allows us to generalize vector calculus from R3

to Rn and indeed to a manifold of any dimension. The general Stokes theorem for a

manifold that we will prove in Subsection 23.5 subsumes and unifies the fundamental

theorem for line integrals, Green’s theorem in the plane, the classical Stokes theorem

for a surface in R3, and the divergence theorem. As a first step in this program, we

begin the next chapter with the definition of a manifold.

4.7 Convention on Subscripts and Superscripts

In differential geometry it is customary to index vector fields with subscripts e1, . . .,
en, and differential forms with superscripts ω1, . . . ,ωn. Being 0-forms, coordinate

functions take superscripts: x1, . . . ,xn. Their differentials, being 1-forms, should

also have superscripts, and indeed they do: dx1, . . . ,dxn. Coordinate vector fields

∂/∂x1, . . ., ∂/∂xn are considered to have subscripts because the i in ∂/∂xi, although

a superscript for xi, is in the lower half of the fraction.

Coefficient functions can have superscripts or subscripts depending on whether

they are the coefficient functions of a vector field or of a differential form. For a

vector field X = ∑aiei, the coefficient functions ai have superscripts; the idea is

that the superscript in ai “cancels out” the subscript in ei. For the same reason, the

coefficient functions b j in a differential form ω = ∑b j dx j have subscripts.

The beauty of this convention is that there is a “conservation of indices” on the

two sides of an equality sign. For example, if X = ∑ai ∂/∂xi, then

ai = (dxi)(X).

Here both sides have a net superscript i. As another example, if ω = ∑b j dx j, then

ω(X) =
(
∑b j dx j

)(
∑ai ∂

∂xi

)
= ∑bia

i;

after cancellation of superscripts and subscripts, both sides of the equality sign have

zero net index. This convention is a useful mnemonic aid in some of the transforma-

tion formulas of differential geometry.

Problems

4.1. A 1-form on R3

Let ω be the 1-form zdx−dz and let X be the vector field y∂/∂x+ x∂/∂y on R3. Compute

ω(X) and dω .

4.2. A 2-form on R3

At each point p ∈ R3, define a bilinear function ωp on Tp(R
3) by
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ωp(a,b) = ωp






a1

a2

a3


 ,




b1

b2

b3




= p3 det

[
a1 b1

a2 b2

]
,

for tangent vectors a,b ∈ Tp(R
3), where p3 is the third component of p = (p1, p2, p3). Since

ωp is an alternating bilinear function on Tp(R
3), ω is a 2-form on R3. Write ω in terms of the

standard basis dxi∧dx j at each point.

4.3. Exterior calculus

Suppose the standard coordinates on R2 are called r and θ (this R2 is the (r,θ )-plane, not the

(x,y)-plane). If x = r cosθ and y = r sinθ , calculate dx, dy, and dx∧dy in terms of dr and dθ .

4.4. Exterior calculus

Suppose the standard coordinates on R3 are called ρ , φ , and θ . If x = ρ sinφ cosθ , y =
ρ sinφ sinθ , and z= ρ cosφ , calculate dx, dy, dz, and dx∧dy∧dz in terms of dρ , dφ , and dθ .

4.5. Wedge product

Let α be a 1-form and β a 2-form on R3. Then

α = a1 dx1 +a2 dx2 +a3 dx3,

β = b1 dx2 ∧dx3 +b2 dx3 ∧dx1 +b3 dx1 ∧dx2.

Simplify the expression α ∧β as much as possible.

4.6. Wedge product and cross product

The correspondence between differential forms and vector fields on an open subset of R3 in

Subsection 4.6 also makes sense pointwise. Let V be a vector space of dimension 3 with basis

e1,e2,e3, and dual basis α1,α2,α3. To a 1-covector α = a1 α1 + a2 α2 + a3 α3 on V , we

associate the vector vα = 〈a1,a2,a3〉 ∈ R3. To the 2-covector

γ = c1 α2 ∧α3 +c2 α3 ∧α1 +c3 α1∧α2

on V , we associate the vector vγ = 〈c1,c2,c3〉 ∈ R3. Show that under this correspondence,

the wedge product of 1-covectors corresponds to the cross product of vectors in R3: if α =
a1 α1 +a2 α2 +a3 α3 and β = b1 α1 +b2 α2 +b3 α3, then vα∧β = vα ×vβ .

4.7. Commutator of derivations and antiderivations

Let A = ⊕∞
k=−∞Ak be a graded algebra over a field K with Ak = 0 for k < 0. Let m be an

integer. A superderivation of A of degree m is a K-linear map D : A→ A such that for all k,

D(Ak)⊂ Ak+m and for all a ∈ Ak and b ∈ Aℓ,

D(ab) = (Da)b+(−1)kma(Db).

If D1 and D2 are two superderivations of A of respective degrees m1 and m2, define their

commutator to be

[D1,D2] = D1 ◦D2− (−1)m1m2 D2 ◦ D1.

Show that [D1,D2] is a superderivation of degree m1 +m2. (A superderivation is said to be

even or odd depending on the parity of its degree. An even superderivation is a derivation; an

odd superderivation is an antiderivation.)



Chapter 2

Manifolds

Intuitively, a manifold is a generalization of curves and surfaces to higher dimen-

sions. It is locally Euclidean in that every point has a neighborhood, called a chart,

homeomorphic to an open subset of Rn. The coordinates on a chart allow one to

carry out computations as though in a Euclidean space, so that many concepts from

Rn, such as differentiability, point-derivations, tangent spaces, and differential forms,

carry over to a manifold.

Bernhard Riemann

(1826–1866)

Like most fundamental mathematical concepts,

the idea of a manifold did not originate with a sin-

gle person, but is rather the distillation of years of

collective activity. In his masterpiece Disquisitiones

generales circa superficies curvas (“General Inves-

tigations of Curved Surfaces”) published in 1827,

Carl Friedrich Gauss freely used local coordinates

on a surface, and so he already had the idea of

charts. Moreover, he appeared to be the first to con-

sider a surface as an abstract space existing in its

own right, independent of a particular embedding in

a Euclidean space. Bernhard Riemann’s inaugural

lecture Über die Hypothesen, welche der Geometrie

zu Grunde liegen (“On the hypotheses that under-

lie geometry”) in Göttingen in 1854 laid the foun-

dations of higher-dimensional differential geometry.

Indeed, the word “manifold” is a direct translation of

the German word “Mannigfaltigkeit,” which Riemann used to describe the objects of

his inquiry. This was followed by the work of Henri Poincaré in the late nineteenth

century on homology, in which locally Euclidean spaces figured prominently. The

late nineteenth and early twentieth centuries were also a period of feverish develop-

ment in point-set topology. It was not until 1931 that one finds the modern definition

of a manifold based on point-set topology and a group of transition functions [37].

© Springer Science+Business Media, LLC 2011
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In this chapter we give the basic definitions and properties of a smooth manifold

and of smooth maps between manifolds. Initially, the only way we have to verify

that a space is a manifold is to exhibit a collection of C∞ compatible charts covering

the space. In Section 7 we describe a set of sufficient conditions under which a

quotient topological space becomes a manifold, giving us a second way to construct

manifolds.

§5 Manifolds

While there are many kinds of manifolds—for example, topological manifolds, Ck-

manifolds, analytic manifolds, and complex manifolds—in this book we are con-

cerned mainly with smooth manifolds. Starting with topological manifolds, which

are Hausdorff, second countable, locally Euclidean spaces, we introduce the concept

of a maximal C∞ atlas, which makes a topological manifold into a smooth manifold.

This is illustrated with a few simple examples.

5.1 Topological Manifolds

We first recall a few definitions from point-set topology. For more details, see Ap-

pendix A. A topological space is second countable if it has a countable basis. A

neighborhood of a point p in a topological space M is any open set containing p. An

open cover of M is a collection {Uα}α∈A of open sets in M whose union
⋃

α∈A Uα

is M.

Definition 5.1. A topological space M is locally Euclidean of dimension n if every

point p in M has a neighborhood U such that there is a homeomorphism φ from U

onto an open subset of Rn. We call the pair (U,φ : U →Rn) a chart, U a coordinate

neighborhood or a coordinate open set, and φ a coordinate map or a coordinate

system on U . We say that a chart (U,φ) is centered at p ∈U if φ(p) = 0.

Definition 5.2. A topological manifold is a Hausdorff, second countable, locally

Euclidean space. It is said to be of dimension n if it is locally Euclidean of dimen-

sion n.

For the dimension of a topological manifold to be well defined, we need to know

that for n 6= m an open subset of Rn is not homeomorphic to an open subset of Rm.

This fact, called invariance of dimension, is indeed true, but is not easy to prove

directly. We will not pursue this point, since we are mainly interested in smooth

manifolds, for which the analogous result is easy to prove (Corollary 8.7). Of course,

if a topological manifold has several connected components, it is possible for each

component to have a different dimension.
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Example. The Euclidean space Rn is covered by a single chart (Rn,1Rn), where

1Rn : Rn→Rn is the identity map. It is the prime example of a topological manifold.

Every open subset of Rn is also a topological manifold, with chart (U,1U).

Recall that the Hausdorff condition and second countability are “hereditary prop-

erties”; that is, they are inherited by subspaces: a subspace of a Hausdorff space is

Hausdorff (Proposition A.19) and a subspace of a second-countable space is second

countable (Proposition A.14). So any subspace of Rn is automatically Hausdorff and

second countable.

Example 5.3 (A cusp). The graph of y = x2/3 in R2 is a topological manifold (Fig-

ure 5.1(a)). By virtue of being a subspace of R2, it is Hausdorff and second count-

able. It is locally Euclidean, because it is homeomorphic to R via (x,x2/3) 7→ x.

(a) Cusp (b) Cross

p

Fig. 5.1.

Example 5.4 (A cross). Show that the cross in R2 in Figure 5.1 with the subspace

topology is not locally Euclidean at the intersection p, and so cannot be a topological

manifold.

Solution. Suppose the cross is locally Euclidean of dimension n at the point p. Then

p has a neighborhood U homeomorphic to an open ball B := B(0,ε) ⊂ Rn with

p mapping to 0. The homeomorphism U → B restricts to a homeomorphism U −
{p} → B−{0}. Now B−{0} is either connected if n ≥ 2 or has two connected

components if n = 1. Since U −{p} has four connected components, there can be

no homeomorphism from U −{p} to B−{0}. This contradiction proves that the

cross is not locally Euclidean at p. ⊓⊔

5.2 Compatible Charts

Suppose (U,φ : U → Rn) and (V,ψ : V → Rn) are two charts of a topological man-

ifold. Since U ∩V is open in U and φ : U → Rn is a homeomorphism onto an open

subset of Rn, the image φ(U ∩V ) will also be an open subset of Rn. Similarly,

ψ(U ∩V ) is an open subset of Rn.

Definition 5.5. Two charts (U,φ : U → Rn), (V,ψ : V → Rn) of a topological

manifold are C∞-compatible if the two maps
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φ ◦ ψ−1 : ψ(U ∩V )→ φ(U ∩V ), ψ ◦ φ−1 : φ(U ∩V )→ ψ(U ∩V )

are C∞ (Figure 5.2). These two maps are called the transition functions between

the charts. If U ∩V is empty, then the two charts are automatically C∞-compatible.

To simplify the notation, we will sometimes write Uαβ for Uα ∩Uβ and Uαβ γ for

Uα ∩Uβ ∩Uγ .

φ ψ

U Vφ(U ∩V )

Fig. 5.2. The transition function ψ ◦ φ−1 is defined on φ(U ∩V ).

Since we are interested only in C∞-compatible charts, we often omit mention of

“C∞” and speak simply of compatible charts.

Definition 5.6. A C∞ atlas or simply an atlas on a locally Euclidean space M is a

collection U= {(Uα ,φα)} of pairwise C∞-compatible charts that cover M, i.e., such

that M =
⋃

α Uα .

| | | |

−π 0 π 2π

φ1(A) φ1(B)

φ2(B) φ2(A)

φ1(U1)

φ2(U2)

|

|

U1

U2

)()(

A

B

Fig. 5.3. A C∞ atlas on a circle.

Example 5.7 (A C∞ atlas on a circle). The unit circle S1 in the complex plane C may

be described as the set of points {eit ∈ C | 0 ≤ t ≤ 2π}. Let U1 and U2 be the two

open subsets of S1 (see Figure 5.3)

U1 = {eit ∈ C | −π < t < π},
U2 = {eit ∈ C | 0 < t < 2π},
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and define φα : Uα →R for α = 1,2 by

φ1(e
it) = t, −π < t < π ,

φ2(e
it) = t, 0 < t < 2π .

Both φ1 and φ2 are branches of the complex log function (1/i) logz and are home-

omorphisms onto their respective images. Thus, (U1,φ1) and (U2,φ2) are charts on

S1. The intersection U1∩U2 consists of two connected components,

A = {eit | −π < t < 0},
B = {eit | 0 < t < π},

with

φ1(U1∩U2) = φ1(A ∐ B) = φ1(A) ∐ φ1(B) = ]−π ,0[ ∐ ]0,π [,

φ2(U1∩U2) = φ2(A ∐ B) = φ2(A) ∐ φ2(B) = ]π ,2π [ ∐ ]0,π [.

Here we use the notation A ∐ B to indicate a union in which the two subsets A and

B are disjoint. The transition function φ2 ◦ φ−1
1 : φ1(A ∐ B)→ φ2(A ∐ B) is given

by

(φ2 ◦ φ−1
1 )(t) =

{
t + 2π for t ∈ ]−π ,0[,

t for t ∈ ]0,π [.

Similarly,

(φ1 ◦ φ−1
2 )(t) =

{
t−2π for t ∈ ]π ,2π [,

t for t ∈ ]0,π [.

Therefore, (U1,φ1) and (U2,φ2) are C∞-compatible charts and form a C∞ atlas on S1.

Although the C∞ compatibility of charts is clearly reflexive and symmetric, it is

not transitive. The reason is as follows. Suppose (U1,φ1) is C∞-compatible with

(U2,φ2), and (U2,φ2) is C∞-compatible with (U3,φ3). Note that the three coordinate

functions are simultaneously defined only on the triple intersection U123. Thus, the

composite

φ3 ◦ φ−1
1 = (φ3 ◦ φ−1

2 ) ◦ (φ2 ◦ φ−1
1 )

is C∞, but only on φ1(U123), not necessarily on φ1(U13) (Figure 5.4). A priori we

know nothing about φ3 ◦ φ−1
1 on φ1(U13−U123) and so we cannot conclude that

(U1,φ1) and (U3,φ3) are C∞-compatible.

We say that a chart (V,ψ) is compatible with an atlas {(Uα ,φα )} if it is compat-

ible with all the charts (Uα ,φα) of the atlas.

Lemma 5.8. Let {(Uα ,φα)} be an atlas on a locally Euclidean space. If two charts

(V,ψ) and (W,σ) are both compatible with the atlas {(Uα , φα)}, then they are

compatible with each other.
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φ1(U123)

φ1 φ2

φ3

U1 U2

U3

Fig. 5.4. The transition function φ3 ◦ φ−1
1 is C∞ on φ1(U123).

b b b

b
p

ψ(p) φα (p) σ(p)φα ◦ ψ−1 σ ◦ φ−1
α

V W

Uα
ψ σ

φα

Fig. 5.5. Two charts (V,ψ), (W,σ) compatible with an atlas.

Proof. (See Figure 5.5.) Let p ∈ V ∩W . We need to show that σ ◦ ψ−1 is C∞ at

ψ(p). Since {(Uα ,φα )} is an atlas for M, p ∈Uα for some α . Then p is in the triple

intersection V ∩W ∩Uα .

By the remark above, σ ◦ψ−1 = (σ ◦ φ−1
α ) ◦ (φα ◦ψ−1) is C∞ on ψ(V ∩W ∩Uα ),

hence at ψ(p). Since p was an arbitrary point of V ∩W , this proves that σ ◦ ψ−1 is

C∞ on ψ(V ∩W ). Similarly, ψ ◦ σ−1 is C∞ on σ(V ∩W ). ⊓⊔

Note that in an equality such as σ ◦ ψ−1 = (σ ◦ φ−1
α ) ◦ (φα ◦ ψ−1) in the proof

above, the maps on the two sides of the equality sign have different domains. What

the equality means is that the two maps are equal on their common domain.

5.3 Smooth Manifolds

An atlas M on a locally Euclidean space is said to be maximal if it is not contained

in a larger atlas; in other words, if U is any other atlas containing M, then U =M.
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Definition 5.9. A smooth or C∞ manifold is a topological manifold M together

with a maximal atlas. The maximal atlas is also called a differentiable structure

on M. A manifold is said to have dimension n if all of its connected components

have dimension n. A 1-dimensional manifold is also called a curve, a 2-dimensional

manifold a surface, and an n-dimensional manifold an n-manifold.

In Corollary 8.7 we will prove that if an open set U ⊂ Rn is diffeomorphic to an

open set V ⊂ Rm, then n = m. As a consequence, the dimension of a manifold at a

point is well defined.

In practice, to check that a topological manifold M is a smooth manifold, it is

not necessary to exhibit a maximal atlas. The existence of any atlas on M will do,

because of the following proposition.

Proposition 5.10. Any atlas U = {(Uα ,φα )} on a locally Euclidean space is con-

tained in a unique maximal atlas.

Proof. Adjoin to the atlas U all charts (Vi,ψi) that are compatible with U. By Propo-

sition 5.8 the charts (Vi,ψi) are compatible with one another. So the enlarged collec-

tion of charts is an atlas. Any chart compatible with the new atlas must be compatible

with the original atlas U and so by construction belongs to the new atlas. This proves

that the new atlas is maximal.

Let M be the maximal atlas containing U that we have just constructed. If M′ is

another maximal atlas containing U, then all the charts in M′ are compatible with U

and so by construction must belong to M. This proves that M′ ⊂M. Since both are

maximal, M′ =M. Therefore, the maximal atlas containing U is unique. ⊓⊔

In summary, to show that a topological space M is a C∞ manifold, it suffices to

check that

(i) M is Hausdorff and second countable,

(ii) M has a C∞ atlas (not necessarily maximal).

From now on, a “manifold” will mean a C∞ manifold. We use the terms “smooth”

and “C∞” interchangeably. In the context of manifolds, we denote the standard coor-

dinates on Rn by r1, . . . ,rn. If (U,φ : U → Rn) is a chart of a manifold, we let xi =
ri ◦ φ be the ith component of φ and write φ = (x1, . . . ,xn) and (U,φ)= (U,x1, . . . ,xn).
Thus, for p ∈ U , (x1(p), . . . ,xn(p)) is a point in Rn. The functions x1, . . . ,xn are

called coordinates or local coordinates on U . By abuse of notation, we sometimes

omit the p. So the notation (x1, . . . ,xn) stands alternately for local coordinates on the

open set U and for a point in Rn. By a chart (U,φ) about p in a manifold M, we will

mean a chart in the differentiable structure of M such that p ∈U .

5.4 Examples of Smooth Manifolds

Example 5.11 (Euclidean space). The Euclidean space Rn is a smooth manifold with

a single chart (Rn, r1, . . ., rn), where r1, . . ., rn are the standard coordinates on Rn.
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Example 5.12 (Open subset of a manifold). Any open subset V of a manifold M is

also a manifold. If {(Uα ,φα )} is an atlas for M, then {(Uα ∩V,φα |Uα∩V} is an

atlas for V , where φα |Uα∩V : Uα ∩V →Rn denotes the restriction of φα to the subset

Uα ∩V .

Example 5.13 (Manifolds of dimension zero). In a manifold of dimension zero, every

singleton subset is homeomorphic to R0 and so is open. Thus, a zero-dimensional

manifold is a discrete set. By second countability, this discrete set must be countable.

Example 5.14 (Graph of a smooth function). For a subset of A ⊂ Rn and a function

f : A→Rm, the graph of f is defined to be the subset (Figure 5.6)

Γ( f ) = {(x, f (x)) ∈ A×Rm}.

If U is an open subset of Rn and f : U →Rn is C∞, then the two maps

bc

bc

b

b

x

(x, f (x))

Rn

Rm

( )

Γ( f )

U

Fig. 5.6. The graph of a smooth function f : Rn ⊃U → Rm.

φ : Γ( f )→U, (x, f (x)) 7→ x,

and

(1, f ) : U → Γ( f ), x 7→ (x, f (x)),

are continuous and inverse to each other, and so are homeomorphisms. The graph

Γ( f ) of a C∞ function f : U → Rm has an atlas with a single chart (Γ( f ),φ), and is

therefore a C∞ manifold. This shows that many of the familiar surfaces of calculus,

for example an elliptic paraboloid or a hyperbolic paraboloid, are manifolds.

Example 5.15 (General linear groups). For any two positive integers m and n let

Rm×n be the vector space of all m× n matrices. Since Rm×n is isomorphic to Rmn,

we give it the topology of Rmn. The general linear group GL(n,R) is by definition

GL(n,R) := {A ∈ Rn×n | det A 6= 0}= det−1(R−{0}).

Since the determinant function
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det: Rn×n→R

is continuous, GL(n,R) is an open subset of Rn×n ≃Rn2
and is therefore a manifold.

The complex general linear group GL(n,C) is defined to be the group of non-

singular n×n complex matrices. Since an n×n matrix A is nonsingular if and only

if det A 6= 0, GL(n,C) is an open subset of Cn×n ≃ R2n2
, the vector space of n× n

complex matrices. By the same reasoning as in the real case, GL(n,C) is a manifold

of dimension 2n2.

φ1

φ2

φ4 φ3

U1

U2

U3U4

Fig. 5.7. Charts on the unit circle.

Example 5.16 (Unit circle in the (x,y)-plane). In Example 5.7 we found a C∞ atlas

with two charts on the unit circle S1 in the complex plane C. It follows that S1 is

a manifold. We now view S1 as the unit circle in the real plane R2 with defining

equation x2 + y2 = 1, and describe a C∞ atlas with four charts on it.

We can cover S1 with four open sets: the upper and lower semicircles U1,U2,

and the right and left semicircles U3,U4 (Figure 5.7). On U1 and U2, the coordinate

function x is a homeomorphism onto the open interval ]− 1,1[ on the x-axis. Thus,

φi(x,y) = x for i = 1,2. Similarly, on U3 and U4, y is a homeomorphism onto the

open interval ]−1,1[ on the y-axis, and so φi(x,y) = y for i = 3,4.

It is easy to check that on every nonempty pairwise intersection Uα∩Uβ , φβ ◦ φ−1
α

is C∞. For example, on U1∩U3,

(φ3 ◦ φ−1
1 )(x) = φ3

(
x,
√

1− x2
)
=
√

1− x2,

which is C∞. On U2∩U4,

(φ4 ◦ φ−1
2 )(x) = φ4

(
x,−

√
1− x2

)
=−

√
1− x2,

which is also C∞. Thus, {(Ui,φi)}4
i=1 is a C∞ atlas on S1.

Example 5.17 (Product manifold). If M and N are C∞ manifolds, then M×N with

its product topology is Hausdorff and second countable (Corollary A.21 and Propo-

sition A.22). To show that M×N is a manifold, it remains to exhibit an atlas on it.

Recall that the product of two set maps f : X → X ′ and g : Y → Y ′ is

f ×g : X×Y → X ′ ×Y ′, ( f ×g)(x,y) = ( f (x),g(y)) .
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Proposition 5.18 (An atlas for a product manifold). If {(Uα ,φα)} and {(Vi,ψi)}
are C∞ atlases for the manifolds M and N of dimensions m and n, respectively, then

the collection

{(Uα ×Vi,φα ×ψi : Uα ×Vi→ Rm×Rn)}
of charts is a C∞ atlas on M×N. Therefore, M×N is a C∞ manifold of dimension

m+n.

Proof. Problem 5.5. ⊓⊔

Example. It follows from Proposition 5.18 that the infinite cylinder S1×R and the

torus S1×S1 are manifolds (Figure 5.8).

Infinite cylinder. Torus.

Fig. 5.8.

Since M×N×P = (M×N)×P is the successive product of pairs of spaces, if

M, N, and P are manifolds, then so is M×N ×P. Thus, the n-dimensional torus

S1×·· ·× S1 (n times) is a manifold.

Remark. Let Sn be the unit sphere

(x1)2 +(x2)2 + · · ·+(xn+1)2 = 1

in Rn+1. Using Problem 5.3 as a guide, it is easy to write down a C∞ atlas on Sn,

showing that Sn has a differentiable structure. The manifold Sn with this differen-

tiable structure is called the standard n-sphere.

One of the most surprising achievements in topology was John Milnor’s dis-

covery [27] in 1956 of exotic 7-spheres, smooth manifolds homeomorphic but not

diffeomorphic to the standard 7-sphere. In 1963, Michel Kervaire and John Milnor

[24] determined that there are exactly 28 nondiffeomorphic differentiable structures

on S7.

It is known that in dimensions < 4 every topological manifold has a unique dif-

ferentiable structure and in dimensions > 4 every compact topological manifold has

a finite number of differentiable structures. Dimension 4 is a mystery. It is not known



5.4 Examples of Smooth Manifolds 57

whether S4 has a finite or infinite number of differentiable structures. The statement

that S4 has a unique differentiable structure is called the smooth Poincaré conjecture.

As of this writing in 2010, the conjecture is still open.

There are topological manifolds with no differentiable structure. Michel Kervaire

was the first to construct an example [23].

Problems

5.1. The real line with two origins

Let A and B be two points not on the real line R. Consider the set S = (R−{0})∪{A,B} (see

Figure 5.9).

b

b
A

B

Fig. 5.9. Real line with two origins.

For any two positive real numbers c, d, define

IA(−c,d) = ]−c,0[ ∪ {A} ∪ ]0,d[

and similarly for IB(−c,d), with B instead of A. Define a topology on S as follows: On

(R−{0}), use the subspace topology inherited from R, with open intervals as a basis. A basis

of neighborhoods at A is the set {IA(−c,d) | c,d > 0}; similarly, a basis of neighborhoods at

B is {IB(−c,d) | c,d > 0}.

(a) Prove that the map h : IA(−c,d)→ ]−c,d[ defined by

h(x) = x for x ∈ ]−c,0[ ∪ ]0,d[,

h(A) = 0

is a homeomorphism.

(b) Show that S is locally Euclidean and second countable, but not Hausdorff.

5.2. A sphere with a hair

A fundamental theorem of topology, the theorem on invariance of dimension, states that if two

nonempty open sets U ⊂Rn and V ⊂Rm are homeomorphic, then n = m (for a proof, see [18,

p. 126]). Use the idea of Example 5.4 as well as the theorem on invariance of dimension to

prove that the sphere with a hair in R3 (Figure 5.10) is not locally Euclidean at q. Hence it

cannot be a topological manifold.



58 §5 Manifolds

b

q

Fig. 5.10. A sphere with a hair.

5.3. Charts on a sphere

Let S2 be the unit sphere

x2 +y2 + z2 = 1

in R3. Define in S2 the six charts corresponding to the six hemispheres—the front, rear, right,

left, upper, and lower hemispheres (Figure 5.11):

U1 = {(x,y,z) ∈ S2 | x > 0}, φ1(x,y,z) = (y,z),

U2 = {(x,y,z) ∈ S2 | x < 0}, φ2(x,y,z) = (y,z),

U3 = {(x,y,z) ∈ S2 | y > 0}, φ3(x,y,z) = (x,z),

U4 = {(x,y,z) ∈ S2 | y < 0}, φ4(x,y,z) = (x,z),

U5 = {(x,y,z) ∈ S2 | z > 0}, φ5(x,y,z) = (x,y),

U6 = {(x,y,z) ∈ S2 | z < 0}, φ6(x,y,z) = (x,y).

Describe the domain φ4(U14) of φ1 ◦ φ−1
4 and show that φ1 ◦ φ−1

4 is C∞ on φ4(U14). Do the

same for φ6 ◦ φ−1
1 .

U6

U5

U4 U3U1

U2

Fig. 5.11. Charts on the unit sphere.

5.4.* Existence of a coordinate neighborhood

Let {(Uα ,φα )} be the maximal atlas on a manifold M. For any open set U in M and a point

p ∈U , prove the existence of a coordinate open set Uα such that p ∈Uα ⊂U .

5.5. An atlas for a product manifold

Prove Proposition 5.18.
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§6 Smooth Maps on a Manifold

Now that we have defined smooth manifolds, it is time to consider maps between

them. Using coordinate charts, one can transfer the notion of smooth maps from

Euclidean spaces to manifolds. By the C∞ compatibility of charts in an atlas, the

smoothness of a map turns out to be independent of the choice of charts and is there-

fore well defined. We give various criteria for the smoothness of a map as well as

examples of smooth maps.

Next we transfer the notion of partial derivatives from Euclidean space to a co-

ordinate chart on a manifold. Partial derivatives relative to coordinate charts allow

us to generalize the inverse function theorem to manifolds. Using the inverse func-

tion theorem, we formulate a criterion for a set of smooth functions to serve as local

coordinates near a point.

6.1 Smooth Functions on a Manifold

b

φ(p) φ(U)⊂ Rn

b p
U

M

R

f

φ

Fig. 6.1. Checking that a function f is C∞ at p by pulling back to Rn.

Definition 6.1. Let M be a smooth manifold of dimension n. A function f : M→R

is said to be C∞ or smooth at a point p in M if there is a chart (U,φ) about p in M

such that f ◦ φ−1, a function defined on the open subset φ(U) of Rn, is C∞ at φ(p)
(see Figure 6.1). The function f is said to be C∞ on M if it is C∞ at every point of M.

Remark 6.2. The definition of the smoothness of a function f at a point is indepen-

dent of the chart (U,φ), for if f ◦ φ−1 is C∞ at φ(p) and (V,ψ) is any other chart

about p in M, then on ψ(U ∩V ),

f ◦ ψ−1 = ( f ◦ φ−1) ◦ (φ ◦ ψ−1),

which is C∞ at ψ(p) (see Figure 6.2).
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b

p

b

ψ(p)

b

φ(p)

R

f

φ ◦ ψ−1

ψ−1
φ−1

UV

Fig. 6.2. Checking that a function f is C∞ at p via two charts.

In Definition 6.1, f : M→ R is not assumed to be continuous. However, if f is

C∞ at p ∈M, then f ◦ φ−1 : φ(U)→ R, being a C∞ function at the point φ(p) in an

open subset of Rn, is continuous at φ(p). As a composite of continuous functions,

f = ( f ◦ φ−1) ◦ φ is continuous at p. Since we are interested only in functions that

are smooth on an open set, there is no loss of generality in assuming at the outset that

f is continuous.

Proposition 6.3 (Smoothness of a real-valued function). Let M be a manifold of

dimension n, and f : M→ R a real-valued function on M. The following are equiv-

alent:

(i) The function f : M→ R is C∞.

(ii) The manifold M has an atlas such that for every chart (U,φ) in the atlas,

f ◦ φ−1 : Rn ⊃ φ(U)→ R is C∞.

(iii) For every chart (V,ψ) on M, the function f ◦ ψ−1 : Rn ⊃ ψ(V )→ R is C∞.

Proof. We will prove the proposition as a cyclic chain of implications.

(ii) ⇒ (i): This follows directly from the definition of a C∞ function, since by (ii)

every point p ∈M has a coordinate neighborhood (U,φ) such that f ◦ φ−1 is C∞ at

φ(p).
(i) ⇒ (iii): Let (V,ψ) be an arbitrary chart on M and let p ∈ V . By Remark 6.2,

f ◦ ψ−1 is C∞ at ψ(p). Since p was an arbitrary point of V , f ◦ ψ−1 is C∞ on ψ(V ).
(iii)⇒ (ii): Obvious. ⊓⊔

The smoothness conditions of Proposition 6.3 will be a recurrent motif through-

out the book: to prove the smoothness of an object, it is sufficient that a smoothness

criterion hold on the charts of some atlas. Once the object is shown to be smooth, it

then follows that the same smoothness criterion holds on every chart on the manifold.

Definition 6.4. Let F : N→M be a map and h a function on M. The pullback of h

by F , denoted by F∗h, is the composite function h ◦ F .

In this terminology, a function f on M is C∞ on a chart (U,φ) if and only if its

pullback (φ−1)∗ f by φ−1 is C∞ on the subset φ(U) of Euclidean space.
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6.2 Smooth Maps Between Manifolds

We emphasize again that unless otherwise specified, by a manifold we always mean

a C∞ manifold. We use the terms “C∞” and “smooth” interchangeably. An atlas or a

chart on a smooth manifold means an atlas or a chart contained in the differentiable

structure of the smooth manifold. We generally denote a manifold by M and its

dimension by n. However, when speaking of two manifolds simultaneously, as in a

map f : N→M, we will let the dimension of N be n and that of M be m.

Definition 6.5. Let N and M be manifolds of dimension n and m, respectively. A

continuous map F : N → M is C∞ at a point p in N if there are charts (V,ψ) about

F(p) in M and (U,φ) about p in N such that the composition ψ ◦ F ◦ φ−1, a map

from the open subset φ(F−1(V )∩U) of Rn to Rm, is C∞ at φ(p) (see Figure 6.3).

The continuous map F : N→M is said to be C∞ if it is C∞ at every point of N.

φ(p)

V

F(p)
b

b

b

b

U

p

F

φ−1 ψ

N M

Fig. 6.3. Checking that a map F : N→M is C∞ at p.

In Definition 6.5, we assume F : N→M continuous to ensure that F−1(V ) is an

open set in N. Thus, C∞ maps between manifolds are by definition continuous.

Remark 6.6 (Smooth maps into Rm). In case M = Rm, we can take (Rm,1Rm) as a

chart about F(p) in Rm. According to Definition 6.5, F : N→ Rm is C∞ at p ∈ N if

and only if there is a chart (U,φ) about p in N such that F ◦ φ−1 : φ(U)→Rm is C∞

at φ(p). Letting m = 1, we recover the definition of a function being C∞ at a point.

We show now that the definition of the smoothness of a map F : N→M at a point

is independent of the choice of charts. This is analogous to how the smoothness of a

function N→ R at p ∈ N is independent of the choice of a chart on N about p.

Proposition 6.7. Suppose F : N→M is C∞ at p ∈ N. If (U,φ) is any chart about p

in N and (V,ψ) is any chart about F(p) in M, then ψ ◦ F ◦ φ−1 is C∞ at φ(p).

Proof. Since F is C∞ at p ∈ N, there are charts (Uα ,φα ) about p in N and (Vβ ,ψβ )

about F(p) in M such that ψβ ◦ F ◦ φ−1
α is C∞ at φα(p). By the C∞ compatibility
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of charts in a differentiable structure, both φα ◦ φ−1 and ψ ◦ ψ−1
β

are C∞ on open

subsets of Euclidean spaces. Hence, the composite

ψ ◦ F ◦ φ−1 = (ψ ◦ ψ−1
β ) ◦ (ψβ ◦ F ◦ φ−1

α ) ◦ (φα ◦ φ−1)

is C∞ at φ(p). ⊓⊔

The next proposition gives a way to check smoothness of a map without specify-

ing a point in the domain.

Proposition 6.8 (Smoothness of a map in terms of charts). Let N and M be smooth

manifolds, and F : N→M a continuous map. The following are equivalent:

(i) The map F : N→M is C∞.

(ii) There are atlases U for N and V for M such that for every chart (U,φ) in U and

(V,ψ) in V, the map

ψ ◦ F ◦ φ−1 : φ(U ∩F−1(V ))→ Rm

is C∞.

(iii) For every chart (U,φ) on N and (V,ψ) on M, the map

ψ ◦ F ◦ φ−1 : φ(U ∩F−1(V ))→ Rm

is C∞.

Proof. (ii)⇒ (i): Let p ∈ N. Suppose (U,φ) is a chart about p in U and (V,ψ) is a

chart about F(p) in V. By (ii), ψ ◦ F ◦ φ−1 is C∞ at φ(p). By the definition of a C∞

map, F : N→M is C∞ at p. Since p was an arbitrary point of N, the map F : N→M

is C∞.

(i)⇒ (iii): Suppose (U,φ) and (V,ψ) are charts on N and M respectively such that

U ∩F−1(V ) 6=∅. Let p ∈U ∩F−1(V ). Then (U,φ) is a chart about p and (V,ψ) is

a chart about F(p). By Proposition 6.7, ψ ◦ F ◦ φ−1 is C∞ at φ(p). Since φ(p) was

an arbitrary point of φ(U ∩F−1(V )), the map ψ ◦ F ◦ φ−1 : φ(U ∩F−1(V ))→ Rm

is C∞.

(iii)⇒ (ii): Clear. ⊓⊔

Proposition 6.9 (Composition of C∞ maps). If F : N→M and G : M→ P are C∞

maps of manifolds, then the composite G ◦ F : N→ P is C∞.

Proof. Let (U,φ), (V,ψ), and (W,σ) be charts on N, M, and P respectively. Then

σ ◦ (G ◦ F) ◦ φ−1 = (σ ◦ G ◦ ψ−1) ◦ (ψ ◦ F ◦ φ−1).

Since F and G are C∞, by Proposition 6.8(i)⇒(iii), σ ◦ G ◦ ψ−1 and ψ ◦ F ◦ φ−1 are

C∞. As a composite of C∞ maps of open subsets of Euclidean spaces, σ ◦ (G ◦ F) ◦
φ−1 is C∞. By Proposition 6.8(iii)⇒(i), G ◦ F is C∞. ⊓⊔
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6.3 Diffeomorphisms

A diffeomorphism of manifolds is a bijective C∞ map F : N→M whose inverse F−1

is also C∞. According to the next two propositions, coordinate maps are diffeomor-

phisms, and conversely, every diffeomorphism of an open subset of a manifold with

an open subset of a Euclidean space can serve as a coordinate map.

Proposition 6.10. If (U,φ) is a chart on a manifold M of dimension n, then the

coordinate map φ : U → φ(U)⊂ Rn is a diffeomorphism.

Proof. By definition, φ is a homeomorphism, so it suffices to check that both φ
and φ−1 are smooth. To test the smoothness of φ : U → φ(U), we use the atlas

{(U,φ)} with a single chart on U and the atlas {(φ(U),1φ(U))} with a single chart

on φ(U). Since 1φ(U) ◦ φ ◦ φ−1 : φ(U)→ φ(U) is the identity map, it is C∞. By

Proposition 6.8(ii)⇒(i), φ is C∞.

To test the smoothness of φ−1 : φ(U)→U , we use the same atlases as above.

Since φ ◦ φ−1 ◦ 1φ(U) = 1φ(U) : φ(U)→ φ(U), the map φ−1 is also C∞. ⊓⊔

Proposition 6.11. Let U be an open subset of a manifold M of dimension n. If

F : U → F(U) ⊂ Rn is a diffeomorphism onto an open subset of Rn, then (U,F)
is a chart in the differentiable structure of M.

Proof. For any chart (Uα ,φα ) in the maximal atlas of M, both φα and φ−1
α are C∞

by Proposition 6.10. As composites of C∞ maps, both F ◦ φ−1
α and φα ◦ F−1 are C∞.

Hence, (U,F) is compatible with the maximal atlas. By the maximality of the atlas,

the chart (U,F) is in the atlas. ⊓⊔

6.4 Smoothness in Terms of Components

In this subsection we derive a criterion that reduces the smoothness of a map to the

smoothness of real-valued functions on open sets.

Proposition 6.12 (Smoothness of a vector-valued function). Let N be a manifold

and F : N→Rm a continuous map. The following are equivalent:

(i) The map F : N→Rm is C∞.

(ii) The manifold N has an atlas such that for every chart (U,φ) in the atlas, the

map F ◦ φ−1 : φ(U)→Rm is C∞.

(iii) For every chart (U,φ) on N, the map F ◦ φ−1 : φ(U)→ Rm is C∞.

Proof. (ii)⇒ (i): In Proposition 6.8(ii), take V to be the atlas with the single chart

(Rm,1Rm) on M = Rm.

(i)⇒ (iii): In Proposition 6.8(iii), let (V,ψ) be the chart (Rm,1Rm) on M = Rm.

(iii)⇒ (ii): Obvious. ⊓⊔

Proposition 6.13 (Smoothness in terms of components). Let N be a manifold. A

vector-valued function F : N → Rm is C∞ if and only if its component functions

F1, . . . ,Fm : N→R are all C∞.
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Proof.

The map F : N→Rm is C∞

⇐⇒ for every chart (U,φ) on N, the map F ◦ φ−1 : φ(U)→ Rm is C∞ (by Proposi-

tion 6.12)

⇐⇒ for every chart (U,φ) on N, the functions Fi ◦ φ−1 : φ(U)→ R are all C∞

(definition of smoothness for maps of Euclidean spaces)

⇐⇒ the functions Fi : N→ R are all C∞ (by Proposition 6.3). ⊓⊔

Exercise 6.14 (Smoothness of a map to a circle).* Prove that the map F : R→ S1, F(t) =
(cos t,sint) is C∞.

Proposition 6.15 (Smoothness of a map in terms of vector-valued functions). Let

F : N → M be a continuous map between two manifolds of dimensions n and m

respectively. The following are equivalent:

(i) The map F : N→M is C∞.

(ii) The manifold M has an atlas such that for every chart (V,ψ) = (V,y1, . . . ,ym) in

the atlas, the vector-valued function ψ ◦ F : F−1(V )→Rm is C∞.

(iii) For every chart (V,ψ) = (V,y1, . . . ,ym) on M, the vector-valued function ψ ◦ F :

F−1(V )→Rm is C∞.

Proof. (ii) ⇒ (i): Let V be the atlas for M in (ii), and let U = {(U,φ)} be

an arbitrary atlas for N. For each chart (V,ψ) in the atlas V, the collection

{(U ∩F−1(V ),φ |U∩F−1(V ))} is an atlas for F−1(V ). Since ψ ◦ F : F−1(V )→ Rm

is C∞, by Proposition 6.12(i)⇒(iii),

ψ ◦ F ◦ φ−1 : φ(U ∩F−1(V ))→ Rm

is C∞. It then follows from Proposition 6.8(ii)⇒(i) that F : N→M is C∞.

(i)⇒ (iii): Being a coordinate map, ψ is C∞ (Proposition 6.10). As the composite of

two C∞ maps, ψ ◦ F is C∞.

(iii)⇒ (ii): Obvious. ⊓⊔

By Proposition 6.13, this smoothness criterion for a map translates into a smooth-

ness criterion in terms of the components of the map.

Proposition 6.16 (Smoothness of a map in terms of components). Let F : N→M

be a continuous map between two manifolds of dimensions n and m respectively. The

following are equivalent:

(i) The map F : N→M is C∞.

(ii) The manifold M has an atlas such that for every chart (V,ψ) = (V,y1, . . . ,ym) in

the atlas, the components yi ◦ F : F−1(V )→ R of F relative to the chart are all

C∞.

(iii) For every chart (V,ψ) = (V,y1, . . . ,ym) on M, the components yi ◦ F : F−1(V )→
R of F relative to the chart are all C∞.
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6.5 Examples of Smooth Maps

We have seen that coordinate maps are smooth. In this subsection we look at a few

more examples of smooth maps.

Example 6.17 (Smoothness of a projection map). Let M and N be manifolds and

π : M×N → M, π(p,q) = p the projection to the first factor. Prove that π is a C∞

map.

Solution. Let (p,q) be an arbitrary point of M×N. Suppose (U,φ) = (U,x1, . . . ,xm)
and (V,ψ) = (V,y1, . . . ,yn) are coordinate neighborhoods of p and q in M and N

respectively. By Proposition 5.18, (U ×V,φ ×ψ) = (U ×V,x1, . . . ,xm,y1, . . . ,yn) is

a coordinate neighborhood of (p,q). Then

(
φ ◦ π ◦ (φ ×ψ)−1

)
(a1, . . . ,am,b1, . . . ,bn) = (a1, . . . ,am),

which is a C∞ map from (φ×ψ)(U×V ) in Rm+n to φ(U) in Rm, so π is C∞ at (p,q).
Since (p,q) was an arbitrary point in M×N, π is C∞ on M×N.

Exercise 6.18 (Smoothness of a map to a Cartesian product).* Let M1, M2, and N be

manifolds of dimensions m1, m2, and n respectively. Prove that a map ( f1, f2) : N→M1×M2

is C∞ if and only if fi : N→Mi, i = 1,2, are both C∞.

Example 6.19. In Examples 5.7 and 5.16 we showed that the unit circle S1 defined by

x2 + y2 = 1 in R2 is a C∞ manifold. Prove that a C∞ function f (x,y) on R2 restricts

to a C∞ function on S1.

Solution. To avoid confusing functions with points, we will denote a point on S1

as p = (a,b) and use x, y to mean the standard coordinate functions on R2. Thus,

x(a,b) = a and y(a,b) = b. Suppose we can show that x and y restrict to C∞ functions

on S1. By Exercise 6.18, the inclusion map i : S1→ R2, i(p) = (x(p),y(p)) is then

C∞ on S1. As the composition of C∞ maps, f |S1 = f ◦ i will be C∞ on S1 (Proposition

6.9).

Consider first the function x. We use the atlas (Ui,φi) from Example 5.16. Since

x is a coordinate function on U1 and on U2, by Proposition 6.10 it is C∞ on U1∪U2 =
S1−{(±1,0)}. To show that x is C∞ on U3, it suffices to check the smoothness of

x ◦ φ−1
3 : φ3(U3)→ R:

(
x ◦ φ−1

3

)
(b) = x

(√
1−b2,b

)
=
√

1−b2.

On U3, we have b 6=±1, so that
√

1− b2 is a C∞ function of b. Hence, x is C∞ on U3.

On U4, (
x ◦ φ−1

4

)
(b) = x

(
−
√

1−b2,b
)
=−

√
1−b2,

which is C∞ because b is not equal to±1. Since x is C∞ on the four open sets U1, U2,

U3, and U4, which cover S1, x is C∞ on S1.

The proof that y is C∞ on S1 is similar.
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Armed with the definition of a smooth map between manifolds, we can define a

Lie group.

Definition 6.20. A Lie group1 is a C∞ manifold G having a group structure such

that the multiplication map

µ : G×G→ G

and the inverse map

ι : G→G, ι(x) = x−1,

are both C∞.

Similarly, a topological group is a topological space having a group structure

such that the multiplication and inverse maps are both continuous. Note that a topo-

logical group is required to be a topological space, but not a topological manifold.

Examples.

(i) The Euclidean space Rn is a Lie group under addition.

(ii) The set C× of nonzero complex numbers is a Lie group under multiplication.

(iii) The unit circle S1 in C× is a Lie group under multiplication.

(iv) The Cartesian product G1×G2 of two Lie groups (G1,µ1) and (G2,µ2) is a Lie

group under coordinatewise multiplication µ1× µ2.

Example 6.21 (General linear group). In Example 5.15 we defined the general linear

group

GL(n,R) = {A = [ai j] ∈Rn×n | det A 6= 0}.
As an open subset of Rn×n, it is a manifold. Since the (i, j)-entry of the product of

two matrices A and B in GL(n,R),

(AB)i j =
n

∑
k=1

aikbk j,

is a polynomial in the coordinates of A and B, matrix multiplication

µ : GL(n,R)×GL(n,R)→ GL(n,R)

is a C∞ map.

Recall that the (i, j)-minor of a matrix A is the determinant of the submatrix of

A obtained by deleting the ith row and the jth column of A. By Cramer’s rule from

linear algebra, the (i, j)-entry of A−1 is

(A−1)i j =
1

det A
· (−1)i+ j(( j, i)-minor of A),

which is a C∞ function of the ai j’s provided det A 6= 0. Therefore, the inverse map

ι : GL(n,R)→GL(n,R) is also C∞. This proves that GL(n,R) is a Lie group.

1Lie groups and Lie algebras are named after the Norwegian mathematician Sophus Lie

(1842–1899). In this context, “Lie” is pronounced “lee,” not “lye.”
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In Section 15 we will study less obvious examples of Lie groups.

NOTATION. The notation for matrices presents a special challenge. An n×n matrix

A can represent a linear transformation y = Ax, with x,y ∈ Rn. In this case, yi =

∑ j ai
jx

j, so A = [ai
j]. An n×n matrix can also represent a bilinear form 〈x,y〉= xT Ay

with x,y ∈ Rn. In this case, 〈x,y〉 = ∑i, j xiai jy
j, so A = [ai j]. In the absence of any

context, we will write a matrix as A = [ai j], using a lowercase letter a to denote an

entry of a matrix A and using a double subscript ( )i j to denote the (i, j)-entry.

6.6 Partial Derivatives

On a manifold M of dimension n, let (U,φ) be a chart and f a C∞ function As a

function into Rn, φ has n components x1, . . . ,xn. This means that if r1, . . . ,rn are

the standard coordinates on Rn, then xi = ri ◦ φ . For p ∈U , we define the partial

derivative ∂ f/∂xi of f with respect to xi at p to be

∂

∂xi

∣∣∣∣
p

f :=
∂ f

∂xi
(p) :=

∂
(

f ◦ φ−1
)

∂ ri
(φ(p)) :=

∂

∂ ri

∣∣∣∣
φ(p)

(
f ◦ φ−1

)
.

Since p = φ−1(φ(p)), this equation may be rewritten in the form

∂ f

∂xi

(
φ−1(φ(p))

)
=

∂
(

f ◦ φ−1
)

∂ ri
(φ(p)).

Thus, as functions on φ(U),

∂ f

∂xi
◦ φ−1 =

∂
(

f ◦ φ−1
)

∂ ri
.

The partial derivative ∂ f/∂xi is C∞ on U because its pullback (∂ f/∂xi) ◦ φ−1 is C∞

on φ(U).
In the next proposition we see that partial derivatives on a manifold satisfy the

same duality property ∂ ri/∂ r j = δ i
j as the coordinate functions ri on Rn.

Proposition 6.22. Suppose (U,x1, . . . ,xn) is a chart on a manifold. Then ∂xi/∂x j = δ i
j .

Proof. At a point p ∈U , by the definition of ∂/∂x j|p,

∂xi

∂x j
(p) =

∂
(
xi ◦ φ−1

)

∂ r j
(φ(p)) =

∂
(
ri ◦ φ ◦ φ−1

)

∂ r j
(φ(p)) =

∂ ri

∂ r j
(φ(p)) = δ i

j. ⊓⊔

Definition 6.23. Let F : N →M be a smooth map, and let (U,φ) = (U,x1, . . . ,xn)
and (V,ψ) = (V,y1, . . . ,ym) be charts on N and M respectively such that F(U)⊂ V .

Denote by

Fi := yi ◦ F = ri ◦ ψ ◦ F : U → R
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the ith component of F in the chart (V,ψ). Then the matrix [∂Fi/∂x j] is called

the Jacobian matrix of F relative to the charts (U,φ) and (V,ψ). In case N and

M have the same dimension, the determinant det[∂Fi/∂x j] is called the Jacobian

determinant of F relative to the two charts. The Jacobian determinant is also written

as ∂ (F1, . . . ,Fn)/∂ (x1, . . . ,xn).

When M and N are open subsets of Euclidean spaces and the charts are (U,r1,

. . ., rn) and (V,r1, . . . ,rm), the Jacobian matrix [∂Fi/∂ r j], where Fi = ri ◦ F , is the

usual Jacobian matrix from calculus.

Example 6.24 (Jacobian matrix of a transition map). Let (U,φ) = (U,x1, . . . ,xn) and

(V,ψ) = (V,y1, . . . ,yn) be overlapping charts on a manifold M. The transition map

ψ ◦ φ−1 : φ(U ∩V )→ ψ(U ∩V ) is a diffeomorphism of open subsets of Rn. Show

that its Jacobian matrix J(ψ ◦ φ−1) at φ(p) is the matrix [∂yi/∂x j] of partial deriva-

tives at p.

Solution. By definition, J(ψ ◦ φ−1) = [∂ (ψ ◦ φ−1)i/∂ r j], where

∂
(
ψ ◦ φ−1

)i

∂ r j
(φ(p)) =

∂
(
ri ◦ ψ ◦ φ−1

)

∂ r j
(φ(p)) =

∂
(
yi ◦ φ−1

)

∂ r j
(φ(p)) =

∂yi

∂x j
(p).

6.7 The Inverse Function Theorem

By Proposition 6.11, any diffeomorphism F : U → F(U) ⊂ Rn of an open subset U

of a manifold may be thought of as a coordinate system on U . We say that a C∞

map F : N → M is locally invertible or a local diffeomorphism at p ∈ N if p has a

neighborhood U on which F|U : U → F(U) is a diffeomorphism.

Given n smooth functions F1, . . . ,Fn in a neighborhood of a point p in a man-

ifold N of dimension n, one would like to know whether they form a coordinate

system, possibly on a smaller neighborhood of p. This is equivalent to whether

F = (F1, . . . ,Fn) : N → Rn is a local diffeomorphism at p. The inverse function

theorem provides an answer.

Theorem 6.25 (Inverse function theorem for Rn). Let F : W → Rn be a C∞ map

defined on an open subset W of Rn. For any point p in W, the map F is locally

invertible at p if and only if the Jacobian determinant det[∂Fi/∂ r j(p)] is not zero.

This theorem is usually proved in an undergraduate course on real analysis. See

Appendix B for a discussion of this and related theorems. Because the inverse func-

tion theorem for Rn is a local result, it easily translates to manifolds.

Theorem 6.26 (Inverse function theorem for manifolds). Let F : N→M be a C∞

map between two manifolds of the same dimension, and p ∈ N. Suppose for some

charts (U,φ) = (U,x1, . . . ,xn) about p in N and (V,ψ) = (V,y1, . . . ,yn) about F(p)
in M, F(U) ⊂ V. Set Fi = yi ◦ F. Then F is locally invertible at p if and only if its

Jacobian determinant det[∂Fi/∂x j(p)] is nonzero.
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b

b b

b

p

F

ψ ◦ F ◦ φ−1

F(p)

φ(p) ψ(F(p))

U V

φ ψ
≃ ≃

φ(U) ψ(V )

Fig. 6.4. The map F is locally invertible at p because ψ ◦ F ◦ φ−1 is locally invertible at φ(p).

Proof. Since Fi = yi ◦ F = ri ◦ ψ ◦ F , the Jacobian matrix of F relative to the charts

(U,φ) and (V,ψ) is

[
∂Fi

∂x j
(p)

]
=

[
∂ (ri ◦ ψ ◦ F)

∂x j
(p)

]
=

[
∂ (ri ◦ ψ ◦ F ◦ φ−1)

∂ r j
(φ(p))

]
,

which is precisely the Jacobian matrix at φ(p) of the map

ψ ◦ F ◦ φ−1 : Rn ⊃ φ(U)→ ψ(V )⊂ Rn

between two open subsets of Rn. By the inverse function theorem for Rn,

det

[
∂Fi

∂x j
(p)

]
= det

[
∂ ri ◦ (ψ ◦ F ◦ φ−1)

∂ r j
(φ(p))

]
6= 0

if and only if ψ ◦ F ◦ φ−1 is locally invertible at φ(p). Since ψ and φ are diffeomor-

phisms (Proposition 6.10), this last statement is equivalent to the local invertibility

of F at p (see Figure 6.4). ⊓⊔

We usually apply the inverse function theorem in the following form.

Corollary 6.27. Let N be a manifold of dimension n. A set of n smooth func-

tions F1, . . . ,Fn defined on a coordinate neighborhood (U,x1, . . . ,xn) of a point

p ∈ N forms a coordinate system about p if and only if the Jacobian determinant

det[∂Fi/∂x j(p)] is nonzero.

Proof. Let F = (F1, . . . ,Fn) : U →Rn. Then

det[∂Fi/∂x j(p)] 6= 0

⇐⇒ F : U → Rn is locally invertible at p (by the inverse function theorem)

⇐⇒ there is a neighborhood W of p in N such that F : W → F(W ) is a diffeomor-

phism (by the definition of local invertibility)
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⇐⇒ (W,F1, . . . ,Fn) is a coordinate chart about p in the differentiable structure of

N (by Proposition 6.11). ⊓⊔

Example. Find all points in R2 in a neighborhood of which the functions x2+y2−1,y
can serve as a local coordinate system.

Solution. Define F : R2→ R2 by

F(x,y) =
(
x2 + y2−1,y

)
.

The map F can serve as a coordinate map in a neighborhood of p if and only if it is

a local diffeomorphism at p. The Jacobian determinant of F is

∂
(
F1,F2

)

∂ (x,y)
= det

[
2x 2y

0 1

]
= 2x.

By the inverse function theorem, F is a local diffeomorphism at p= (x,y) if and only

if x 6= 0. Thus, F can serve as a coordinate system at any point p not on the y-axis.

Problems

6.1. Differentiable structures on R

Let R be the real line with the differentiable structure given by the maximal atlas of the chart

(R,φ = 1 : R→ R), and let R′ be the real line with the differentiable structure given by the

maximal atlas of the chart (R,ψ : R→ R), where ψ(x) = x1/3.

(a) Show that these two differentiable structures are distinct.

(b) Show that there is a diffeomorphism between R and R′. (Hint: The identity map R→ R

is not the desired diffeomorphism; in fact, this map is not smooth.)

6.2. The smoothness of an inclusion map

Let M and N be manifolds and let q0 be a point in N. Prove that the inclusion map iq0
: M→

M×N, iq0
(p) = (p,q0), is C∞.

6.3.* Group of automorphisms of a vector space

Let V be a finite-dimensional vector space over R, and GL(V ) the group of all linear auto-

morphisms of V . Relative to an ordered basis e = (e1, . . . ,en) for V , a linear automorphism

L ∈ GL(V ) is represented by a matrix [ai
j] defined by

L(e j) = ∑
i

ai
jei.

The map

φe : GL(V )→ GL(n,R),

L 7→ [ai
j],

is a bijection with an open subset of Rn×n that makes GL(V ) into a C∞ manifold, which we

denote temporarily by GL(V )e. If GL(V )u is the manifold structure induced from another

ordered basis u = (u1, . . . ,un) for V , show that GL(V )e is the same as GL(V )u.

6.4. Local coordinate systems

Find all points in R3 in a neighborhood of which the functions x, x2 +y2 + z2−1, z can serve

as a local coordinate system.
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§7 Quotients

Gluing the edges of a malleable square is one way to create new surfaces. For ex-

ample, gluing together the top and bottom edges of a square gives a cylinder; gluing

together the boundaries of the cylinder with matching orientations gives a torus (Fig-

ure 7.1). This gluing process is called an identification or a quotient construction.

Fig. 7.1. Gluing the edges of a malleable square.

The quotient construction is a process of simplification. Starting with an equiv-

alence relation on a set, we identify each equivalence class to a point. Mathematics

abounds in quotient constructions, for example, the quotient group, quotient ring,

or quotient vector space in algebra. If the original set is a topological space, it is

always possible to give the quotient set a topology so that the natural projection map

becomes continuous. However, even if the original space is a manifold, a quotient

space is often not a manifold. The main results of this section give conditions under

which a quotient space remains second countable and Hausdorff. We then study real

projective space as an example of a quotient manifold.

Real projective space can be interpreted as a quotient of a sphere with antipodal

points identified, or as the set of lines through the origin in a vector space. These

two interpretations give rise to two distinct generalizations—covering maps on the

one hand and Grassmannians of k-dimensional subspaces of a vector space on the

other. In one of the exercises, we carry out an extensive investigation of G(2,4), the

Grassmannian of 2-dimensional subspaces of R4.

7.1 The Quotient Topology

Recall that an equivalence relation on a set S is a reflexive, symmetric, and transitive

relation. The equivalence class [x] of x ∈ S is the set of all elements in S equivalent

to x. An equivalence relation on S partitions S into disjoint equivalence classes. We

denote the set of equivalence classes by S/∼ and call this set the quotient of S by

the equivalence relation∼. There is a natural projection map π : S→ S/∼ that sends

x ∈ S to its equivalence class [x].
Assume now that S is a topological space. We define a topology on S/∼ by

declaring a set U in S/∼ to be open if and only if π−1(U) is open in S. Clearly, both

the empty set ∅ and the entire quotient S/∼ are open. Further, since
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π−1

(⋃

α

Uα

)
=
⋃

α

π−1(Uα)

and

π−1

(⋂

i

Ui

)
=
⋂

i

π−1(Ui),

the collection of open sets in S/∼ is closed under arbitrary unions and finite inter-

sections, and is therefore a topology. It is called the quotient topology on S/∼. With

this topology, S/∼ is called the quotient space of S by the equivalence relation ∼.

With the quotient topology on S/∼, the projection map π : S→ S/∼ is automatically

continuous, because the inverse image of an open set in S/∼ is by definition open

in S.

7.2 Continuity of a Map on a Quotient

Let∼ be an equivalence relation on the topological space S and give S/∼ the quotient

topology. Suppose a function f : S→ Y from S to another topological space Y is

constant on each equivalence class. Then it induces a map f̄ : S/∼→ Y by

f̄ ([p]) = f (p) for p ∈ S.

In other words, there is a commutative diagram

S
f //

π
��

Y.

S/∼
f̄

==||||||||

Proposition 7.1. The induced map f̄ : S/∼→ Y is continuous if and only if the map

f : S→ Y is continuous.

Proof.

(⇒) If f̄ is continuous, then as the composite f̄ ◦ π of continuous functions, f is also

continuous.

(⇐) Suppose f is continuous. Let V be open in Y . Then f−1(V ) = π−1( f̄−1(V )) is

open in S. By the definition of quotient topology, f̄−1(V ) is open in S/∼. Since V

was arbitrary, f̄ : S/∼→ Y is continuous. ⊓⊔

This proposition gives a useful criterion for checking whether a function f̄ on a

quotient space S/∼ is continuous: simply lift the function f̄ to f := f ◦ π on S and

check the continuity of the lifted map f on S. For examples of this, see Example 7.2

and Proposition 7.3.
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7.3 Identification of a Subset to a Point

If A is a subspace of a topological space S, we can define a relation ∼ on S by

declaring

x∼ x for all x ∈ S

(so the relation is reflexive) and

x∼ y for all x,y ∈ A.

This is an equivalence relation on S. We say that the quotient space S/∼ is obtained

from S by identifying A to a point.

Example 7.2. Let I be the unit interval [0,1] and I/∼ the quotient space obtained from

I by identifying the two points {0,1} to a point. Denote by S1 the unit circle in the

complex plane. The function f : I→ S1, f (x) = exp(2π ix), assumes the same value

at 0 and 1 (Figure 7.2), and so induces a function f̄ : I/∼→ S1.

b

0 1

f

Fig. 7.2. The unit circle as a quotient space of the unit interval.

Proposition 7.3. The function f̄ : I/∼→ S1 is a homeomorphism.

Proof. Since f is continuous, f̄ is also continuous by Proposition 7.1. Clearly, f̄ is a

bijection. As the continuous image of the compact set I, the quotient I/∼ is compact.

Thus, f̄ is a continuous bijection from the compact space I/∼ to the Hausdorff space

S1. By Corollary A.36, f̄ is a homeomorphism. ⊓⊔

7.4 A Necessary Condition for a Hausdorff Quotient

The quotient construction does not in general preserve the Hausdorff property or

second countability. Indeed, since every singleton set in a Hausdorff space is closed,

if π : S→ S/∼ is the projection and the quotient S/∼ is Hausdorff, then for any

p ∈ S, its image {π(p)} is closed in S/∼. By the continuity of π , the inverse image

π−1({π(p)}) = [p] is closed in S. This gives a necessary condition for a quotient

space to be Hausdorff.

Proposition 7.4. If the quotient space S/∼ is Hausdorff, then the equivalence class

[p] of any point p in S is closed in S.



74 §7 Quotients

Example. Define an equivalence relation ∼ on R by identifying the open interval

]0,∞[ to a point. Then the quotient space R/∼ is not Hausdorff because the equiva-

lence class ]0,∞[ of ∼ in R corresponding to the point ]0,∞[ in R/∼ is not a closed

subset of R.

7.5 Open Equivalence Relations

In this section we follow the treatment of Boothby [3] and derive conditions under

which a quotient space is Hausdorff or second countable. Recall that a map f : X→Y

of topological spaces is open if the image of any open set under f is open.

Definition 7.5. An equivalence relation ∼ on a topological space S is said to be

open if the projection map π : S→ S/∼ is open.

In other words, the equivalence relation ∼ on S is open if and only if for every

open set U in S, the set

π−1(π(U)) =
⋃

x∈U

[x]

of all points equivalent to some point of U is open.

Example 7.6. The projection map to a quotient space is in general not open. For

example, let ∼ be the equivalence relation on the real line R that identifies the two

points 1 and −1, and π : R→R/∼ the projection map.

b b b( )

−2 0−1 1

π

(

)

Fig. 7.3. A projection map that is not open.

The map π is open if and only if for every open set V in R, its image π(V ) is open

in R/∼, which by the definition of the quotient topology means that π−1(π(V )) is

open in R. Now let V be the open interval ]− 2,0[ in R. Then

π−1(π(V )) = ]−2,0[ ∪ {1},

which is not open in R (Figure 7.3). Therefore, the projection map π : R→ R/∼ is

not an open map.

Given an equivalence relation∼ on S, let R be the subset of S×S that defines the

relation

R = {(x,y) ∈ S×S | x∼ y}.
We call R the graph of the equivalence relation∼.
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b

S

S
R

U

V
(x,y)

Fig. 7.4. The graph R of an equivalence relation and an open set U×V disjoint from R.

Theorem 7.7. Suppose ∼ is an open equivalence relation on a topological space S.

Then the quotient space S/∼ is Hausdorff if and only if the graph R of∼ is closed in

S×S.

Proof. There is a sequence of equivalent statements:

R is closed in S×S

⇐⇒ (S×S)−R is open in S×S

⇐⇒ for every (x,y) ∈ S× S−R, there is a basic open set U ×V containing (x,y)
such that (U×V)∩R =∅ (Figure 7.4)

⇐⇒ for every pair x ≁ y in S, there exist neighborhoods U of x and V of y in S such

that no element of U is equivalent to an element of V

⇐⇒ for any two points [x] 6= [y] in S/∼, there exist neighborhoods U of x and V of

y in S such that π(U)∩π(V) =∅ in S/∼. (∗)
We now show that this last statement (∗) is equivalent to S/∼ being Hausdorff.

First assume (∗). Since∼ is an open equivalence relation, π(U) and π(V ) are disjoint

open sets in S/∼ containing [x] and [y] respectively. Therefore, S/∼ is Hausdorff.

Conversely, suppose S/∼ is Hausdorff. Let [x] 6= [y] in S/∼. Then there exist

disjoint open sets A and B in S/∼ such that [x] ∈ A and [y] ∈ B. By the surjectivity of

π , we have A = π(π−1A) and B = π(π−1B) (see Problem 7.1). Let U = π−1A and

V = π−1B. Then x ∈U , y ∈V , and A = π(U) and B = π(V) are disjoint open sets in

S/∼. ⊓⊔

If the equivalence relation ∼ is equality, then the quotient space S/∼ is S itself

and the graph R of ∼ is simply the diagonal

∆ = {(x,x) ∈ S×S}.

In this case, Theorem 7.7 becomes the following well-known characterization of a

Hausdorff space by its diagonal (cf. Problem A.6).

Corollary 7.8. A topological space S is Hausdorff if and only if the diagonal ∆ in

S×S is closed.
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Theorem 7.9. Let ∼ be an open equivalence relation on a topological space S with

projection π : S→ S/∼. If B= {Bα} is a basis for S, then its image {π(Bα)} under

π is a basis for S/∼.

Proof. Since π is an open map, {π(Bα)} is a collection of open sets in S/∼. Let W

be an open set in S/∼ and [x] ∈W , x ∈ S. Then x ∈ π−1(W ). Since π−1(W ) is open,

there is a basic open set B ∈B such that

x ∈ B⊂ π−1(W ).

Then

[x] = π(x) ∈ π(B)⊂W,

which proves that {π(Bα)} is a basis for S/∼. ⊓⊔

Corollary 7.10. If ∼ is an open equivalence relation on a second-countable space

S, then the quotient space S/∼ is second countable.

7.6 Real Projective Space

Define an equivalence relation on Rn+1−{0} by

x∼ y ⇐⇒ y = tx for some nonzero real number t,

where x, y ∈ Rn+1−{0}. The real projective space RPn is the quotient space of

Rn+1−{0} by this equivalence relation. We denote the equivalence class of a point

(a0, . . . ,an) ∈ Rn+1−{0} by [a0, . . . ,an] and let π : Rn+1−{0}→ RPn be the pro-

jection. We call [a0, . . . ,an] homogeneous coordinates on RPn.

Geometrically, two nonzero points in Rn+1 are equivalent if and only if they lie

on the same line through the origin, so RPn can be interpreted as the set of all lines

through the origin in Rn+1. Each line through the origin in Rn+1 meets the unit

b

b

b

Fig. 7.5. A line through 0 in R3 corresponds to a pair of antipodal points on S2.

sphere Sn in a pair of antipodal points, and conversely, a pair of antipodal points on

Sn determines a unique line through the origin (Figure 7.5). This suggests that we

define an equivalence relation∼ on Sn by identifying antipodal points:
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x∼ y ⇐⇒ x =±y, x,y ∈ Sn.

We then have a bijection RPn↔ Sn/∼.

Exercise 7.11 (Real projective space as a quotient of a sphere).* For x= (x1, . . . ,xn)∈Rn,

let ‖x‖ =
√

∑i(x
i)2 be the modulus of x. Prove that the map f : Rn+1−{0} → Sn given by

f (x) =
x

‖x‖

induces a homeomorphism f̄ : RPn→ Sn/∼. (Hint: Find an inverse map

ḡ : Sn/∼→ RPn

and show that both f̄ and ḡ are continuous.)

Example 7.12 (The real projective line RP1).

b

b

b bb

0 −a a

Fig. 7.6. The real projective line RP1 as the set of lines through 0 in R2.

Each line through the origin in R2 meets the unit circle in a pair of antipodal

points. By Exercise 7.11, RP1 is homeomorphic to the quotient S1/∼, which is in

turn homeomorphic to the closed upper semicircle with the two endpoints identified

(Figure 7.6). Thus, RP1 is homeomorphic to S1.

Example 7.13 (The real projective plane RP2). By Exercise 7.11, there is a homeo-

morphism

RP2 ≃ S2/{antipodal points}= S2/∼ .

For points not on the equator, each pair of antipodal points contains a unique point

in the upper hemisphere. Thus, there is a bijection between S2/∼ and the quotient of

the closed upper hemisphere in which each pair of antipodal points on the equator

is identified. It is not difficult to show that this bijection is a homeomorphism (see

Problem 7.2).

Let H2 be the closed upper hemisphere

H2 = {(x,y,z) ∈R3 | x2 + y2 + z2 = 1, z≥ 0}

and let D2 be the closed unit disk
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D2 = {(x,y) ∈R2 | x2 + y2 ≤ 1}.

These two spaces are homeomorphic to each other via the continuous map

ϕ : H2→D2,

ϕ(x,y,z) = (x,y),

and its inverse

ψ : D2→ H2,

ψ(x,y) =
(

x,y,
√

1− x2− y2
)
.

On H2, define an equivalence relation ∼ by identifying the antipodal points on the

equator:

(x,y,0)∼ (−x,−y,0), x2 + y2 = 1.

On D2, define an equivalence relation ∼ by identifying the antipodal points on the

boundary circle:

(x,y)∼ (−x,−y), x2 + y2 = 1.

Then ϕ and ψ induce homeomorphisms

ϕ̄ : H2/∼→ D2/∼, ψ̄ : D2/∼→H2/∼ .

In summary, there is a sequence of homeomorphisms

RP2 ∼→ S2/∼ ∼→ H2/∼ ∼→ D2/∼

that identifies the real projective plane as the quotient of the closed disk D2 with the

antipodal points on its boundary identified. This may be the best way to picture RP2

(Figure 7.7).

b b

Fig. 7.7. The real projective plane as the quotient of a disk.

The real projective planeRP2 cannot be embedded as a submanifold of R3. How-

ever, if we allow self-intersection, then we can map RP2 into R3 as a cross-cap (Fig-

ure 7.8). This map is not one-to-one.
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Fig. 7.8. The real projective plane immersed as a cross-cap in R3.

Proposition 7.14. The equivalence relation∼ on Rn+1−{0} in the definition of RPn

is an open equivalence relation.

Proof. For an open set U ⊂ Rn+1−{0}, the image π(U) is open in RPn if and only

if π−1(π(U)) is open in Rn+1−{0}. But π−1(π(U)) consists of all nonzero scalar

multiples of points of U ; that is,

π−1(π(U)) =
⋃

t∈R×
tU =

⋃

t∈R×
{t p | p ∈U}.

Since multiplication by t ∈ R× is a homeomorphism of Rn+1−{0}, the set tU is

open for any t. Therefore, their union
⋃

t∈R× tU = π−1(π(U)) is also open. ⊓⊔

Corollary 7.15. The real projective space RPn is second countable.

Proof. Apply Corollary 7.10. ⊓⊔

Proposition 7.16. The real projective space RPn is Hausdorff.

Proof. Let S = Rn+1−{0} and consider the set

R = {(x,y) ∈ S× S | y = tx for some t ∈R×}.

If we write x and y as column vectors, then [x y] is an (n+ 1)× 2 matrix, and R may

be characterized as the set of matrices [x y] in S×S of rank ≤ 1. By a standard fact

from linear algebra, rk[x y] ≤ 1 is equivalent to the vanishing of all 2× 2 minors of

[x y] (see Problem B.1). As the zero set of finitely many polynomials, R is a closed

subset of S× S. Since ∼ is an open equivalence relation on S, and R is closed in

S×S, by Theorem 7.7 the quotient S/∼ ≃ RPn is Hausdorff. ⊓⊔

7.7 The Standard C∞ Atlas on a Real Projective Space

Let [a0, . . . ,an] be homogeneous coordinates on the projective space RPn. Although

a0 is not a well-defined function on RPn, the condition a0 6= 0 is independent of the

choice of a representative for [a0, . . . ,an]. Hence, the condition a0 6= 0 makes sense

on RPn, and we may define
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U0 := {[a0, . . . ,an] ∈RPn | a0 6= 0}.

Similarly, for each i = 1, . . . ,n, let

Ui := {[a0, . . . ,an] ∈RPn | ai 6= 0}.

Define

φ0 : U0→ Rn

by

[a0, . . . ,an] 7→
(

a1

a0
, . . . ,

an

a0

)
.

This map has a continuous inverse

(b1, . . . ,bn) 7→ [1,b1, . . . ,bn]

and is therefore a homeomorphism. Similarly, there are homeomorphisms for each

i = 1, . . . ,n:

φi : Ui→ Rn,

[a0, . . . ,an] 7→
(

a0

ai
, . . . ,

âi

ai
, . . . ,

an

ai

)
,

where the caret sign ̂ over ai/ai means that that entry is to be omitted. This proves

that RPn is locally Euclidean with the (Ui,φi) as charts.

On the intersection U0∩U1, we have a0 6= 0 and a1 6= 0, and there are two coor-

dinate systems

[a0,a1,a2, . . . ,an]

(
a0

a1
,

a2

a1
, . . . ,

an

a1

)
.

(
a1

a0
,

a2

a0
, . . . ,

an

a0

)

φ1φ0

We will refer to the coordinate functions on U0 as x1, . . . ,xn, and the coordinate

functions on U1 as y1, . . . ,yn. On U0,

xi =
ai

a0
, i = 1, . . . ,n,

and on U1,

y1 =
a0

a1
, y2 =

a2

a1
, . . . , yn =

an

a1
.

Then on U0∩U1,
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y1 =
1

x1
, y2 =

x2

x1
, y3 =

x3

x1
, . . . , yn =

xn

x1
,

so

(φ1 ◦ φ−1
0 )(x) =

(
1

x1
,

x2

x1
,

x3

x1
, . . . ,

xn

x1

)
.

This is a C∞ function because x1 6= 0 on φ0(U0 ∩U1). On any other Ui ∩Uj an

analogous formula holds. Therefore, the collection {(Ui,φi)}i=0,...,n is a C∞ atlas for

RPn, called the standard atlas. This concludes the proof that RPn is a C∞ manifold.

Problems

7.1. Image of the inverse image of a map

Let f : X → Y be a map of sets, and let B⊂ Y . Prove that f ( f−1(B)) = B∩ f (X). Therefore,

if f is surjective, then f ( f−1(B)) = B.

7.2. Real projective plane

Let H2 be the closed upper hemisphere in the unit sphere S2, and let i : H2 → S2 be the

inclusion map. In the notation of Example 7.13, prove that the induced map f : H2/∼→ S2/∼
is a homeomorphism. (Hint: Imitate Proposition 7.3.)

7.3. Closedness of the diagonal of a Hausdorff space

Deduce Theorem 7.7 from Corollary 7.8. (Hint: To prove that if S/∼ is Hausdorff, then the

graph R of ∼ is closed in S× S, use the continuity of the projection map π : S→ S/∼. To

prove the reverse implication, use the openness of π .)

7.4.* Quotient of a sphere with antipodal points identified

Let Sn be the unit sphere centered at the origin in Rn+1. Define an equivalence relation ∼ on

Sn by identifying antipodal points:

x∼ y ⇐⇒ x =±y, x,y ∈ Sn.

(a) Show that ∼ is an open equivalence relation.

(b) Apply Theorem 7.7 and Corollary 7.8 to prove that the quotient space Sn/∼ is Hausdorff,

without making use of the homeomorphism RPn ≃ Sn/∼.

7.5.* Orbit space of a continuous group action

Suppose a right action of a topological group G on a topological space S is continuous; this

simply means that the map S×G→ S describing the action is continuous. Define two points

x,y of S to be equivalent if they are in the same orbit; i.e., there is an element g ∈ G such that

y = xg. Let S/G be the quotient space; it is called the orbit space of the action. Prove that the

projection map π : S→ S/G is an open map. (This problem generalizes Proposition 7.14, in

which G = R× =R−{0} and S =Rn+1−{0}. Because R× is commutative, a left R×-action

becomes a right R×-action if scalar multiplication is written on the right.)

7.6. Quotient of R by 2πZ
Let the additive group 2πZ act on R on the right by x · 2πn = x+2πn, where n is an integer.

Show that the orbit space R/2πZ is a smooth manifold.
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7.7. The circle as a quotient space

(a) Let {(Uα ,φα )}2
α=1 be the atlas of the circle S1 in Example 5.7, and let φ̄α be the map φα

followed by the projection R→R/2πZ. On U1∩U2 = A ∐ B, since φ1 and φ2 differ by an

integer multiple of 2π , φ̄1 = φ̄2. Therefore, φ̄1 and φ̄2 piece together to give a well-defined

map φ̄ : S1→ R/2πZ. Prove that φ̄ is C∞.

(b) The complex exponential R→ S1, t 7→ eit , is constant on each orbit of the action of 2πZ
on R. Therefore, there is an induced map F : R/2πZ→ S1, F([t]) = eit . Prove that F

is C∞.

(c) Prove that F : R/2πZ→ S1 is a diffeomorphism.

7.8. The Grassmannian G(k,n)
The Grassmannian G(k,n) is the set of all k-planes through the origin in Rn. Such a k-plane

is a linear subspace of dimension k of Rn and has a basis consisting of k linearly independent

vectors a1, . . . ,ak in Rn. It is therefore completely specified by an n×k matrix A = [a1 · · · ak]
of rank k, where the rank of a matrix A, denoted by rkA, is defined to be the number of linearly

independent columns of A. This matrix is called a matrix representative of the k-plane. (For

properties of the rank, see the problems in Appendix B.)

Two bases a1, . . . ,ak and b1, . . . ,bk determine the same k-plane if there is a change-of-

basis matrix g = [gi j] ∈ GL(k,R) such that

b j = ∑
i

aigi j, 1≤ i, j ≤ k.

In matrix notation, B = Ag.

Let F(k,n) be the set of all n× k matrices of rank k, topologized as a subspace of Rn×k,

and ∼ the equivalence relation

A∼ B iff there is a matrix g ∈ GL(k,R) such that B = Ag.

In the notation of Problem B.3, F(k,n) is the set Dmax in Rn×k and is therefore an open

subset. There is a bijection between G(k,n) and the quotient space F(k,n)/∼. We give the

Grassmannian G(k,n) the quotient topology on F(k,n)/∼.

(a) Show that ∼ is an open equivalence relation. (Hint: Either mimic the proof of Proposi-

tion 7.14 or apply Problem 7.5.)

(b) Prove that the Grassmannian G(k,n) is second countable. (Hint: Apply Corollary 7.10.)

(c) Let S = F(k,n). Prove that the graph R in S× S of the equivalence relation ∼ is closed.

(Hint: Two matrices A= [a1 · · · ak] and B= [b1 · · · bk] in F(k,n) are equivalent if and only

if every column of B is a linear combination of the columns of A if and only if rk[A B]≤ k

if and only if all (k+1)× (k+1) minors of [A B] are zero.)

(d) Prove that the Grassmannian G(k,n) is Hausdorff. (Hint: Mimic the proof of Proposi-

tion 7.16.)

Next we want to find a C∞ atlas on the Grassmannian G(k,n). For simplicity, we specialize to

G(2,4). For any 4×2 matrix A, let Ai j be the 2×2 submatrix consisting of its ith row and jth

row. Define

Vi j = {A ∈ F(2,4) | Ai j is nonsingular}.
Because the complement of Vi j in F(2,4) is defined by the vanishing of det Ai j, we conclude

that Vi j is an open subset of F(2,4).

(e) Prove that if A ∈Vi j, then Ag ∈Vi j for any nonsingular matrix g ∈ GL(2,R).
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Define Ui j = Vi j/∼. Since ∼ is an open equivalence relation, Ui j = Vi j/∼ is an open subset

of G(2,4).
For A ∈V12,

A∼ AA−1
12 =




1 0

0 1

∗ ∗
∗ ∗


=

[
I

A34A−1
12

]
.

This shows that the matrix representatives of a 2-plane in U12 have a canonical form B in

which B12 is the identity matrix.

(f) Show that the map φ̃12 : V12→ R2×2,

φ̃12(A) = A34A−1
12 ,

induces a homeomorphism φ12 : U12→ R2×2.

(g) Define similarly homeomorphisms φi j : Ui j→R2×2. Compute φ12 ◦ φ−1
23 , and show that it

is C∞.

(h) Show that {Ui j | 1 ≤ i < j ≤ 4} is an open cover of G(2,4) and that G(2,4) is a smooth

manifold.

Similar consideration shows that F(k,n) has an open cover {VI}, where I is a strictly

ascending multi-index 1≤ i1 < · · ·< ik ≤ n. For A ∈ F(k,n), let AI be the k× k submatrix of

A consisting of i1th, . . . , ikth rows of A. Define

VI = {A ∈ G(k,n) | det AI 6= 0}.

Next define φ̃I : VI → R(n−k)×k by

φ̃I(A) = (AA−1
I )I′ ,

where ( )I′ denotes the (n− k)× k submatrix obtained from the complement I′ of the multi-

index I. Let UI = VI/∼. Then φ̃ induces a homeomorphism φ : UI → R(n−k)×k. It is not

difficult to show that {(UI ,φI)} is a C∞ atlas for G(k,n). Therefore the Grassmannian G(k,n)
is a C∞ manifold of dimension k(n−k).

7.9.* Compactness of real projective space

Show that the real projective space RPn is compact. (Hint: Use Exercise 7.11.)



Chapter 3

The Tangent Space

By definition, the tangent space to a manifold at a point is the vector space of deriva-

tions at the point. A smooth map of manifolds induces a linear map, called its differ-

ential, of tangent spaces at corresponding points. In local coordinates, the differential

is represented by the Jacobian matrix of partial derivatives of the map. In this sense,

the differential of a map between manifolds is a generalization of the derivative of a

map between Euclidean spaces.

A basic principle in manifold theory is the linearization principle, according to

which a manifold can be approximated near a point by its tangent space at the point,

and a smooth map can be approximated by the differential of the map. In this way,

one turns a topological problem into a linear problem. A good example of the lin-

earization principle is the inverse function theorem, which reduces the local invert-

ibility of a smooth map to the invertibility of its differential at a point.

Using the differential, we classify maps having maximal rank at a point into

immersions and submersions at the point, depending on whether the differential is

injective or surjective there. A point where the differential is surjective is a regular

point of the map. The regular level set theorem states that a level set all of whose

points are regular is a regular submanifold, i.e., a subset that locally looks like a

coordinate k-plane in Rn. This theorem gives a powerful tool for proving that a

topological space is a manifold.

We then introduce categories and functors, a framework for comparing structural

similarities. After this interlude, we return to the study of maps via their differentials.

From the rank of the differential, one obtains three local normal forms for smooth

maps—the constant rank theorem, the immersion theorem, and the submersion theo-

rem, corresponding to constant-rank differentials, injective differentials, and surjec-

tive differentials respectively. We give three proofs of the regular level set theorem, a

first proof (Theorem 9.9), using the inverse function theorem, that actually produces

explicit local coordinates, and two more proofs (p. 119) that are corollaries of the

constant rank theorem and the submersion theorem.

The collection of tangent spaces to a manifold can be given the structure of a

vector bundle; it is then called the tangent bundle of the manifold. Intuitively, a

vector bundle over a manifold is a locally trivial family of vector spaces parametrized

© Springer Science+Business Media, LLC 2011
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by points of the manifold. A smooth map of manifolds induces, via its differential

at each point, a bundle map of the corresponding tangent bundles. In this way we

obtain a covariant functor from the category of smooth manifolds and smooth maps

to the category of vector bundles and bundle maps. Vector fields, which manifest

themselves in the physical world as velocity, force, electricity, magnetism, and so

on, may be viewed as sections of the tangent bundle over a manifold.

Smooth C∞ bump functions and partitions of unity are an indispensable technical

tool in the theory of smooth manifolds. Using C∞ bump functions, we give several

criteria for a vector field to be smooth. The chapter ends with integral curves, flows,

and the Lie bracket of smooth vector fields.

§8 The Tangent Space

In Section 2 we saw that for any point p in an open set U in Rn there are two equiv-

alent ways to define a tangent vector at p:

(i) as an arrow (Figure 8.1), represented by a column vector;

b
p




a1

...

an




Fig. 8.1. A tangent vector in Rn as an arrow and as a column vector.

(ii) as a point-derivation of C∞
p , the algebra of germs of C∞ functions at p.

Both definitions generalize to a manifold. In the arrow approach, one defines a

tangent vector at p in a manifold M by first choosing a chart (U,φ) at p and then

decreeing a tangent vector at p to be an arrow at φ(p) in φ(U). This approach, while

more visual, is complicated to work with, since a different chart (V,ψ) at p would

give rise to a different set of tangent vectors at p and one would have to decide how

to identify the arrows at φ(p) in U with the arrows at ψ(p) in ψ(V ).
The cleanest and most intrinsic definition of a tangent vector at p in M is as a

point-derivation, and this is the approach we adopt.

8.1 The Tangent Space at a Point

Just as for Rn, we define a germ of a C∞ function at p in M to be an equivalence

class of C∞ functions defined in a neighborhood of p in M, two such functions being

equivalent if they agree on some, possibly smaller, neighborhood of p. The set of
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germs of C∞ real-valued functions at p in M is denoted by C∞
p (M). The addition and

multiplication of functions make C∞
p (M) into a ring; with scalar multiplication by

real numbers, C∞
p (M) becomes an algebra over R.

Generalizing a derivation at a point in Rn, we define a derivation at a point in

a manifold M, or a point-derivation of C∞
p (M), to be a linear map D : C∞

p (M)→ R

such that

D( f g) = (D f )g(p)+ f (p)Dg.

Definition 8.1. A tangent vector at a point p in a manifold M is a derivation at p.

Just as for Rn, the tangent vectors at p form a vector space Tp(M), called the

tangent space of M at p. We also write TpM instead of Tp(M).

Remark 8.2 (Tangent space to an open subset). If U is an open set containing p in

M, then the algebra C∞
p (U) of germs of C∞ functions in U at p is the same as C∞

p (M).
Hence, TpU = TpM.

Given a coordinate neighborhood (U,φ) = (U,x1, . . . ,xn) about a point p in a

manifold M, we recall the definition of the partial derivatives ∂/∂xi first introduced

in Section 6. Let r1, . . . ,rn be the standard coordinates on Rn. Then

xi = ri ◦ φ : U → R.

If f is a smooth function in a neighborhood of p, we set

∂

∂xi

∣∣∣∣
p

f =
∂

∂ ri

∣∣∣∣
φ(p)

(
f ◦ φ−1

)
∈ R.

It is easily checked that ∂/∂xi|p satisfies the derivation property and so is a tangent

vector at p.

When M is one-dimensional and t is a local coordinate, it is customary to write

d/dt|p instead of ∂/∂ t|p for the coordinate vector at the point p. To simplify the

notation, we will sometimes write ∂/∂xi instead of ∂/∂xi|p if it is understood at

which point the tangent vector is located.

8.2 The Differential of a Map

Let F : N→M be a C∞ map between two manifolds. At each point p ∈ N, the map

F induces a linear map of tangent spaces, called its differential at p,

F∗ : TpN→ TF(p)M

as follows. If Xp ∈ TpN, then F∗(Xp) is the tangent vector in TF(p)M defined by

(F∗(Xp)) f = Xp( f ◦ F) ∈ R for f ∈C∞
F(p)(M). (8.1)

Here f is a germ at F(p), represented by a C∞ function in a neighborhood of F(p).
Since (8.1) is independent of the representative of the germ, in practice we can be

cavalier about the distinction between a germ and a representative function for the

germ.
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Exercise 8.3 (The differential of a map). Check that F∗(Xp) is a derivation at F(p) and that

F∗ : TpN→ TF(p)M is a linear map.

To make the dependence on p explicit we sometimes write F∗,p instead of F∗.

Example 8.4 (Differential of a map between Euclidean spaces). Suppose F : Rn →
Rm is smooth and p is a point in Rn. Let x1, . . . ,xn be the coordinates on Rn and

y1, . . . ,ym the coordinates on Rm. Then the tangent vectors ∂/∂x1|p, . . . ,∂/∂xn|p
form a basis for the tangent space Tp(R

n) and ∂/∂y1|F(p), . . . ,∂/∂ym|F(p) form a

basis for the tangent space TF(p)(R
m). The linear map F∗ : Tp(R

n)→ TF(p)(R
m) is

described by a matrix [ai
j] relative to these two bases:

F∗

(
∂

∂x j

∣∣∣∣
p

)
= ∑

k

ak
j

∂

∂yk

∣∣∣∣
F(p)

, ak
j ∈ R. (8.2)

Let Fi = yi ◦ F be the ith component of F . We can find ai
j by evaluating the right-

hand side (RHS) and left-hand side (LHS) of (8.2) on yi:

RHS = ∑
k

ak
j

∂

∂yk

∣∣∣∣
F(p)

yi = ∑
k

ak
jδ

i
k = ai

j,

LHS = F∗

(
∂

∂x j

∣∣∣∣
p

)
yi =

∂

∂x j

∣∣∣∣
p

(yi ◦ F) =
∂Fi

∂x j
(p).

So the matrix of F∗ relative to the bases {∂/∂x j|p} and {∂/∂yi|F(p)} is [∂Fi/∂x j(p)].
This is precisely the Jacobian matrix of the derivative of F at p. Thus, the differential

of a map between manifolds generalizes the derivative of a map between Euclidean

spaces.

8.3 The Chain Rule

Let F : N → M and G : M → P be smooth maps of manifolds, and p ∈ N. The

differentials of F at p and G at F(p) are linear maps

TpN
F∗,p−−→ TF(p)M

G∗,F(p)−−−−→ TG(F(p))P.

Theorem 8.5 (The chain rule). If F : N→M and G : M→ P are smooth maps of

manifolds and p ∈ N, then

(G ◦ F)∗,p = G∗,F(p) ◦ F∗,p.

Proof. Let Xp ∈ TpN and let f be a smooth function at G(F(p)) in P. Then

((G ◦ F)∗Xp) f = Xp( f ◦ G ◦ F)

and

((G∗ ◦ F∗)Xp) f = (G∗(F∗Xp)) f = (F∗Xp)( f ◦ G) = Xp( f ◦ G ◦ F). ⊓⊔
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Example 8.13 shows that when written out in terms of matrices, the chain rule of

Theorem 8.5 assumes a more familiar form as a sum of products of partial deriva-

tives.

Remark. The differential of the identity map 1M : M→M at any point p in M is the

identity map

1TpM : TpM→ TpM,

because

((1M)∗Xp) f = Xp( f ◦ 1M) = Xp f ,

for any Xp ∈ TpM and f ∈C∞
p (M).

Corollary 8.6. If F : N → M is a diffeomorphism of manifolds and p ∈ N, then

F∗ : TpN→ TF(p)M is an isomorphism of vector spaces.

Proof. To say that F is a diffeomorphism means that it has a differentiable inverse

G : M→ N such that G ◦ F = 1N and F ◦ G = 1M. By the chain rule,

(G ◦ F)∗ = G∗ ◦ F∗ = (1N)∗ = 1TpN ,

(F ◦ G)∗ = F∗ ◦ G∗ = (1M)∗ = 1TF(p)M
.

Hence, F∗ and G∗ are isomorphisms. ⊓⊔

Corollary 8.7 (Invariance of dimension). If an open set U ⊂ Rn is diffeomorphic

to an open set V ⊂ Rm, then n = m.

Proof. Let F : U → V be a diffeomorphism and let p ∈ U . By Corollary 8.6,

F∗,p : TpU → TF(p)V is an isomorphism of vector spaces. Since there are vector

space isomorphisms TpU ≃ Rn and TF(p) ≃ Rm, we must have that n = m. ⊓⊔

8.4 Bases for the Tangent Space at a Point

As usual, we denote by r1, . . . ,rn the standard coordinates on Rn, and if (U,φ) is

a chart about a point p in a manifold M of dimension n, we set xi = ri ◦ φ . Since

φ : U → Rn is a diffeomorphism onto its image (Proposition 6.10), by Corollary 8.6

the differential

φ∗ : TpM→ Tφ(p)R
n

is a vector space isomorphism. In particular, the tangent space TpM has the same

dimension n as the manifold M.

Proposition 8.8. Let (U,φ) = (U,x1, . . . ,xn) be a chart about a point p in a manifold

M. Then

φ∗

(
∂

∂xi

∣∣∣∣
p

)
=

∂

∂ ri

∣∣∣∣
φ(p)

.
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Proof. For any f ∈C∞
φ(p)(R

n),

φ∗

(
∂

∂xi

∣∣∣∣
p

)
f =

∂

∂xi

∣∣∣∣
p

( f ◦ φ) (definition of φ∗)

=
∂

∂ ri

∣∣∣∣
φ(p)

( f ◦ φ ◦ φ−1) (definition of ∂/∂xi|p)

=
∂

∂ ri

∣∣∣∣
φ(p)

f . ⊓⊔

Proposition 8.9. If (U,φ) = (U,x1, . . . ,xn) is a chart containing p, then the tangent

space TpM has basis

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

.

Proof. An isomorphism of vector spaces carries a basis to a basis. By Propo-

sition 8.8 the isomorphism φ∗ : TpM → Tφ(p)(R
n) maps ∂/∂x1|p, . . . ,∂/∂xn|p to

∂/∂ r1|φ(p), . . . ,∂/∂ rn|φ(p), which is a basis for the tangent space Tφ(p)(R
n). There-

fore, ∂/∂x1|p, . . . ,∂/∂xn|p is a basis for TpM. ⊓⊔

Proposition 8.10 (Transition matrix for coordinate vectors). Suppose (U,x1, . . . ,
xn) and (V,y1, . . . ,yn) are two coordinate charts on a manifold M. Then

∂

∂x j
= ∑

i

∂yi

∂x j

∂

∂yi

on U ∩V.

Proof. At each point p ∈U ∩V , the sets {∂/∂x j|p} and {∂/∂yi|p} are both bases

for the tangent space TpM, so there is a matrix [ai
j(p)] of real numbers such that on

U ∩V ,

∂

∂x j
= ∑

k

ak
j

∂

∂yk
.

Applying both sides of the equation to yi, we get

∂yi

∂x j
= ∑

k

ak
j

∂yi

∂yk

= ∑
k

ak
jδ

i
k (by Proposition 6.22)

= ai
j. ⊓⊔
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8.5 A Local Expression for the Differential

Given a smooth map F : N→M of manifolds and p∈N, let (U,x1, . . . ,xn) be a chart

about p in N and let (V,y1, . . . ,ym) be a chart about F(p) in M. We will find a local

expression for the differential F∗,p : TpN→ TF(p)M relative to the two charts.

By Proposition 8.9, {∂/∂x j|p}n
j=1 is a basis for TpN and {∂/∂yi|F(p)}m

i=1 is a

basis for TF(p)M. Therefore, the differential F∗ = F∗,p is completely determined by

the numbers ai
j such that

F∗

(
∂

∂x j

∣∣∣∣
p

)
=

m

∑
k=1

ak
j

∂

∂yk

∣∣∣∣
F(p)

, j = 1, . . . ,n.

Applying both sides to yi, we find that

ai
j =

(
m

∑
k=1

ak
j

∂

∂yk

∣∣∣∣
F(p)

)
yi = F∗

(
∂

∂x j

∣∣∣∣
p

)
yi =

∂

∂x j

∣∣∣∣
p

(yi ◦ F) =
∂Fi

∂x j
(p).

We state this result as a proposition.

Proposition 8.11. Given a smooth map F : N→M of manifolds and a point p ∈ N,

let (U,x1, . . . ,xn) and (V,y1, . . . ,ym) be coordinate charts about p in N and F(p) in M

respectively. Relative to the bases {∂/∂x j|p} for TpN and {∂/∂yi|F(p)} for TF(p)M,

the differential F∗,p : TpN → TF(p)M is represented by the matrix [∂Fi/∂x j(p)],

where Fi = yi ◦ F is the ith component of F.

This proposition is in the spirit of the “arrow” approach to tangent vectors. Here

each tangent vector in TpN is represented by a column vector relative to the basis

{∂/∂x j|p}, and the differential F∗,p is represented by a matrix.

Remark 8.12 (Inverse function theorem). In terms of the differential, the inverse func-

tion theorem for manifolds (Theorem 6.26) has a coordinate-free description: a C∞

map F : N→M between two manifolds of the same dimension is locally invertible

at a point p ∈ N if and only if its differential F∗,p : TpN→ Tf (p)M at p is an isomor-

phism.

Example 8.13 (The chain rule in calculus notation). Suppose w = G(x,y,z) is a C∞

function:R3→R and (x,y,z) = F(t) is a C∞ function:R→R3. Under composition,

w = (G ◦ F)(t) = G(x(t),y(t),z(t))

becomes a C∞ function of t ∈ R. The differentials F∗, G∗, and (G ◦ F)∗ are repre-

sented by the matrices




dx/dt

dy/dt

dz/dt


 ,

[
∂w

∂x

∂w

∂y

∂w

∂ z

]
, and

dw

dt
,
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respectively. Since composition of linear maps is represented by matrix multiplica-

tion, in terms of matrices the chain rule (G ◦ F)∗ = G∗ ◦ F∗ is equivalent to

dw

dt
=

[
∂w

∂x

∂w

∂y

∂w

∂ z

]


dx/dt

dy/dt

dz/dt


=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂ z

dz

dt
.

This is the usual form of the chain rule taught in calculus.

8.6 Curves in a Manifold

A smooth curve in a manifold M is by definition a smooth map c : ]a,b[→M from

some open interval ]a,b[ into M. Usually we assume 0 ∈ ]a,b[ and say that c is a

curve starting at p if c(0) = p. The velocity vector c′(t0) of the curve c at time

t0 ∈ ]a,b[ is defined to be

c′(t0) := c∗

(
d

dt

∣∣∣∣
t0

)
∈ Tc(t0)M.

We also say that c′(t0) is the velocity of c at the point c(t0). Alternative notations for

c′(t0) are
dc

dt
(t0) and

d

dt

∣∣∣∣
t0

c.

NOTATION. When c : ]a,b[ → R is a curve with target space R, the notation c′(t)
can be a source of confusion. Here t is the standard coordinate on the domain ]a,b[.
Let x be the standard coordinate on the target space R. By our definition, c′(t) is a

tangent vector at c(t), hence a multiple of d/dx|c(t). On the other hand, in calculus

notation c′(t) is the derivative of a real-valued function and is therefore a scalar. If it

is necessary to distinguish between these two meanings of c′(t) when c maps into R,

we will write ċ(t) for the calculus derivative.

Exercise 8.14 (Velocity vector versus the calculus derivative).* Let c : ]a,b[→R be a curve

with target space R. Verify that c′(t) = ċ(t)d/dx|c(t).

Example. Define c : R→ R2 by

c(t) = (t2, t3).

(See Figure 8.2.)

Then c′(t) is a linear combination of ∂/∂x and ∂/∂y at c(t):

c′(t) = a
∂

∂x
+b

∂

∂y
.

To compute a, we evaluate both sides on x:
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1−1

1

−1

x

y

Fig. 8.2. A cuspidal cubic.

a =

(
a

∂

∂x
+b

∂

∂y

)
x = c′(t)x = c∗

(
d

dt

)
x =

d

dt
(x ◦ c) =

d

dt
t2 = 2t.

Similarly,

b =

(
a

∂

∂x
+b

∂

∂y

)
y = c′(t)y = c∗

(
d

dt

)
y =

d

dt
(y ◦ c) =

d

dt
t3 = 3t2.

Thus,

c′(t) = 2t
∂

∂x
+ 3t2 ∂

∂y
.

In terms of the basis ∂/∂x|c(t),∂/∂y|c(t) for Tc(t)(R
2),

c′(t) =

[
2t

3t2

]
.

More generally, as in this example, to compute the velocity vector of a smooth

curve c in Rn, one can simply differentiate the components of c. This shows that our

definition of the velocity vector of a curve agrees with the usual definition in vector

calculus.

Proposition 8.15 (Velocity of a curve in local coordinates). Let c : ]a,b[→ M

be a smooth curve, and let (U,x1, . . . ,xn) be a coordinate chart about c(t). Write

ci = xi ◦ c for the ith component of c in the chart. Then c′(t) is given by

c′(t) =
n

∑
i=1

ċi(t)
∂

∂xi

∣∣∣∣
c(t)

.

Thus, relative to the basis {∂/∂xi|p} for Tc(t)M, the velocity c′(t) is represented by

the column vector 


ċ1(t)
...

ċn(t)


 .

Proof. Problem 8.5. ⊓⊔
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Every smooth curve c at p in a manifold M gives rise to a tangent vector c′(0) in

TpM. Conversely, one can show that every tangent vector Xp ∈ TpM is the velocity

vector of some curve at p, as follows.

Proposition 8.16 (Existence of a curve with a given initial vector). For any point

p in a manifold M and any tangent vector Xp ∈ TpM, there are ε > 0 and a smooth

curve c : ]− ε,ε[→M such that c(0) = p and c′(0) = Xp.

b

0 b

α φ

p

Xp = ∑ai
∂

∂xi

∣∣∣∣
p

∑ai
∂

∂ ri

∣∣∣∣
0

r2

r1

U

Fig. 8.3. Existence of a curve through a point with a given initial vector.

Proof. Let (U,φ) = (U,x1, . . . ,xn) be a chart centered at p; i.e., φ(p) = 0 ∈ Rn.

Suppose Xp = ∑ai∂/∂xi|p at p. Let r1, . . . ,rn be the standard coordinates on Rn.

Then xi = ri ◦ φ . To find a curve c at p with c′(0) = Xp, start with a curve α in Rn

with α(0) = 0 and α ′(0) = ∑ai ∂/∂ ri|0. We then map α to M via φ−1 (Figure 8.3).

By Proposition 8.15, the simplest such α is

α(t) = (a1t, . . . ,ant), t ∈ ]− ε,ε[,

where ε is sufficiently small that α(t) lies in φ(U). Define c = φ−1 ◦ α : ]− ε,ε[→
M. Then

c(0) = φ−1(α(0)) = φ−1(0) = p,

and by Proposition 8.8,

c′(0) = (φ−1)∗α∗

(
d

dt

∣∣∣∣
t=0

)
= (φ−1)∗

(
∑ai ∂

∂ ri

∣∣∣∣
0

)
=∑ai ∂

∂xi

∣∣∣∣
p

= Xp. ⊓⊔

In Definition 8.1 we defined a tangent vector at a point p of a manifold abstractly

as a derivation at p. Using curves, we can now interpret a tangent vector geometri-

cally as a directional derivative.

Proposition 8.17. Suppose Xp is a tangent vector at a point p of a manifold M and

f ∈C∞
p (M). If c : ]− ε,ε[→M is a smooth curve starting at p with c′(0) = Xp, then

Xp f =
d

dt

∣∣∣∣
0

( f ◦ c).
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Proof. By the definitions of c′(0) and c∗,

Xp f = c′(0) f = c∗

(
d

dt

∣∣∣∣
0

)
f =

d

dt

∣∣∣∣
0

( f ◦ c). ⊓⊔

8.7 Computing the Differential Using Curves

We have introduced two ways of computing the differential of a smooth map, in

terms of derivations at a point (equation (8.1)) and in terms of local coordinates

(Proposition 8.11). The next proposition gives still another way of computing the

differential F∗,p, this time using curves.

Proposition 8.18. Let F : N → M be a smooth map of manifolds, p ∈ N, and Xp ∈
TpN. If c is a smooth curve starting at p in N with velocity Xp at p, then

F∗,p(Xp) =
d

dt

∣∣∣∣
0

(F ◦ c)(t).

In other words, F∗,p(Xp) is the velocity vector of the image curve F ◦ c at F(p).

Proof. By hypothesis, c(0) = p and c′(0) = Xp. Then

F∗,p(Xp) = F∗,p(c′(0))

= (F∗,p ◦ c∗,0)

(
d

dt

∣∣∣∣
0

)

= (F ◦ c)∗,0

(
d

dt

∣∣∣∣
0

)
(by the chain rule, Theorem 8.5)

=
d

dt

∣∣∣∣
0

(F ◦ c)(t). ⊓⊔

Example 8.19 (Differential of left multiplication). If g is a matrix in the general

linear group GL(n,R), let ℓg : GL(n,R)→GL(n,R) be left multiplication by g; thus,

ℓg(B) = gB for any B ∈ GL(n,R). Since GL(n,R) is an open subset of the vector

space Rn×n, the tangent space Tg(GL(n,R)) can be identified with Rn×n. Show that

with this identification the differential (ℓg)∗,I : TI(GL(n,R))→ Tg(GL(n,R)) is also

left multiplication by g.

Solution. Let X ∈ TI(GL(n,R)) =Rn×n. To compute (ℓg)∗,I(X), choose a curve c(t)
in GL(n,R) with c(0) = I and c′(0) = X . Then ℓg(c(t)) = gc(t) is simply matrix

multiplication. By Proposition 8.18,

(ℓg)∗,I(X) =
d

dt

∣∣∣∣
t=0

ℓg(c(t)) =
d

dt

∣∣∣∣
t=0

gc(t) = gc′(0) = gX .

In this computation, d/dt|t=0 gc(t)= gc′(0) by R-linearity and Proposition 8.15. ⊓⊔



96 §8 The Tangent Space

8.8 Immersions and Submersions

Just as the derivative of a map between Euclidean spaces is a linear map that best

approximates the given map at a point, so the differential at a point serves the

same purpose for a C∞ map between manifolds. Two cases are especially impor-

tant. A C∞ map F : N → M is said to be an immersion at p ∈ N if its differential

F∗,p : TpN → TF(p)M is injective, and a submersion at p if F∗,p is surjective. We

call F an immersion if it is an immersion at every p ∈ N and a submersion if it is a

submersion at every p ∈ N.

Remark 8.20. Suppose N and M are manifolds of dimensions n and m respec-

tively. Then dimTpN = n and dimTF(p)M = m. The injectivity of the differential

F∗,p : TpN → TF(p)M implies immediately that n ≤ m. Similarly, the surjectivity of

the differential F∗,p implies that n ≥ m. Thus, if F : N → M is an immersion at a

point of N, then n≤ m and if F is a submersion a point of N, then n≥ m.

Example 8.21. The prototype of an immersion is the inclusion of Rn in a higher-

dimensional Rm:

i(x1, . . . ,xn) = (x1, . . . ,xn,0, . . . ,0).

The prototype of a submersion is the projection of Rn onto a lower-dimensional Rm:

π(x1, . . . ,xm,xm+1, . . . ,xn) = (x1, . . . ,xm).

Example. If U is an open subset of a manifold M, then the inclusion i : U→M is both

an immersion and a submersion. This example shows in particular that a submersion

need not be onto.

In Section 11, we will undertake a more in-depth analysis of immersions and

submersions. According to the immersion and submersion theorems to be proven

there, every immersion is locally an inclusion and every submersion is locally a

projection.

8.9 Rank, and Critical and Regular Points

The rank of a linear transformation L : V →W between finite-dimensional vector

spaces is the dimension of the image L(V ) as a subspace of W , while the rank of

a matrix A is the dimension of its column space. If L is represented by a matrix A

relative to a basis for V and a basis for W , then the rank of L is the same as the rank

of A, because the image L(V ) is simply the column space of A.

Now consider a smooth map F : N → M of manifolds. Its rank at a point p in

N, denoted by rkF(p), is defined as the rank of the differential F∗,p : TpN→ TF(p)M.

Relative to the coordinate neighborhoods (U,x1, . . . ,xn) at p and (V,y1, . . . ,ym) at

F(p), the differential is represented by the Jacobian matrix [∂Fi/∂x j(p)] (Proposi-

tion 8.11), so
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rkF(p) = rk

[
∂Fi

∂x j
(p)

]
.

Since the differential of a map is independent of coordinate charts, so is the rank of

a Jacobian matrix.

Definition 8.22. A point p in N is a critical point of F if the differential

F∗,p : TpN→ TF(p)M

fails to be surjective. It is a regular point of F if the differential F∗,p is surjective. In

other words, p is a regular point of the map F if and only if F is a submersion at p.

A point in M is a critical value if it is the image of a critical point; otherwise it is a

regular value (Figure 8.4).

b

b

b

b

b

×

×

×

×

×

= critical points

= critical values

f

N = torus M =R

Fig. 8.4. Critical points and critical values of the function f (x,y,z) = z.

Two aspects of this definition merit elaboration:

(i) We do not define a regular value to be the image of a regular point. In fact,

a regular value need not be in the image of F at all. Any point of M not in

the image of F is automatically a regular value because it is not the image of a

critical point.

(ii) A point c in M is a critical value if and only if some point in the preimage

F−1({c}) is a critical point. A point c in the image of F is a regular value if and

only if every point in the preimage F−1({c}) is a regular point.

Proposition 8.23. For a real-valued function f : M→R, a point p in M is a critical

point if and only if relative to some chart (U,x1, . . . ,xn) containing p, all the partial

derivatives satisfy
∂ f

∂x j
(p) = 0, j = 1, . . . ,n.

Proof. By Proposition 8.11 the differential f∗,p : TpM→ Tf (p)R ≃ R is represented

by the matrix
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[
∂ f

∂x1
(p) · · · ∂ f

∂xn
(p)

]
.

Since the image of f∗,p is a linear subspace of R, it is either zero-dimensional or

one-dimensional. In other words, f∗,p is either the zero map or a surjective map.

Therefore, f∗,p fails to be surjective if and only if all the partial derivatives ∂ f/∂xi(p)
are zero. ⊓⊔

Problems

8.1.* Differential of a map

Let F : R2→ R3 be the map

(u,v,w) = F(x,y) = (x,y,xy).

Let p = (x,y) ∈ R2. Compute F∗(∂/∂x|p) as a linear combination of ∂/∂u, ∂/∂v, and ∂/∂w

at F(p).

8.2. Differential of a linear map

Let L : Rn→Rm be a linear map. For any p∈Rn, there is a canonical identification Tp(R
n)∼→

Rn given by

∑ai ∂

∂xi

∣∣∣∣
p

7→ a = 〈a1, . . . ,an〉.

Show that the differential L∗,p : Tp(R
n)→ TL(p)(R

m) is the map L : Rn→ Rm itself, with the

identification of the tangent spaces as above.

8.3. Differential of a map

Fix a real number α and define F : R2→ R2 by

[
u

v

]
= (u,v) = F(x,y) =

[
cosα −sinα
sinα cosα

][
x

y

]
.

Let X =−y∂/∂x+x∂/∂y be a vector field on R2. If p = (x,y) ∈R2 and F∗(Xp) = (a∂/∂u+
b∂/∂v)|F(p), find a and b in terms of x, y, and α .

8.4. Transition matrix for coordinate vectors

Let x,y be the standard coordinates on R2, and let U be the open set

U =R2−{(x,0) | x≥ 0}.

On U the polar coordinates r,θ are uniquely defined by

x = r cosθ ,

y = r sinθ , r > 0, 0 < θ < 2π.

Find ∂/∂ r and ∂/∂θ in terms of ∂/∂x and ∂/∂y.

8.5.* Velocity of a curve in local coordinates

Prove Proposition 8.15.
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8.6. Velocity vector

Let p = (x,y) be a point in R2. Then

cp(t) =

[
cos2t −sin2t

sin2t cos2t

][
x

y

]
, t ∈ R,

is a curve with initial point p in R2. Compute the velocity vector c′p(0).

8.7.* Tangent space to a product

If M and N are manifolds, let π1 : M×N →M and π2 : M×N→ N be the two projections.

Prove that for (p,q) ∈M×N,

(π1∗,π2∗) : T(p,q)(M×N)→ TpM×TqN

is an isomorphism.

8.8. Differentials of multiplication and inverse

Let G be a Lie group with multiplication map µ : G×G→ G, inverse map ι : G→ G, and

identity element e.

(a) Show that the differential at the identity of the multiplication map µ is addition:

µ∗,(e,e) : TeG×TeG→ TeG,

µ∗,(e,e)(Xe,Ye) = Xe +Ye.

(Hint: First, compute µ∗,(e,e)(Xe,0) and µ∗,(e,e)(0,Ye) using Proposition 8.18.)

(b) Show that the differential at the identity of ι is the negative:

ι∗,e : TeG→ TeG,

ι∗,e(Xe) =−Xe.

(Hint: Take the differential of µ(c(t),(ι ◦ c)(t)) = e.)

8.9.* Transforming vectors to coordinate vectors

Let X1, . . . ,Xn be n vector fields on an open subset U of a manifold of dimension n. Suppose

that at p ∈U , the vectors (X1)p, . . . ,(Xn)p are linearly independent. Show that there is a chart

(V,x1, . . . ,xn) about p such that (Xi)p = (∂/∂xi)p for i = 1, . . . ,n.

8.10. Local maxima

A real-valued function f : M→ R on a manifold is said to have a local maximum at p ∈M if

there is a neighborhood U of p such that f (p)≥ f (q) for all q ∈U .

(a)* Prove that if a differentiable function f : I→ R defined on an open interval I has a local

maximum at p ∈ I, then f ′(p) = 0.

(b) Prove that a local maximum of a C∞ function f : M→ R is a critical point of f . (Hint:

Let Xp be a tangent vector in TpM and let c(t) be a curve in M starting at p with initial

vector Xp. Then f ◦ c is a real-valued function with a local maximum at 0. Apply (a).)
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§9 Submanifolds

We now have two ways of showing that a given topological space is a manifold:

(a) by checking directly that the space is Hausdorff, second countable, and has a C∞

atlas;

(b) by exhibiting it as an appropriate quotient space. Section 7 lists some conditions

under which a quotient space is a manifold.

In this section we introduce the concept of a regular submanifold of a manifold,

a subset that is locally defined by the vanishing of some of the coordinate functions.

Using the inverse function theorem, we derive a criterion, called the regular level set

theorem, that can often be used to show that a level set of a C∞ map of manifolds is

a regular submanifold and therefore a manifold.

Although the regular level set theorem is a simple consequence of the constant

rank theorem and the submersion theorem to be discussed in Section 11, deducing

it directly from the inverse function theorem has the advantage of producing explicit

coordinate functions on the submanifold.

9.1 Submanifolds

The xy-plane in R3 is the prototype of a regular submanifold of a manifold. It is

defined by the vanishing of the coordinate function z.

Definition 9.1. A subset S of a manifold N of dimension n is a regular sub-

manifold of dimension k if for every p ∈ S there is a coordinate neighborhood

(U,φ) = (U,x1, . . . ,xn) of p in the maximal atlas of N such that U ∩ S is defined

by the vanishing of n− k of the coordinate functions. By renumbering the coordi-

nates, we may assume that these n− k coordinate functions are xk+1, . . . ,xn.

We call such a chart (U,φ) in N an adapted chart relative to S. On U ∩ S, φ =
(x1, . . . ,xk,0, . . . ,0). Let

φS : U ∩S→ Rk

be the restriction of the first k components of φ to U ∩ S, that is, φS = (x1, . . . ,xk).
Note that (U ∩S,φS) is a chart for S in the subspace topology.

Definition 9.2. If S is a regular submanifold of dimension k in a manifold N of

dimension n, then n− k is said to be the codimension of S in N.

Remark. As a topological space, a regular submanifold of N is required to have the

subspace topology.

Example. In the definition of a regular submanifold, the dimension k of the subman-

ifold may be equal to n, the dimension of the manifold. In this case, U ∩S is defined
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by the vanishing of none of the coordinate functions and so U ∩ S = U . Therefore,

an open subset of a manifold is a regular submanifold of the same dimension.

Remark. There are other types of submanifolds, but unless otherwise specified, by a

“submanifold” we will always mean a “regular submanifold.”

Example. The interval S := ]− 1,1[ on the x-axis is a regular submanifold of the

xy-plane (Figure 9.1). As an adapted chart, we can take the open square U = ]−1,1[
× ]−1,1[ with coordinates x,y. Then U ∩S is precisely the zero set of y on U .

V is not an adapted chart.U is an adapted chart.

U V

−1 1 −1 1

Fig. 9.1.

Note that if V = ]−2,0[ × ]−1,1[, then (V,x,y) is not an adapted chart relative

to S, since V ∩S is the open interval ]−1,0[ on the x-axis, while the zero set of y on

V is the open interval ]−2,0[ on the x-axis.

0.2 0.4 0.6

1

−1

x

y

b b b

b b b

Fig. 9.2. The topologist’s sine curve.

Example 9.3. Let Γ be the graph of the function f (x) = sin(1/x) on the interval ]0,1[,
and let S be the union of Γ and the open interval

I = {(0,y) ∈ R2 | −1 < y < 1}.

The subset S of R2 is not a regular submanifold for the following reason: if p is

in the interval I, then there is no adapted chart containing p, since any sufficiently

small neighborhood U of p in R2 intersects S in infinitely many components. (The
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closure of Γ in R2 is called the topologist’s sine curve (Figure 9.2). It differs from S

in including the endpoints (1,sin1), (0,1), and (0,−1).)

Proposition 9.4. Let S be a regular submanifold of N and U= {(U,φ)} a collection

of compatible adapted charts of N that covers S. Then {(U ∩ S,φS)} is an atlas for

S. Therefore, a regular submanifold is itself a manifold. If N has dimension n and S

is locally defined by the vanishing of n− k coordinates, then dimS = k.

U
V

S

φ ψ

Fig. 9.3. Overlapping adapted charts relative to a regular submanifold S.

Proof. Let (U,φ) = (U,x1, . . . ,xn) and (V,ψ) = (V,y1, . . . ,yn) be two adapted charts

in the given collection (Figure 9.3). Assume that they intersect. As we remarked

in Definition 9.1, in any adapted chart relative to a submanifold S it is possible to

renumber the coordinates so that the last n− k coordinates vanish on points of S.

Then for p ∈U ∩V ∩S,

φ(p) = (x1, . . . ,xk,0, . . . ,0) and ψ(p) = (y1, . . . ,yk,0, . . . ,0),

so

φS(p) = (x1, . . . ,xk) and ψS(p) = (y1, . . . ,yk).

Therefore, (
ψS ◦ φ−1

S

)
(x1, . . . ,xk) = (y1, . . . ,yk).

Since y1, . . . ,yk are C∞ functions of x1, . . . ,xk (because ψ ◦ φ−1(x1, . . . ,xk,0, . . . ,0)
is C∞), the transition function ψS ◦ φ−1

S is C∞. Similarly, since x1, . . . ,xk are C∞

functions of y1, . . . ,yk, φS ◦ ψ−1
S is also C∞. Hence, any two charts in {(U ∩ S,φS)}

are C∞ compatible. Since {U ∩S}U∈U covers S, the collection {(U ∩S,φS)} is a C∞

atlas on S. ⊓⊔
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9.2 Level Sets of a Function

A level set of a map F : N→M is a subset

F−1({c}) = {p ∈ N | F(p) = c}

for some c ∈M. The usual notation for a level set is F−1(c), rather than the more

correct F−1({c}). The value c ∈ M is called the level of the level set F−1(c). If

F : N→Rm, then Z(F) := F−1(0) is the zero set of F . Recall that c is a regular value

of F if and only if either c is not in the image of F or at every point p ∈ F−1(c), the

differential F∗,p : TpN→ TF(p)M is surjective. The inverse image F−1(c) of a regular

value c is called a regular level set. If the zero set F−1(0) is a regular level set of

F : N→Rm, it is called a regular zero set.

Remark 9.5. If a regular level set F−1(c) is nonempty, say p ∈ F−1(c), then the map

F : N→M is a submersion at p. By Remark 8.20, dimN ≥ dimM.

Example 9.6 (The 2-sphere in R3). The unit 2-sphere

S2 = {(x,y,z) ∈ R3 | x2 + y2 + z2 = 1}

is the level set g−1(1) of level 1 of the function g(x,y,z) = x2 + y2 + z2. We will use

the inverse function theorem to find adapted charts of R3 that cover S2. As the proof

will show, the process is easier for a zero set, mainly because a regular submanifold

is defined locally as the zero set of coordinate functions. To express S2 as a zero set,

we rewrite its defining equation as

f (x,y,z) = x2 + y2 + z2−1 = 0.

Then S2 = f−1(0).
Since

∂ f

∂x
= 2x,

∂ f

∂y
= 2y,

∂ f

∂ z
= 2z,

the only critical point of f is (0,0,0), which does not lie on the sphere S2. Thus, all

points on the sphere are regular points of f and 0 is a regular value of f .

Let p be a point of S2 at which (∂ f/∂x)(p) = 2x(p) 6= 0. Then the Jacobian

matrix of the map ( f ,y,z) : R3→R3 is




∂ f

∂x

∂ f

∂y

∂ f

∂ z

∂y

∂x

∂y

∂y

∂y

∂ z

∂ z

∂x

∂ z

∂y

∂ z

∂ z



=




∂ f

∂x

∂ f

∂y

∂ f

∂ z

0 1 0

0 0 1



,

and the Jacobian determinant ∂ f/∂x(p) is nonzero. By Corollary 6.27 of the inverse

function theorem (Theorem 6.26), there is a neighborhood Up of p in R3 such that
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(Up, f ,y,z) is a chart in the atlas of R3. In this chart, the set Up∩S2 is defined by the

vanishing of the first coordinate f . Thus, (Up, f ,y,z) is an adapted chart relative to

S2, and (Up∩S2,y,z) is a chart for S2.

Similarly, if (∂ f/∂y)(p) 6= 0, then there is an adapted chart (Vp,x, f ,z) con-

taining p in which the set Vp ∩ S2 is the zero set of the second coordinate f . If

(∂ f/∂ z)(p) 6= 0, then there is an adapted chart (Wp,x,y, f ) containing p. Since for

every p ∈ S2, at least one of the partial derivatives ∂ f/∂x(p), ∂ f/∂y(p), ∂ f/∂ z(p)
is nonzero, as p varies over all points of the sphere we obtain a collection of adapted

charts of R3 covering S2. Therefore, S2 is a regular submanifold of R3. By Proposi-

tion 9.4, S2 is a manifold of dimension 2.

This is an important example because one can generalize its proof almost ver-

batim to prove that if the zero set of a function f : N → R is a regular level set,

then it is a regular submanifold of N. The idea is that in a coordinate neighborhood

(U,x1, . . . ,xn) if a partial derivative ∂ f/∂xi(p) is nonzero, then we can replace the

coordinate xi by f .

First we show that any regular level set g−1(c) of a C∞ real function g on a

manifold can be expressed as a regular zero set.

Lemma 9.7. Let g : N→R be a C∞ function. A regular level set g−1(c) of level c of

the function g is the regular zero set f−1(0) of the function f = g− c.

Proof. For any p ∈ N,

g(p) = c ⇐⇒ f (p) = g(p)− c = 0.

Hence, g−1(c) = f−1(0). Call this set S. Because the differential f∗,p equals g∗,p at

every point p ∈ N, the functions f and g have exactly the same critical points. Since

g has no critical points in S, neither does f . ⊓⊔

Theorem 9.8. Let g : N→ R be a C∞ function on the manifold N. Then a nonempty

regular level set S = g−1(c) is a regular submanifold of N of codimension 1.

Proof. Let f = g−c. By the preceding lemma, S equals f−1(0) and is a regular level

set of f . Let p∈ S. Since p is a regular point of f , relative to any chart (U,x1, . . . ,xn)
about p, (∂ f/∂xi)(p) 6= 0 for some i. By renumbering x1, . . . ,xn, we may assume

that (∂ f/∂x1)(p) 6= 0.

The Jacobian matrix of the C∞ map ( f ,x2, . . . ,xn) : U → Rn is




∂ f

∂x1

∂ f

∂x2
· · · ∂ f

∂xn

∂x2

∂x1

∂x2

∂x2
· · · ∂x2

∂xn

...
...

. . .
...

∂xn

∂x1

∂xn

∂x2
· · · ∂xn

∂xn




=




∂ f

∂x1
∗ · · · ∗

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1




.
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So the Jacobian determinant ∂ ( f ,x2, . . . ,xn)/∂ (x1,x2, . . . ,xn) at p is ∂ f/∂x1(p) 6= 0.

By the inverse function theorem (Corollary 6.27), there is a neighborhoodUp of p on

which f ,x2, . . . ,xn form a coordinate system. Relative to the chart (Up, f ,x2, . . . ,xn)
the level set Up ∩ S is defined by setting the first coordinate f equal to 0, so

(Up, f ,x2, . . . ,xn) is an adapted chart relative to S. Since p was arbitrary, S is a

regular submanifold of dimension n−1 in N. ⊓⊔

9.3 The Regular Level Set Theorem

The next step is to extend Theorem 9.8 to a regular level set of a map between smooth

manifolds. This very useful theorem does not seem to have an agreed-upon name in

the literature. It is known variously as the implicit function theorem, the preimage

theorem [17], and the regular level set theorem [25], among other nomenclatures.

We will follow [25] and call it the regular level set theorem.

Theorem 9.9 (Regular level set theorem). Let F : N → M be a C∞ map of man-

ifolds, with dimN = n and dimM = m. Then a nonempty regular level set F−1(c),
where c ∈M, is a regular submanifold of N of dimension equal to n−m.

Proof. Choose a chart (V,ψ) = (V,y1, . . . ,ym) of M centered at c, i.e., such that

ψ(c) = 0 in Rm. Then F−1(V ) is an open set in N that contains F−1(c). Moreover,

in F−1(V ), F−1(c) = (ψ ◦ F)−1(0). So the level set F−1(c) is the zero set of ψ ◦ F .

If Fi = yi ◦ F = ri ◦ (ψ ◦ F), then F−1(c) is also the common zero set of the functions

F1, . . . ,Fm on F−1(V ).

p

U

F−1(c)

F−1(V )

F ψ
V

N M Rn

c 0

ψ(V )

b b b

Fig. 9.4. The level set F−1(c) of F is the zero set of ψ ◦ F.

Because the regular level set is assumed nonempty, n ≥ m (Remark 9.5). Fix a

point p ∈ F−1(c) and let (U,φ) = (U,x1, . . . ,xn) be a coordinate neighborhood of

p in N contained in F−1(V ) (Figure 9.4). Since F−1(c) is a regular level set, p ∈
F−1(c) is a regular point of F . Therefore, the m× n Jacobian matrix [∂Fi/∂x j(p)]
has rank m. By renumbering the Fi and x j’s, we may assume that the first m×m

block [∂Fi/∂x j(p)]1≤i, j≤m is nonsingular.

Replace the first m coordinates x1, . . . ,xm of the chart (U,φ) by F1, . . . ,Fm. We

claim that there is a neighborhood Up of p such that (Up,F
1, . . . ,Fm,xm+1, . . . ,xn) is

a chart in the atlas of N. It suffices to compute its Jacobian matrix at p:
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∂Fi

∂x j

∂Fi

∂xβ

∂xα

∂x j

∂xα

∂xβ


=




∂Fi

∂x j
∗

0 I


 ,

where 1≤ i, j ≤ m and m+ 1≤ α,β ≤ n. Since this matrix has determinant

det

[
∂Fi

∂x j
(p)

]

1≤i, j≤m

6= 0,

the inverse function theorem in the form of Corollary 6.27 implies the claim.

In the chart (Up,F
1, . . . ,Fm, xm+1, . . . ,xn), the set S := f−1(c) is obtained by

setting the first m coordinate functions F1, . . . ,Fm equal to 0. So (Up,F
1, . . . ,Fm,

xm+1, . . ., xn) is an adapted chart for N relative to S. Since this is true about every

point p ∈ S, S is a regular submanifold of N of dimension n−m. ⊓⊔
The proof of the regular level set theorem gives the following useful lemma.

Lemma 9.10. Let F : N→Rm be a C∞ map on a manifold N of dimension n and let

S be the level set F−1(0). If relative to some coordinate chart (U,x1, . . . ,xn) about

p ∈ S, the Jacobian determinant ∂ (F1, . . . ,Fm)/∂ (x j1 , . . . ,x jm)(p) is nonzero, then

in some neighborhood of p one may replace x j1 , . . . ,x jm by F1, . . . ,Fm to obtain an

adapted chart for N relative to S.

Remark. The regular level set theorem gives a sufficient but not necessary condition

for a level set to be a regular submanifold. For example, if f : R2 → R is the map

f (x,y) = y2, then the zero set Z( f ) = Z(y2) is the x-axis, a regular submanifold of

R2. However, since ∂ f/∂x = 0 and ∂ f/∂y = 2y = 0 on the x-axis, every point in

Z( f ) is a critical point of f . Thus, although Z( f ) is a regular submanifold of R2, it

is not a regular level set of f .

9.4 Examples of Regular Submanifolds

Example 9.11 (Hypersurface). Show that the solution set S of x3 + y3 + z3 = 1 in R3

is a manifold of dimension 2.

Solution. Let f (x,y,z) = x3 + y3 + z3. Then S = f−1(1). Since ∂ f/∂x = 3x2,

∂ f/∂y = 3y2, and ∂ f/∂ z = 3z2, the only critical point of f is (0,0,0), which is

not in S. Thus, 1 is a regular value of f : R3→ R. By the regular level set theorem

(Theorem 9.9), S is a regular submanifold of R3 of dimension 2. So S is a manifold

(Proposition 9.4). ⊓⊔
Example 9.12 (Solution set of two polynomial equations). Decide whether the subset

S of R3 defined by the two equations

x3 + y3 + z3 = 1,

x+ y+ z = 0

is a regular submanifold of R3.
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Solution. Define F : R3→ R2 by

(u,v) = F(x,y,z) = (x3 + y3 + z3,x+ y+ z).

Then S is the level set F−1(1,0). The Jacobian matrix of F is

J(F) =

[
ux uy uz

vx vy vz

]
=

[
3x2 3y2 3z2

1 1 1

]
,

where ux = ∂u/∂x and so forth. The critical points of F are the points (x,y,z) where

the matrix J(F) has rank < 2. That is precisely where all 2× 2 minors of J(F)
are zero: ∣∣∣∣

3x2 3y2

1 1

∣∣∣∣= 0,

∣∣∣∣
3x2 3z2

1 1

∣∣∣∣= 0. (9.1)

(The third condition ∣∣∣∣
3y2 3z2

1 1

∣∣∣∣= 0

is a consequence of these two.) Solving (9.1), we get y = ±x, z =±x. Since x+ y+
z = 0 on S, this implies that (x,y,z) = (0,0,0). Since (0,0,0) does not satisfy the

first equation x3 + y3 + z3 = 1, there are no critical points of F on S. Therefore, S is

a regular level set. By the regular level set theorem, S is a regular submanifold of R3

of dimension 1. ⊓⊔
Example 9.13 (Special linear group). As a set, the special linear group SL(n,R) is

the subset of GL(n,R) consisting of matrices of determinant 1. Since

det(AB) = (det A)(det B) and det(A−1) =
1

det A
,

SL(n,R) is a subgroup of GL(n,R). To show that it is a regular submanifold, we let

f : GL(n,R)→ R be the determinant map f (A) = det A, and apply the regular level

set theorem to f−1(1) = SL(n,R). We need to check that 1 is a regular value of f .

Let ai j,1 ≤ i ≤ n, 1 ≤ j ≤ n, be the standard coordinates on Rn×n, and let Si j

denote the submatrix of A = [ai j] ∈ Rn×n obtained by deleting its ith row and jth

column. Then mi j := det Si j is the (i, j)-minor of A. From linear algebra we have a

formula for computing the determinant by expanding along any row or any column:

if we expand along the ith row, we obtain

f (A) = det A = (−1)i+1ai1mi1 +(−1)i+2ai2mi2 + · · ·+(−1)i+nainmin. (9.2)

Therefore
∂ f

∂ai j

= (−1)i+ jmi j.

Hence, a matrix A ∈ GL(n,R) is a critical point of f if and only if all the (n−
1)× (n−1)minors mi j of A are 0. By (9.2) such a matrix A has determinant 0. Since

every matrix in SL(n,R) has determinant 1, all the matrices in SL(n,R) are regular

points of the determinant function. By the regular level set theorem (Theorem 9.9),

SL(n,R) is a regular submanifold of GL(n,R) of codimension 1; i.e.,

dimSL(n,R) = dimGL(n,R)−1 = n2− 1.
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Problems

9.1. Regular values

Define f : R2→ R by

f (x,y) = x3−6xy+y2 .

Find all values c ∈ R for which the level set f−1(c) is a regular submanifold of R2.

9.2. Solution set of one equation

Let x, y, z, w be the standard coordinates on R4. Is the solution set of x5 + y5 + z5 +w5 = 1

in R4 a smooth manifold? Explain why or why not. (Assume that the subset is given the

subspace topology.)

9.3. Solution set of two equations

Is the solution set of the system of equations

x3 +y3 + z3 = 1, z = xy,

in R3 a smooth manifold? Prove your answer.

9.4.* Regular submanifolds

Suppose that a subset S of R2 has the property that locally on S one of the coordinates is a

C∞ function of the other coordinate. Show that S is a regular submanifold of R2. (Note that

the unit circle defined by x2 + y2 = 1 has this property. At every point of the circle, there is a

neighborhood in which y is a C∞ function of x or x is a C∞ function of y.)

9.5. Graph of a smooth function

Show that the graph Γ( f ) of a smooth function f : R2→ R,

Γ( f ) = {(x,y, f (x,y)) ∈ R3},

is a regular submanifold of R3.

9.6. Euler’s formula

A polynomial F(x0, . . . ,xn) ∈ R[x0, . . . ,xn] is homogeneous of degree k if it is a linear com-

bination of monomials x
i0
0 · · ·x

in
n of degree ∑n

j=0 i j = k. Let F(x0, . . . ,xn) be a homogeneous

polynomial of degree k. Clearly, for any t ∈ R,

F(tx0, . . . , txn) = tkF(x0, . . . ,xn). (9.3)

Show that
n

∑
i=0

xi
∂F

∂xi
= kF.

9.7. Smooth projective hypersurface

On the projective space RPn a homogeneous polynomial F(x0, . . . ,xn) of degree k is not a

function, since its value at a point [a0, . . . ,an] is not unique. However, the zero set in RPn of a

homogeneous polynomial F(x0, . . . ,xn) is well defined, since F(a0, . . . ,an) = 0 if and only if

F(ta0, . . . , tan) = tkF(a0, . . . ,an) = 0 for all t ∈ R× := R−{0}.

The zero set of finitely many homogeneous polynomials in RPn is called a real projective

variety. A projective variety defined by a single homogeneous polynomial of degree k is called
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a hypersurface of degree k. Show that the hypersurface Z(F) defined by F(x0,x1,x2) = 0 is

smooth if ∂F/∂x0, ∂F/∂x1, and ∂F/∂x2 are not simultaneously zero on Z(F). (Hint: The

standard coordinates on U0, which is homeomorphic to R2, are x = x1/x0, y = x2/x0 (see

Subsection 7.7). In U0, F(x0,x1,x2) = xk
0F(1,x1/x0,x2/x0) = xk

0F(1,x,y). Define f (x,y) =
F(1,x,y). Then f and F have the same zero set in U0.)

9.8. Product of regular submanifolds

If Si is a regular submanifold of the manifold Mi for i = 1,2, prove that S1× S2 is a regular

submanifold of M1×M2.

9.9. Complex special linear group

The complex special linear group SL(n,C) is the subgroup of GL(n,C) consisting of n× n

complex matrices of determinant 1. Show that SL(n,C) is a regular submanifold of GL(n,C)
and determine its dimension. (This problem requires a rudimentary knowledge of complex

analysis.)

S S

f (N)
f (N)

f transversal to S in R2 f not transversal to S in R2

Fig. 9.5. Transversality.

9.10. The transversality theorem

A C∞ map f : N→M is said to be transversal to a submanifold S⊂M (Figure 9.5) if for every

p ∈ f−1(S),
f∗(TpN)+Tf (p)S = Tf (p)M. (9.4)

(If A and B are subspaces of a vector space, their sum A+B is the subspace consisting of all

a+ b with a ∈ A and b ∈ B. The sum need not be a direct sum.) The goal of this exercise

is to prove the transversality theorem: if a C∞ map f : N → M is transversal to a regular

submanifold S of codimension k in M, then f−1(S) is a regular submanifold of codimension k

in N.

When S consists of a single point c, transversality of f to S simply means that f−1(c)
is a regular level set. Thus the transversality theorem is a generalization of the regular level

set theorem. It is especially useful in giving conditions under which the intersection of two

submanifolds is a submanifold.

Let p ∈ f−1(S) and (U,x1, . . . ,xm) be an adapted chart centered at f (p) for M relative to

S such that U ∩ S = Z(xm−k+1, . . . ,xm), the zero set of the functions xm−k+1, . . . ,xm. Define

g : U → Rk to be the map

g = (xm−k+1, . . . ,xm).

(a) Show that f−1(U)∩ f−1(S) = (g ◦ f )−1(0).
(b) Show that f−1(U)∩ f−1(S) is a regular level set of the function g ◦ f : f−1(U)→ Rk.

(c) Prove the transversality theorem.
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§10 Categories and Functors

Many of the problems in mathematics share common features. For example, in topol-

ogy one is interested in knowing whether two topological spaces are homeomorphic

and in group theory one is interested in knowing whether two groups are isomorphic.

This has given rise to the theory of categories and functors, which tries to clarify the

structural similarities among different areas of mathematics.

A category is essentially a collection of objects and arrows between objects.

These arrows, called morphisms, satisfy the abstract properties of maps and are of-

ten structure-preserving maps. Smooth manifolds and smooth maps form a category,

and so do vector spaces and linear maps. A functor from one category to another

preserves the identity morphism and the composition of morphisms. It provides a

way to simplify problems in the first category, for the target category of a functor

is usually simpler than the original category. The tangent space construction with

the differential of a smooth map is a functor from the category of smooth manifolds

with a distinguished point to the category of vector spaces. The existence of the

tangent space functor shows that if two manifolds are diffeomorphic, then their tan-

gent spaces at corresponding points must be isomorphic, thereby proving the smooth

invariance of dimension. Invariance of dimension in the continuous category of topo-

logical spaces and continuous maps is more difficult to prove, precisely because there

is no tangent space functor in the continuous category.

Much of algebraic topology is the study of functors, for example, the homology,

cohomology, and homotopy functors. For a functor to be truly useful, it should be

simple enough to be computable, yet complex enough to preserve essential features

of the original category. For smooth manifolds, this delicate balance is achieved in

the de Rham cohomology functor. In the rest of the book, we will be introducing

various functors of smooth manifolds, such as the tangent bundle and differential

forms, culminating in de Rham cohomology.

In this section, after defining categories and functors, we study the dual construc-

tion on vector spaces as a nontrivial example of a functor.

10.1 Categories

A category consists of a collection of elements, called objects, and for any two ob-

jects A and B, a set Mor(A,B) of elements, called morphisms from A to B, such that

given any morphism f ∈Mor(A,B) and any morphism g∈Mor(B,C), the composite

g ◦ f ∈Mor(A,C) is defined. Furthermore, the composition of morphisms is required

to satisfy two properties:

(i) the identity axiom: for each object A, there is an identity morphism 1A ∈
Mor(A,A) such that for any f ∈Mor(A,B) and g ∈Mor(B,A),

f ◦ 1A = f and 1A ◦ g = g;
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(ii) the associative axiom: for f ∈Mor(A,B), g ∈Mor(B,C), and h ∈Mor(C,D),

h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

If f ∈Mor(A,B), we often write f : A→ B.

Example. The collection of groups and group homomorphisms forms a category in

which the objects are groups and for any two groups A and B, Mor(A,B) is the set of

group homomorphisms from A to B.

Example. The collection of all vector spaces over R and R-linear maps forms a

category in which the objects are real vector spaces and for any two real vector

spaces V and W , Mor(V,W ) is the set Hom(V,W ) of linear maps from V to W .

Example. The collection of all topological spaces together with continuous maps

between them is called the continuous category.

Example. The collection of smooth manifolds together with smooth maps between

them is called the smooth category.

Example. We call a pair (M,q), where M is a manifold and q a point in M, a pointed

manifold. Given any two such pairs (N, p) and (M,q), let Mor((N, p),(M,q)) be the

set of all smooth maps F : N→M such that F(p) = q. This gives rise to the category

of pointed manifolds.

Definition 10.1. Two objects A and B in a category are said to be isomorphic if

there are morphisms f : A→ B and g : B→ A such that

g ◦ f = 1A and f ◦ g = 1B.

In this case both f and g are called isomorphisms.

The usual notation for an isomorphism is “≃”. Thus, A ≃ B can mean, for ex-

ample, a group isomorphism, a vector space isomorphism, a homeomorphism, or a

diffeomorphism, depending on the category and the context.

10.2 Functors

Definition 10.2. A (covariant) functor F from one category C to another category

D is a map that associates to each object A in C an object F(A) in D and to each

morphism f : A→ B a morphism F( f ) : F(A)→ F(B) such that

(i) F(1A) = 1F(A),

(ii) F( f ◦ g) = F( f ) ◦ F(g).
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Example. The tangent space construction is a functor from the category of pointed

manifolds to the category of vector spaces. To each pointed manifold (N, p) we

associate the tangent space TpN and to each smooth map f : (N, p)→ (M, f (p)) we

associate the differential f∗,p : TpN→ Tf (p)M.

The functorial property (i) holds because if 1 : N → N is the identity map, then

its differential 1∗,p : TpN→ TpN is also the identity map.

The functorial property (ii) holds because in this context it is the chain rule

(g ◦ f )∗,p = g∗, f (p) ◦ f∗,p.

Proposition 10.3. Let F : C→ D be a functor from a category C to a category D.

If f : A→ B is an isomorphism in C, then F( f ) : F(A)→ F(B) is an isomorphism

in D.

Proof. Problem 10.2. ⊓⊔

Note that we can recast Corollaries 8.6 and 8.7 in a more functorial form. Sup-

pose f : N → M is a diffeomorphism. Then (N, p) and (M, f (p)) are isomorphic

objects in the category of pointed manifolds. By Proposition 10.3, the tangent spaces

TpN and Tf (p)M must be isomorphic as vector spaces and therefore have the same

dimension. It follows that the dimension of a manifold is invariant under a diffeo-

morphism.

If in the definition of a covariant functor we reverse the direction of the arrow

for the morphism F( f ), then we obtain a contravariant functor. More precisely, the

definition is as follows.

Definition 10.4. A contravariant functor F from one category C to another category

D is a map that associates to each object A in C an object F(A) in D and to each

morphism f : A→ B a morphism F( f ) : F(B)→ F(A) such that

(i) F(1A) = 1F(A);

(ii) F( f ◦ g) = F(g) ◦ F( f ). (Note the reversal of order.)

Example. Smooth functions on a manifold give rise to a contravariant functor that as-

sociates to each manifold M the algebra F(M) =C∞(M) of C∞ functions on M and to

each smooth map F : N→M of manifolds the pullback map F(F) = F∗ : C∞(M)→
C∞(N), F∗(h) = h ◦ F for h ∈C∞(M). It is easy to verify that the pullback satisfies

the two functorial properties:

(i) (1M)∗ = 1C∞(M),

(ii) if F : N→M and G : M→ P are C∞ maps, then (G ◦ F)∗ = F∗ ◦ G∗ : C∞(P)→
C∞(N).

Another example of a contravariant functor is the dual of a vector space, which

we review in the next section.
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10.3 The Dual Functor and the Multicovector Functor

Let V be a real vector space. Recall that its dual space V∨ is the vector space of all

linear functionals on V , i.e., linear functions α : V →R. We also write

V∨ = Hom(V,R).

If V is a finite-dimensional vector space with basis {e1, . . . ,en}, then by Propo-

sition 3.1 its dual space V∨ has as a basis the collection of linear functionals

{α1, . . . ,αn} defined by

α i(e j) = δ i
j, 1≤ i, j ≤ n.

Since a linear function on V is determined by what it does on a basis of V , this set of

equations defines α i uniquely.

A linear map L : V →W of vector spaces induces a linear map L∨, called the dual

of L, as follows. To every linear functional α : W → R, the dual map L∨ associates

the linear functional

V
L→W

α→R.

Thus, the dual map L∨ : W∨ →V∨ is given by

L∨(α) = α ◦ L for α ∈W∨.

Note that the dual of L reverses the direction of the arrow.

Proposition 10.5 (Functorial properties of the dual). Suppose V , W, and S are

real vector spaces.

(i) If 1V : V → V is the identity map on V , then 1∨V : V∨ → V∨ is the identity map

on V∨.

(ii) If f : V →W and g : W → S are linear maps, then (g ◦ f )∨ = f∨ ◦ g∨.

Proof. Problem 10.3. ⊓⊔

According to this proposition, the dual construction F : ( ) 7→ ( )∨ is a contravari-

ant functor from the category of vector spaces to itself: for V a real vector space,

F(V ) = V∨ and for f ∈ Hom(V,W ), F( f ) = f∨ ∈ Hom(W∨,V∨). Consequently,

if f : V →W is an isomorphism, then so is its dual f∨ : W∨ → V∨ (cf. Proposi-

tion 10.3).

Fix a positive integer k. For any linear map L : V →W of vector spaces, define

the pullback map L∗ : Ak(W )→ Ak(V ) to be

(L∗ f )(v1, . . . ,vk) = f (L(v1), . . . ,L(vk))

for f ∈ Ak(W ) and v1, . . . ,vk ∈ V . From the definition, it is easy to see that L∗ is a

linear map: L∗(a f +bg) = aL∗ f +bL∗g for a,b ∈ R and f ,g ∈ Ak(W ).

Proposition 10.6. The pullback of covectors by a linear map satisfies the two func-

torial properties:
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(i) If 1V : V → V is the identity map on V , then 1∗V = 1Ak(V ), the identity map on

Ak(V ).
(ii) If K : U →V and L : V →W are linear maps of vector spaces, then

(L ◦ K)∗ = K∗ ◦ L∗ : Ak(W )→ Ak(U).

Proof. Problem 10.6. ⊓⊔

To each vector space V , we associate the vector space Ak(V ) of all k-covectors

on V , and to each linear map L : V →W of vector spaces, we associate the pullback

Ak(L) = L∗ : Ak(W )→Ak(V ). Then Ak( ) is a contravariant functor from the category

of vector spaces and linear maps to itself.

When k= 1, for any vector space V , the space A1(V ) is the dual space, and for any

linear map L : V →W , the pullback map A1(L) = L∗ is the dual map L∨ : W∨ →V∨.

Thus, the multicovector functor Ak( ) generalizes the dual functor ( )∨.

Problems

10.1. Differential of the inverse map

If F : N→M is a diffeomorphism of manifolds and p∈N, prove that (F−1)∗,F(p) = (F∗,p)−1.

10.2. Isomorphism under a functor

Prove Proposition 10.3.

10.3. Functorial properties of the dual

Prove Proposition 10.5.

10.4. Matrix of the dual map

Suppose a linear transformation L : V → V̄ is represented by the matrix A = [ai
j] relative to

bases e1, . . . ,en for V and ē1, . . . , ēm for V̄ :

L(e j) = ∑
i

ai
jēi.

Let α1, . . . ,αn and ᾱ1, . . . , ᾱm be the dual bases for V∨ and V̄∨, respectively. Prove that if

L∨(ᾱ i) = ∑ j bi
jα

j , then bi
j = ai

j .

10.5. Injectivity of the dual map

(a) Suppose V and W are vector spaces of possibly infinite dimension over a field K. Show

that if a linear map L : V →W is surjective, then its dual L∨ : W∨ →V∨ is injective.

(b) Suppose V and W are finite-dimensional vector spaces over a field K. Prove the converse

of the implication in (a).

10.6. Functorial properties of the pullback

Prove Proposition 10.6.

10.7. Pullback in the top dimension

Show that if L : V → V is a linear operator on a vector space V of dimension n, then the

pullback L∗ : An(V )→ An(V ) is multiplication by the determinant of L.
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§11 The Rank of a Smooth Map

In this section we analyze the local structure of a smooth map through its rank. Recall

that the rank of a smooth map f : N→M at a point p∈N is the rank of its differential

at p. Two cases are of special interest: that in which the map f has maximal rank at

a point and that in which it has constant rank in a neighborhood. Let n = dimN and

m = dimM. In case f : N→M has maximal rank at p, there are three not mutually

exclusive possibilities:

(i) If n = m, then by the inverse function theorem, f is a local diffeomorphism at p.

(ii) If n≤ m, then the maximal rank is n and f is an immersion at p.

(iii) If n≥ m, then the maximal rank is m and f is a submersion at p.

Because manifolds are locally Euclidean, theorems on the rank of a smooth map

between Euclidean spaces (Appendix B) translate easily to theorems about mani-

folds. This leads to the constant rank theorem for manifolds, which gives a simple

normal form for a smooth map having constant rank on an open set (Theorem 11.1).

As an immediate consequence, we obtain a criterion for a level set to be a regu-

lar submanifold, which, following [25], we call the constant-rank level set theorem.

As we explain in Subsection 11.2, maximal rank at a point implies constant rank

in a neighborhood, so immersions and submersions are maps of constant rank. The

constant rank theorem specializes to the immersion theorem and the submersion the-

orem, giving simple normal forms for an immersion and a submersion. The regular

level set theorem, which we encountered in Subsection 9.3, is now seen to be a con-

sequence of the submersion theorem and a special case of the constant-rank level set

theorem.

By the regular level set theorem, the preimage of a regular value of a smooth map

is a manifold. The image of a smooth map, on the other hand, does not generally have

a nice structure. Using the immersion theorem we derive conditions under which the

image of a smooth map is a manifold.

11.1 Constant Rank Theorem

Suppose f : N → M is a C∞ map of manifolds and we want to show that the level

set f−1(c) is a manifold for some c in M. In order to apply the regular level set

theorem, we need the differential f∗ to have maximal rank at every point of f−1(c).
Sometimes this is not true; even if true, it may be difficult to show. In such cases, the

constant-rank level set theorem can be helpful. It has one cardinal virtue: it is not

necessary to know precisely the rank of f ; it suffices that the rank be constant.

The constant rank theorem for Euclidean spaces (Theorem B.4) has an immediate

analogue for manifolds.

Theorem 11.1 (Constant rank theorem). Let N and M be manifolds of dimensions

n and m respectively. Suppose f : N→M has constant rank k in a neighborhood of
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a point p in N. Then there are charts (U,φ) centered at p in N and (V,ψ) centered

at f (p) in M such that for (r1, . . . ,rn) in φ(U),

(ψ ◦ f ◦ φ−1)(r1, . . . ,rn) = (r1, . . . ,rk,0, . . . ,0). (11.1)

Proof. Choose a chart (Ū , φ̄ ) about p in N and (V̄ , ψ̄) about f (p) in M. Then ψ̄ ◦
f ◦ φ̄−1 is a map between open subsets of Euclidean spaces. Because φ̄ and ψ̄ are

diffeomorphisms, ψ̄ ◦ f ◦ φ̄−1 has the same constant rank k as f in a neighborhood of

φ̄ (p) in Rn. By the constant rank theorem for Euclidean spaces (Theorem B.4) there

are a diffeomorphism G of a neighborhood of φ̄(p) in Rn and a diffeomorphism F

of a neighborhood of (ψ̄ ◦ f )(p) in Rm such that

(F ◦ ψ̄ ◦ f ◦ φ̄−1 ◦ G−1)(r1, . . . ,rn) = (r1, . . . ,rk,0, . . . ,0).

Set φ = G ◦ φ̄ and ψ = F ◦ ψ̄ . ⊓⊔

In the constant rank theorem, it is possible that the normal form (11.1) for the

function f has no zeros at all: if the rank k equals m, then

(ψ ◦ f ◦ φ−1)(r1, . . . ,rn) = (r1, . . . ,rm).

From this theorem, the constant-rank level set theorem follows easily. By a neigh-

borhood of a subset A of a manifold M we mean an open set containing A.

Theorem 11.2 (Constant-rank level set theorem). Let f : N → M be a C∞ map

of manifolds and c ∈M. If f has constant rank k in a neighborhood of the level set

f−1(c) in N, then f−1(c) is a regular submanifold of N of codimension k.

Proof. Let p be an arbitrary point in f−1(c). By the constant rank theorem there are

a coordinate chart (U,φ) = (U , x1, . . . ,xn) centered at p ∈ N and a coordinate chart

(V,ψ) = (V,y1, . . . ,ym) centered at f (p) = c ∈M such that

(ψ ◦ f ◦ φ−1)(r1, . . . ,rn) = (r1, . . . ,rk,0, . . . ,0) ∈ Rm.

This shows that the level set (ψ ◦ f ◦ φ−1)−1(0) is defined by the vanishing of the

coordinates r1, . . . ,rk.

b b

φ f ψ

φ( f−1(c)) f−1(c) c 0

U V

Fig. 11.1. Constant-rank level set.

The image of the level set f−1(c) under φ is the level set (ψ ◦ f ◦ φ−1)−1(0)
(Figure 11.1), since
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φ( f−1(c)) = φ( f−1(ψ−1(0)) = (ψ ◦ f ◦ φ−1)−1(0).

Thus, the level set f−1(c) in U is defined by the vanishing of the coordinate functions

x1, . . . ,xk, where xi = ri ◦ φ . This proves that f−1(c) is a regular submanifold of N

of codimension k. ⊓⊔

Example 11.3 (Orthogonal group). The orthogonal group O(n) is defined to be the

subgroup of GL(n,R) consisting of matrices A such that AT A = I, the n×n identity

matrix. Using the constant rank theorem, prove that O(n) is a regular submanifold

of GL(n,R).

Solution. Define f : GL(n,R)→ GL(n,R) by f (A) = AT A. Then O(n) is the level

set f−1(I). For any two matrices A,B ∈ GL(n,R), there is a unique matrix C ∈
GL(n,R) such that B = AC. Denote by ℓC and rC : GL(n,R)→GL(n,R) the left and

right multiplication by C, respectively. Since

f (AC) = (AC)T AC =CT AT AC =CT f (A)C,

we have

( f ◦ rC)(A) = (ℓCT ◦ rC ◦ f )(A).

Since this is true for all A ∈ GL(n,R),

f ◦ rC = ℓCT
◦ rC ◦ f .

By the chain rule,

f∗,AC ◦ (rC)∗,A = (ℓCT )∗,AT AC ◦ (rC)∗,AT A ◦ f∗,A. (11.2)

Since left and right multiplications are diffeomorphisms, their differentials are iso-

morphisms. Composition with an isomorphism does not change the rank of a linear

map. Hence, in (11.2),

rk f∗,AC = rk f∗,A.

Since AC and A are two arbitrary points of GL(n,R), this proves that the differential

of f has constant rank on GL(n,R). By the constant-rank level set theorem, the

orthogonal group O(n) = f−1(I) is a regular submanifold of GL(n,R).

NOTATION. If f : N→M is a map with constant rank k in a neighborhood of a point

p ∈ N, its local normal form (11.1) relative to the charts (U,φ) = (U,x1, . . . ,xn)
and (V,ψ) = (V,y1, . . . ,ym) in the constant rank theorem (Theorem 11.1) can be

expressed in terms of the local coordinates x1, . . . ,xn and y1, . . . ,ym as follows.

First note that for any q ∈U ,

φ(q) = (x1(q), . . . ,xn(q)) and ψ( f (q)) = (y1( f (q)), . . . ,yn( f (q)).

Thus,
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(y1( f (q)), . . . ,ym( f (q)) = ψ( f (q)) = (ψ ◦ f ◦ φ−1)(φ(q))

= (ψ ◦ f ◦ φ−1)(x1(q), . . . ,xn(q))

= (x1(q), . . . ,xk(q)),0, . . . ,0) (by (11.1)).

As functions on U ,

(y1 ◦ f , . . . ,ym ◦ f ) = (x1, . . . ,xk,0, . . . ,0). (11.3)

We can rewrite (11.3) in the following form: relative to the charts (U,x1, . . . ,xn) and

(V,y1, . . . ,ym), the map f is given by

(x1, . . . ,xn) 7→ (x1, . . . ,xk,0, . . . ,0).

11.2 The Immersion and Submersion Theorems

In this subsection we explain why immersions and submersions have constant rank.

The constant rank theorem gives local normal forms for immersions and submer-

sions, called the immersion theorem and the submersion theorem respectively. From

the submersion theorem and the constant-rank level set theorem, we get two more

proofs of the regular level set theorem.

Consider a C∞ map f : N→M. Let (U,φ) = (U,x1, . . . ,xn) be a chart about p in

N and (V,ψ) = (V,y1, . . . ,ym) a chart about f (p) in M. Write f i = yi ◦ f for the ith

component of f in the chart (V,y1, . . . ,ym). Relative to the charts (U,φ) and (V,ψ),
the linear map f∗,p is represented by the matrix [∂ f i/∂x j(p)] (Proposition 8.11).

Hence,
f∗,p is injective ⇐⇒ n≤ m and rk[∂ f i/∂x j(p)] = n,

f∗,p is surjective ⇐⇒ n≥ m and rk[∂ f i/∂x j(p)] = m.
(11.4)

The rank of a matrix is the number of linearly independent rows of the matrix;

it is also the number of linearly independent columns. Thus, the maximum possible

rank of an m×n matrix is the minimum of m and n. It follows from (11.4) that being

an immersion or a submersion at p is equivalent to the maximality of rk[∂ f i/∂x j(p)].
Having maximal rank at a point is an open condition in the sense that the set

Dmax( f ) = {p ∈U | f∗,p has maximal rank at p}
is an open subset of U . To see this, suppose k is the maximal rank of f . Then

rk f∗,p = k ⇐⇒ rk[∂ f i/∂x j (p)] = k

⇐⇒ rk[∂ f i/∂x j (p)]≥ k (since k is maximal).

So the complement U−Dmax( f ) is defined by

rk[∂ f i/∂x j (p)]< k,

which is equivalent to the vanishing of all k× k minors of the matrix [∂ f i/∂x j (p)].
As the zero set of finitely many continuous functions, U −Dmax( f ) is closed and so

Dmax( f ) is open. In particular, if f has maximal rank at p, then it has maximal rank

at all points in some neighborhood of p. We have proven the following proposition.
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Proposition 11.4. Let N and M be manifolds of dimensions n and m respectively. If

a C∞ map f : N→M is an immersion at a point p ∈ N, then it has constant rank n

in a neighborhood of p. If a C∞ map f : N→ M is a submersion at a point p ∈ N,

then it has constant rank m in a neighborhood of p.

Example. While maximal rank at a point implies constant rank in a neighborhood,

the converse is not true. The map f : R2→ R3, f (x,y) = (x,0,0), has constant rank

1, but it does not have maximal rank at any point.

By Proposition 11.4, the following theorems are simply special cases of the con-

stant rank theorem.

Theorem 11.5. Let N and M be manifolds of dimensions n and m respectively.

(i) (Immersion theorem) Suppose f : N → M is an immersion at p ∈ N. Then

there are charts (U,φ) centered at p in N and (V,ψ) centered at f (p) in M such

that in a neighborhood of φ(p),

(ψ ◦ f ◦ φ−1)(r1, . . . ,rn) = (r1, . . . ,rn,0, . . . ,0).

(ii) (Submersion theorem) Suppose f : N → M is a submersion at p in N. Then

there are charts (U,φ) centered at p in N and (V,ψ) centered at f (p) in M such

that in a neighborhood of φ(p),

(ψ ◦ f ◦ φ−1)(r1, . . . ,rm,rm+1, . . . ,rn) = (r1, . . . ,rm).

Corollary 11.6. A submersion f : N→M of manifolds is an open map.

Proof. Let W be an open subset of N. We need to show that its image f (W ) is open

in M. Choose a point f (p) in f (W ), with p ∈W . By the submersion theorem, f is

locally a projection. Since a projection is an open map (Problem A.7), there is an

open neighborhood U of p in W such that f (U) is open in M. Clearly,

f (p) ∈ f (U)⊂ f (W ).

Since f (p) ∈ f (W ) was arbitrary, f (W ) is open in M. ⊓⊔

The regular level set theorem (Theorem 9.9) is an easy corollary of the submer-

sion theorem. Indeed, for a C∞ map f : N → M of manifolds, a level set f−1(c) is

regular if and only if f is a submersion at every point p ∈ f−1(c). Fix one such

point p ∈ f−1(c) and let (U,φ) and (V,ψ) be the charts in the submersion theorem.

Then ψ ◦ f ◦ φ−1 = π : Rn ⊃ φ(U)→Rm is the projection to the first m coordinates,

π(r1, . . . ,rn) = (r1, . . . ,rm). It follows that on U ,

ψ ◦ f = π ◦ φ = (r1, . . . ,rm) ◦ φ = (x1, . . . ,xm).

Therefore,

f−1(c) = f−1(ψ−1(0)) = (ψ ◦ f )−1(0) = Z(ψ ◦ f ) = Z(x1, . . . ,xm),
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showing that in the chart (U,x1, . . . ,xn), the level set f−1(c) is defined by the vanish-

ing of the m coordinate functions x1, . . . ,xm. Therefore, (U,x1, . . . ,xn) is an adapted

chart for N relative to f−1(c). This gives a second proof that the regular level set

f−1(c) is a regular submanifold of N.

Since the submersion theorem is a special case of the constant rank theorem,

it is not surprising that the regular level set theorem is also a special case of the

constant-rank level set theorem. On a regular level set f−1(c), the map f : N→ M

has maximal rank m at every point. Since the maximality of the rank of f is an open

condition, a regular level set f−1(c) has a neighborhood on which f has constant

rank m. By the constant-rank level set theorem (Theorem 11.2), f−1(c) is a regular

submanifold of N, giving us a third proof of the regular level set theorem.

11.3 Images of Smooth Maps

The following are all examples of C∞ maps f : N→M, with N = R and M = R2.

Example 11.7. f (t) = (t2, t3).
This f is one-to-one, because t 7→ t3 is one-to-one. Since f ′(0) = (0,0), the

differential f∗,0 : T0R→ T(0,0)R
2 is the zero map and hence not injective; so f is not

an immersion at 0. Its image is the cuspidal cubic y2 = x3 (Figure 11.2).

1−1

1

−1

x

y

Fig. 11.2. A cuspidal cubic, not an immersion.

Example 11.8. f (t) = (t2−1, t3− t).
Since the equation f ′(t) = (2t,3t2− 1) = (0,0) has no solution in t, this map f

is an immersion. It is not one-to-one, because it maps both t = 1 and t = −1 to the

origin. To find an equation for the image f (N), let x = t2− 1 and y = t3− t. Then

y = t(t2−1) = tx; so

y2 = t2x2 = (x+1)x2.

Thus the image of f is the nodal cubic y2 = x2(x+1) (Figure 11.3).

Example 11.9. The map f in Figure 11.4 is a one-to-one immersion but its image,

with the subspace topology induced from R2, is not homeomorphic to the domain

R, because there are points near f (p) in the image that correspond to points in R far

away from p. More precisely, if U is an interval about p as shown, there is no neigh-

borhood V of f (p) in f (N) such that f−1(V )⊂U ; hence, f−1 is not continuous.
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1

−1

1−1 x

y

Fig. 11.3. A nodal cubic, an immersion but not one-to-one.

b b

f

f (p)p

U

( )

Fig. 11.4. A one-to-one immersion that is not an embedding.

Example 11.10. The manifold M in Figure 11.5 is the union of the graph of y =
sin(1/x) on the interval ]0,1[, the open line segment from y = 0 to y = 1 on the

y-axis, and a smooth curve joining (0,0) and (1,sin1). The map f is a one-to-one

immersion whose image with the subspace topology is not homeomorphic to R.

b b b

b b b

b

b

f

N = R

M

Fig. 11.5. A one-to-one immersion that is not an embedding.

Notice that in these examples the image f (N) is not a regular submanifold of

M = R2. We would like conditions on the map f so that its image f (N) would be a

regular submanifold of M.

Definition 11.11. A C∞ map f : N→M is called an embedding if

(i) it is a one-to-one immersion and
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(ii) the image f (N) with the subspace topology is homeomorphic to N under f .

(The phrase “one-to-one” in this definition is redundant, since a homeomor-

phism is necessarily one-to-one.)

Remark. Unfortunately, there is quite a bit of terminological confusion in the liter-

ature concerning the use of the word “submanifold.” Many authors give the image

f (N) of a one-to-one immersion f : N→M not the subspace topology, but the topol-

ogy inherited from f ; i.e., a subset f (U) of f (N) is said to be open if and only if U

is open in N. With this topology, f (N) is by definition homeomorphic to N. These

authors define a submanifold to be the image of any one-to-one immersion with the

topology and differentiable structure inherited from f . Such a set is sometimes called

an immersed submanifold of M. Figures 11.4 and 11.5 show two examples of im-

mersed submanifolds. If the underlying set of an immersed submanifold is given the

subspace topology, then the resulting space need not be a manifold at all!

For us, a submanifold without any qualifying adjective is always a regular sub-

manifold. To recapitulate, a regular submanifold of a manifold M is a subset S of

M with the subspace topology such that every point of S has a neighborhood U ∩ S

defined by the vanishing of coordinate functions on U , where U is a chart in M.

) (b
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(
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Fig. 11.6. The figure-eight as two distinct immersed submanifolds of R2.

Example 11.12 (The figure-eight). The figure-eight is the image of a one-to-one im-

mersion

f (t) = (cos t,sin2t), −π/2 < t < 3π/2

(Figure 11.6). As such, it is an immersed submanifold of R2, with a topology and

manifold structure induced from the open interval ]−π/2,3π/2[ by f . Because of

the presence of a cross at the origin, it cannot be a regular submanifold of R2. In

fact, with the subspace topology of R2, the figure-eight is not even a manifold.
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The figure-eight is also the image of the one-to-one immersion

g(t) = (cost,−sin2t), −π/2 < t < 3π/2

(Figure 11.6). The maps f and g induce distinct immersed submanifold structures on

the figure-eight. For example, the open interval from A to B in Figure 11.6 is an open

set in the topology induced from g, but it is not an open set in the topology induced

from f , since its inverse image under f contains an isolated point π/2.

We will use the phrase “near p” to mean “in a neighborhood of p.”

Theorem 11.13. If f : N → M is an embedding, then its image f (N) is a regular

submanifold of M.

Proof. Let p ∈ N. By the immersion theorem (Theorem 11.5), there are local coor-

dinates (U,x1, . . . ,xn) near p and (V,y1, . . . ,ym) near f (p) such that f : U → V has

the form

(x1, . . . ,xn) 7→ (x1, . . . ,xn,0, . . . ,0).

bN
p

U f
b

f (p)
f (N)

V

V ′

( )

Fig. 11.7. The image of an embedding is a regular submanifold.

Thus, f (U) is defined in V by the vanishing of the coordinates yn+1, . . . ,ym. This

alone does not prove that f (N) is a regular submanifold, since V ∩ f (N) may be

larger than f (U). (Think about Examples 11.9 and 11.10.) We need to show that in

some neighborhood of f (p) in V , the set f (N) is defined by the vanishing of m− n

coordinates.

Since f (N) with the subspace topology is homeomorphic to N, the image f (U)
is open in f (N). By the definition of the subspace topology, there is an open set V ′

in M such that V ′ ∩ f (N) = f (U) (Figure 11.7). In V ∩V ′,

V ∩V ′ ∩ f (N) =V ∩ f (U) = f (U),

and f (U) is defined by the vanishing of yn+1, . . . ,ym. Thus, (V ∩V ′,y1, . . . ,ym) is an

adapted chart containing f (p) for f (N). Since f (p) is an arbitrary point of f (N),
this proves that f (N) is a regular submanifold of M. ⊓⊔

Theorem 11.14. If N is a regular submanifold of M, then the inclusion i : N → M,

i(p) = p, is an embedding.
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Proof. Since a regular submanifold has the subspace topology and i(N) also has

the subspace topology, i : N → i(N) is a homeomorphism. It remains to show that

i : N→M is an immersion.

Let p ∈ N. Choose an adapted chart (V,y1, . . . ,yn,yn+1, . . . ,ym) for M about p

such that V ∩N is the zero set of yn+1, . . . ,ym. Relative to the charts (V ∩N,y1, . . . ,yn)
for N and (V,y1, . . . ,ym) for M, the inclusion i is given by

(y1, . . . ,yn) 7→ (y1, . . . ,yn,0, . . . ,0),

which shows that i is an immersion. ⊓⊔

In the literature the image of an embedding is often called an embedded subman-

ifold. Theorems 11.13 and 11.14 show that an embedded submanifold and a regular

submanifold are one and the same thing.

11.4 Smooth Maps into a Submanifold

Suppose f : N→M is a C∞ map whose image f (N) lies in a subset S ⊂M. If S is a

manifold, is the induced map f̃ : N→ S also C∞? This question is more subtle than

it looks, because the answer depends on whether S is a regular submanifold or an

immersed submanifold of M.

Example. Consider the one-to-one immersions f and g : I→ R2 in Example 11.12,

where I is the open interval ]−π/2,3π/2 [ in R. Let S be the figure-eight in R2 with

the immersed submanifold structure induced from g. Because the image of f : I →
R2 lies in S, the C∞ map f induces a map f̃ : I→ S.

The open interval from A to B in Figure 11.6 is an open neighborhood of the

origin 0 in S. Its inverse image under f̃ contains the point π/2 as an isolated point

and is therefore not open. This shows that although f : I → R2 is C∞, the induced

map f̃ : I→ S is not continuous and therefore not C∞.

Theorem 11.15. Suppose f : N→ M is C∞ and the image of f lies in a subset S of

M. If S is a regular submanifold of M, then the induced map f̃ : N→ S is C∞.

Proof. Let p∈N. Denote the dimensions of N, M, and S by n, m, and s, respectively.

By hypothesis, f (p) ∈ S ⊂ M. Since S is a regular submanifold of M, there is an

adapted coordinate chart (V,ψ) = (V,y1, . . . ,ym) for M about f (p) such that S∩V is

the zero set of ys+1, . . . ,ym, with coordinate map ψS = (y1, . . . ,ys). By the continuity

of f , it is possible to choose a neighborhood of p with f (U)⊂V . Then f (U)⊂V ∩S,

so that for q ∈U ,

(ψ ◦ f )(q) = (y1( f (q)), . . . ,ys( f (q)),0, . . . ,0).

It follows that on U ,

ψS ◦ f̃ = (y1 ◦ f , . . . ,ys ◦ f ).

Since y1 ◦ f , . . . ,ys ◦ f are C∞ on U , by Proposition 6.16, f̃ is C∞ on U and hence at

p. Since p was an arbitrary point of N, the map f̃ : N→ S is C∞. ⊓⊔
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Example 11.16 (Multiplication map of SL(n,R)). The multiplication map

µ : GL(n,R)×GL(n,R)→GL(n,R),

(A,B) 7→ AB,

is clearly C∞ because

(AB)i j =
n

∑
k=1

aikbk j

is a polynomial and hence a C∞ function of the coordinates aik and bk j. However,

one cannot conclude in the same way that the multiplication map

µ̄ : SL(n,R)×SL(n,R)→ SL(n,R)

is C∞. This is because {ai j}1≤i, j≤n is not a coordinate system on SL(n,R); there is

one coordinate too many (See Problem 11.6).

Since SL(n,R)×SL(n,R) is a regular submanifold of GL(n,R)×GL(n,R), the

inclusion map

i : SL(n,R)×SL(n,R)→GL(n,R)×GL(n,R)

is C∞ by Theorem 11.14; therefore, the composition

µ ◦ i : SL(n,R)×SL(n,R)→ GL(n,R)

is also C∞. Because the image of µ ◦ i lies in SL(n,R), and SL(n,R) is a regular

submanifold of GL(n,R) (see Example 9.13), by Theorem 11.15 the induced map

µ̄ : SL(n,R)×SL(n,R)→ SL(n,R)

is C∞.

11.5 The Tangent Plane to a Surface in R3

Suppose f (x1,x2,x3) is a real-valued function on R3 with no critical points on its

zero set N = f−1(0). By the regular level set theorem, N is a regular submanifold

of R3. By Theorem 11.14 the inclusion i : N→ R3 is an embedding, so at any point

p in N, i∗,p : TpN → TpR
3 is injective. We may therefore think of the tangent plane

TpN as a plane in TpR
3 ≃ R3 (Figure 11.8). We would like to find the equation of

this plane.

Suppose v = ∑vi ∂/∂xi|p is a vector in TpN. Under the linear isomorphism

TpR
3 ≃ R3, we identify v with the vector 〈v1,v2,v3〉 in R3. Let c(t) be a curve

lying in N with c(0) = p and c′(0) = 〈v1,v2,v3〉. Since c(t) lies in N, f (c(t)) = 0 for

all t. By the chain rule,

0 =
d

dt
f (c(t)) =

3

∑
i=1

∂ f

∂xi
(c(t))(ci)′(t).
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b
v

p
TpN

N

Fig. 11.8. Tangent plane to a surface N at p.

At t = 0,

0 =
3

∑
i=1

∂ f

∂xi
(c(0))(ci)′(0) =

3

∑
i=1

∂ f

∂xi
(p)vi.

Since the vector v = 〈v1,v2,v3〉 represents the arrow from the point p = (p1, p2, p3)
to x = (x1,x2,x3) in the tangent plane, one usually makes the substitution vi = xi− pi.

This amounts to translating the tangent plane from the origin to p. Thus the tangent

plane to N at p is defined by the equation

3

∑
i=1

∂ f

∂xi
(p)(xi− pi) = 0. (11.5)

One interpretation of this equation is that the gradient vector 〈∂ f/∂x1(p),∂ f/∂x2(p),
∂ f/∂x3(p)〉 of f at p is normal to any vector in the tangent plane.

Example 11.17 (Tangent plane to a sphere). Let f (x,y,z) = x2 + y2 + z2−1. To get

the equation of the tangent plane to the unit sphere S2 = f−1(0) in R3 at (a,b,c)∈ S2,

we compute

∂ f

∂x
= 2x,

∂ f

∂y
= 2y,

∂ f

∂ z
= 2z.

At p = (a,b,c),

∂ f

∂x
(p) = 2a,

∂ f

∂y
(p) = 2b,

∂ f

∂ z
(p) = 2c.

By (11.5) the equation of the tangent plane to the sphere at (a,b,c) is

2a(x−a)+ 2b(y− b)+2c(z− c)= 0,

or

ax+ by+ cz= 1,

since a2 +b2 + c2 = 1.
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Problems

11.1. Tangent vectors to a sphere

The unit sphere Sn in Rn+1 is defined by the equation ∑n+1
i=1 (x

i)2 = 1. For p= (p1, . . . , pn+1)∈
Sn, show that a necessary and sufficient condition for

Xp = ∑ai ∂/∂xi|p ∈ Tp(R
n+1)

to be tangent to Sn at p is ∑ai pi = 0.

11.2. Tangent vectors to a plane curve

(a) Let i : S1 →֒ R2 be the inclusion map of the unit circle. In this problem, we denote by

x,y the standard coordinates on R2 and by x̄, ȳ their restrictions to S1. Thus, x̄ = i∗x and

ȳ = i∗y. On the upper semicircle U = {(a,b) ∈ S1 | b > 0}, x̄ is a local coordinate, so that

∂/∂ x̄ is defined. Prove that for p ∈U ,

i∗

(
∂

∂ x̄

∣∣∣∣
p

)
=

(
∂

∂x
+

∂ ȳ

∂ x̄

∂

∂y

)∣∣∣∣
p

.

Thus, although i∗ : TpS1 → TpR
2 is injective, ∂/∂ x̄|p cannot be identified with ∂/∂x|p

(Figure 11.9).

b

p

∂

∂x

∣∣∣∣
p

∂

∂ x̄

∣∣∣∣
p

Fig. 11.9. Tangent vector ∂/∂ x̄|p to a circle.

(b) Generalize (a) to a smooth curve C in R2, letting U be a chart in C on which x̄, the restric-

tion of x to C, is a local coordinate.

11.3.* Critical points of a smooth map on a compact manifold

Show that a smooth map f from a compact manifold N to Rm has a critical point. (Hint: Let

π : Rm→ R be the projection to the first factor. Consider the composite map π ◦ f : N→ R.

A second proof uses Corollary 11.6 and the connectedness of Rm.)

11.4. Differential of an inclusion map

On the upper hemisphere of the unit sphere S2, we have the coordinate map φ = (u,v), where

u(a,b,c) = a and v(a,b,c) = b.

So the derivations ∂/∂u|p,∂/∂v|p are tangent vectors of S2 at any point p = (a,b,c) on the

upper hemisphere. Let i : S2→ R3 be the inclusion and x,y,z the standard coordinates on R3.

The differential i∗ : TpS2→ TpR
3 maps ∂/∂u|p,∂/∂v|p into TpR

3. Thus,
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i∗

(
∂

∂u

∣∣∣∣
p

)
= α1 ∂

∂x

∣∣∣∣
p

+β 1 ∂

∂y

∣∣∣∣
p

+ γ1 ∂

∂ z

∣∣∣∣
p

,

i∗

(
∂

∂v

∣∣∣∣
p

)
= α2 ∂

∂x

∣∣∣∣
p

+β 2 ∂

∂y

∣∣∣∣
p

+ γ 2 ∂

∂ z

∣∣∣∣
p

,

for some constants α i, β i, γ i. Find (α i,β i,γ i) for i = 1,2.

11.5. One-to-one immersion of a compact manifold

Prove that if N is a compact manifold, then a one-to-one immersion f : N→M is an embed-

ding.

11.6. Multiplication map in SL(n,R)
Let f : GL(n,R)→R be the determinant map f (A)= det A= det[ai j]. For A∈ SL(n,R), there

is at least one (k, ℓ) such that the partial derivative ∂ f /∂akℓ(A) is nonzero (Example 9.13). Use

Lemma 9.10 and the implicit function theorem to prove that

(a) there is a neighborhood of A in SL(n,R) in which ai j , (i, j) 6= (k, ℓ), form a coordinate

system, and akℓ is a C∞ function of the other entries ai j , (i, j) 6= (k, ℓ);
(b) the multiplication map

µ̄ : SL(n,R)×SL(n,R)→ SL(n,R)

is C∞.
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§12 The Tangent Bundle

A smooth vector bundle over a smooth manifold M is a smoothly varying family of

vector spaces, parametrized by M, that locally looks like a product. Vector bundles

and bundle maps form a category, and have played a fundamental role in geometry

and topology since their appearance in the 1930s [39].

The collection of tangent spaces to a manifold has the structure of a vector bundle

over the manifold, called the tangent bundle. A smooth map between two manifolds

induces, via its differential at each point, a bundle map of the corresponding tangent

bundles. Thus, the tangent bundle construction is a functor from the category of

smooth manifolds to the category of vector bundles.

At first glance it might appear that the tangent bundle functor is not a simplifi-

cation, since a vector bundle is a manifold plus an additional structure. However,

because the tangent bundle is canonically associated to a manifold, invariants of

the tangent bundle will give rise to invariants for the manifold. For example, the

Chern–Weil theory of characteristic classes, which we treat in another volume, uses

differential geometry to construct invariants for vector bundles. Applied to the tan-

gent bundle, characteristic classes lead to numerical diffeomorphism invariants for

a manifold called characteristic numbers. Characteristic numbers generalize, for

instance, the classical Euler characteristic.

For us in this book the importance of the vector bundle point of view comes from

its role in unifying concepts. A section of a vector bundle π : E→M is a map from

M to E that maps each point of M into the fiber of the bundle over the point. As

we shall see, both vector fields and differential forms on a manifold are sections of

vector bundles over the manifold.

In the following pages we construct the tangent bundle of a manifold and show

that it is a smooth vector bundle. We then discuss criteria for a section of a smooth

vector bundle to be smooth.

12.1 The Topology of the Tangent Bundle

Let M be a smooth manifold. Recall that at each point p ∈M, the tangent space TpM

is the vector space of all point-derivations of C∞
p (M), the algebra of germs of C∞

functions at p. The tangent bundle of M is the union of all the tangent spaces of M:

TM =
⋃

p∈M

TpM.

In general, if {Ai}i∈I is a collection of subsets of a set S, then their disjoint union

is defined to be the set ∐

i∈I

Ai :=
⋃

i∈I

({i}×Ai) .
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The subsets Ai may overlap, but in the disjoint union they are replaced by nonover-

lapping copies.

In the definition of the tangent bundle, the union
⋃

p∈M TpM is (up to notation)

the same as the disjoint union
∐

p∈M TpM, since for distinct points p and q in M, the

tangent spaces TpM and TqM are already disjoint.

b

b

TpM

TqM

p

q

M

Fig. 12.1. Tangent spaces to a circle.

In a pictorial representation of tangent spaces such as Figure 12.1, where M is the

unit circle, it may look as though the two tangent spaces TpM and TqM intersect. In

fact, the intersection point of the two lines in Figure 12.1 represents distinct tangent

vectors in TpM and TqM, so that TpM and TqM are disjoint even in the figure.

There is a natural map π : T M→M given by π(v) = p if v ∈ TpM. (We use the

word “natural” to mean that the map does not depend on any choice, for example,

the choice of an atlas or of local coordinates for M.) As a matter of notation, we

sometimes write a tangent vector v ∈ TpM as a pair (p,v), to make explicit the point

p ∈M at which v is a tangent vector.

As defined, T M is a set, with no topology or manifold structure. We will make it

into a smooth manifold and show that it is a C∞ vector bundle over M. The first step

is to give it a topology.

If (U,φ) = (U,x1, . . . ,xn) is a coordinate chart on M, let

TU =
⋃

p∈U

TpU =
⋃

p∈U

TpM.

(We saw in Remark 8.2 that TpU = TpM.) At a point p∈U , a basis for TpM is the set

of coordinate vectors ∂/∂x1|p, . . . ,∂/∂xn|p, so a tangent vector v ∈ TpM is uniquely

a linear combination

v =
n

∑
i

ci ∂

∂xi

∣∣∣∣
p

.

In this expression, the coefficients ci = ci(v) depend on v and so are functions on

TU . Let x̄i = xi ◦ π and define the map φ̃ : TU → φ(U)×Rn by

v 7→ (x1(p), . . . ,xn(p),c1(v), . . . ,cn(v)) = (x̄1, . . . , x̄n,c1, . . . ,cn)(v). (12.1)

Then φ̃ has inverse
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(φ(p),c1, . . . ,cn) 7→∑ci ∂

∂xi

∣∣∣∣
p

and is therefore a bijection. This means we can use φ̃ to transfer the topology of

φ(U)×Rn to TU : a set A in TU is open if and only if φ̃(A) is open in φ(U)×
Rn, where φ(U)×Rn is given its standard topology as an open subset of R2n. By

definition, TU , with the topology induced by φ̃ , is homeomorphic to φ(U)×Rn. If

V is an open subset of U , then φ(V )×Rn is an open subset of φ(U)×Rn. Hence,

the relative topology on TV as a subset of TU is the same as the topology induced

from the bijection φ̃ |TV : TV → φ(V )×Rn.

Let φ∗ : TpU → Tφ(p)(R
n) be the differential of the coordinate map φ at p. Since

φ∗(v) = ∑ci ∂/∂ ri|φ(p) ∈ Tφ(p)(R
n)≃ Rn by Proposition 8.8, we may identify φ∗(v)

with the column vector 〈c1, . . . ,cn〉 in Rn. So another way to describe φ̃ is φ̃ = (φ ◦
π ,φ∗).

Let B be the collection of all open subsets of T (Uα) as Uα runs over all coordi-

nate open sets in M:

B=
⋃

α

{A | A open in T (Uα),Uα a coordinate open set in M}.

Lemma 12.1. (i) For any manifold M, the set TM is the union of all A ∈B.

(ii) Let U and V be coordinate open sets in a manifold M. If A is open in TU and B

is open in TV , then A∩B is open in T (U ∩V ).

Proof. (i) Let {(Uα ,φα )} be the maximal atlas for M. Then

T M =
⋃

α

T (Uα)⊂
⋃

A∈B
A⊂ T M,

so equality holds everywhere.

(ii) Since T (U ∩V ) is a subspace of TU , by the definition of relative topology,

A∩T (U ∩V ) is open in T (U ∩V ). Similarly, B∩T (U ∩V ) is open in T (U ∩V ).
But

A∩B⊂ TU ∩TV = T (U ∩V ).

Hence,

A∩B = A∩B∩T(U ∩V ) = (A∩T (U ∩V ))∩ (B∩T(U ∩V ))

is open in T (U ∩V ). ⊓⊔

It follows from this lemma that the collection B satisfies the conditions (i) and

(ii) of Proposition A.8 for a collection of subsets to be a basis for some topology on

T M. We give the tangent bundle T M the topology generated by the basis B.

Lemma 12.2. A manifold M has a countable basis consisting of coordinate open

sets.
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Proof. Let {(Uα ,φα )} be the maximal atlas on M and B = {Bi} a countable basis

for M. For each coordinate open set Uα and point p ∈Uα , choose a basic open set

Bp,α ∈B such that

p ∈ Bp,α ⊂Uα .

The collection {Bp,α}, without duplicate elements, is a subcollection of B and is

therefore countable.

For any open set U in M and a point p ∈U , there is a coordinate open set Uα

such that

p ∈Uα ⊂U.

Hence,

p ∈ Bp,α ⊂U,

which shows that {Bp,α} is a basis for M. ⊓⊔

Proposition 12.3. The tangent bundle T M of a manifold M is second countable.

Proof. Let {Ui}∞
i=1 be a countable basis for M consisting of coordinate open sets.

Let φi be the coordinate map on Ui. Since TUi is homeomorphic to the open subset

φi(Ui)×Rn of R2n and any subset of a Euclidean space is second countable (Ex-

ample A.13 and Proposition A.14), TUi is second countable. For each i, choose a

countable basis {Bi, j}∞
j=1 for TUi. Then {Bi, j}∞

i, j=1 is a countable basis for the tan-

gent bundle. ⊓⊔

Proposition 12.4. The tangent bundle T M of a manifold M is Hausdorff.

Proof. Problem 12.1. ⊓⊔

12.2 The Manifold Structure on the Tangent Bundle

Next we show that if {(Uα ,φα )} is a C∞ atlas for M, then {(TUα , φ̃α)} is a C∞ atlas

for the tangent bundle T M, where φ̃α is the map on TUα induced by φα as in (12.1).

It is clear that T M =
⋃

α TUα . It remains to check that on (TUα)∩ (TUβ ), φ̃α and

φ̃β are C∞ compatible.

Recall that if (U,x1, . . . ,xn), (V,y1, . . . ,yn) are two charts on M, then for any

p ∈U ∩V there are two bases singled out for the tangent space TpM: {∂/∂x j|p}n
j=1

and {∂/∂yi|p}n
i=1. So any tangent vector v ∈ TpM has two descriptions:

v = ∑
j

a j ∂

∂x j

∣∣∣∣
p

= ∑
i

bi ∂

∂yi

∣∣∣∣
p

. (12.2)

It is easy to compare them. By applying both sides to xk, we find that

ak =

(
∑

j

a j ∂

∂x j

)
xk =

(
∑

i

bi ∂

∂yi

)
xk = ∑

i

bi ∂xk

∂yi
.
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Similarly, applying both sides of (12.2) to yk gives

bk = ∑
j

a j ∂yk

∂x j
. (12.3)

Returning to the atlas {(Uα ,φα)}, we write Uαβ = Uα ∩Uβ , φα = (x1, . . . ,xn)

and φβ = (y1, . . . ,yn). Then

φ̃β ◦ φ̃−1
α : φα(Uαβ )×Rn→ φβ (Uαβ )×Rn

is given by

(φα (p),a1, . . . ,an) 7→
(

p,∑
j

a j ∂

∂x j

∣∣∣∣
p

)
7→
(
(φβ ◦ φ−1

α )(φα (p)),b1, . . . ,bn
)
,

where by (12.3) and Example 6.24,

bi = ∑
j

a j ∂yi

∂x j
(p) = ∑

j

a j
∂ (φβ ◦ φ−1

α )i

∂ r j
(φα (p)).

By the definition of an atlas, φβ ◦ φ−1
α is C∞. Therefore, φ̃β ◦ φ̃−1

α is C∞. This

completes the proof that the tangent bundle T M is a C∞ manifold, with {(TUα , φ̃α )}
as a C∞ atlas.

12.3 Vector Bundles

On the tangent bundle T M of a smooth manifold M, the natural projection map

π : T M→M, π(p,v) = p makes TM into a C∞ vector bundle over M, which we now

define.

Given any map π : E → M, we call the inverse image π−1(p) := π−1({p}) of

a point p ∈M the fiber at p. The fiber at p is often written Ep. For any two maps

π : E→M and π ′ : E ′ →M with the same target space M, a map φ : E → E ′ is said

to be fiber-preserving if φ(Ep)⊂ E ′p for all p ∈M.

Exercise 12.5 (Fiber-preserving maps). Given two maps π : E→M and π ′ : E ′ →M, check

that a map φ : E→ E ′ is fiber-preserving if and only if the diagram

E

π ��?
??

??
??

?

φ // E ′

π ′~~~~
~~

~~
~~

M

commutes.

A surjective smooth map π : E →M of manifolds is said to be locally trivial of

rank r if
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(i) each fiber π−1(p) has the structure of a vector space of dimension r;

(ii) for each p ∈M, there are an open neighborhood U of p and a fiber-preserving

diffeomorphism φ : π−1(U)→U×Rr such that for every q ∈U the restriction

φ |π−1(q) : π−1(q)→ {q}×Rr

is a vector space isomorphism. Such an open set U is called a trivializing open

set for E , and φ is called a trivialization of E over U .

The collection {(U,φ)}, with {U} an open cover of M, is called a local trivialization

for E , and {U} is called a trivializing open cover of M for E .

A C∞ vector bundle of rank r is a triple (E,M,π) consisting of manifolds E and M

and a surjective smooth map π : E→M that is locally trivial of rank r. The manifold

E is called the total space of the vector bundle and M the base space. By abuse of

language, we say that E is a vector bundle over M. For any regular submanifold

S⊂M, the triple (π−1S,S,π |π−1S) is a C∞ vector bundle over S, called the restriction

of E to S. We will often write the restriction as E|S instead of π−1S.

Properly speaking, the tangent bundle of a manifold M is a triple (T M,M,π), and

T M is the total space of the tangent bundle. In common usage, T M is often referred

to as the tangent bundle.

π

Fig. 12.2. A circular cylinder is a product bundle over a circle.

Example 12.6 (Product bundle). Given a manifold M, let π : M×Rr → M be the

projection to the first factor. Then M×Rr→M is a vector bundle of rank r, called the

product bundle of rank r over M. The vector space structure on the fiber π−1(p) =
{(p,v) | v ∈ Rr} is the obvious one:

(p,u)+ (p,v) = (p,u+ v), b · (p,v) = (p,bv) for b ∈ R.

A local trivialization on M×R is given by the identity map 1M×R : M×R→M×R.

The infinite cylinder S1×R is the product bundle of rank 1 over the circle (Fig-

ure 12.2).
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Let π : E→M be a C∞ vector bundle. Suppose (U,ψ) = (U,x1, . . . ,xn) is a chart

on M and

φ : E|U ∼→U×Rr, φ(e) =
(
π(e),c1(e), . . . ,cr(e)

)
,

is a trivialization of E over U . Then

(ψ×1) ◦ φ = (x1, . . . ,xn,c1, . . . ,cr) : E|U ∼→U×Rn ∼→ ψ(U)×Rr ⊂ Rn×Rr

is a diffeomorphism of E|U onto its image and so is a chart on E . We call x1, . . . ,xn

the base coordinates and c1, . . . ,cr the fiber coordinates of the chart (E|U ,(ψ×1) ◦
φ) on E . Note that the fiber coordinates ci depend only on the trivialization φ of the

bundle E|U and not on the trivialization ψ of the base U .

Let πE : E →M, πF : F → N be two vector bundles, possibly of different ranks.

A bundle map from E to F is a pair of maps ( f , f̃ ), f : M → N and f̃ : E → F ,

such that

(i) the diagram

E
f̃ //

πE

��

F

πF

��
M

f
// N

is commutative, meaning πF ◦ f̃ = f ◦ πE ;

(ii) f̃ is linear on each fiber; i.e., for each p ∈M, f̃ : Ep→ Ff (p) is a linear map of

vector spaces.

The collection of all vector bundles together with bundle maps between them

forms a category.

Example. A smooth map f : N→M of manifolds induces a bundle map ( f , f̃ ), where

f̃ : TN→ TM is given by

f̃ (p,v) = ( f (p), f∗(v)) ∈ { f (p)}×Tf (p)M ⊂ T M

for all v ∈ TpN. This gives rise to a covariant functor T from the category of

smooth manifolds and smooth maps to the category of vector bundles and bun-

dle maps: to each manifold M, we associate its tangent bundle T (M), and to

each C∞ map f : N → M of manifolds, we associate the bundle map T ( f ) =(
f : N→M, f̃ : T (N)→ T (M)

)
.

If E and F are two vector bundles over the same manifold M, then a bundle

map from E to F over M is a bundle map in which the base map is the identity 1M .

For a fixed manifold M, we can also consider the category of all C∞ vector bundles

over M and C∞ bundle maps over M. In this category it makes sense to speak of an

isomorphism of vector bundles over M. Any vector bundle over M isomorphic over

M to the product bundle M×Rr is called a trivial bundle.
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12.4 Smooth Sections

A section of a vector bundle π : E→M is a map s : M→ E such that π ◦ s = 1M , the

identity map on M. This condition means precisely that for each p in M, s maps p

into the fiber Ep above p. Pictorially we visualize a section as a cross-section of the

bundle (Figure 12.3). We say that a section is smooth if it is smooth as a map from

M to E .

π

s(M)

b

b

p
M

s(p)

Fig. 12.3. A section of a vector bundle.

Definition 12.7. A vector field X on a manifold M is a function that assigns a tangent

vector Xp ∈ TpM to each point p ∈M. In terms of the tangent bundle, a vector field

on M is simply a section of the tangent bundle π : T M→ M and the vector field is

smooth if it is smooth as a map from M to T M.

Example 12.8. The formula

X(x,y) =−y
∂

∂x
+ x

∂

∂y
=

[
−y

x

]

defines a smooth vector field on R2 (Figure 12.4, cf. Example 2.3).

Fig. 12.4. The vector field (−y,x) in R2.
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Proposition 12.9. Let s and t be C∞ sections of a C∞ vector bundle π : E →M and

let f be a C∞ real-valued function on M. Then

(i) the sum s+ t : M→ E defined by

(s+ t)(p) = s(p)+ t(p) ∈ Ep, p ∈M,

is a C∞ section of E.

(ii) the product f s : M→ E defined by

( f s)(p) = f (p)s(p) ∈ Ep, p ∈M,

is a C∞ section of E.

Proof.

(i) It is clear that s+ t is a section of E . To show that it is C∞, fix a point p ∈M and

let V be a trivializing open set for E containing p, with C∞ trivialization

φ : π−1(V )→V ×Rr.

Suppose

(φ ◦ s)(q) = (q,a1(q), . . . ,ar(q))

and

(φ ◦ t)(q) = (q,b1(q), . . . ,br(q))

for q ∈ V . Because s and t are C∞ maps, ai and bi are C∞ functions on V (Proposi-

tion 6.16). Since φ is linear on each fiber,

(φ ◦ (s+ t))(q) = (q,a1(q)+ b1(q), . . . ,ar(q)+ br(q)), q ∈V.

This proves that s+ t is a C∞ map on V and hence at p. Since p is an arbitrary point

of M, the section s+ t is C∞ on M.

(ii) We omit the proof, since it is similar to that of (i). ⊓⊔

Denote the set of all C∞ sections of E by Γ(E). The proposition shows that Γ(E)
is not only a vector space over R, but also a module over the ring C∞(M) of C∞

functions on M. For any open subset U ⊂M, one can also consider the vector space

Γ(U,E) of C∞ sections of E over U . Then Γ(U,E) is both a vector space over R and

a C∞(U)-module. Note that Γ(M,E) = Γ(E). To contrast with sections over a proper

subset U , a section over the entire manifold M is called a global section.

12.5 Smooth Frames

A frame for a vector bundle π : E→M over an open set U is a collection of sections

s1, . . . ,sr of E over U such that at each point p ∈U , the elements s1(p), . . . ,sr(p)
form a basis for the fiber Ep := π−1(p). A frame s1, . . . ,sr is said to be smooth or C∞



138 §12 The Tangent Bundle

if s1, . . . ,sr are C∞ as sections of E over U . A frame for the tangent bundle TM→M

over an open set U is simply called a frame on U .

Example. The collection of vector fields ∂/∂x,∂/∂y,∂/∂ z is a smooth frame on R3.

Example. Let M be a manifold and e1, . . . ,er the standard basis for Rn. Define

ēi : M→ M×Rr by ēi(p) = (p,ei). Then ē1, . . . , ēr is a C∞ frame for the product

bundle M×Rr→M.

Example 12.10 (The frame of a trivialization). Let π : E → M be a smooth vector

bundle of rank r. If φ : E|U ∼→U ×Rr is a trivialization of E over an open set U ,

then φ−1 carries the C∞ frame ē1, . . . , ēr of the product bundle U×Rr to a C∞ frame

t1, . . . , tr for E over U :

ti(p) = φ−1(ēi(p)) = φ−1(p,ei), p ∈U.

We call t1, . . . , tr the C∞ frame over U of the trivialization φ .

Lemma 12.11. Let φ : E|U →U×Rr be a trivialization over an open set U of a C∞

vector bundle E →M, and t1, . . . , tr the C∞ frame over U of the trivialization. Then

a section s = ∑biti of E over U is C∞ if and only if its coefficients bi relative to the

frame t1, . . . , tr are C∞.

Proof.

(⇐) This direction is an immediate consequence of Proposition 12.9.

(⇒) Suppose the section s = ∑biti of E over U is C∞. Then φ ◦ s is C∞. Note that

(φ ◦ s)(p) = ∑bi(p)φ(ti(p)) = ∑bi(p)(p,ei) =
(

p,∑bi(p)ei

)
.

Thus, the bi(p) are simply the fiber coordinates of s(p) relative to the trivialization

φ . Since φ ◦ s is C∞, all the bi are C∞. ⊓⊔

Proposition 12.12 (Characterization of C∞ sections). Let π : E → M be a C∞

vector bundle and U an open subset of M. Suppose s1, . . . ,sr is a C∞ frame for E

over U. Then a section s = ∑c js j of E over U is C∞ if and only if the coefficients c j

are C∞ functions on U.

Proof. If s1, . . . ,sr is the frame of a trivialization of E over U , then the proposition is

Lemma 12.11. We prove the proposition in general by reducing it to this case. One

direction is quite easy. If the c j’s are C∞ functions on U , then s = ∑c js j is a C∞

section on U by Proposition 12.9.

Conversely, suppose s = ∑c js j is a C∞ section of E over U . Fix a point p ∈U

and choose a trivializing open set V ⊂U for E containing p, with C∞ trivialization

φ : π−1(V )→V ×Rr. Let t1, . . . , tr be the C∞ frame of the trivialization φ (Example

12.10). If we write s and s j in terms of the frame t1, . . . , tr, say s = ∑biti and s j =

∑ai
jti, the coefficients bi, ai

j will all be C∞ functions on V by Lemma 12.11. Next,

express s = ∑c js j in terms of the ti’s:
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∑biti = s = ∑c js j = ∑
i, j

c jai
jti.

Comparing the coefficients of ti gives bi = ∑ j c jai
j. In matrix notation,

b =




b1

...

br


= A




c1

...

cr


= Ac.

At each point of V , being the transition matrix between two bases, the matrix A is in-

vertible. By Cramer’s rule, A−1 is a matrix of C∞ functions on V (see Example 6.21).

Hence, c = A−1b is a column vector of C∞ functions on V . This proves that c1, . . . ,cr

are C∞ functions at p ∈U . Since p is an arbitrary point of U , the coefficients c j are

C∞ functions on U . ⊓⊔

Remark 12.13. If one replaces “smooth” by “continuous” throughout, the discussion

in this subsection remains valid in the continuous category.

Problems

12.1.* Hausdorff condition on the tangent bundle

Prove Proposition 12.4.

12.2. Transition functions for the total space of the tangent bundle

Let (U,φ) = (U,x1, . . . ,xn) and (V,ψ) = (V,y1, . . . ,yn) be overlapping coordinate charts on a

manifold M. They induce coordinate charts (TU, φ̃ ) and (TV, ψ̃) on the total space T M of the

tangent bundle (see equation (12.1)), with transition function ψ̃ ◦ φ̃−1:

(x1, . . . ,xn,a1, . . . ,an) 7→ (y1, . . . ,yn,b1, . . . ,bn).

(a) Compute the Jacobian matrix of the transition function ψ̃ ◦ φ̃−1 at φ(p).
(b) Show that the Jacobian determinant of the transition function ψ̃ ◦ φ̃−1 at φ(p) is

(det[∂yi/∂x j])2.

12.3. Smoothness of scalar multiplication

Prove Proposition 12.9(ii).

12.4. Coefficients relative to a smooth frame

Let π : E →M be a C∞ vector bundle and s1, . . . ,sr a C∞ frame for E over an open set U in

M. Then every e ∈ π−1(U) can be written uniquely as a linear combination

e =
r

∑
j=1

c j(e)s j(p), p = π(e) ∈U.

Prove that c j : π−1U → R is C∞ for j = 1, . . . ,r. (Hint: First show that the coefficients of e

relative to the frame t1, . . . , tr of a trivialization are C∞.)
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§13 Bump Functions and Partitions of Unity

A partition of unity on a manifold is a collection of nonnegative functions that sum

to 1. Usually one demands in addition that the partition of unity be subordinate to

an open cover {Uα}α∈A. What this means is that the partition of unity {ρα}α∈A is

indexed by the same set as the open over {Uα}α∈A and for each α in the index A,

the support of ρα is contained in Uα . In particular, ρα vanishes outside Uα .

The existence of a C∞ partition of unity is one of the most important technical

tools in the theory of C∞ manifolds. It is the single feature that makes the behavior

of C∞ manifolds so different from that of real-analytic or complex manifolds. In this

section we construct C∞ bump functions on any manifold and prove the existence

of a C∞ partition of unity on a compact manifold. The proof of the existence of a

C∞ partition of unity on a general manifold is more technical and is postponed to

Appendix C.

A partition of unity is used in two ways: (1) to decompose a global object on a

manifold into a locally finite sum of local objects on the open sets Uα of an open

cover, and (2) to patch together local objects on the open sets Uα into a global object

on the manifold. Thus, a partition of unity serves as a bridge between global and

local analysis on a manifold. This is useful because while there are always local co-

ordinates on a manifold, there may be no global coordinates. In subsequent sections

we will see examples of both uses of a C∞ partition of unity.

13.1 C∞ Bump Functions

Recall that R× denotes the set of nonzero real numbers. The support of a real-valued

function f on a manifold M is defined to be the closure in M of the subset on which

f 6= 0:

supp f = clM( f−1(R×)) = closure of {q ∈M | f (q) 6= 0} in M.1

Let q be a point in M, and U a neighborhood of q. By a bump function at q

supported in U we mean any continuous nonnegative function ρ on M that is 1 in a

neighborhood of q with suppρ ⊂U .

For example, Figure 13.1 is the graph of a bump function at 0 supported in the

open interval ]− 2,2[. The function is nonzero on the open interval ]− 1,1[ and is

zero otherwise. Its support is the closed interval [−1,1].

Example. The support of the function f : ]− 1,1[ → R, f (x) = tan(πx/2), is the

open interval ]−1,1[, not the closed interval [−1,1], because the closure of f−1(R×)
is taken in the domain ]−1,1[, not in R.

1In this section a general point is often denoted by q, instead of p, because p resembles

too much ρ , the notation for a bump function.
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1 2−1−2

1

Fig. 13.1. A bump function at 0 on R.

The only bump functions of interest to us are C∞ bump functions. While the

continuity of a function can often be seen by inspection, the smoothness of a function

always requires a formula. Our goal in this subsection is to find a formula for a C∞

bump function as in Figure 13.1.

Example. The graph of y = x5/3 looks perfectly smooth (Figure 13.2), but it is in

fact not smooth at x = 0, since its second derivative y′′ = (10/9)x−1/3 is not defined

there.

1−1

1

−1

x

y

Fig. 13.2. The graph of y = x5/3.

In Example 1.3 we introduced the C∞ function

f (t) =

{
e−1/t for t > 0,

0 for t ≤ 0,

with graph as in Figure 13.3.

1−1 t

1

f (t)

Fig. 13.3. The graph of f (t).
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The main challenge in building a smooth bump function from f is to construct a

smooth version of a step function, that is, a C∞ function g : R→ R with graph as in

Figure 13.4. Once we have such a C∞ step function g, it is then simply a matter of

1

1
g(t)

t

g(t) =

{
0 for t ≤ 0,

1 for t ≥ 1.

Fig. 13.4. The graph of g(t).

translating, reflecting, and scaling the function in order to make its graph look like

Figure 13.1.

We seek g(t) by dividing f (t) by a positive function ℓ(t), for the quotient

f (t)/ℓ(t) will then be zero for t ≤ 0. The denominator ℓ(t) should be a positive

function that agrees with f (t) for t ≥ 1, for then f (t)/ℓ(t) will be identically 1 for

t ≥ 1. The simplest way to construct such an ℓ(t) is to add to f (t) a nonnegative

function that vanishes for t ≥ 1. One such nonnegative function is f (1− t). This

suggests that we take ℓ(t) = f (t)+ f (1− t) and consider

g(t) =
f (t)

f (t)+ f (1− t)
. (13.1)

Let us verify that the denominator f (t)+ f (1− t) is never zero. For t > 0, f (t)>
0 and therefore

f (t)+ f (1− t)≥ f (t)> 0.

For t ≤ 0, 1− t ≥ 1 and therefore

f (t)+ f (1− t)≥ f (1− t)> 0.

In either case, f (t)+ f (1− t) 6= 0. This proves that g(t) is defined for all t. As the

quotient of two C∞ functions with denominator never zero, g(t) is C∞ for all t.

As noted above, for t ≤ 0, the numerator f (t) equals 0, so g(t) is identically zero

for t ≤ 0. For t ≥ 1, we have 1− t ≤ 0 and f (1− t) = 0, so g(t) = f (t)/ f (t) is

identically 1 for t ≥ 1. Thus, g is a C∞ step function with the desired properties.

Given two positive real numbers a < b, we make a linear change of variables to

map [a2,b2] to [0,1]:

x 7→ x− a2

b2−a2
.

Let

h(x) = g

(
x− a2

b2− a2

)
.

Then h : R→ [0,1] is a C∞ step function such that
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h(x) =

{
0 for x≤ a2,

1 for x≥ b2.

(See Figure 13.5.)

1 h(x)

x
a2 b2

Fig. 13.5. The graph of h(x).

Replace x by x2 to make the function symmetric in x: k(x) = h(x2) (Figure 13.6).

1k(x)

x
a b−a−b

Fig. 13.6. The graph of k(x).

Finally, set

ρ(x) = 1− k(x) = 1− g

(
x2−a2

b2− a2

)
.

This ρ(x) is a C∞ bump function at 0 in R that is identically 1 on [−a,a] and has

support in [−b,b] (Figure 13.7). For any q ∈R, ρ(x−q) is a C∞ bump function at q.

ρ(x)

x
a b−a−b

1

Fig. 13.7. A bump function at 0 on R.

It is easy to extend the construction of a bump function from R to Rn. To get a

C∞ bump function at 0 in Rn that is 1 on the closed ball B(0,a) and has support in

the closed ball B(0,b), set

σ(x) = ρ(‖x‖) = 1−g

(‖x‖r2− a2

b2− a2

)
. (13.2)
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As a composition of C∞ functions, σ is C∞. To get a C∞ bump function at q in Rn,

take σ(x−q).

Exercise 13.1 (Bump function supported in an open set).* Let q be a point and U any

neighborhood of q in a manifold. Construct a C∞ bump function at q supported in U .

In general, a C∞ function on an open subset U of a manifold M cannot be ex-

tended to a C∞ function on M; an example is the function sec(x) on the open interval

]−π/2,π/2[ in R. However, if we require that the global function on M agree with

the given function only on some neighborhood of a point in U , then a C∞ extension

is possible.

Proposition 13.2 (C∞ extension of a function). Suppose f is a C∞ function defined

on a neighborhood U of a point p in a manifold M. Then there is a C∞ function f̃ on

M that agrees with f in some possibly smaller neighborhood of p.

( )b

p

U| |

1

ρ

f

Fig. 13.8. Extending the domain of a function by multiplying by a bump function.

Proof. Choose a C∞ bump function ρ : M→ R supported in U that is identically 1

in a neighborhood V of p (Figure 13.8). Define

f̃ (q) =

{
ρ(q) f (q) for q in U ,

0 for q not in U .

As the product of two C∞ functions on U , f̃ is C∞ on U . If q /∈U , then q /∈ suppρ ,

and so there is an open set containing q on which f̃ is 0, since suppρ is closed.

Therefore, f̃ is also C∞ at every point q /∈U .

Finally, since ρ ≡ 1 on V , the function f̃ agrees with f on V . ⊓⊔
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13.2 Partitions of Unity

If {Ui}i∈I is a finite open cover of M, a C∞ partition of unity subordinate to {Ui}i∈I

is a collection of nonnegative C∞ functions {ρi : M→ R}i∈I such that suppρi ⊂Ui

and

∑ρi = 1. (13.3)

When I is an infinite set, for the sum in (13.3) to make sense, we will impose

a local finiteness condition. A collection {Aα} of subsets of a topological space S

is said to be locally finite if every point q in S has a neighborhood that meets only

finitely many of the sets Aα . In particular, every q in S is contained in only finitely

many of the Aα ’s.

Example 13.3 (An open cover that is not locally finite). Let Ur,n be the open interval]
r− 1

n
,r+ 1

n

[
on the real line R. The open cover {Ur,n | r ∈ Q,n ∈ Z+} of R is not

locally finite.

Definition 13.4. A C∞ partition of unity on a manifold is a collection of nonnegative

C∞ functions {ρα : M→R}α∈A such that

(i) the collection of supports, {suppρα}α∈A, is locally finite,

(ii) ∑ρα = 1.

Given an open cover {Uα}α∈A of M, we say that a partition of unity {ρα}α∈A is

subordinate to the open cover {Uα} if suppρα ⊂Uα for every α ∈ A.

Since the collection of supports, {suppρα}α∈A, is locally finite (condition (i)),

every point q lies in only finitely many of the sets suppρα . Hence ρα(q) 6= 0 for only

finitely many α . It follows that the sum in (ii) is a finite sum at every point.

Example. Let U and V be the open intervals ]−∞,2[ and ]− 1,∞[ in R respectively,

and let ρV be a C∞ function with graph as in Figure 13.9, for example the function

g(t) in (13.1). Define ρU = 1− ρV . Then suppρV ⊂ V and suppρU ⊂ U . Thus,

{ρU ,ρV} is a partition of unity subordinate to the open cover {U,V}.

1 2−1−2

1 ρV

R1

U

V

)

(

Fig. 13.9. A partition of unity {ρU ,ρV } subordinate to an open cover {U,V}.
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Remark. Suppose { fα}α∈A is a collection of C∞ functions on a manifold M such that

the collection of its supports, {supp fα}α∈A, is locally finite. Then every point q in

M has a neighborhood Wq that intersects supp fα for only finitely many α . Thus, on

Wq the sum ∑α∈A fα is actually a finite sum. This shows that the function f = ∑ fα

is well defined and C∞ on the manifold M. We call such a sum a locally finite sum.

13.3 Existence of a Partition of Unity

In this subsection we begin a proof of the existence of a C∞ partition of unity on a

manifold. Because the case of a compact manifold is somewhat easier and already

has some of the features of the general case, for pedagogical reasons we give a sep-

arate proof for the compact case.

Lemma 13.5. If ρ1, . . . ,ρm are real-valued functions on a manifold M, then

supp
(
∑ρi

)
⊂
⋃

suppρi.

Proof. Problem 13.1. ⊓⊔

Proposition 13.6. Let M be a compact manifold and {Uα}α∈A an open cover of M.

There exists a C∞ partition of unity {ρα}α∈A subordinate to {Uα}α∈A.

Proof. For each q ∈M, find an open set Uα containing q from the given cover and

let ψq be a C∞ bump function at q supported in Uα (Exercise 13.1, p. 144). Because

ψq(q) > 0, there is a neighborhood Wq of q on which ψq > 0. By the compactness

of M, the open cover {Wq | q ∈ M} has a finite subcover, say {Wq1
, . . . ,Wqm}. Let

ψq1
, . . . ,ψqm be the corresponding bump functions. Then ψ := ∑ψqi

is positive at

every point q in M because q ∈Wqi
for some i. Define

ϕi =
ψqi

ψ
, i = 1, . . . ,m.

Clearly, ∑ϕi = 1. Moreover, since ψ > 0, ϕi(q) 6= 0 if and only if ψqi
(q) 6= 0, so

suppϕi = suppψqi
⊂Uα

for some α ∈ A. This shows that {ϕi} is a partition of unity such that for every i,

suppϕi ⊂Uα for some α ∈A.

The next step is to make the index set of the partition of unity the same as that of

the open cover. For each i = 1, . . . ,m, choose τ(i) ∈ A to be an index such that

suppϕi ⊂Uτ(i).

We group the collection of functions {ϕi} into subcollections according to τ(i) and

define for each α ∈ A,

ρα = ∑
τ(i)=α

ϕi;
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if there is no i for which τ(i) = α , the sum above is empty and we define ρα = 0.

Then

∑
α∈A

ρα = ∑
α∈A

∑
τ(i)=α

ϕi =
m

∑
i=1

ϕi = 1.

Moreover, by Lemma 13.5,

suppρα ⊂
⋃

τ(i)=α

suppϕi ⊂Uα .

So {ρα} is a partition of unity subordinate to {Uα}. ⊓⊔

To generalize the proof of Proposition 13.6 to an arbitrary manifold, it will be

necessary to find an appropriate substitute for compactness. Since the proof is rather

technical and is not necessary for the rest of the book, we put it in Appendix C. The

statement is as follows.

Theorem 13.7 (Existence of a C∞ partition of unity). Let {Uα}α∈A be an open

cover of a manifold M.

(i) There is a C∞ partition of unity {ϕk}∞
k=1 with every ϕk having compact support

such that for each k, suppϕk ⊂Uα for some α ∈ A.

(ii) If we do not require compact support, then there is a C∞ partition of unity {ρα}
subordinate to {Uα}.

Problems

13.1.* Support of a finite sum

Prove Lemma 13.5.

13.2.* Locally finite family and compact set

Let {Aα} be a locally finite family of subsets of a topological space S. Show that every

compact set K in S has a neighborhood W that intersects only finitely many of the Aα .

13.3. Smooth Urysohn lemma

(a) Let A and B be two disjoint closed sets in a manifold M. Find a C∞ function f on M such

that f is identically 1 on A and identically 0 on B. (Hint: Consider a C∞ partition of unity

{ρM−A,ρM−B} subordinate to the open cover {M−A,M−B}. This lemma is needed in

Subsection 29.3.)

(b) Let A be a closed subset and U an open subset of a manifold M. Show that there is a C∞

function f on M such that f is identically 1 on A and supp f ⊂U .

13.4. Support of the pullback of a function

Let F : N → M be a C∞ map of manifolds and h : M→ R a C∞ real-valued function. Prove

that suppF∗h⊂ F−1(supp h). (Hint: First show that (F∗h)−1(R×)⊂ F−1(supph).)
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13.5.* Support of the pullback by a projection

Let f : M→R be a C∞ function on a manifold M. If N is another manifold and π : M×N→M

is the projection onto the first factor, prove that

supp(π∗ f ) = (supp f )×N.

13.6. Pullback of a partition of unity

Suppose {ρα} is a partition of unity on a manifold M subordinate to an open cover {Uα} of

M and F : N→M is a C∞ map. Prove that

(a) the collection of supports {supp F∗ρα} is locally finite;

(b) the collection of functions {F∗ρα} is a partition of unity on N subordinate to the open

cover {F−1(Uα )} of N.

13.7.* Closure of a locally finite union

If {Aα} is a locally finite collection of subsets in a topological space, then

⋃
Aα =

⋃
Aα , (13.4)

where A denotes the closure of the subset A.

Remark. For any collection of subsets Aα , one always has

⋃
Aα ⊂

⋃
Aα .

However, the reverse inclusion is in general not true. For example, suppose An is the closed

interval [0,1− (1/n)] in R. Then

∞⋃

n=1

An = [0,1) = [0,1],

but
∞⋃

n=1

An =
∞⋃

n=1

[
0,1− 1

n

]
= [0,1).

If {Aα} is a finite collection, the equality (13.4) is easily shown to be true.



14.1 Smoothness of a Vector Field 149

§14 Vector Fields

A vector field X on a manifold M is the assignment of a tangent vector Xp ∈ TpM

to each point p ∈M. More formally, a vector field on M is a section of the tangent

bundle T M of M. It is natural to define a vector field as smooth if it is smooth as a

section of the tangent bundle. In the first subsection we give two other characteriza-

tions of smooth vector fields, in terms of the coefficients relative to coordinate vector

fields and in terms of smooth functions on the manifold.

Vector fields abound in nature, for example the velocity vector field of a fluid

flow, the electric field of a charge, the gravitational field of a mass, and so on. The

fluid flow model is in fact quite general, for as we will see shortly, every smooth

vector field may be viewed locally as the velocity vector field of a fluid flow. The

path traced out by a point under this flow is called an integral curve of the vector

field. Integral curves are curves whose velocity vector field is the restriction of the

given vector field to the curve. Finding the equation of an integral curve is equivalent

to solving a system of first-order ordinary differential equations (ODE). Thus, the

theory of ODE guarantees the existence of integral curves.

The set X(M) of all C∞ vector fields on a manifold M clearly has the structure of

a vector space. We introduce a bracket operation [ , ] that makes it into a Lie algebra.

Because vector fields do not push forward under smooth maps, the Lie algebra X(M)
does not give rise to a functor on the category of smooth manifolds. Nonetheless,

there is a notion of related vector fields that allows us to compare vector fields on

two manifolds under a smooth map.

14.1 Smoothness of a Vector Field

In Definition 12.7 we defined a vector field X on a manifold M to be smooth if the

map X : M → T M is smooth as a section of the tangent bundle π : T M → M. In

a coordinate chart (U,φ) = (U,x1, . . . ,xn) on M, the value of the vector field X at

p ∈U is a linear combination

Xp =∑ai(p)
∂

∂xi

∣∣∣∣
p

.

As p varies in U , the coefficients ai become functions on U .

As we learned in Subsections 12.1 and 12.2, the chart (U,φ) = (U,x1, . . . ,xn) on

the manifold M induces a chart

(TU, φ̃) = (TU, x̄1, . . . , x̄n,c1, . . . ,cn)

on the tangent bundle T M, where x̄i = π∗xi = xi ◦ π and the ci are defined by

v = ∑ci(v)
∂

∂xi

∣∣∣∣
p

, v ∈ TpM.
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Comparing coefficients in

Xp = ∑ai(p)
∂

∂xi

∣∣∣∣
p

= ∑ci(Xp)
∂

∂xi

∣∣∣∣
p

, p ∈U,

we get ai = ci ◦ X as functions on U . Being coordinates, the ci are smooth func-

tions on TU . Thus, if X is smooth and (U,x1, . . . ,xn) is any chart on M, then the

coefficients ai of X = ∑ai∂/∂xi relative to the frame ∂/∂xi are smooth on U .

The converse is also true, as indicated in the following lemma.

Lemma 14.1 (Smoothness of a vector field on a chart). Let (U,φ) = (U,x1, . . . ,xn)
be a chart on a manifold M. A vector field X = ∑ai ∂/∂xi on U is smooth if and only

if the coefficient functions ai are all smooth on U.

Proof. This lemma is a special case of Proposition 12.12, with E the tangent bundle

of M and si the coordinate vector field ∂/∂xi.

Because we have an explicit description of the manifold structure on the tangent

bundle T M, a direct proof of the lemma is also possible. Since φ̃ : TU
∼→U ×Rn

is a diffeomorphism, X : U → TU is smooth if and only if φ̃ ◦ X : U →U ×Rn is

smooth. For p ∈U ,

(φ̃ ◦ X)(p) = φ̃ (Xp) =
(
x1(p), . . . ,xn(p),c1(Xp), . . . ,c

n(Xp)
)

=
(
x1(p), . . . ,xn(p),a1(p), . . . ,an(p)

)
.

As coordinate functions, x1, . . . ,xn are C∞ on U . Therefore, by Proposition 6.13,

φ̃ ◦ X is smooth if and only if all the ai are smooth on U . ⊓⊔

This lemma leads to a characterization of the smoothness of a vector field on a

manifold in terms of the coefficients of the vector field relative to coordinate frames.

Proposition 14.2 (Smoothness of a vector field in terms of coefficients). Let X be

a vector field on a manifold M. The following are equivalent:

(i) The vector field X is smooth on M.

(ii) The manifold M has an atlas such that on any chart (U,φ) = (U,x1, . . . ,xn) of

the atlas, the coefficients ai of X = ∑ai ∂/∂xi relative to the frame ∂/∂xi are all

smooth.

(iii) On any chart (U,φ) = (U,x1, . . . ,xn) on the manifold M, the coefficients ai of

X = ∑ai∂/∂xi relative to the frame ∂/∂xi are all smooth.

Proof. (ii)⇒ (i): Assume (ii). By the preceding lemma, X is smooth on every chart

(U,φ) of an atlas of M. Thus, X is smooth on M.

(i)⇒ (iii): A smooth vector field on M is smooth on every chart (U,φ) on M. The

preceding lemma then implies (iii).

(iii)⇒ (ii): Obvious. ⊓⊔
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Just as in Subsection 2.5, a vector field X on a manifold M induces a linear map

on the algebra C∞(M) of C∞ functions on M: for f ∈ C∞(M), define X f to be the

function

(X f )(p) = Xp f , p ∈M.

In terms of its action as an operator on C∞ functions, there is still another character-

ization of a smooth vector field.

Proposition 14.3 (Smoothness of a vector field in terms of functions). A vector

field X on M is smooth if and only if for every smooth function f on M, the function

X f is smooth on M.

Proof.

(⇒) Suppose X is smooth and f ∈ C∞(M). By Proposition 14.2, on any chart

(U,x1, . . . ,xn) on M, the coefficients ai of the vector field X = ∑ai ∂/∂xi are C∞.

It follows that X f = ∑ai ∂ f/∂xi is C∞ on U . Since M can be covered by charts, X f

is C∞ on M.

(⇐) Let (U,x1, . . . ,xn) be any chart on M. Suppose X = ∑ai ∂/∂xi on U and p ∈U .

By Proposition 13.2, for k = 1, . . . ,n, each xk can be extended to a C∞ function x̃k on

M that agrees with xk in a neighborhood V of p in U . Therefore, on V ,

Xx̃k =

(
∑ai ∂

∂xi

)
x̃k =

(
∑ai ∂

∂xi

)
xk = ak.

This proves that ak is C∞ at p. Since p is an arbitrary point in U , the function ak is

C∞ on U . By the smoothness criterion of Proposition 14.2, X is smooth.

In this proof it is necessary to extend xk to a C∞ global function x̃k on M, for

while it is true that Xxk = ak, the coordinate function xk is defined only on U , not on

M, and so the smoothness hypothesis on X f does not apply to Xxk. ⊓⊔

By Proposition 14.3, we may view a C∞ vector field X as a linear operator

X : C∞(M)→ C∞(M) on the algebra of C∞ functions on M. As in Proposition 2.6,

this linear operator X : C∞(M)→C∞(M) is a derivation: for all f ,g ∈C∞(M),

X( f g) = (X f )g+ f (Xg).

In the following we think of C∞ vector fields on M alternately as C∞ sections of the

tangent bundle T M and as derivations on the algebra C∞(M) of C∞ functions. In

fact, it can be shown that these two descriptions of C∞ vector fields are equivalent

(Problem 19.12).

Proposition 13.2 on C∞ extensions of functions has an analogue for vector fields.

Proposition 14.4 (C∞ extension of a vector field). Suppose X is a C∞ vector field

defined on a neighborhood U of a point p in a manifold M. Then there is a C∞ vector

field X̃ on M that agrees with X on some possibly smaller neighborhood of p.
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Proof. Choose a C∞ bump function ρ : M→ R supported in U that is identically 1

in a neighborhood V of p (Figure 13.8). Define

X̃(q) =

{
ρ(q)Xq for q in U ,

0 for q not in U .

The rest of the proof is the same as in Proposition 13.2. ⊓⊔

14.2 Integral Curves

In Example 12.8, it appears that through each point in the plane one can draw a circle

whose velocity at any point is the given vector field at that point. Such a curve is an

example of an integral curve of the vector field, which we now define.

Definition 14.5. Let X be a C∞ vector field on a manifold M, and p∈M. An integral

curve of X is a smooth curve c : ]a,b[→ M such that c′(t) = Xc(t) for all t ∈ ]a,b[.
Usually we assume that the open interval ]a,b[ contains 0. In this case, if c(0) = p,

then we say that c is an integral curve starting at p and call p the initial point of c. To

show the dependence of such an integral curve on the initial point p, we also write

ct(p) instead of c(t).

Definition 14.6. An integral curve is maximal if its domain cannot be extended to a

larger interval.

Example. Recall the vector field X(x,y) = 〈−y,x〉 on R2 (Figure 12.4). We will find

an integral curve c(t) of X starting at the point (1,0) ∈ R2. The condition for c(t) =
(x(t),y(t)) to be an integral curve is c′(t) = Xc(t), or

[
ẋ(t)
ẏ(t)

]
=

[
−y(t)

x(t)

]
,

so we need to solve the system of first-order ordinary differential equations

ẋ =−y, (14.1)

ẏ = x, (14.2)

with initial condition (x(0),y(0)) = (1,0). From (14.1), y = −ẋ, so ẏ =−ẍ. Substi-

tuting into (14.2) gives

ẍ =−x.

It is well known that the general solution to this equation is

x = Acost +Bsint. (14.3)

Hence,

y =−ẋ = Asin t−Bcost. (14.4)
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The initial condition forces A = 1, B = 0, so the integral curve starting at (1,0) is

c(t) = (cost,sin t), which parametrizes the unit circle.

More generally, if the initial point of the integral curve, corresponding to t = 0,

is p = (x0,y0), then (14.3) and (14.4) give

A = x0, B =−y0,

and the general solution to (14.1) and (14.2) is

x = x0 cost− y0 sin t,

y = x0 sin t + y0 cost, t ∈ R.

This can be written in matrix notation as

c(t) =

[
x(t)
y(t)

]
=

[
cost −sin t

sin t cost

][
x0

y0

]
=

[
cost −sin t

sin t cost

]
p,

which shows that the integral curve of X starting at p can be obtained by rotating the

point p counterclockwise about the origin through an angle t. Notice that

cs(ct(p)) = cs+t(p),

since a rotation through an angle t followed by a rotation through an angle s is the

same as a rotation through the angle s+ t. For each t ∈ R, ct : R2→ R2 is a diffeo-

morphism with inverse c−t .

Let Diff(M) be the group of diffeomorphisms of a manifold M with itself, the

group operation being composition. A homomorphism c : R→ Diff(M) is called a

one-parameter group of diffeomorphisms of M. In this example the integral curves

of the vector field X(x,y) = 〈−y,x〉 on R2 give rise to a one-parameter group of dif-

feomorphisms of R2.

Example. Let X be the vector field x2 d/dx on the real line R. Find the maximal

integral curve of X starting at x = 2.

Solution. Denote the integral curve by x(t). Then

x′(t) = Xx(t) ⇐⇒ ẋ(t)
d

dx
= x2 d

dx
,

where x′(t) is the velocity vector of the curve x(t), and ẋ(t) is the calculus derivative

of the real-valued function x(t). Thus, x(t) satisfies the differential equation

dx

dt
= x2, x(0) = 2. (14.5)

On can solve (14.5) by separation of variables:

dx

x2
= dt. (14.6)
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Integrating both sides of (14.6) gives

−1

x
= t +C, or x =− 1

t +C
,

for some constant C. The initial condition x(0) = 2 forces C =−1/2. Hence, x(t) =
2/(1−2t). The maximal interval containing 0 on which x(t) is defined is ]−∞,1/2[.

From this example we see that it may not be possible to extend the domain of

definition of an integral curve to the entire real line.

14.3 Local Flows

The two examples in the preceding section illustrate the fact that locally, finding an

integral curve of a vector field amounts to solving a system of first-order ordinary

differential equations with initial conditions. In general, if X is a smooth vector field

on a manifold M, to find an integral curve c(t) of X starting at p, we first choose a

coordinate chart (U,φ) = (U,x1, . . . ,xn) about p. In terms of the local coordinates,

Xc(t) = ∑ai(c(t))
∂

∂xi

∣∣∣∣
c(t)

,

and by Proposition 8.15,

c′(t) = ∑ ċi(t)
∂

∂xi

∣∣∣∣
c(t)

,

where ci(t) = xi ◦ c(t) is the ith component of c(t) in the chart (U,φ). The condition

c′(t) = Xc(t) is thus equivalent to

ċi(t) = ai(c(t)) for i = 1, . . . ,n. (14.7)

This is a system of ordinary differential equations (ODE); the initial condition c(0) =
p translates to (c1(0), . . . ,cn(0)) = (p1, . . . , pn). By an existence and uniqueness

theorem from the theory of ODE, such a system always has a unique solution in the

following sense.

Theorem 14.7. Let V be an open subset of Rn, p0 a point in V , and f : V →Rn a C∞

function. Then the differential equation

dy/dt = f (y), y(0) = p0,

has a unique C∞ solution y : ]a(p0),b(p0)[→V, where ]a(p0),b(p0)[ is the maximal

open interval containing 0 on which y is defined.

The uniqueness of the solution means that if z : ]δ ,ε[ → V satisfies the same

differential equation

dz/dt = f (z), z(0) = p0,
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then the domain of definition ]δ ,ε[ of z is a subset of ]a(p0),b(p0)[ and z(t) = y(t)
on the interval ]δ ,ε[.

For a vector field X on a chart U of a manifold and a point p ∈U , this theorem

guarantees the existence and uniqueness of a maximal integral curve starting at p.

Next we would like to study the dependence of an integral curve on its initial

point. Again we study the problem locally on Rn. The function y will now be a

function of two arguments t and q, and the condition for y to be an integral curve

starting at the point q is

∂y

∂ t
(t,q) = f (y(t,q)), y(0,q) = q. (14.8)

The following theorem from the theory of ODE guarantees the smooth depen-

dence of the solution on the initial point.

Theorem 14.8. Let V be an open subset of Rn and f : V → Rn a C∞ function on V .

For each point p0 ∈V, there are a neighborhood W of p0 in V , a number ε > 0, and

a C∞ function

y : ]− ε,ε[ ×W →V

such that
∂y

∂ t
(t,q) = f (y(t,q)), y(0,q) = q

for all (t,q) ∈ ]− ε,ε[ ×W.

For a proof of these two theorems, see [7, Appendix C, pp. 359–366].

It follows from Theorem 14.8 and (14.8) that if X is any C∞ vector field on a

chart U and p ∈U , then there are a neighborhood W of p in U , an ε > 0, and a C∞

map

F : ]− ε,ε[ ×W →U (14.9)

such that for each q ∈W , the function F(t,q) is an integral curve of X starting at q.

In particular, F(0,q) = q. We usually write Ft(q) for F(t,q).

b

b

b

q

Fs(q)
Ft(Fs(q)) = Ft+s(q)

Fig. 14.1. The flow line through q of a local flow.

Suppose s, t in the interval ]− ε,ε[ are such that both Ft(Fs(q)) and Ft+s(q) are

defined. Then both Ft(Fs(q)) and Ft+s(q) as functions of t are integral curves of X

with initial point Fs(q), which is the point corresponding to t = 0. By the uniqueness

of the integral curve starting at a point,
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Ft(Fs(q)) = Ft+s(q). (14.10)

The map F in (14.9) is called a local flow generated by the vector field X . For each

q ∈U , the function Ft(q) of t is called a flow line of the local flow. Each flow line is

an integral curve of X . If a local flow F is defined on R×M, then it is called a global

flow. Every smooth vector field has a local flow about any point, but not necessarily

a global flow. A vector field having a global flow is called a complete vector field. If

F is a global flow, then for every t ∈ R,

Ft ◦ F−t = F−t ◦ Ft = F0 = 1M,

so Ft : M→ M is a diffeomorphism. Thus, a global flow on M gives rise to a one-

parameter group of diffeomorphisms of M.

This discussion suggests the following definition.

Definition 14.9. A local flow about a point p in an open set U of a manifold is a C∞

function

F : ]− ε,ε[ ×W →U,

where ε is a positive real number and W is a neighborhood of p in U , such that

writing Ft(q) = F(t,q), we have

(i) F0(q) = q for all q ∈W ,

(ii) Ft(Fs(q)) = Ft+s(q) whenever both sides are defined.

If F(t,q) is a local flow of the vector field X on U , then

F(0,q) = q and
∂F

∂ t
(0,q) = XF(0,q) = Xq.

Thus, one can recover the vector field from its flow.

Example. The function F : R×R2→R2,

F

(
t,

[
x

y

])
=

[
cost −sin t

sin t cost

][
x

y

]
,

is the global flow on R2 generated by the vector field

X(x,y) =
∂F

∂ t
(t,(x,y))

∣∣∣∣
t=0

=

[
−sin t −cost

cost −sin t

][
x

y

]∣∣∣∣
t=0

=

[
0 −1

1 0

][
x

y

]
=

[
−y

x

]
=−y

∂

∂x
+ x

∂

∂y
.

This is Example 12.8 again.
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14.4 The Lie Bracket

Suppose X and Y are smooth vector fields on an open subset U of a manifold M.

We view X and Y as derivations on C∞(U). For a C∞ function f on U , by Proposi-

tion 14.3 the function Y f is C∞ on U , and the function (XY ) f := X(Y f ) is also C∞

on U . Moreover, because X and Y are both R-linear maps from C∞(U) to C∞(U), the

map XY : C∞(U)→C∞(U) is R-linear. However, XY does not satisfy the derivation

property: if f ,g ∈C∞(U), then

XY ( f g) = X((Y f )g+ fYg)

= (XY f )g+(Y f )(Xg)+ (X f )(Y g)+ f (XYg).

Looking more closely at this formula, we see that the two extra terms (Y f )(Xg)
and (X f )(Y g) that make XY not a derivation are symmetric in X and Y . Thus, if we

compute Y X( f g) as well and subtract it from XY ( f g), the extra terms will disappear,

and XY −YX will be a derivation of C∞(U).
Given two smooth vector fields X and Y on U and p ∈ U , we define their Lie

bracket [X ,Y ] at p to be

[X ,Y ]p f = (XpY −YpX) f

for any germ f of a C∞ function at p. By the same calculation as above, but now

evaluated at p, it is easy to check that [X ,Y ]p is a derivation of C∞
p (U) and is therefore

a tangent vector at p (Definition 8.1). As p varies over U , [X ,Y ] becomes a vector

field on U .

Proposition 14.10. If X and Y are smooth vector fields on M, then the vector field

[X ,Y ] is also smooth on M.

Proof. By Proposition 14.3 it suffices to check that if f is a C∞ function on M, then

so is [X ,Y ] f . But

[X ,Y ] f = (XY −YX) f ,

which is clearly C∞ on M, since both X and Y are. ⊓⊔

From this proposition, we see that the Lie bracket provides a product operation

on the vector space X(M) of all smooth vector fields on M. Clearly,

[Y,X ] =−[X ,Y ].

Exercise 14.11 (Jacobi identity). Check the Jacobi identity:

∑
cyclic

[X , [Y,Z]] = 0.

This notation means that one permutes X ,Y,Z cyclically and one takes the sum of the resulting

terms. Written out,

∑
cyclic

[X , [Y,Z]] = [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y]].
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Definition 14.12. Let K be a field. A Lie algebra over K is a vector space V over K

together with a product [ , ] : V ×V →V , called the bracket, satisfying the following

properties: for all a,b ∈ K and X ,Y,Z ∈V ,

(i) (bilinearity) [aX +bY,Z] = a[X ,Z]+b[Y,Z],

[Z,aX +bY ] = a[Z,X ]+b[Z,Y ],

(ii) (anticommutativity) [Y,X ] =−[X ,Y ],

(iii) (Jacobi identity) ∑cyclic [X , [Y,Z]] = 0.

In practice, we will be concerned only with real Lie algebras, i.e., Lie algebras

over R. Unless otherwise specified, a Lie algebra in this book means a real Lie

algebra.

Example. On any vector space V , define [X ,Y ] = 0 for all X , Y ∈ V . With this

bracket, V becomes a Lie algebra, called an abelian Lie algebra.

Our definition of an algebra in Subsection 2.2 requires that the product be asso-

ciative. An abelian Lie algebra is trivially associative, but in general the bracket of a

Lie algebra need not be associative. So despite its name, a Lie algebra is in general

not an algebra.

Example. If M is a manifold, then the vector space X(M) of C∞ vector fields on M is

a real Lie algebra with the Lie bracket [ , ] as the bracket.

Example. Let Kn×n be the vector space of all n× n matrices over a field K. Define

for X ,Y ∈ Kn×n,

[X ,Y ] = XY −YX ,

where XY is the matrix product of X and Y . With this bracket, Kn×n becomes a

Lie algebra. The bilinearity and anticommutativity of [ , ] are immediate, while the

Jacobi identity follows from the same computation as in Exercise 14.11.

More generally, if A is any algebra over a field K, then the product

[x,y] = xy− yx, x,y ∈ A,

makes A into a Lie algebra over K.

Definition 14.13. A derivation of a Lie algebra V over a field K is a K-linear map

D : V →V satisfying the product rule

D[Y,Z] = [DY,Z]+ [Y,DZ] for Y,Z ∈V.

Example. Let V be a Lie algebra over a field K. For each X in V , define adX : V →
V by

adX(Y ) = [X ,Y ].
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We may rewrite the Jacobi identity in the form

[X , [Y,Z]] = [[X ,Y ],Z]+ [Y, [X ,Z]]

or

adX [Y,Z] = [adX Y,Z]+ [Y,adX Z],

which shows that adX : V →V is a derivation of V .

14.5 The Pushforward of Vector Fields

Let F : N → M be a smooth map of manifolds and let F∗ : TpN → TF(p)M be its

differential at a point p in N. If Xp ∈ TpN, we call F∗(Xp) the pushforward of the

vector Xp at p. This notion does not extend in general to vector fields, since if X is a

vector field on N and z = F(p) = F(q) for two distinct points p,q ∈ N, then Xp and

Xq are both pushed forward to tangent vectors at z ∈M, but there is no reason why

F∗(Xp) and F∗(Xq) should be equal (see Figure 14.2).

R

R2

p

q

x

F

b

b

bX

Fig. 14.2. The vector field X cannot be pushed forward under the first projection F : R2→ R.

In one important special case, the pushforward F∗X of any vector field X on

N always makes sense, namely, when F : N→M is a diffeomorphism. In this case,

since F is injective, there is no ambiguity about the meaning of (F∗X)F(p) =F∗,p(Xp),
and since F is surjective, F∗X is defined everywhere on M.

14.6 Related Vector Fields

Under a C∞ map F : N→M, although in general a vector field on N cannot be pushed

forward to a vector field on M, there is nonetheless a useful notion of related vector

fields, which we now define.
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Definition 14.14. Let F : N→M be a smooth map of manifolds. A vector field X

on N is F-related to a vector field X̄ on M if for all p ∈ N,

F∗,p(Xp) = X̄F(p). (14.11)

Example 14.15 (Pushforward by a diffeomorphism). If F : N → M is a diffeomor-

phism and X is a vector field on N, then the pushforward F∗X is defined. By def-

inition, the vector field X on N is F-related to the vector field F∗X on M. In Sub-

section 16.5, we will see examples of vector fields related by a map F that is not a

diffeomorphism.

We may reformulate condition (14.11) for F-relatedness as follows.

Proposition 14.16. Let F : N→M be a smooth map of manifolds. A vector field X

on N and a vector field X̄ on M are F-related if and only if for all g ∈C∞(M),

X(g ◦ F) = (X̄g) ◦ F.

Proof.

(⇒) Suppose X on N and X̄ on M are F-related. By (14.11), for any g ∈C∞(M) and

p ∈ N,

F∗,p(Xp)g = X̄F(p)g (definition of F-relatedness),

Xp(g ◦ F) = (X̄g)(F(p)) (definitions of F∗ and X̄g),

(X(g ◦ F))(p) = (X̄g)(F(p)).

Since this is true for all p ∈ N,

X(g ◦ F) = (X̄g) ◦ F.

(⇐) Reversing the set of equations above proves the converse. ⊓⊔

Proposition 14.17. Let F : N→M be a smooth map of manifolds. If the C∞ vector

fields X and Y on N are F-related to the C∞ vector fields X̄ and Ȳ , respectively, on

M, then the Lie bracket [X ,Y ] on N is F-related to the Lie bracket [X̄ ,Ȳ ] on M.

Proof. For any g ∈C∞(M),

[X ,Y ](g ◦ F) = XY (g ◦ F)−YX(g ◦ F) (definition of [X ,Y ])

= X((Ȳ g) ◦ F)−Y((X̄g) ◦ F) (Proposition 14.16)

= (X̄Ȳ g) ◦ F− (Ȳ X̄g) ◦ F (Proposition 14.16)

= ((X̄Ȳ − Ȳ X̄)g) ◦ F

= ([X̄ ,Ȳ ]g) ◦ F.

By Proposition 14.16 again, this proves that [X ,Y ] on N and [X̄ ,Ȳ ] on M are F-

related. ⊓⊔
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Problems

14.1.* Equality of vector fields

Show that two C∞ vector fields X and Y on a manifold M are equal if and only if for every C∞

function f on M, we have X f = Y f .

14.2. Vector field on an odd sphere

Let x1,y1, . . . ,xn,yn be the standard coordinates on R2n. The unit sphere S2n−1 in R2n is

defined by the equation ∑n
i=1(x

i)2 +(yi)2 = 1. Show that

X =
n

∑
i=1

−yi ∂

∂xi
+xi ∂

∂yi

is a nowhere-vanishing smooth vector field on S2n−1. Since all spheres of the same dimen-

sion are diffeomorphic, this proves that on every odd-dimensional sphere there is a nowhere-

vanishing smooth vector field. It is a classical theorem of differential and algebraic topology

that on an even-dimensional sphere every continuous vector field must vanish somewhere (see

[28, Section 5, p. 31] or [16, Theorem 16.5, p. 70]). (Hint: Use Problem 11.1 to show that X

is tangent to S2n−1.)

14.3. Maximal integral curve on a punctured line

Let M be R−{0} and let X be the vector field d/dx on M (Figure 14.3). Find the maximal

integral curve of X starting at x = 1.

bc b

0 1

Fig. 14.3. The vector field d/dx on R−{0}.

14.4. Integral curves in the plane

Find the integral curves of the vector field

X(x,y) = x
∂

∂x
−y

∂

∂y
=

[
x

−y

]
on R2.

14.5. Maximal integral curve in the plane

Find the maximal integral curve c(t) starting at the point (a,b)∈R2 of the vector field X(x,y) =

∂/∂x+x∂/∂y on R2.

14.6. Integral curve starting at a zero of a vector field

(a)* Suppose the smooth vector field X on a manifold M vanishes at a point p ∈M. Show that

the integral curve of X with initial point p is the constant curve c(t)≡ p.

(b) Show that if X is the zero vector field on a manifold M, and ct(p) is the maximal integral

curve of X starting at p, then the one-parameter group of diffeomorphisms c : R→Diff(M)
is the constant map c(t)≡ 1M.
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14.7. Maximal integral curve

Let X be the vector field x d/dx on R. For each p in R, find the maximal integral curve c(t)
of X starting at p.

14.8. Maximal integral curve

Let X be the vector field x2 d/dx on the real line R. For each p > 0 in R, find the maximal

integral curve of X with initial point p.

14.9. Reparametrization of an integral curve

Suppose c : ]a,b[→M is an integral curve of the smooth vector field X on M. Show that for

any real number s, the map

cs : ]a+ s,b+ s[→M, cs(t) = c(t− s),

is also an integral curve of X .

14.10. Lie bracket of vector fields

If f and g are C∞ functions and X and Y are C∞ vector fields on a manifold M, show that

[ f X ,gY ] = f g[X ,Y ]+ f (Xg)Y −g(Y f )X .

14.11. Lie bracket of vector fields on R2

Compute the Lie bracket [
−y

∂

∂x
+x

∂

∂y
,

∂

∂x

]

on R2.

14.12. Lie bracket in local coordinates

Consider two C∞ vector fields X , Y on Rn:

X =∑ai ∂

∂xi
, Y = ∑b j ∂

∂x j
,

where ai, b j are C∞ functions on Rn. Since [X ,Y ] is also a C∞ vector field on Rn,

[X ,Y ] = ∑ck ∂

∂xk

for some C∞ functions ck. Find the formula for ck in terms of ai and b j .

14.13. Vector field under a diffeomorphism

Let F : N→M be a C∞ diffeomorphism of manifolds. Prove that if g is a C∞ function and X

a C∞ vector field on N, then

F∗(gX) = (g ◦ F−1)F∗X .

14.14. Lie bracket under a diffeomorphism

Let F : N → M be a C∞ diffeomorphism of manifolds. Prove that if X and Y are C∞ vector

fields on N, then

F∗[X ,Y ] = [F∗X ,F∗Y ].



Chapter 4

Lie Groups and Lie Algebras

A Lie group is a manifold that is also a group such that the group operations are

smooth. Classical groups such as the general and special linear groups over R and

over C, orthogonal groups, unitary groups, and symplectic groups are all Lie groups.

A Lie group is a homogeneous space in the sense that left translation by a group

element g is a diffeomorphism of the group onto itself that maps the identity element

to g. Therefore, locally the group looks the same around any point. To study the

local structure of a Lie group, it is enough to examine a neighborhood of the identity

element. It is not surprising that the tangent space at the identity of a Lie group

should play a key role.

The tangent space at the identity of a Lie group G turns out to have a canonical

bracket operation [ , ] that makes it into a Lie algebra. The tangent space TeG with

the bracket is called the Lie algebra of the Lie group G. The Lie algebra of a Lie

group encodes within it much information about the group.

Sophus Lie

(1842–1899)

In a series of papers in the decade from 1874 to

1884, the Norwegian mathematician Sophus Lie ini-

tiated the study of Lie groups and Lie algebras. At

first his work gained little notice, possibly because

at the time he wrote mostly in Norwegian. In 1886,

Lie became a professor in Leipzig, Germany, and his

theory began to attract attention, especially after the

publication of the three-volume treatise Theorie der

Transformationsgruppen that he wrote in collabora-

tion with his assistant Friedrich Engel.

Lie’s original motivation was to study the group

of transformations of a space as a continuous ana-

logue of the group of permutations of a finite set.

Indeed, a diffeomorphism of a manifold M can be

viewed as a permutation of the points of M. The

interplay of group theory, topology, and linear alge-

bra makes the theory of Lie groups and Lie algebras

© Springer Science+Business Media, LLC 2011
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164 §15 Lie Groups

a particularly rich and vibrant branch of mathematics. In this chapter we can but

scratch the surface of this vast creation. For us, Lie groups serve mainly as an im-

portant class of manifolds, and Lie algebras as examples of tangent spaces.

§15 Lie Groups

We begin with several examples of matrix groups, subgroups of the general linear

group over a field. The goal is to exhibit a variety of methods for showing that

a group is a Lie group and for computing the dimension of a Lie group. These

examples become templates for investigating other matrix groups. A powerful tool,

which we state but do not prove, is the closed subgroup theorem. According to this

theorem, an abstract subgroup that is a closed subset of a Lie group is itself a Lie

group. In many instances, the closed subgroup theorem is the easiest way to prove

that a group is a Lie group.

The matrix exponential gives rise to curves in a matrix group with a given initial

vector. It is useful in computing the differential of a map on a matrix group. As an

example, we compute the differential of the determinant map on the general linear

group over R.

15.1 Examples of Lie Groups

We recall here the definition of a Lie group, which first appeared in Subsection 6.5.

Definition 15.1. A Lie group is a C∞ manifold G that is also a group such that the

two group operations, multiplication

µ : G×G→G, µ(a,b) = ab,

and inverse

ι : G→ G, ι(a) = a−1,

are C∞.

For a ∈G, denote by ℓa : G→G, ℓa(x) = µ(a,x) = ax, the operation of left mul-

tiplication by a, and by ra : G→ G, ra(x) = xa, the operation of right multiplication

by a. We also call left and right multiplications left and right translations.

Exercise 15.2 (Left multiplication).* For an element a in a Lie group G, prove that the left

multiplication ℓa : G→ G is a diffeomorphism.

Definition 15.3. A map F : H→G between two Lie groups H and G is a Lie group

homomorphism if it is a C∞ map and a group homomorphism.

The group homomorphism condition means that for all h,x ∈H,
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F(hx) = F(h)F(x). (15.1)

This may be rewritten in functional notation as

F ◦ ℓh = ℓF(h) ◦ F for all h ∈ H. (15.2)

Let eH and eG be the identity elements of H and G, respectively. Taking h and x

in (15.1) to be the identity eH , it follows that F(eH) = eG. So a group homomorphism

always maps the identity to the identity.

NOTATION. We use capital letters to denote matrices, but generally lowercase letters

to denote their entries. Thus, the (i, j)-entry of the matrix AB is (AB)i j = ∑k aikbk j.

Example 15.4 (General linear group). In Example 6.21, we showed that the general

linear group

GL(n,R) = {A ∈ Rn×n | det A 6= 0}
is a Lie group.

Example 15.5 (Special linear group). The special linear group SL(n,R) is the sub-

group of GL(n,R) consisting of matrices of determinant 1. By Example 9.13,

SL(n,R) is a regular submanifold of dimension n2− 1 of GL(n,R). By Exam-

ple 11.16, the multiplication map

µ̄ : SL(n,R)×SL(n,R)→ SL(n,R)

is C∞.

To see that the inverse map

ῑ : SL(n,R)→ SL(n,R)

is C∞, let i : SL(n,R)→GL(n,R) be the inclusion map and ι : GL(n,R)→GL(n,R)
the inverse map of GL(n,R). As the composite of two C∞ maps,

ι ◦ i : SL(n,R)
i→ GL(n,R)

ι→GL(n,R)

is a C∞ map. Since its image is contained in the regular submanifold SL(n,R), the

induced map ῑ : SL(n,R)→ SL(n,R) is C∞ by Theorem 11.15. Thus, SL(n,R) is a

Lie group.

An entirely analogous argument proves that the complex special linear group

SL(n,C) is also a Lie group.

Example 15.6 (Orthogonal group). Recall that the orthogonal group O(n) is the sub-

group of GL(n,R) consisting of all matrices A satisfying AT A = I. Thus, O(n) is the

inverse image of I under the map f (A) = AT A.

In Example 11.3 we showed that f : GL(n,R)→ GL(n,R) has constant rank.

By the constant-rank level set theorem, O(n) is a regular submanifold of GL(n,R).
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One drawback of this approach is that it does not tell us what the rank of f is, and so

the dimension of O(n) remains unknown.

In this example we will apply the regular level set theorem to prove that O(n) is a

regular submanifold of GL(n,R). This will at the same time determine the dimension

of O(n). To accomplish this, we must first redefine the target space of f . Since AT A

is a symmetric matrix, the image of f lies in Sn, the vector space of all n× n real

symmetric matrices. The space Sn is a proper subspace of Rn×n as soon as n≥ 2.

Exercise 15.7 (Space of symmetric matrices).* Show that the vector space Sn of n×n real

symmetric matrices has dimension (n2 +n)/2.

Consider the map f : GL(n,R)→ Sn, f (A) = AT A. The tangent space of Sn at

any point is canonically isomorphic to Sn itself, because Sn is a vector space. Thus,

the image of the differential

f∗,A : TA(GL(n,R))→ Tf (A)(Sn)≃ Sn

lies in Sn. While it is true that f also maps GL(n,R) to GL(n,R) or Rn×n, if we had

taken GL(n,R) or Rn×n as the target space of f , the differential f∗,A would never be

surjective for any A ∈ GL(n,R) when n ≥ 2, since f∗,A factors through the proper

subspace Sn of Rn×n. This illustrates a general principle: for the differential f∗,A to

be surjective, the target space of f should be as small as possible.

To show that the differential of

f : GL(n,R)→ Sn, f (A) = AT A,

is surjective, we compute explicitly the differential f∗,A. Since GL(n,R) is an open

subset of Rn×n, its tangent space at any A ∈ GL(n,R) is

TA(GL(n,R)) = TA(R
n×n) = Rn×n.

For any matrix X ∈Rn×n, there is a curve c(t) in GL(n,R) with c(0) = A and c′(0) =
X (Proposition 8.16). By Proposition 8.18,

f∗,A(X) =
d

dt
f (c(t))

∣∣∣∣
t=0

=
d

dt
c(t)T c(t)

∣∣∣∣
t=0

= (c′(t)T c(t)+ c(t)T c′(t))|t=0 (by Problem 15.2)

= XT A+AT X .

The surjectivity of f∗,A becomes the following question: if A∈O(n) and B is any

symmetric matrix in Sn, does there exist an n×n matrix X such that

XT A+AT X = B?

Note that since (XT A)T = AT X , it is enough to solve
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AT X =
1

2
B, (15.3)

for then

XT A+AT X =
1

2
BT +

1

2
B = B.

Equation (15.3) clearly has a solution: X = 1
2
(AT )−1B. So f∗,A : TA GL(n,R)→

Sn is surjective for all A ∈ O(n), and O(n) is a regular level set of f . By the regular

level set theorem, O(n) is a regular submanifold of GL(n,R) of dimension

dimO(n) = n2−dimSn = n2− n2 +n

2
=

n2− n

2
. (15.4)

15.2 Lie Subgroups

Definition 15.8. A Lie subgroup of a Lie group G is (i) an abstract subgroup H

that is (ii) an immersed submanifold via the inclusion map such that (iii) the group

operations on H are C∞.

An “abstract subgroup” simply means a subgroup in the algebraic sense, in con-

trast to a “Lie subgroup.” The group operations on the subgroup H are the restrictions

of the multiplication map µ and the inverse map ι from G to H. For an explanation

of why a Lie subgroup is defined to be an immersed submanifold instead of a regular

submanifold, see Remark 16.15. Because a Lie subgroup is an immersed subman-

ifold, it need not have the relative topology. However, being an immersion, the

inclusion map i : H →֒ G of a Lie subgroup H is of course C∞. It follows that the

composite

µ ◦ (i× i) : H×H→ G×G→G

is C∞. If H were defined to be a regular submanifold of G, then by Theorem 11.15,

the multiplication map H ×H → H and similarly the inverse map H → H would

automatically be C∞, and condition (iii) in the definition of a Lie subgroup would

be redundant. Since a Lie subgroup is defined to be an immersed submanifold, it is

necessary to impose condition (iii) on the group operations on H.

Example 15.9 (Lines with irrational slope in a torus). Let G be the torus R2/Z2

and L a line through the origin in R2. The torus can also be represented by the unit

square with the opposite edges identified. The image H of L under the projection

π : R2 → R2/Z2 is a closed curve if and only if the line L goes through another

lattice point, say (m,n) ∈ Z2. This is the case if and only if the slope of L is n/m, a

rational number or ∞; then H is the image of finitely many line segments on the unit

square. It is a closed curve diffeomorphic to a circle and is a regular submanifold of

R2/Z2 (Figure 15.1).

If the slope of L is irrational, then its image H on the torus will never close up. In

this case the restriction to L of the projection map, f = π |L : L→R2/Z2, is a one-to-

one immersion. We give H the topology and manifold structure induced from f . It
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(0,0)

(3,2)

b

b

Fig. 15.1. An embedded Lie subgroup of the torus.

can be shown that H is a dense subset of the torus [3, Example III.6.15, p. 86]. Thus,

H is an immersed submanifold but not a regular submanifold of the torus R2/Z2.

Whatever the slope of L, its image H in R2/Z2 is an abstract subgroup of the

torus, an immersed submanifold, and a Lie group. Therefore, H is a Lie subgroup of

the torus.

Exercise 15.10 (Induced topology versus subspace topology).* Suppose H ⊂R2/Z2 is the

image of a line L with irrational slope in R2. We call the topology on H induced from the

bijection f : L
∼→ H the induced topology and the topology on H as a subset of R2/Z2 the

subspace topology. Compare these two topologies: is one a subset of the other?

Proposition 15.11. If H is an abstract subgroup and a regular submanifold of a Lie

group G, then it is a Lie subgroup of G.

Proof. Since a regular submanifold is the image of an embedding (Theorem 11.14),

it is also an immersed submanifold.

Let µ : G×G→ G be the multiplication map on G. Since H is an immersed

submanifold of G, the inclusion map i : H →֒ G is C∞. Hence, the inclusion map

i× i : H×H →֒G×G is C∞, and the composition µ ◦ (i× i) : H×H→G is C∞. By

Theorem 11.15, because H is a regular submanifold of G, the induced map µ̄ : H×
H→ H is C∞.

The smoothness of the inverse map ῑ : H→H can be deduced from the smooth-

ness of ι : G→ G just as in Example 15.5. ⊓⊔

A subgroup H as in Proposition 15.11 is called an embedded Lie subgroup, be-

cause the inclusion map i : H→G of a regular submanifold is an embedding (Theo-

rem 11.14).

Example. We showed in Examples 15.5 and 15.6 that the subgroups SL(n,R) and

O(n) of GL(n,R) are both regular submanifolds. By Proposition 15.11 they are

embedded Lie subgroups.

We state without proof an important theorem about Lie subgroups. If G is a Lie

group, then an abstract subgroup that is a closed subset in the topology of G is called

a closed subgroup.
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Theorem 15.12 (Closed subgroup theorem). A closed subgroup of a Lie group is

an embedded Lie subgroup.

For a proof of the closed subgroup theorem, see [38, Theorem 3.42, p. 110].

Examples.

(i) A line with irrational slope in the torus R2/Z2 is not a closed subgroup, since it

is not the whole torus, but being dense, its closure is.

(ii) The special linear group SL(n,R) and the orthogonal group O(n) are the zero

sets of polynomial equations on GL(n,R). As such, they are closed subsets of

GL(n,R). By the closed subgroup theorem, SL(n,R) and O(n) are embedded

Lie subgroups of GL(n,R).

15.3 The Matrix Exponential

To compute the differential of a map on a subgroup of GL(n,R), we need a curve

of nonsingular matrices. Because the matrix exponential is always nonsingular, it is

uniquely suited for this purpose.

A norm on a vector space V is a real-valued function ‖ · ‖ : V → R satisfying the

following three properties: for all r ∈ R and v,w ∈V ,

(i) (positive-definiteness) ‖v‖ ≥ 0 with equality if and only if v = 0,

(ii) (positive homogeneity) ‖rv‖= |r|‖v‖,
(iii) (subadditivity) ‖v+w‖ ≤ ‖v‖+ ‖w‖.

A vector space V together with a norm ‖ · ‖ is called a normed vector space. The

vector space Rn×n ≃ Rn2
of all n×n real matrices can be given the Euclidean norm:

for X = [xi j] ∈ Rn×n,

‖X‖=
(
∑x2

i j

)1/2

.

The matrix exponential eX of a matrix X ∈ Rn×n is defined by the same formula as

the exponential of a real number:

eX = I +X +
1

2!
X2 +

1

3!
X3 + · · · , (15.5)

where I is the n×n identity matrix. For this formula to make sense, we need to show

that the series on the right converges in the normed vector space Rn×n ≃ Rn2
.

A normed algebra V is a normed vector space that is also an algebra over R

satisfying the submultiplicative property: for all v,w ∈ V , ‖vw‖ ≤ ‖v‖‖w‖. Matrix

multiplication makes the normed vector space Rn×n into a normed algebra.

Proposition 15.13. For X ,Y ∈Rn×n, ‖XY‖ ≤ ‖X‖‖Y‖.
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Proof. Write X = [xi j] and Y = [yi j] and fix a pair of subscripts (i, j). By the Cauchy–

Schwarz inequality,

(XY )2
i j =

(
∑
k

xikyk j

)2

≤
(
∑
k

x2
ik

)(
∑
k

y2
k j

)
= aib j,

where we set ai = ∑k x2
ik and b j = ∑k y2

k j. Then

‖XY‖2 = ∑
i, j

(XY )2
i j ≤∑

i, j

aib j =
(
∑

i

ai

)(
∑

j

b j

)

=
(
∑
i,k

x2
ik

)(
∑
j,k

y2
k j

)
= ‖X‖2‖Y‖2. ⊓⊔

In a normed algebra, multiplication distributes over a finite sum. When the sum

is infinite as in a convergent series, the distributivity of multiplication over the sum

requires a proof.

Proposition 15.14. Let V be a normed algebra.

(i) If a ∈V and sm is a sequence in V that converges to s, then asm converges to as.

(ii) If a ∈V and ∑∞
k=0 bk is a convergent series in V , then a∑k bk = ∑k abk.

Exercise 15.15 (Distributivity over a convergent series).* Prove Proposition 15.14.

In a normed vector space V a series ∑ak is said to converge absolutely if the series

∑‖ak‖ of norms converges in R. The normed vector space V is said to be complete

if every Cauchy sequence in V converges to a point in V . For example, Rn×n is a

complete normed vector space.1 It is easy to show that in a complete normed vector

space, absolute convergence implies convergence [26, Theorem 2.9.3, p. 126]. Thus,

to show that a series ∑Yk of matrices converges, it is enough to show that the series

∑‖Yk‖ of real numbers converges.

For any X ∈ Rn×n and k > 0, repeated applications of Proposition 15.13 give

‖Xk‖ ≤ ‖X‖k. So the series ∑∞
k=0 ‖Xk/k!‖ is bounded term by term in absolute value

by the convergent series

√
n+‖X‖+ 1

2!
‖X‖2 +

1

3!
‖X‖3 + · · ·= (

√
n− 1)+ e‖X‖.

By the comparison test for series of real numbers, the series ∑∞
k=0 ‖Xk/k!‖ converges.

Therefore, the series (15.5) converges absolutely for any n×n matrix X .

NOTATION. Following standard convention we use the letter e both for the expo-

nential map and for the identity element of a general Lie group. The context should

prevent any confusion. We sometimes write exp(X) for eX .

1A complete normed vector space is also called a Banach space, named after the Polish

mathematician Stefan Banach, who introduced the concept in 1920–1922. Correspondingly, a

complete normed algebra is called a Banach algebra.
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Unlike the exponential of real numbers, when A and B are n× n matrices with

n > 1, it is not necessarily true that

eA+B = eAeB.

Exercise 15.16 (Exponentials of commuting matrices). Prove that if A and B are commuting

n×n matrices, then

eAeB = eA+B.

Proposition 15.17. For X ∈ Rn×n,

d

dt
etX = XetX = etX X .

Proof. Because each (i, j)-entry of the series for the exponential function etX is a

power series in t, it is possible to differentiate term by term [35, Theorem 8.1, p.

173]. Hence,

d

dt
etX =

d

dt

(
I+ tX +

1

2!
t2X2 +

1

3!
t3X3 + · · ·

)

= X + tX2 +
1

2!
t2X3 + · · ·

= X

(
I+ tX +

1

2!
t2X2 + · · ·

)
= XetX (Proposition 15.14(ii)).

In the second equality above, one could have factored out X as the second factor:

d

dt
etX = X + tX2 +

1

2!
t2X3 + · · ·

=

(
I + tX +

1

2!
t2X2 + · · ·

)
X = etX X . ⊓⊔

The definition of the matrix exponential eX makes sense even if X is a complex

matrix. All the arguments so far carry over word for word; one merely has to replace

the Euclidean norm ‖X‖2 = ∑x2
i j by the Hermitian norm ‖X‖2 = ∑ |xi j|2, where |xi j|

is the modulus of a complex number xi j.

15.4 The Trace of a Matrix

Define the trace of an n×n matrix X to be the sum of its diagonal entries:

tr(X) =
n

∑
i=1

xii.

Lemma 15.18.

(i) For any two matrices X ,Y ∈ Rn×n, tr(XY ) = tr(YX).
(ii) For X ∈ Rn×n and A ∈ GL(n,R), tr(AXA−1) = tr(X).
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Proof.

(i)

tr(XY ) = ∑
i

(XY )ii = ∑
i

∑
k

xikyki,

tr(Y X) = ∑
k

(Y X)kk = ∑
k

∑
i

ykixik.

(ii) Set B = XA−1 in (i). ⊓⊔

The eigenvalues of an n× n matrix X are the roots of the polynomial equation

det(λ I−X) = 0. Over the field of complex numbers, which is algebraically closed,

such an equation necessarily has n roots, counted with multiplicity. Thus, the advan-

tage of allowing complex numbers is that every n× n matrix, real or complex, has n

complex eigenvalues, counted with multiplicity, whereas a real matrix need not have

any real eigenvalue.

Example. The real matrix [
0 −1

1 0

]

has no real eigenvalues. It has two complex eigenvalues,±i.

The following two facts about eigenvalues are immediate from the definitions:

(i) Two similar matrices X and AXA−1 have the same eigenvalues, because

det(λ I−AXA−1) = det
(
A(λ I−X)A−1

)
= det(λ I−X).

(ii) The eigenvalues of a triangular matrix are its diagonal entries, because

det


λ I−




λ1 ∗
. . .

0 λn





=

n

∏
i=1

(λ −λi).

By a theorem from algebra [19, Th. 6.4.1, p. 286], any complex square matrix

X can be triangularized; more precisely, there exists a nonsingular complex square

matrix A such that AXA−1 is upper triangular. Since the eigenvalues λ1, . . . ,λn of X

are the same as the eigenvalues of AXA−1, the triangular matrix AXA−1 must have

the eigenvalues of X along its diagonal:




λ1 ∗
. . .

0 λn


 .

A real matrix X , viewed as a complex matrix, can also be triangularized, but of

course the triangularizing matrix A and the triangular matrix AXA−1 are in general

complex.



15.4 The Trace of a Matrix 173

Proposition 15.19. The trace of a matrix, real or complex, is equal to the sum of its

complex eigenvalues.

Proof. Suppose X has complex eigenvalues λ1, . . . ,λn. Then there exists a nonsin-

gular matrix A ∈ GL(n,C) such that

AXA−1 =




λ1 ∗
. . .

0 λn


 .

By Lemma 15.18,

tr(X) = tr(AXA−1) = ∑λi. ⊓⊔

Proposition 15.20. For any X ∈ Rn×n, det(eX ) = etrX .

Proof.

Case 1. Assume that X is upper triangular:

X =




λ1 ∗
. . .

0 λn


 .

Then

eX = ∑
1

k!
Xk = ∑

1

k!




λ k
1 ∗

. . .

0 λ k
n


=




eλ1 ∗
. . .

0 eλn


 .

Hence, det eX = ∏eλi = e∑λi = etrX .

Case 2. Given a general matrix X , with eigenvalues λ1, . . . ,λn, we can find a nonsin-

gular complex matrix A such that

AXA−1 =




λ1 ∗
. . .

0 λn


 ,

an upper triangular matrix. Then

eAXA−1

= I+AXA−1+
1

2!
(AXA−1)2 +

1

3!
(AXA−1)3 + · · ·

= I+AXA−1+A

(
1

2!
X2

)
A−1 +A

(
1

3!
X3

)
A−1 + · · ·

= AeX A−1 (by Proposition 15.14(ii)).

Hence,
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det eX = det(AeX A−1) = det(eAXA−1
)

= etr(AXA−1) (by Case 1, since AXA−1 is upper triangular)

= etrX (by Lemma 15.18). ⊓⊔

It follows from this proposition that the matrix exponential eX is always non-

singular, because det(eX ) = etrX is never 0. This is one reason why the matrix ex-

ponential is so useful, for it allows us to write down explicitly a curve in GL(n,R)
with a given initial point and a given initial velocity. For example, c(t) = etX : R→
GL(n,R) is a curve in GL(n,R) with initial point I and initial velocity X , since

c(0) = e0X = e0 = I and c′(0) =
d

dt
etX

∣∣∣∣
t=0

= XetX
∣∣
t=0

= X . (15.6)

Similarly, c(t) = AetX : R→GL(n,R) is a curve in GL(n,R) with initial point A and

initial velocity AX .

15.5 The Differential of det at the Identity

Let det: GL(n,R)→ R be the determinant map. The tangent space TI GL(n,R) to

GL(n,R) at the identity matrix I is the vector space Rn×n and the tangent space T1R

to R at 1 is R. So

det∗,I : Rn×n→R.

Proposition 15.21. For any X ∈ Rn×n, det∗,I(X) = trX.

Proof. We use a curve at I to compute the differential (Proposition 8.18). As a curve

c(t) with c(0) = I and c′(0) = X , choose the matrix exponential c(t) = etX . Then

det∗,I(X) =
d

dt
det(etX )

∣∣∣∣
t=0

=
d

dt
et trX

∣∣∣∣
t=0

= (trX)et trX
∣∣
t=0

= trX . ⊓⊔

Problems

15.1. Matrix exponential

For X ∈ Rn×n, define the partial sum sm = ∑m
k=0 Xk/k!.

(a) Show that for ℓ≥ m,

‖sℓ− sm‖ ≤
ℓ

∑
k=m+1

‖X‖k/k!.

(b) Conclude that sm is a Cauchy sequence in Rn×n and therefore converges to a matrix, which

we denote by eX . This gives another way of showing that ∑∞
k=0 Xk/k! is convergent, with-

out using the comparison test or the theorem that absolute convergence implies conver-

gence in a complete normed vector space.
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15.2. Product rule for matrix-valued functions

Let ]a,b[ be an open interval in R. Suppose A : ]a,b[→ Rm×n and B : ]a,b[→Rn×p are m×n

and n× p matrices respectively whose entries are differentiable functions of t ∈ ]a,b[. Prove

that for t ∈ ]a,b[,
d

dt
A(t)B(t) = A′(t)B(t)+A(t)B′(t),

where A′(t) = (dA/dt)(t) and B′(t) = (dB/dt)(t).

15.3. Identity component of a Lie group

The identity component G0 of a Lie group G is the connected component of the identity ele-

ment e in G. Let µ and ι be the multiplication map and the inverse map of G.

(a) For any x ∈ G0, show that µ({x}×G0)⊂G0. (Hint: Apply Proposition A.43.)

(b) Show that ι(G0)⊂ G0.

(c) Show that G0 is an open subset of G. (Hint: Apply Problem A.16.)

(d) Prove that G0 is itself a Lie group.

15.4.* Open subgroup of a connected Lie group

Prove that an open subgroup H of a connected Lie group G is equal to G.

15.5. Differential of the multiplication map

Let G be a Lie group with multiplication map µ : G×G→G, and let ℓa : G→G and rb : G→
G be left and right multiplication by a and b ∈ G, respectively. Show that the differential of µ
at (a,b) ∈ G×G is

µ∗,(a,b)(Xa,Yb) = (rb)∗(Xa)+(ℓa)∗(Yb) for Xa ∈ Ta(G), Yb ∈ Tb(G).

15.6. Differential of the inverse map

Let G be a Lie group with multiplication map µ : G×G→ G, inverse map ι : G→ G, and

identity element e. Show that the differential of the inverse map at a ∈ G,

ι∗,a : TaG→ Ta−1 G,

is given by

ι∗,a(Ya) =−(ra−1)∗(ℓa−1)∗Ya,

where (ra−1 )∗=(ra−1)∗,e and (ℓa−1)∗=(ℓa−1 )∗,a. (The differential of the inverse at the identity

was calculated in Problem 8.8(b).)

15.7.* Differential of the determinant map at A

Show that the differential of the determinant map det : GL(n,R) → R at A ∈ GL(n,R) is

given by

det∗,A(AX) = (detA) trX for X ∈ Rn×n. (15.7)

15.8.* Special linear group

Use Problem 15.7 to show that 1 is a regular value of the determinant map. This gives a quick

proof that the special linear group SL(n,R) is a regular submanifold of GL(n,R).

15.9. Structure of a general linear group
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(a) For r ∈ R× :=R−{0}, let Mr be the n×n matrix

Mr =




r

1

. . .

1


= [re1 e2 · · · en],

where e1, . . . ,en is the standard basis for Rn. Prove that the map

f : GL(n,R)→ SL(n,R)×R×,

A 7→
(

AM1/det A,det A
)
,

is a diffeomorphism.

(b) The center Z(G) of a group G is the subgroup of elements g ∈ G that commute with all

elements of G:

Z(G) := {g ∈ G | gx = xg for all x ∈ G}.
Show that the center of GL(2,R) is isomorphic to R×, corresponding to the subgroup of

scalar matrices, and that the center of SL(2,R)×R× is isomorphic to {±1}×R× . The

group R× has two elements of order 2, while the group {±1}×R× has four elements

of order 2. Since their centers are not isomorphic, GL(2,R) and SL(2,R)×R× are not

isomorphic as groups.

(c) Show that

h : GL(3,R)→ SL(3,R)×R×,

A 7→
(
(detA)1/3A,detA

)
,

is a Lie group isomorphism.

The same arguments as in (b) and (c) prove that for n even, the two Lie groups GL(n,R)
and SL(n,R)×R× are not isomorphic as groups, while for n odd, they are isomorphic as Lie

groups.

15.10. Orthogonal group

Show that the orthogonal group O(n) is compact by proving the following two statements.

(a) O(n) is a closed subset of Rn×n.

(b) O(n) is a bounded subset of Rn×n.

15.11. Special orthogonal group SO(2)
The special orthogonal group SO(n) is defined to be the subgroup of O(n) consisting of ma-

trices of determinant 1. Show that every matrix A ∈ SO(2) can be written in the form

A =

[
a c

b d

]
=

[
cosθ −sinθ
sinθ cosθ

]

for some real number θ . Then prove that SO(2) is diffeomorphic to the circle S1.

15.12. Unitary group

The unitary group U(n) is defined to be

U(n) = {A ∈ GL(n,C) | ĀT A = I},
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where Ā denotes the complex conjugate of A, the matrix obtained from A by conjugating

every entry of A: (Ā)i j = ai j . Show that U(n) is a regular submanifold of GL(n,C) and that

dimU(n) = n2.

15.13. Special unitary group SU(2)
The special unitary group SU(n) is defined to be the subgroup of U(n) consisting of matrices

of determinant 1.

(a) Show that SU(2) can also be described as the set

SU(2) =

{[
a −b̄

b ā

]
∈ C2×2

∣∣∣∣ aā+bb̄ = 1

}
.

(Hint: Write out the condition A−1 = ĀT in terms of the entries of A.)

(b) Show that SU(2) is diffeomorphic to the three-dimensional sphere

S3 =
{
(x1,x2,x3,x4) ∈ R4 | x2

1 +x2
2 +x2

3 +x2
4 = 1

}
.

15.14. A matrix exponential

Compute exp

[
0 1

1 0

]
.

15.15. Symplectic group

This problem requires a knowledge of quaternions as in Appendix E. Let H be the skew field

of quaternions. The symplectic group Sp(n) is defined to be

Sp(n) = {A ∈ GL(n,H) | ĀT A = I},

where Ā denotes the quaternionic conjugate of A. Show that Sp(n) is a regular submanifold of

GL(n,H) and compute its dimension.

15.16. Complex symplectic group

Let J be the 2n×2n matrix

J =

[
0 In

−In 0

]
,

where In denotes the n×n identity matrix. The complex symplectic group Sp(2n,C) is defined

to be

Sp(2n,C) = {A ∈ GL(2n,C) | AT JA = J}.
Show that Sp(2n,C) is a regular submanifold of GL(2n,C) and compute its dimension. (Hint:

Mimic Example 15.6. It is crucial to choose the correct target space for the map f (A)=AT JA.)
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In a Lie group G, because left translation by an element g ∈ G is a diffeomorphism

that maps a neighborhood of the identity to a neighborhood of g, all the local in-

formation about the group is concentrated in a neighborhood of the identity, and the

tangent space at the identity assumes a special importance.

Moreover, one can give the tangent space TeG a Lie bracket [ , ], so that in

addition to being a vector space, it becomes a Lie algebra, called the Lie algebra of

the Lie group. This Lie algebra encodes in it much information about the Lie group.

The goal of this section is to define the Lie algebra structure on TeG and to identity

the Lie algebras of a few classical groups.

The Lie bracket on the tangent space TeG is defined using a canonical isomor-

phism between the tangent space at the identity and the vector space of left-invariant

vector fields on G. With respect to this Lie bracket, the differential of a Lie group

homomorphism becomes a Lie algebra homomorphism. We thus obtain a functor

from the category of Lie groups and Lie group homomorphisms to the category of

Lie algebras and Lie algebra homomorphisms. This is the beginning of a reward-

ing program, to understand the structure and representations of Lie groups through a

study of their Lie algebras.

16.1 Tangent Space at the Identity of a Lie Group

Because of the existence of a multiplication, a Lie group is a very special kind of

manifold. In Exercise 15.2, we learned that for any g∈G, left translation ℓg : G→G

by g is a diffeomorphism with inverse ℓg−1 . The diffeomorphism ℓg takes the identity

element e to the element g and induces an isomorphism of tangent spaces

ℓg∗ = (ℓg)∗,e : Te(G)→ Tg(G).

Thus, if we can describe the tangent space Te(G) at the identity, then ℓg∗Te(G) will

give a description of the tangent space Tg(G) at any point g ∈G.

Example 16.1 (The tangent space to GL(n,R) at I). In Example 8.19, we identified

the tangent space GL(n,R) at any point g ∈ GL(n,R) as Rn×n, the vector space of

all n× n real matrices. We also identified the isomorphism ℓg∗ : TI(GL(n,R))→
Tg(GL(n,R)) as left multiplication by g : X 7→ gX .

Example 16.2 (The tangent space to SL(n,R) at I). We begin by finding a condition

that a tangent vector X in TI(SL(n,R)) must satisfy. By Proposition 8.16 there is a

curve c : ]− ε,ε[ → SL(n,R) with c(0) = I and c′(0) = X . Being in SL(n,R), this

curve satisfies

det c(t) = 1

for all t in the domain ]− ε,ε[. We now differentiate both sides with respect to t and

evaluate at t = 0. On the left-hand side, we have
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d

dt
det(c(t))

∣∣∣∣
t=0

= (det ◦ c)∗

(
d

dt

∣∣∣∣
0

)

= det∗,I

(
c∗

d

dt

∣∣∣∣
0

)
(by the chain rule)

= det∗,I(c′(0))

= det∗,I(X)

= tr(X) (by Proposition 15.21).

Thus,

tr(X) =
d

dt
1

∣∣∣∣
t=0

= 0.

So the tangent space TI(SL(n,R)) is contained in the subspace V of Rn×n defined by

V = {X ∈ Rn×n | trX = 0}.

Since dimV = n2−1 = dimTI(SL(n,R)), the two spaces must be equal.

Proposition 16.3. The tangent space TI(SL(n,R)) at the identity of the special linear

group SL(n,R) is the subspace of Rn×n consisting of all n× n matrices of trace 0.

Example 16.4 (The tangent space to O(n) at I). Let X be a tangent vector to the

orthogonal group O(n) at the identity I. Choose a curve c(t) in O(n) defined on a

small interval containing 0 such that c(0) = I and c′(0) = X . Since c(t) is in O(n),

c(t)T c(t) = I.

Differentiating both sides with respect to t using the matrix product rule (Prob-

lem 15.2) gives

c′(t)T c(t)+ c(t)T c′(t) = 0.

Evaluating at t = 0 gives

XT +X = 0.

Thus, X is a skew-symmetric matrix.

Let Kn be the space of all n×n real skew-symmetric matrices. For example, for

n = 3, these are matrices of the form




0 a b

−a 0 c

−b −c 0


 , where a,b,c,∈ R.

The diagonal entries of such a matrix are all 0 and the entries below the diagonal are

determined by those above the diagonal. So

dimKn =
n2− # diagonal entries

2
=

1

2
(n2−n).

We have shown that
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TI(O(n))⊂ Kn. (16.1)

By an earlier computation (see (15.4)),

dimTI(O(n)) = dimO(n) =
n2−n

2
.

Since the two vector spaces in (16.1) have the same dimension, equality holds.

Proposition 16.5. The tangent space TI(O(n)) of the orthogonal group O(n) at the

identity is the subspace of Rn×n consisting of all n× n skew-symmetric matrices.

16.2 Left-Invariant Vector Fields on a Lie Group

Let X be a vector field on a Lie group G. We do not assume X to be C∞. For any

g ∈ G, because left multiplication ℓg : G→ G is a diffeomorphism, the pushforward

ℓg∗X is a well-defined vector field on G. We say that the vector field X is left-

invariant if

ℓg∗X = X

for every g ∈ G; this means for any h ∈ G,

ℓg∗(Xh) = Xgh.

In other words, a vector field X is left-invariant if and only if it is ℓg-related to itself

for all g ∈ G.

Clearly, a left-invariant vector field X is completely determined by its value Xe at

the identity, since

Xg = ℓg∗(Xe). (16.2)

Conversely, given a tangent vector A ∈ Te(G) we can define a vector field Ã on G

by (16.2): (Ã)g = ℓg∗A. So defined, the vector field Ã is left-invariant, since

ℓg∗(Ãh) = ℓg∗ℓh∗A

= (ℓg ◦ ℓh)∗A (by the chain rule)

= (ℓgh)∗(A)

= Ãgh.

We call Ã the left-invariant vector field on G generated by A ∈ TeG. Let L(G) be

the vector space of all left-invariant vector fields on G. Then there is a one-to-one

correspondence

Te(G)↔ L(G), (16.3)

Xe←[ X ,

A 7→ Ã.

It is easy to show that this correspondence is in fact a vector space isomorphism.
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Example 16.6 (Left-invariant vector fields on R). On the Lie group R, the group

operation is addition and the identity element is 0. So “left multiplication” ℓg is

actually addition:

ℓg(x) = g+ x.

Let us compute ℓg∗(d/dx|0). Since ℓg∗(d/dx|0) is a tangent vector at g, it is a scalar

multiple of d/dx|g:

ℓg∗

(
d

dx

∣∣∣∣
0

)
= a

d

dx

∣∣∣∣
g

. (16.4)

To evaluate a, apply both sides of (16.4) to the function f (x) = x:

a = a
d

dx

∣∣∣∣
g

f = ℓg∗

(
d

dx

∣∣∣∣
0

)
f =

d

dx

∣∣∣∣
0

f ◦ ℓg =
d

dx

∣∣∣∣
0

(g+ x) = 1.

Thus,

ℓg∗

(
d

dx

∣∣∣∣
0

)
=

d

dx

∣∣∣∣
g

.

This shows that d/dx is a left-invariant vector field on R. Therefore, the left-invariant

vector fields on R are constant multiples of d/dx.

Example 16.7 (Left-invariant vector fields on GL(n,R)). Since GL(n,R) is an open

subset of Rn×n, at any g ∈ GL(n,R) there is a canonical identification of the tangent

space Tg(GL(n,R)) with Rn×n, under which a tangent vector corresponds to an n×n

matrix:

∑ai j
∂

∂xi j

∣∣∣∣
g

←→ [ai j]. (16.5)

We use the same letter B to denote alternately a tangent vector B = ∑bi j ∂/∂xi j|I ∈
TI(G(n,R)) at the identity and a matrix B= [bi j]. Let B=∑bi j ∂/∂xi j|I ∈TI(GL(n,R))
and let B̃ be the left-invariant vector field on GL(n,R) generated by B. By Exam-

ple 8.19,

B̃g = (ℓg)∗B←→ gB

under the identification (16.5). In terms of the standard basis ∂/∂xi j|g,

B̃g = ∑
i, j

(gB)i j
∂

∂xi j

∣∣∣∣
g

= ∑
i, j

(
∑
k

gikbk j

)
∂

∂xi j

∣∣∣∣
g

.

Proposition 16.8. Any left-invariant vector field X on a Lie group G is C∞.

Proof. By Proposition 14.3 it suffices to show that for any C∞ function f on G,

the function X f is also C∞. Choose a C∞ curve c : I→ G defined on some interval I

containing 0 such that c(0) = e and c′(0) = Xe. If g∈G, then gc(t) is a curve starting

at g with initial vector Xg, since gc(0) = ge = g and

(gc)′(0) = ℓg∗c′(0) = ℓg∗Xe = Xg.
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By Proposition 8.17,

(X f )(g) = Xg f =
d

dt

∣∣∣∣
t=0

f (gc(t)).

Now the function f (gc(t)) is a composition of C∞ functions

G× I
1×c−−→ G×G

µ→ G
f→ R,

(g, t) 7−→ (g,c(t)) 7→ gc(t) 7→ f (gc(t));

as such, it is C∞. Its derivative with respect to t,

F(g, t) :=
d

dt
f (gc(t)),

is therefore also C∞. Since (X f )(g) is a composition of C∞ functions,

G → G× I
F→ R,

g 7→ (g,0) 7→ F(g,0) =
d

dt

∣∣∣∣
t=0

f (gc(t)),

it is a C∞ function on G. This proves that X is a C∞ vector field on G. ⊓⊔

It follows from this proposition that the vector space L(G) of left-invariant vector

fields on G is a subspace of the vector space X(G) of all C∞ vector fields on G.

Proposition 16.9. If X and Y are left-invariant vector fields on G, then so is [X ,Y ].

Proof. For any g in G, X is ℓg-related to itself, and Y is ℓg-related to itself. By

Proposition 14.17, [X ,Y ] is ℓg-related to itself. ⊓⊔

16.3 The Lie Algebra of a Lie Group

Recall that a Lie algebra is a vector space g together with a bracket, i.e., an anticom-

mutative bilinear map [ , ] : g× g→ g that satisfies the Jacobi identity (Definition

14.12). A Lie subalgebra of a Lie algebra g is a vector subspace h⊂ g that is closed

under the bracket [ , ]. By Proposition 16.9, the space L(G) of left-invariant vector

fields on a Lie group G is closed under the Lie bracket [ , ] and is therefore a Lie

subalgebra of the Lie algebra X(G) of all C∞ vector fields on G.

As we will see in the next few subsections, the linear isomorphism ϕ : TeG ≃
L(G) in (16.3) is mutually beneficial to the two vector spaces, for each space has

something that the other one lacks. The vector space L(G) has a natural Lie algebra

structure given by the Lie bracket of vector fields, while the tangent space at the

identity has a natural notion of pushforward, given by the differential of a Lie group

homomorphism. The linear isomorphism ϕ : TeG ≃ L(G) allows us to define a Lie

bracket on TeG and to push forward left-invariant vector fields under a Lie group

homomorphism.
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We begin with the Lie bracket on TeG. Given A,B ∈ TeG, we first map them via

ϕ to the left-invariant vector fields Ã, B̃, take the Lie bracket [Ã, B̃] = ÃB̃− B̃Ã, and

then map it back to TeG via ϕ−1. Thus, the definition of the Lie bracket [A,B] ∈ TeG

should be

[A,B] = [Ã, B̃]e. (16.6)

Proposition 16.10. If A,B ∈ TeG and Ã, B̃ are the left-invariant vector fields they

generate, then

[Ã, B̃] = [A,B]̃ .

Proof. Applying ( )̃ to both sides of (16.6) gives

[A,B]̃ = ([Ã, B̃]e)̃ = [Ã, B̃],

since ( )̃ and ( )e are inverse to each other. ⊓⊔

With the Lie bracket [ , ], the tangent space Te(G) becomes a Lie algebra, called

the Lie algebra of the Lie group G. As a Lie algebra, Te(G) is usually denoted by g.

16.4 The Lie Bracket on gl(n,R)

For the general linear group GL(n,R), the tangent space at the identity I can be

identified with the vector space Rn×n of all n× n real matrices. We identified a

tangent vector in TI(GL(n,R)) with a matrix A ∈ Rn×n via

∑ai j

∂

∂xi j

∣∣∣∣
I

←→ [ai j]. (16.7)

The tangent space TI GL(n,R) with its Lie algebra structure is denoted by gl(n,R).
Let Ã be the left-invariant vector field on GL(n,R) generated by A. Then on the Lie

algebra gl(n,R) we have the Lie bracket [A,B] = [Ã, B̃]I coming from the Lie bracket

of left-invariant vector fields. In the next proposition, we identify the Lie bracket in

terms of matrices.

Proposition 16.11. Let

A = ∑ai j
∂

∂xi j

∣∣∣∣
I

, B = ∑bi j
∂

∂xi j

∣∣∣∣
I

∈ TI(GL(n,R)).

If

[A,B] = [Ã, B̃]I = ∑ci j
∂

∂xi j

∣∣∣∣
I

, (16.8)

then

ci j = ∑
k

aikbk j− bikak j.

Thus, if derivations are identified with matrices via (16.7), then

[A,B] = AB−BA.



184 §16 Lie Algebras

Proof. Applying both sides of (16.8) to xi j, we get

ci j = [Ã, B̃]Ixi j = ÃIB̃xi j− B̃IÃxi j

= AB̃xi j−BÃxi j (because ÃI = A, B̃I = B),

so it is necessary to find a formula for the function B̃xi j.

In Example 16.7 we found that the left-invariant vector field B̃ on GL(n,R) is

given by

B̃g = ∑
i, j

(gB)i j

∂

∂xi j

∣∣∣∣
g

at g ∈ GL(n,R).

Hence,

B̃gxi j = (gB)i j = ∑
k

gikbk j = ∑
k

bk jxik(g).

Since this formula holds for all g ∈GL(n,R), the function B̃xi j is

B̃xi j = ∑
k

bk jxik.

It follows that

AB̃xi j = ∑
p,q

apq
∂

∂xpq

∣∣∣∣
I

(
∑
k

bk jxik

)
= ∑

p,q,k

apqbk jδipδkq

= ∑
k

aikbk j = (AB)i j.

Interchanging A and B gives

BÃxi j = ∑
k

bikak j = (BA)i j.

Therefore,

ci j =∑
k

aikbk j− bikak j = (AB−BA)i j. ⊓⊔

16.5 The Pushforward of Left-Invariant Vector Fields

As we noted in Subsection 14.5, if F : N→M is a C∞ map of manifolds and X is a C∞

vector field on N, the pushforward F∗X is in general not defined except when F is a

diffeomorphism. In the case of Lie groups, however, because of the correspondence

between left-invariant vector fields and tangent vectors at the identity, it is possible

to push forward left-invariant vector fields under a Lie group homomorphism.

Let F : H → G be a Lie group homomorphism. A left-invariant vector field X

on H is generated by its value A = Xe ∈ TeH at the identity, so that X = Ã. Since a

Lie group homomorphism F : H→G maps the identity of H to the identity of G, its

differential F∗,e at the identity is a linear map from TeH to TeG. The diagrams
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TeH
F∗,e //

≃
��

TeG

≃
��

L(H) //___ L(G),

A
� //

_

��

F∗,eA
_

��
Ã

� //___ (F∗,eA)̃

show clearly the existence of an induced linear map F∗ : L(H) → L(G) on left-

invariant vector fields as well as a way to define it.

Definition 16.12. Let F : H → G be a Lie group homomorphism. Define

F∗ : L(H)→ L(G) by

F∗(Ã) = (F∗,eA)̃

for all A ∈ TeH.

Proposition 16.13. If F : H → G is a Lie group homomorphism and X is a left-

invariant vector field on H, then the left-invariant vector field F∗X on G is F-related

to the left-invariant vector field X.

Proof. For each h ∈ H, we need to verify that

F∗,h(Xh) = (F∗X)F(h). (16.9)

The left-hand side of (16.9) is

F∗,h(Xh) = F∗,h(ℓh∗,eXe) = (F ◦ ℓh)∗,e(Xe),

while the right-hand side of (16.9) is

(F∗X)F(h) = (F∗,eXe) F̃(h) (definition of F∗X)

= ℓF(h)∗F∗,e(Xe) (definition of left invariance)

= (ℓF(h) ◦ F)∗,e(Xe) (chain rule).

Since F is a Lie group homomorphism, we have F ◦ ℓh = ℓF(h) ◦ F , so the two sides

of (16.9) are equal. ⊓⊔

If F : H →G is a Lie group homomorphism and X is a left-invariant vector field

on H, we will call F∗X the pushforward of X under F .

16.6 The Differential as a Lie Algebra Homomorphism

Proposition 16.14. If F : H →G is a Lie group homomorphism, then its differential

at the identity,

F∗ = F∗,e : TeH→ TeG,

is a Lie algebra homomorphism, i.e., a linear map such that for all A,B ∈ TeH,

F∗[A,B] = [F∗A,F∗B].



186 §16 Lie Algebras

Proof. By Proposition 16.13, the vector field F∗Ã on G is F-related to the vector field

Ã on H, and the vector field F∗B̃ is F-related to B̃ on H. Hence, the bracket [F∗Ã,F∗B̃]
on G is F-related to the bracket [Ã, B̃] on H (Proposition 14.17). This means that

F∗
(
[Ã, B̃]e

)
= [F∗Ã,F∗B̃]F(e) = [F∗Ã,F∗B̃]e.

The left-hand side of this equality is F∗[A,B], while the right-hand side is

[F∗Ã,F∗B̃]e = [(F∗A)̃ ,(F∗B)̃ ]e (definition of F∗Ã)

= [F∗A,F∗B] (definition of [ , ] on TeG).

Equating the two sides gives

F∗[A,B] = [F∗A,F∗B]. ⊓⊔

Suppose H is a Lie subgroup of a Lie group G, with inclusion map i : H → G.

Since i is an immersion, its differential

i∗ : TeH→ TeG

is injective. To distinguish the Lie bracket on TeH from the Lie bracket on TeG, we

temporarily attach subscripts TeH and TeG to the two Lie brackets respectively. By

Proposition 16.14, for X ,Y ∈ TeH,

i∗ ([X ,Y ]TeH) = [i∗X , i∗Y ]TeG. (16.10)

This shows that if TeH is identified with a subspace of TeG via i∗, then the bracket

on TeH is the restriction of the bracket on TeG to TeH. Thus, the Lie algebra of a Lie

subgroup H may be identified with a Lie subalgebra of the Lie algebra of G.

In general, the Lie algebras of the classical groups are denoted by gothic letters.

For example, the Lie algebras of GL(n,R), SL(n,R), O(n), and U(n) are denoted

by gl(n,R), sl(n,R), o(n), and u(n), respectively. By (16.10) and Proposition 16.11,

the Lie algebra structures on sl(n,R), o(n), and u(n) are given by

[A,B] = AB−BA,

as on gl(n,R).

Remark 16.15. A fundamental theorem in Lie group theory asserts the existence of

a one-to-one correspondence between the connected Lie subgroups of a Lie group

G and the Lie subalgebras of its Lie algebra g [38, Theorem 3.19, Corollary (a), p.

95]. For the torus R2/Z2, the Lie algebra g has R2 as the underlying vector space

and the one-dimensional Lie subalgebras are all the lines through the origin. Each

line through the origin in R2 is a subgroup of R2 under addition. Its image under the

quotient map R2 → R2/Z2 is a subgroup of the torus R2/Z2. If a line has rational

slope, then its image is a regular submanifold of the torus. If a line has irrational

slope, then its image is only an immersed submanifold of the torus. According to the

correspondence theorem just quoted, the one-dimensional connected Lie subgroups
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of the torus are the images of all the lines through the origin. Note that if a Lie

subgroup had been defined as a subgroup that is also a regular submanifold, then

one would have to exclude all the lines with irrational slopes as Lie subgroups of the

torus, and it would not be possible to have a one-to-one correspondence between the

connected subgroups of a Lie group and the Lie subalgebras of its Lie algebra. It is

because of our desire for such a correspondence that a Lie subgroup of a Lie group

is defined to be a subgroup that is also an immersed submanifold.

Problems

In the following problems the word “dimension” refers to the dimension as a real vector space

or as a manifold.

16.1. Skew-Hermitian matrices

A complex matrix X ∈Cn×n is said to be skew-Hermitian if its conjugate transpose X̄T is equal

to −X . Let V be the vector space of n×n skew-Hermitian matrices. Show that dimV = n2.

16.2. Lie algebra of a unitary group

Show that the tangent space at the identity I of the unitary group U(n) is the vector space of

n×n skew-Hermitian matrices.

16.3. Lie algebra of a symplectic group

Refer to Problem 15.15 for the definition and notation concerning the symplectic group Sp(n).
Show that the tangent space at the identity I of the symplectic group Sp(n)⊂ GL(n,H) is the

vector space of all n×n quaternionic matrices X such that X̄T =−X .

16.4. Lie algebra of a complex symplectic group

(a) Show that the tangent space at the identity I of Sp(2n,C)⊂ GL(2n,C) is the vector space

of all 2n×2n complex matrices X such that JX is symmetric.

(b) Calculate the dimension of Sp(2n,C).

16.5. Left-invariant vector fields on Rn

Find the left-invariant vector fields on Rn.

16.6. Left-invariant vector fields on a circle

Find the left-invariant vector fields on S1.

16.7. Integral curves of a left-invariant vector field

Let A ∈ gl(n,R) and let Ã be the left-invariant vector field on GL(n,R) generated by A. Show

that c(t) = etA is the integral curve of Ã starting at the identity matrix I. Find the integral curve

of Ã starting at g ∈ GL(n,R).

16.8. Parallelizable manifolds

A manifold whose tangent bundle is trivial is said to be parallelizable. If M is a manifold

of dimension n, show that parallelizability is equivalent to the existence of a smooth frame

X1, . . . ,Xn on M.

16.9. Parallelizability of a Lie group

Show that every Lie group is parallelizable.
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16.10.* The pushforward of left-invariant vector fields

Let F : H → G be a Lie group homomorphism and let X and Y be left-invariant vector fields

on H. Prove that F∗[X ,Y ] = [F∗X ,F∗Y ].

16.11. The adjoint representation

Let G be a Lie group of dimension n with Lie algebra g.

(a) For each a ∈ G, the differential at the identity of the conjugation map ca := ℓa ◦ ra−1 :

G→ G is a linear isomorphism ca∗ : g→ g. Hence, ca∗ ∈ GL(g). Show that the map

Ad: G→GL(g) defined by Ad(a) = ca∗ is a group homomorphism. It is called the adjoint

representation of the Lie group G.

(b) Show that Ad: G→ GL(g) is C∞.

16.12. A Lie algebra structure on R3

The Lie algebra o(n) of the orthogonal group O(n) is the Lie algebra of n×n skew-symmetric

real matrices, with Lie bracket [A,B] = AB−BA. When n = 3, there is a vector space isomor-

phism ϕ : o(3)→ R3,

ϕ(A) = ϕ






0 a1 a2

−a1 0 a3

−a2 −a3 0




=




a1

−a2

a3


= a.

Prove that ϕ([A,B]) = ϕ(A)×ϕ(B). Thus, R3 with the cross product is a Lie algebra.



Chapter 5

Differential Forms

Differential forms are generalizations of real-valued functions on a manifold. Instead

of assigning to each point of the manifold a number, a differential k-form assigns to

each point a k-covector on its tangent space. For k = 0 and 1, differential k-forms are

functions and covector fields respectively.

Élie Cartan

(1869–1951)

Differential forms play a crucial role in manifold

theory. First and foremost, they are intrinsic objects

associated to any manifold, and so can be used to

construct diffeomorphism invariants of a manifold.

In contrast to vector fields, which are also intrinsic

to a manifold, differential forms have a far richer al-

gebraic structure. Due to the existence of the wedge

product, a grading, and the exterior derivative, the

set of smooth forms on a manifold is both a graded

algebra and a differential complex. Such an alge-

braic structure is called a differential graded alge-

bra. Moreover, the differential complex of smooth

forms on a manifold can be pulled back under a

smooth map, making the complex into a contravari-

ant functor called the de Rham complex of the man-

ifold. We will eventually construct the de Rham co-

homology of a manifold from the de Rham complex.

Because integration of functions on a Euclidean space depends on a choice of

coordinates and is not invariant under a change of coordinates, it is not possible to

integrate functions on a manifold. The highest possible degree of a differential form

is the dimension of the manifold. Among differential forms, those of top degree turn

out to transform correctly under a change of coordinates and are precisely the objects

that can be integrated. The theory of integration on a manifold would not be possible

without differential forms.

Very loosely speaking, differential forms are whatever appears under an integral

sign. In this sense, differential forms are as old as calculus, and many theorems in

© Springer Science+Business Media, LLC 2011
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calculus such as Cauchy’s integral theorem or Green’s theorem can be interpreted as

statements about differential forms. Although it is difficult to say who first gave dif-

ferential forms an independent meaning, Henri Poincaré [32] and Élie Cartan [5] are

generally both regarded as pioneers in this regard. In the paper [5] published in 1899,

Cartan defined formally the algebra of differential forms on Rn as the anticommuta-

tive graded algebra over C∞ functions generated by dx1, . . . ,dxn in degree 1. In the

same paper one finds for the first time the exterior derivative on differential forms.

The modern definition of a differential form as a section of an exterior power of the

cotangent bundle appeared in the late forties [6], after the theory of fiber bundles

came into being.

In this chapter we give an introduction to differential forms from the vector bun-

dle point of view. For simplicity we start with 1-forms, which already have many of

the properties of k-forms. We give various characterizations of smooth forms, and

show how to multiply, differentiate, and pull back these forms. In addition to the

exterior derivative, we also introduce the Lie derivative and interior multiplication,

two other intrinsic operations on a manifold.

§17 Differential 1-Forms

Let M be a smooth manifold and p a point in M. The cotangent space of M at p,

denoted by T ∗p (M) or T ∗p M, is defined to be the dual space of the tangent space TpM:

T ∗p M = (TpM)∨ = Hom(TpM,R).

An element of the cotangent space T ∗p M is called a covector at p. Thus, a covector

ωp at p is a linear function

ωp : TpM→R.

A covector field, a differential 1-form, or more simply a 1-form on M, is a func-

tion ω that assigns to each point p in M a covector ωp at p. In this sense it is dual

to a vector field on M, which assigns to each point in M a tangent vector at p. There

are many reasons for the great utility of differential forms in manifold theory, among

which is the fact that they can be pulled back under a map. This is in contrast to

vector fields, which in general cannot be pushed forward under a map.

Covector fields arise naturally even when one is interested only in vector fields.

For example, if X is a C∞ vector field on Rn, then at each point p ∈ Rn, Xp =

∑ai∂/∂xi|p. The coefficient ai depends on the vector Xp. It is in fact a linear

function : TpR
n→ R, i.e., a covector at p. As p varies over Rn, ai becomes a cov-

ector field on Rn. Indeed, it is none other than the 1-form dxi that picks out the ith

coefficient of a vector field relative to the standard frame ∂/∂x1, . . ., ∂/∂xn.
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17.1 The Differential of a Function

Definition 17.1. If f is a C∞ real-valued function on a manifold M, its differential

is defined to be the 1-form df on M such that for any p ∈M and Xp ∈ TpM,

(df )p(Xp) = Xp f .

Instead of (df )p, we also write df |p for the value of the 1-form df at p. This is

parallel to the two notations for a tangent vector: (d/dt)p = d/dt|p.

In Subsection 8.2 we encountered another notion of the differential, denoted by

f∗, for a map f between manifolds. Let us compare the two notions of the differen-

tial.

Proposition 17.2. If f : M→R is a C∞ function, then for p ∈M and Xp ∈ TpM,

f∗(Xp) = (df )p(Xp)
d

dt

∣∣∣∣
f (p)

.

Proof. Since f∗(Xp) ∈ Tf (p)R, there is a real number a such that

f∗(Xp) = a
d

dt

∣∣∣∣
f (p)

. (17.1)

To evaluate a, apply both sides of (17.1) to x:

a = f∗(Xp)(t) = Xp(t ◦ f ) = Xp f = (df )p(Xp). ⊓⊔

This proposition shows that under the canonical identification of the tangent

space Tf (p)R with R via

a
d

dt

∣∣∣∣
f (p)

←→ a,

f∗ is the same as df . For this reason, we are justified in calling both of them the

differential of f . In terms of the differential d f , a C∞ function f : M → R has a

critical point at p ∈M if and only if (d f )p = 0.

17.2 Local Expression for a Differential 1-Form

Let (U,φ) = (U,x1, . . . ,xn) be a coordinate chart on a manifold M. Then the differ-

entials dx1, . . . ,dxn are 1-forms on U .

Proposition 17.3. At each point p∈U, the covectors (dx1)p, . . . ,(dxn)p form a basis

for the cotangent space T ∗p M dual to the basis ∂/∂x1|p, . . . ,∂/∂xn|p for the tangent

space TpM.
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Proof. The proof is just like that in the Euclidean case (Proposition 4.1):

(dxi)p

(
∂

∂x j

∣∣∣∣
p

)
=

∂

∂x j

∣∣∣∣
p

xi = δ i
j. ⊓⊔

Thus, every 1-form ω on U can be written as a linear combination

ω = ∑ai dxi,

where the coefficients ai are functions on U . In particular, if f is a C∞ function on

M, then the restriction of the 1-form df to U must be a linear combination

df = ∑ai dxi.

To find a j, we apply the usual trick of evaluating both sides on ∂/∂x j:

(df )

(
∂

∂x j

)
= ∑

i

ai dxi

(
∂

∂x j

)
=⇒ ∂ f

∂x j
= ∑

i

aiδ
i
j = a j.

This gives a local expression for df :

df =∑
∂ f

∂xi
dxi. (17.2)

17.3 The Cotangent Bundle

The underlying set of the cotangent bundle T ∗M of a manifold M is the union of the

cotangent spaces at all the points of M:

T ∗M :=
⋃

p∈M

T ∗p M. (17.3)

Just as in the case of the tangent bundle, the union (17.3) is a disjoint union and

there is a natural map π : T ∗M→M given by π(α) = p if α ∈ T ∗p M. Mimicking the

construction of the tangent bundle, we give T ∗M a topology as follows. If (U,φ) =
(U,x1, . . . ,xn) is a chart on M and p∈U , then each α ∈ T ∗p M can be written uniquely

as a linear combination

α = ∑ci(α)dxi|p.
This gives rise to a bijection

φ̃ : T ∗U → φ(U)×Rn, (17.4)

α 7→ (φ(p),c1(α), . . . ,cn(α)) = (φ ◦ π ,c1, . . . ,cn)(α).

Using this bijection, we can transfer the topology of φ(U)×Rn to T ∗U .

Now for each domain U of a chart in the maximal atlas of M, let BU be the

collection of all open subsets of T ∗U , and let B be the union of the BU . As in

Subsection 12.1, B satisfies the conditions for a collection of subsets of T ∗M to be a
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basis. We give T ∗M the topology generated by the basisB. As for the tangent bundle,

with the maps φ̃ = (x1 ◦ π , . . . ,xn ◦ π ,c1, . . . ,cn) of (17.4) as coordinate maps, T ∗M
becomes a C∞ manifold, and the projection map π : T ∗M → M becomes a vector

bundle of rank n over M, justifying the “bundle” in the name “cotangent bundle.” If

x1, . . . ,xn are coordinates on U ⊂ M, then π∗x1, . . . ,π∗xn,c1, . . . ,cn are coordinates

on π−1U ⊂ T ∗M. Properly speaking, the cotangent bundle of a manifold M is the

triple (T ∗M,M,π), while T ∗M and M are the total space and the base space of the

cotangent bundle respectively, but by abuse of language, it is customary to call T ∗M
the cotangent bundle of M.

In terms of the cotangent bundle, a 1-form on M is simply a section of the cotan-

gent bundle T ∗M; i.e., it is a map ω : M→ T ∗M such that π ◦ ω = 1M , the identity

map on M. We say that a 1-form ω is C∞ if it is C∞ as a map M→ T ∗M.

Example 17.4 (Liouville form on the cotangent bundle). If a manifold M has dimen-

sion n, then the total space T ∗M of its cotangent bundle π : T ∗M→M is a manifold

of dimension 2n. Remarkably, on T ∗M there is a 1-form λ , called the Liouville form

(or the Poincaré form in some books), defined independently of charts as follows.

A point in T ∗M is a covector ωp ∈ T ∗p M at some point p ∈ M. If Xωp is a tangent

vector to T ∗M at ωp, then the pushforward π∗
(
Xωp

)
is a tangent vector to M at p.

Therefore, one can pair up ωp and π∗
(
Xωp

)
to obtain a real number ωp

(
π∗
(
Xωp

))
.

Define

λωp

(
Xωp

)
= ωp

(
π∗
(
Xωp

))
.

The cotangent bundle and the Liouville form on it play an important role in the

mathematical theory of classical mechanics [1, p. 202].

17.4 Characterization of C∞ 1-Forms

We define a 1-form ω on a manifold M to be smooth if ω : M→ T ∗M is smooth as a

section of the cotangent bundle π : T ∗M→M. The set of all smooth 1-forms on M

has the structure of a vector space, denoted by Ω1(M). In a coordinate chart (U,φ) =
(U,x1, . . . ,xn) on M, the value of the 1-form ω at p ∈U is a linear combination

ωp = ∑ai(p)dxi|p.

As p varies in U , the coefficients ai become functions on U . We will now derive

smoothness criteria for a 1-form in terms of the coefficient functions ai. The devel-

opment is parallel to that of smoothness criteria for a vector field in Subsection 14.1.

By Subsection 17.3, the chart (U,φ) on M induces a chart

(T ∗U, φ̃) = (T ∗U, x̄1, . . . , x̄n,c1, . . . ,cn)

on T ∗M, where x̄i = π∗xi = xi ◦ π and the ci are defined by

α = ∑ci(α)dxi|p, α ∈ T ∗p M.

Comparing the coefficients in
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ωp = ∑ai(p)dxi|p = ∑ci(ωp)dxi|p,

we get ai = ci ◦ ω , where ω is viewed as a map from U to T ∗U . Being coordinate

functions, the ci are smooth on T ∗U . Thus, if ω is smooth, then the coefficients ai of

ω = ∑ai dxi relative to the frame dxi are smooth on U . The converse is also true, as

indicated in the following lemma.

Lemma 17.5. Let (U,φ) = (U,x1, . . . ,xn) be a chart on a manifold M. A 1-form

ω = ∑ai dxi on U is smooth if and only if the coefficient functions ai are all smooth.

Proof. This lemma is a special case of Proposition 12.12, with E the cotangent bun-

dle T ∗M and s j the coordinate 1-forms dx j. However, a direct proof is also possible

(cf. Lemma 14.1).

Since φ̃ : T ∗U →U ×Rn is a diffeomorphism, ω : U → T ∗M is smooth if and

only if φ̃ ◦ ω : U →U×Rn is smooth. For p ∈U ,

(φ̃ ◦ ω)(p) = φ̃ (ωp) =
(
x1(p), . . . ,xn(p),c1(ωp), . . . ,cn(ωp)

)

=
(
x1(p), . . . ,xn(p),a1(p), . . . ,an(p)

)
.

As coordinate functions, x1, . . . ,xn are smooth on U . Therefore, by Proposition 6.13,

φ̃ ◦ ω is smooth on U if and only if all ai are smooth on U . ⊓⊔

Proposition 17.6 (Smoothness of a 1-form in terms of coefficients). Let ω be a

1-form on a manifold M. The following are equivalent:

(i) The 1-form ω is smooth on M.

(ii) The manifold M has an atlas such that on any chart (U,x1, . . . ,xn) of the atlas,

the coefficients ai of ω = ∑ai dxi relative to the frame dxi are all smooth.

(iii) On any chart (U,x1, . . . ,xn) on the manifold, the coefficients ai of ω = ∑ai dxi

relative to the frame dxi are all smooth.

Proof. The proof is omitted, since it is virtually identical to that of Proposition 14.2.

⊓⊔

Corollary 17.7. If f is a C∞ function on a manifold M, then its differential d f is a

C∞ 1-form on M.

Proof. On any chart (U,x1, . . . ,xn) on M, the equality d f = ∑(∂ f/∂xi)dxi holds.

Since the coefficients ∂ f/∂xi are all C∞, by Proposition 17.6(iii), the 1-form d f

is C∞. ⊓⊔

If ω is a 1-form and X is a vector field on a manifold M, we define a function

ω(X) on M by the formula

ω(X)p = ωp(Xp) ∈ R, p ∈M.

Proposition 17.8 (Linearity of a 1-form over functions). Let ω be a 1-form on a

manifold M. If f is a function and X is a vector field on M, then ω( f X) = f ω(X).
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Proof. At each point p ∈M,

ω( f X)p = ωp ( f (p)Xp) = f (p)ωp(Xp) = ( f ω(X))p ,

because ω(X) is defined pointwise, and at each point, ωp is R-linear in its argument.

⊓⊔

Proposition 17.9 (Smoothness of a 1-form in terms of vector fields). A 1-form ω
on a manifold M is C∞ if and only if for every C∞ vector field X on M, the function

ω(X) is C∞ on M.

Proof.

(⇒) Suppose ω is a C∞ 1-form and X is a C∞ vector field on M. On any chart

(U,x1, . . . ,xn) on M, by Propositions 14.2 and 17.6, ω = ∑ai dxi and X =∑b j∂/∂x j

for C∞ functions ai,b
j. By the linearity of 1-forms over functions (Proposition 17.8),

ω(X) =
(
∑ai dxi

)(
∑b j ∂

∂x j

)
= ∑

i, j

aib
jδ i

j = ∑aib
i,

a C∞ function on U . Since U is an arbitrary chart on M, the function ω(X) is C∞

on M.

(⇐) Suppose ω is a 1-form on M such that the function ω(X) is C∞ for every C∞

vector field X on M. Given p ∈M, choose a coordinate neighborhood (U,x1, . . . ,xn)
about p. Then ω = ∑ai dxi on U for some functions ai.

Fix an integer j, 1 ≤ j ≤ n. By Proposition 14.4, we can extend the C∞ vector

field X = ∂/∂x j on U to a C∞ vector field X̄ on M that agrees with ∂/∂x j in a

neighborhood V
j

p of p in U . Restricted to the open set V
j

p ,

ω(X̄) =
(
∑ai dxi

)( ∂

∂x j

)
= a j.

This proves that a j is C∞ on the coordinate chart (V j
p ,x

1, . . . ,xn). On the intersection

Vp :=
⋂

j V
j

p , all a j are C∞. By Lemma 17.5, the 1-form ω is C∞ on Vp. So for each

p ∈M, we have found a coordinate neighborhood Vp on which ω is C∞. It follows

that ω is a C∞ map from M to T ∗M. ⊓⊔

Let F =C∞(M) be the ring of all C∞ functions on M. By Proposition 17.9, a 1-

form ω on M defines a map X(M)→ F, X 7→ ω(X). According to Proposition 17.8,

this map is both R-linear and F-linear.

17.5 Pullback of 1-Forms

If F : N→M is a C∞ map of manifolds, then at each point p ∈ N the differential

F∗,p : TpN→ TF(p)M
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is a linear map that pushes forward vectors at p from N to M. The codifferential, i.e.,

the dual of the differential,

(F∗,p)
∨ : T ∗F(p)M→ T ∗p N,

reverses the arrow and pulls back a covector at F(p) from M to N. Another notation

for the codifferential is F∗ = (F∗,p)∨. By the definition of the dual, if ωF(p) ∈ T ∗
F(p)M

is a covector at F(p) and Xp ∈ TpN is a tangent vector at p, then

F∗
(
ωF(p)

)
(Xp) =

(
(F∗,p)∨ωF(p)

)
(Xp) = ωF(p)(F∗,pXp).

We call F∗
(
ωF(p)

)
the pullback of the covector ωF(p) by F . Thus, the pullback of

covectors is simply the codifferential.

Unlike vector fields, which in general cannot be pushed forward under a C∞

map, every covector field can be pulled back by a C∞ map. If ω is a 1-form on M, its

pullback F∗ω is the 1-form on N defined pointwise by

(F∗ω)p = F∗
(
ωF(p)

)
, p ∈ N.

This means that

(F∗ω)p(Xp) = ωF(p)(F∗(Xp))

for all Xp ∈ TpN. Recall that functions can also be pulled back: if F is a C∞ map

from N to M and g ∈C∞(M), then F∗g = g ◦ F ∈C∞(N).
This difference in the behavior of vector fields and forms under a map can be

traced to a basic asymmetry in the concept of a function—every point in the domain

maps to only one image point in the range, but a point in the range can have several

preimage points in the domain.

Now that we have defined the pullback of a 1-form under a map, a question

naturally suggests itself. Is the pullback of a C∞ 1-form under a C∞ map C∞? To

answer this question, we first need to establish three commutation properties of the

pullback: its commutation with the differential, sum, and product.

Proposition 17.10 (Commutation of the pullback with the differential). Let F : N

→M be a C∞ map of manifolds. For any h ∈C∞(M), F∗(dh) = d(F∗h).

Proof. It suffices to check that for any point p ∈ N and any tangent vector Xp ∈ TpN,

(F∗dh)p(Xp) = (dF∗h)p(Xp). (17.5)

The left-hand side of (17.5) is

(F∗dh)p(Xp) = (dh)F(p)(F∗(Xp)) (definition of the pullback of a 1-form)

= (F∗(Xp))h (definition of the differential dh)

= Xp(h ◦ F) (definition of F∗).

The right-hand side of (17.5) is

(dF∗h)p(Xp) = Xp(F
∗h) (definition of d of a function)

= Xp(h ◦ F) (definition of F∗ of a function). ⊓⊔



17.6 Restriction of 1-Forms to an Immersed Submanifold 197

Pullback of functions and 1-forms respects addition and scalar multiplication.

Proposition 17.11 (Pullback of a sum and a product). Let F : N→M be a C∞ map

of manifolds. Suppose ω , τ ∈Ω1(M) and g ∈C∞(M). Then

(i) F∗(ω + τ) = F∗ω +F∗τ ,

(ii) F∗(gω) = (F∗g)(F∗ω).

Proof. Problem 17.5.

Proposition 17.12 (Pullback of a C∞ 1-form). The pullback F∗ω of a C∞ 1-form ω
on M under a C∞ map F : N→M is C∞ 1-form on N.

Proof. Given p ∈ N, choose a chart (V,ψ) = (V,y1, . . . ,yn) in M about F(p). By

the continuity of F , there is a chart (U,φ) = (U,x1, . . . ,xn) about p in N such that

F(U)⊂V . On V , ω = ∑ai dyi for some ai ∈C∞(V ). On U ,

F∗ω = ∑(F∗ai)F
∗(dyi) (Proposition 17.11)

= ∑(F∗ai)dF∗yi (Proposition 17.10)

= ∑(ai ◦ F)d(yi ◦ F) (definition of F∗ of a function)

= ∑
i, j

(ai ◦ F)
∂Fi

∂x j
dx j (equation (17.2)).

Since the coefficients (ai ◦ F)∂Fi/∂x j are all C∞, by Proposition 17.5 the 1-form

F∗ω is C∞ on U and therefore at p. Since p was an arbitrary point in N, the pullback

F∗ω is C∞ on N. ⊓⊔

Example 17.13 (Liouville form on the cotangent bundle). Let M be a manifold. In

terms of the pullback, the Liouville form λ on the cotangent bundle T ∗M introduced

in Example 17.4 can be expressed as λωp = π∗(ωp) at any ωp ∈ T ∗M.

17.6 Restriction of 1-Forms to an Immersed Submanifold

Let S ⊂ M be an immersed submanifold and i : S→ M the inclusion map. At any

p ∈ S, since the differential i∗ : TpS→ TpM is injective, one may view the tangent

space TpS as a subspace of TpM. If ω is a 1-form on M, then the restriction of ω to

S is the 1-form ω |S defined by

(ω |S)p (v) = ωp(v) for all p ∈ S and v ∈ TpS.

Thus, the restriction ω |S is the same as ω except that its domain has been restricted

from M to S and for each p ∈ S, the domain of (ω |S)p has been restricted from TpM

to TpS. The following proposition shows that the restriction of 1-forms is simply the

pullback of the inclusion i.

Proposition 17.14. If i : S →֒M is the inclusion map of an immersed submanifold S

and ω is a 1-form on M, then i∗ω = ω |S.
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Proof. For p ∈ S and v ∈ TpS,

(i∗ω)p(v) = ωi(p)(i∗v) (definition of pullback)

= ωp(v) (both i and i∗ are inclusions)

= (ω |S)p (v) (definition of ω |S). ⊓⊔

To avoid too cumbersome a notation, we sometimes write ω to mean ω |S, relying

on the context to make clear that it is the restriction of ω to S.

Example 17.15 (A 1-form on the circle). The velocity vector field of the unit circle

c(t) = (x,y) = (cost,sin t) in R2 is

c′(t) = (−sin t,cost) = (−y,x).

Thus,

X =−y
∂

∂x
+ x

∂

∂y

is a C∞ vector field on the unit circle S1. What this notation means is that if x,y are

the standard coordinates on R2 and i : S1 →֒ R2 is the inclusion map, then at a point

p = (x,y) ∈ S1, one has i∗Xp =−y∂/∂x|p+x∂/∂y|p, where ∂/∂x|p and ∂/∂y|p are

tangent vectors at p in R2. Find a 1-form ω = adx+bdy on S1 such that ω(X)≡ 1.

Solution. Here ω is viewed as the restriction to S1 of the 1-form adx+bdy on R2.

We calculate in R2, where dx, dy are dual to ∂/∂x, ∂/∂y:

ω(X) = (adx+bdy)

(
−y

∂

∂x
+ x

∂

∂y

)
=−ay+ bx= 1. (17.6)

Since x2+y2 = 1 on S1, a=−y and b= x is a solution to (17.6). So ω =−ydx+xdy

is one such 1-form. Since ω(X)≡ 1, the form ω is nowhere vanishing on the circle.

Remark. In the notation of Problem 11.2, ω should be written−ȳ dx̄+ x̄ dȳ, since x,y
are functions on R2 and x̄, ȳ are their restrictions to S1. However, one generally uses

the same notation for a form on Rn and for its restriction to a submanifold. Since

i∗x = x̄ and i∗dx = dx̄, there is little possibility of confusion in omitting the bar while

dealing with the restriction of forms on Rn. This is in contrast to the situation for

vector fields, where i∗(∂/∂ x̄|p) 6= ∂/∂x|p.

Example 17.16 (Pullback of a 1-form). Let h : R→ S1 ⊂R2 be given by h(t) = (x,y)
= (cost,sin t). If ω is the 1-form −ydx+ xdy on S1, compute the pullback h∗ω .

Solution.

h∗(−ydx+ xdy) =−(h∗y)d(h∗x)+ (h∗x)d(h∗y) (by Proposition 17.11)

=−(sin t)d(cost)+ (cost)d(sin t)

= sin2 t dt + cos2 t dt = dt.
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Problems

17.1. A 1-form on R2−{(0,0)}
Denote the standard coordinates on R2 by x,y, and let

X =−y
∂

∂x
+x

∂

∂y
and Y = x

∂

∂x
+y

∂

∂y

be vector fields on R2. Find a 1-form ω on R2−{(0,0)} such that ω(X) = 1 and ω(Y ) = 0.

17.2. Transition formula for 1-forms

Suppose (U,x1, . . . ,xn) and (V,y1, . . . ,yn) are two charts on M with nonempty overlap U ∩V .

Then a C∞ 1-form ω on U ∩V has two different local expressions:

ω =∑a j dx j = ∑bi dyi.

Find a formula for a j in terms of bi.

17.3. Pullback of a 1-form on S1

Multiplication in the unit circle S1, viewed as a subset of the complex plane, is given by

eit · eiu = ei(t+u), t,u ∈ R.

In terms of real and imaginary parts,

(cos t + isin t)(x+ iy) = ((cos t)x− (sin t)y)+ i((sint)x+(cos t)y) .

Hence, if g = (cos t,sin t) ∈ S1 ⊂ R2, then the left multiplication ℓg : S1→ S1 is given by

ℓg(x,y) = ((cos t)x− (sint)y,(sin t)x+(cos t)y) .

Let ω = −ydx + xdy be the 1-form found in Example 17.15. Prove that ℓ∗gω = ω for all

g ∈ S1.

17.4. Liouville form on the cotangent bundle

(a) Let (U,φ) = (U,x1, . . . ,xn) be a chart on a manifold M, and let

(π−1U, φ̃) = (π−1U, x̄1, . . . , x̄n,c1, . . . ,cn)

be the induced chart on the cotangent bundle T ∗M. Find a formula for the Liouville form

λ on π−1U in terms of the coordinates x̄1, . . . , x̄n,c1, . . . ,cn.

(b) Prove that the Liouville form λ on T ∗M is C∞. (Hint: Use (a) and Proposition 17.6.)

17.5. Pullback of a sum and a product

Prove Proposition 17.11 by verifying both sides of each equality on a tangent vector Xp at a

point p.

17.6. Construction of the cotangent bundle

Let M be a manifold of dimension n. Mimicking the construction of the tangent bundle in

Section 12, write out a detailed proof that π : T ∗M→M is a C∞ vector bundle of rank n.
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§18 Differential k-Forms

We now generalize the construction of 1-forms on a manifold to k-forms. After

defining k-forms on a manifold, we show that locally they look no different from k-

forms on Rn. In parallel to the construction of the tangent and cotangent bundles on

a manifold, we construct the kth exterior power
∧k(T ∗M) of the cotangent bundle.

A differential k-form is seen to be a section of the bundle
∧k(T ∗M). This gives a

natural notion of smoothness of differential forms: a differential k-form is smooth

if and only if it is smooth as a section of the vector bundle
∧k(T ∗M). The pullback

and the wedge product of differential forms are defined pointwise. As examples of

differential forms, we consider left-invariant forms on a Lie group.

18.1 Differential Forms

Recall that a k-tensor on a vector space V is a k-linear function

f : V ×·· ·×V → R.

The k-tensor f is alternating if for any permutation σ ∈ Sk,

f (vσ(1), . . . ,vσ(k)) = (sgnσ) f (v1, . . . ,vk). (18.1)

When k = 1, the only element of the permutation group S1 is the identity permutation.

So for 1-tensors the condition (18.1) is vacuous and all 1-tensors are alternating (and

symmetric too). An alternating k-tensor on V is also called a k-covector on V .

For any vector space V , denote by Ak(V ) the vector space of alternating k-tensors

on V . Another common notation for the space Ak(V ) is
∧k(V∨). Thus,

∧0(V∨) = A0(V ) = R,
∧1(V∨) = A1(V ) =V∨,
∧2(V∨) = A2(V ), and so on.

In fact, there is a purely algebraic construction
∧k(V ), called the kth exterior power

of the vector space V , with the property that
∧k(V∨) is isomorphic to Ak(V ). To

delve into this construction would lead us too far afield, so in this book
∧k(V∨) will

simply be an alternative notation for Ak(V ).
We apply the functor Ak( ) to the tangent space TpM of a manifold M at a point

p. The vector space Ak(TpM), usually denoted by
∧k(T ∗p M), is the space of all

alternating k-tensors on the tangent space TpM. A k-covector field on M is a function

ω that assigns to each point p ∈M a k-covector ωp ∈
∧k(T ∗p M). A k-covector field

is also called a differential k-form, a differential form of degree k, or simply a k-form.

A top form on a manifold is a differential form whose degree is the dimension of the

manifold.
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If ω is a k-form on a manifold M and X1, . . . ,Xk are vector fields on M, then

ω(X1, . . . ,Xk) is the function on M defined by

(ω(X1, . . . ,Xk))(p) = ωp((X1)p, . . . ,(Xk)p).

Proposition 18.1 (Multilinearity of a form over functions). Let ω be a k-form on

a manifold M. For any vector fields X1, . . . ,Xk and any function h on M,

ω(X1, . . . ,hXi, . . . ,Xk) = hω(X1, . . . ,Xi, . . . ,Xk).

Proof. The proof is essentially the same as that of Proposition 17.8. ⊓⊔

Example 18.2. Let (U,x1, . . . ,xn) be a coordinate chart on a manifold. At each point

p ∈U , a basis for the tangent space TpU is

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

.

As we saw in Proposition 17.3, the dual basis for the cotangent space T ∗p U is

(dx1)p, . . . ,(dxn)p.

As p varies over points in U , we get differential 1-forms dx1, . . . ,dxn on U .

By Proposition 3.29 a basis for the alternating k-tensors in
∧k(T ∗p U) is

(dxi1)p∧·· ·∧ (dxik)p, 1≤ i1 < · · ·< ik ≤ n.

If ω is a k-form on Rn, then at each point p ∈Rn, ωp is a linear combination

ωp = ∑ai1···ik(p)(dxi1)p∧·· ·∧ (dxik)p.

Omitting the point p, we write

ω = ∑ai1···ik dxi1 ∧·· ·∧dxik .

In this expression the coefficients ai1···ik are functions on U because they vary with

the point p. To simplify the notation, we let

Ik,n = {I = (i1, . . . , ik) | 1≤ i1 < · · ·< ik ≤ n}

be the set of all strictly ascending multi-indices between 1 and n of length k, and

write

ω = ∑
I∈Ik,n

aI dxI ,

where dxI stands for dxi1 ∧·· ·∧dxik .
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18.2 Local Expression for a k-Form

By Example 18.2, on a coordinate chart (U,x1, . . . ,xn) of a manifold M, a k-form on

U is a linear combination ω = ∑aIdxI , where I ∈ Ik,n and the aI are functions on U .

As a shorthand, we write ∂i = ∂/∂xi for the ith coordinate vector field. Evaluating

pointwise as in Lemma 3.28, we obtain the following equality on U for I,J ∈ Ik,n:

dxI(∂ j1 , . . . ,∂ jk) = δ I
J =

{
1 for I = J,

0 for I 6= J.
(18.2)

Proposition 18.3 (A wedge of differentials in local coordinates). Let (U,x1, . . . ,xn)
be a chart on a manifold and f 1, . . . , f k smooth functions on U. Then

df 1∧·· ·∧df k = ∑
I∈Ik,n

∂ ( f 1, . . . , f k)

∂ (xi1 , . . . ,xik)
dxi1 ∧·· ·∧dxik .

Proof. On U ,

df 1∧·· ·∧df k = ∑
J∈Ik,n

cJ dx j1 ∧·· ·∧dx jk (18.3)

for some functions cJ . By the definition of the differential, d f i(∂/∂x j) = ∂ f i/∂x j.

Applying both sides of (18.3) to the list of coordinate vectors ∂i1 , . . . ,∂ik , we get

LHS = (df 1∧·· ·∧df k)(∂i1 , . . . ,∂ik ) = det

[
∂ f i

∂xi j

]
by Proposition 3.27

=
∂ ( f 1, . . . , f k)

∂ (xi1 , . . . ,xik )
,

RHS = ∑
J

cJ dxJ(∂i1 , . . . ,∂ik) = ∑
J

cJδ J
I = cI by Lemma 18.2.

Hence, cI = ∂ ( f 1, . . . , f k)/∂ (xi1 , . . . ,xik ). ⊓⊔

If (U,x1, . . . ,xn) and (V,y1, . . . ,yn) are two overlapping charts on a manifold,

then on the intersection U ∩V , Proposition 18.3 becomes the transition formula for

k-forms:

dyJ = ∑
I

∂ (y j1 , . . . ,y jk)

∂ (xi1 , . . . ,xik)
dxI.

Two cases of Proposition 18.3 are of special interest:

Corollary 18.4. Let (U,x1, . . . ,xn) be a chart on a manifold, and let f , f 1, . . . , f n be

C∞ functions on U. Then

(i) (1-forms) df = ∑(∂ f/∂xi)dxi,

(ii) (top forms) df 1∧·· ·∧df n = det[∂ f j/∂xi]dx1∧·· ·∧dxn.

Case (i) of the corollary agrees with the formula we derived in (17.2).
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Exercise 18.5 (Transition formula for a 2-form).* If (U,x1, . . . ,xn) and (V,y1, . . . ,yn) are

two overlapping coordinate charts on M, then a C∞ 2-form ω on U ∩V has two local expres-

sions:

ω = ∑
i< j

ai j dxi∧dx j = ∑
k<ℓ

bkℓ dyk ∧dyℓ.

Find a formula for ai j in terms of bkℓ and the coordinate functions x1, . . . ,xn,y1, . . . ,yn.

18.3 The Bundle Point of View

Let M be a manifold of dimension n. To better understand differential forms, we

mimic the construction of the tangent and cotangent bundles and form the set

∧k(T ∗M) :=
⋃

p∈M

∧k(T ∗p M) =
⋃

p∈M Ak(TpM)

of all alternating k-tensors at all points of the manifold M. This set is called the kth

exterior power of the cotangent bundle. There is a projection map π :
∧k(T ∗M)→M

given by π(α) = p if α ∈ ∧k(T ∗p M).
If (U,φ) is a coordinate chart on M, then there is a bijection

∧k(T ∗U) =
⋃

p∈U

∧k(T ∗p U)≃ φ(U)×R(
n
k),

α ∈∧k(T ∗p U) 7→ (φ(p),{cI(α)}I),

where α = ∑cI(α)dxI |p ∈
∧k(T ∗p U) and I = (1≤ i1 < · · ·< ik ≤ n). In this way we

can give
∧k(T ∗U) and hence

∧k(T ∗M) a topology and even a differentiable struc-

ture. The details are just like those for the construction of the tangent bundle, so we

omit them. The upshot is that the projection map π :
∧k(T ∗M)→M is a C∞ vector

bundle of rank
(

n
k

)
and that a differential k-form is simply a section of this bundle. As

one might expect, we define a k-form to be C∞ if it is C∞ as a section of the bundle

π :
∧k(T ∗M)→M.

NOTATION. If E → M is a C∞ vector bundle, then the vector space of C∞ sections

of E is denoted by Γ(E) or Γ(M,E). The vector space of all C∞ k-forms on M is

usually denoted by Ωk(M). Thus,

Ωk(M) = Γ
(∧k(T ∗M)

)
= Γ

(
M,
∧k(T ∗M)

)
.

18.4 Smooth k-Forms

There are several equivalent characterizations of a smooth k-form. Since the proofs

are similar to those for 1-forms (Lemma 17.5 and Propositions 17.6 and 17.9), we

omit them.

Lemma 18.6 (Smoothness of a k-form on a chart). Let (U,x1, . . . ,xn) be a chart

on a manifold M. A k-form ω = ∑aI dxI on U is smooth if and only if the coefficient

functions aI are all smooth on U.
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Proposition 18.7 (Characterization of a smooth k-form). Let ω be a k-form on a

manifold M. The following are equivalent:

(i) The k-form ω is C∞ on M.

(ii) The manifold M has an atlas such that on every chart (U,φ) = (U,x1, . . . ,xn)
in the atlas, the coefficients aI of ω = ∑aI dxI relative to the coordinate frame

{dxI}I∈Ik,n
are all C∞.

(iii) On every chart (U,φ) = (U,x1, . . . ,xn) on M, the coefficients aI of ω = ∑aI dxI

relative to the coordinate frame {dxI}I∈Ik,n
are all C∞.

(iv) For any k smooth vector fields X1, . . . ,Xk on M, the function ω(X1, . . . ,Xk) is C∞

on M.

We defined the 0-tensors and the 0-covectors to be the constants, that is, L0(V ) =
A0(V ) = R. Therefore, the bundle

∧0(T ∗M) is simply M×R and a 0-form on M is

a function on M. A C∞ 0-form on M is thus the same as a C∞ function on M. In our

new notation,

Ω0(M) = Γ
(∧0(T ∗M)

)
= Γ(M×R) =C∞(M).

Proposition 13.2 on C∞ extensions of functions has a generalization to differential

forms.

Proposition 18.8 (C∞ extension of a form). Suppose τ is a C∞ differential form

defined on a neighborhood U of a point p in a manifold M. Then there is a C∞ form

τ̃ on M that agrees with τ on a possibly smaller neighborhood of p.

The proof is identical to that of Proposition 13.2. We leave it as an exercise. Of

course, the extension τ̃ is not unique. In the proof it depends on p and on the choice

of a bump function at p.

18.5 Pullback of k-Forms

We have defined the pullback of 0-forms and 1-forms under a C∞ map F : N →M.

For a C∞ 0-form on M, i.e., a C∞ function on M, the pullback F∗ f is simply the

composition

N
F→M

f→ R, F∗( f ) = f ◦ F ∈Ω0(N).

To generalize the pullback to k-forms for all k ≥ 1, we first recall the pullback of

k-covectors from Subsection 10.3. A linear map L : V →W of vector spaces induces

a pullback map L∗ : Ak(W )→ Ak(V ) by

(L∗α)(v1, . . . ,vk) = α(L(v1), . . . ,L(vk))

for α ∈ Ak(W ) and v1, . . . ,vk ∈V .

Now suppose F : N → M is a C∞ map of manifolds. At each point p ∈ N, the

differential

F∗,p : TpN→ TF(p)M
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is a linear map of tangent spaces, and so by the preceding paragraph there is a pull-

back map

(F∗,p)
∗ : Ak(TF(p)M)→ Ak(TpN).

This ugly notation is usually simplified to F∗. Thus, if ωF(p) is a k-covector at F(p)

in M, then its pullback F∗
(
ωF(p)

)
is the k-covector at p in N given by

F∗
(
ωF(p)

)
(v1, . . . ,vk) = ωF(p)(F∗,pv1, . . . ,F∗,pvk), vi ∈ TpN.

Finally, if ω is a k-form on M, then its pullback F∗ω is the k-form on N defined

pointwise by (F∗ω)p = F∗
(
ωF(p)

)
for all p ∈ N. Equivalently,

(F∗ω)p(v1, . . . ,vk) = ωF(p)(F∗,pv1, . . . ,F∗,pvk), vi ∈ TpN. (18.4)

When k = 1, this formula specializes to the definition of the pullback of a 1-form in

Subsection 17.5. The pullback of a k-form (18.4) can be viewed as a composition

TpN×·· ·×TpN
F∗×···×F∗−−−−−−→ TF(p)M×·· ·×TF(p)M

ωF(p)−−−→R.

Proposition 18.9 (Linearity of the pullback). Let F : N→M be a C∞ map. If ω ,τ
are k-forms on M and a is a real number, then

(i) F∗(ω + τ) = F∗ω +F∗τ;

(ii) F∗(aω) = aF∗ω .

Proof. Problem 18.2. ⊓⊔

At this point, we still do not know, other than for k = 0,1, whether the pullback of

a C∞ k-form under a C∞ map remains C∞. This very basic question will be answered

in Subsection 19.5.

18.6 The Wedge Product

We learned in Section 3 that if α and β are alternating tensors of degree k and ℓ
respectively on a vector space V , then their wedge product α ∧β is the alternating

(k+ ℓ)-tensor on V defined by

(α ∧β )(v1, . . . ,vk+ℓ) = ∑(sgnσ)α(vσ(1), . . . ,vσ(k))β (vσ(k+1), . . . ,vσ(k+ℓ)),

where vi ∈V and σ runs over all (k, ℓ)-shuffles of 1, . . . ,k+ ℓ. For example, if α and

β are 1-covectors, then

(α ∧β )(v1,v2) = α(v1)β (v2)−α(v2)β (v1).

The wedge product extends pointwise to differential forms on a manifold: for a

k-form ω and an ℓ-form τ on M, define their wedge product ω ∧ τ to be the (k+ ℓ)-
form on M such that

(ω ∧ τ)p = ωp∧ τp

at all p ∈M.
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Proposition 18.10. If ω and τ are C∞ forms on M, then ω ∧ τ is also C∞.

Proof. Let (U,x1, . . . ,xn) be a chart on M. On U ,

ω = ∑aI dxI , τ = ∑bJ dxJ

for C∞ function aI,bJ on U . Their wedge product on U is

ω ∧ τ =
(
∑aI dxI

)
∧
(
∑bJ dxJ

)
= ∑aIbJ dxI ∧dxJ.

In this sum, dxI ∧dxJ = 0 if I and J have an index in common. If I and J are disjoint,

then dxI ∧ dxJ = ±dxK , where K = I ∪ J but reordered as an increasing sequence.

Thus,

ω ∧ τ = ∑
K

(
∑

I∪J=K
I,J disjoint

±aIbJ

)
dxK .

Since the coefficients of dxK are C∞ on U , by Proposition 18.7, ω ∧ τ is C∞. ⊓⊔

Proposition 18.11 (Pullback of a wedge product). If F : N → M is a C∞ map of

manifolds and ω and τ are differential forms on M, then

F∗(ω ∧ τ) = F∗ω ∧F∗τ.

Proof. Problem 18.3. ⊓⊔

Define the vector space Ω∗(M) of C∞ differential forms on a manifold M of

dimension n to be the direct sum

Ω∗(M) =
n⊕

k=0

Ωk(M).

What this means is that each element of Ω∗(M) is uniquely a sum ∑n
k=0 ωk, where

ωk ∈ Ωk(M). With the wedge product, the vector space Ω∗(M) becomes a graded

algebra, the grading being the degree of differential forms.

18.7 Differential Forms on a Circle

Consider the map

h : R→ S1, h(t) = (cost,sin t).

Since the derivative ḣ(t) = (−sin t,cost) is nonzero for all t, the map h : R→ S1 is

a submersion. By Problem 18.8, the pullback map h∗ : Ω∗(S1)→Ω∗(R) on smooth

differential forms is injective. This will allow us to identify the differential forms on

S1 with a subspace of differential forms on R.

Let ω =−ydx+xdy be the nowhere-vanishing form on S1 from Example 17.15.

In Example 17.16, we showed that h∗ω = dt. Since ω is nowhere vanishing, it is a

frame for the cotangent bundle T ∗S1 over S1, and every C∞ 1-form α on S1 can be
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written as α = f ω for some function f on S1. By Proposition 12.12, the function

f is C∞. Its pullback f̄ := h∗ f is a C∞ function on R. Since pulling back preserves

multiplication (Proposition 18.11),

h∗α = (h∗ f )(h∗ω) = f̄ dt. (18.5)

We say that a function g or a 1-form gdt onR is periodic of period a if g(t+a)= g(t)
for all t ∈ R.

Proposition 18.12. For k = 0,1, under the pullback map h∗ : Ω∗(S1) → Ω∗(R),
smooth k-forms on S1 are identified with smooth periodic k-forms of period 2π on R.

Proof. If f ∈ Ω0(S1), then since h : R→ S1 is periodic of period 2π , the pullback

h∗ f = f ◦ h ∈Ω0(R) is periodic of period 2π .

Conversely, suppose f̄ ∈ Ω0(R) is periodic of period 2π . For p ∈ S1, let s be

the C∞ inverse in a neighborhood U of p of the local diffeomorphism h and define

f = f̄ ◦ s on U . To show that f is well defined, let s1 and s2 be two inverses of h

over U . By the periodic properties of sine and cosine, s1 = s2 +2πn for some n ∈ Z.

Because f̄ is periodic of period 2π , we have f̄ ◦ s1 = f̄ ◦ s2. This proves that f is

well defined on U . Moreover,

f̄ = f ◦ s−1 = f ◦ h = h∗ f on h−1(U).

As p varies over S1, we obtain a well-defined C∞ function f on S1 such that f̄ =
h∗ f . Thus, the image of h∗ : Ω0(S1)→Ω0(R) consists precisely of the C∞ periodic

functions of period 2π on R.

As for 1-forms, note that Ω1(S1) = Ω0(S1)ω and Ω1(R) = Ω0(R)dt. The

pullback h∗ : Ω1(S1) → Ω1(R) is given by h∗( f ω) = (h∗ f )dt, so the image of

h∗ : Ω1(S1)→Ω1(R) consists of C∞ periodic 1-forms of period 2π . ⊓⊔

18.8 Invariant Forms on a Lie Group

Just as there are left-invariant vector fields on a Lie group G, so also are there left-

invariant differential forms. For g ∈ G, let ℓg : G→ G be left multiplication by g. A

k-form ω on G is said to be left-invariant if ℓ∗gω = ω for all g ∈ G. This means that

for all g,x ∈ G,

ℓ∗g (ωgx) = ωx.

Thus, a left-invariant k-form is uniquely determined by its value at the identity, since

for any g ∈ G,

ωg = ℓ∗
g−1 (ωe) . (18.6)

Example 18.13 (A left-invariant 1-form on S1). By Problem 17.3, ω = −ydx+ xdy

is a left-invariant 1-form on S1.

We have the following analogue of Proposition 16.8.

Proposition 18.14. Every left-invariant k-form ω on a Lie group G is C∞.
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Proof. By Proposition 18.7(iii), it suffices to prove that for any k smooth vector fields

X1, . . . ,Xk on G, the function ω(X1, . . . ,Xk) is C∞ on G. Let (Y1)e, . . . ,(Yn)e be a basis

for the tangent space TeG and Y1, . . . ,Yn the left-invariant vector fields they generate.

Then Y1, . . . ,Yn is a C∞ frame on G (Proposition 16.8). Each Xj can be written as

a linear combination Xj = ∑ai
jYi. By Proposition 12.12, the functions ai

j are C∞.

Hence, to prove that ω is C∞, it suffices to show that ω(Yi1 , . . . ,Yik) is C∞ for the

left-invariant vector fields Yi1 , . . . ,Yik . But

(ω(Yi1 , . . . ,Yik))(g) = ωg((Yi1)g, . . . ,(Yik )g)

= (ℓ∗
g−1(ωe))

(
ℓg∗(Yi1)e, . . . , ℓg∗(Yik)e

)

= ωe((Yi1)e, . . . ,(Yik )e),

which is a constant, independent of g. Being a constant function, ω(Yi1 , . . . ,Yik ) is

C∞ on G. ⊓⊔

Similarly, a k-form ω on G is said to be right-invariant if r∗gω = ω for all g ∈G.

The analogue of Proposition 18.14, that every right-invariant form on a Lie group is

C∞, is proven in the same way.

Let Ωk(G)G denote the vector space of left-invariant k-forms on G. The linear

map

Ωk(G)G→∧k(g∨), ω 7→ ωe,

has an inverse defined by (18.6) and is therefore an isomorphism. It follows that

dimΩk(G)G =
(

n
k

)
.

Problems

18.1. Characterization of a smooth k-form

Write out a proof of Proposition 18.7(i)⇔(iv).

18.2. Linearity of the pullback

Prove Proposition 18.9.

18.3. Pullback of a wedge product

Prove Proposition 18.11.

18.4.* Support of a sum or product

Generalizing the support of a function, we define the support of a k-form ω ∈Ωk(M) to be

supp ω = closure of {p ∈M | ωp 6= 0}= Z(ω)c,

where Z(ω)c is the complement of the zero set Z(ω) of ω in M. Let ω and τ be differential

forms on a manifold M. Prove that

(a) supp(ω + τ)⊂ suppω ∪ supp τ ,

(b) supp(ω ∧ τ)⊂ supp ω ∩ suppτ .
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18.5. Support of a linear combination

Prove that if the k-forms ω1, . . . ,ωr ∈ Ωk(M) are linearly independent at every point of a

manifold M and a1, . . . ,ar are C∞ functions on M, then

supp
r

∑
i=1

aiω
i =

r⋃

i=1

suppai.

18.6.* Locally finite collection of supports

Let {ρα}α∈A be a collection of functions on M and ω a C∞ k-form with compact support on

M. If the collection {suppρα}α∈A of supports is locally finite, prove that ρα ω ≡ 0 for all but

finitely many α .

18.7. Locally finite sums

We say that a sum ∑ωα of differential k-forms on a manifold M is locally finite if the collection

{supp ωα} of supports is locally finite. Suppose ∑ωα and ∑τα are locally finite sums and f

is a C∞ function on M.

(a) Show that every point p ∈M has a neighborhood U on which ∑ωα is a finite sum.

(b) Show that ∑ωα + τα is a locally finite sum and

∑ωα + τα = ∑ωα +∑τα .

(c) Show that ∑ f ωα is a locally finite sum and

∑ f ·ωα = f ·
(
∑ωα

)
.

18.8.* Pullback by a surjective submersion

In Subsection 19.5, we will show that the pullback of a C∞ form is C∞. Assuming this fact for

now, prove that if π : M̃→M is a surjective submersion, then the pullback map π∗ : Ω∗(M)→
Ω∗(M̃) is an injective algebra homomorphism.

18.9. Bi-invariant top forms on a compact, connected Lie group

Suppose G is a compact, connected Lie group of dimension n with Lie algebra g. This exercise

proves that every left-invariant n-form on G is right-invariant.

(a) Let ω be a left-invariant n-form on G. For any a ∈ G, show that r∗aω is also left-invariant,

where ra : G→ G is right multiplication by a.

(b) Since dimΩn(G)G = dim
∧n(g∨) = 1, r∗aω = f (a)ω for some nonzero real number f (a)

depending on a ∈ G. Show that f : G→ R× is a group homomorphism.

(c) Show that f : G→ R× is C∞. (Hint: Note that f (a)ωe = (r∗aω)e = r∗a(ωa) = r∗aℓ
∗
a−1 (ωe).

Thus, f (a) is the pullback of the map Ad(a−1) : g→ g. See Problem 16.11.)

(d) As the continuous image of a compact connected set G, the set f (G)⊂R× is compact and

connected. Prove that f (G) = 1. Hence, r∗aω = ω for all a ∈ G.
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§19 The Exterior Derivative

In contrast to undergraduate calculus, where the basic objects of study are functions,

the basic objects in calculus on manifolds are differential forms. Our program now

is to learn how to integrate and differentiate differential forms.

Recall that an antiderivation on a graded algebra A=
⊕∞

k=0 Ak is an R-linear map

D : A→ A such that

D(ω · τ) = (Dω) · τ +(−1)kω ·Dτ

for ω ∈ Ak and τ ∈ Aℓ. In the graded algebra A, an element of Ak is called a homo-

geneous element of degree k. The antiderivation is of degree m if

degDω = degω +m

for all homogeneous elements ω ∈ A.

Let M be a manifold and Ω∗(M) the graded algebra of C∞ differential forms

on M. On the graded algebra Ω∗(M) there is a uniquely and intrinsically defined

antiderivation called the exterior derivative. The process of applying the exterior

derivative is called exterior differentiation.

Definition 19.1. An exterior derivative on a manifold M is an R-linear map

D : Ω∗(M)→Ω∗(M)

such that

(i) D is an antiderivation of degree 1,

(ii) D ◦ D = 0,

(iii) if f is a C∞ function and X a C∞ vector field on M, then (D f )(X) = X f .

Condition (iii) says that on 0-forms an exterior derivative agrees with the differ-

ential df of a function f . Hence, by (17.2), on a coordinate chart (U,x1, . . . ,xn),

D f = d f = ∑
∂ f

∂xi
dxi.

In this section we prove the existence and uniqueness of an exterior derivative

on a manifold. Using its three defining properties, we then show that the exterior

derivative commutes with the pullback. This will finally allow us to prove that the

pullback of a C∞ form by a C∞ map is C∞.
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19.1 Exterior Derivative on a Coordinate Chart

We showed in Subsection 4.4 the existence and uniqueness of an exterior derivative

on an open subset of Rn. The same proof carries over to any coordinate chart on a

manifold.

More precisely, suppose (U,x1, . . . ,xn) is a coordinate chart on a manifold M.

Then any k-form ω on U is uniquely a linear combination

ω = ∑aI dxI , aI ∈C∞(U).

If D is an exterior derivative on U , then

Dω = ∑(DaI)∧dxI +∑aI DdxI (by (i))

= ∑(DaI)∧dxI (by (iii) and (ii), Dd = D2 = 0)

= ∑
I

∑
j

∂aI

∂x j
dx j ∧dxI (by (iii)). (19.1)

Hence, if an exterior derivative D exists on U , then it is uniquely defined by (19.1).

To show existence, we define D by the formula (19.1). The proof that D satisfies

(i), (ii), and (iii) is the same as in the case of Rn in Proposition 4.7. We will denote

the unique exterior derivative on a chart (U,φ) by dU .

Like the derivative of a function on Rn, an antiderivation D on Ω∗(M) has the

property that for a k-form ω , the value of Dω at a point p depends only on the

values of ω in a neighborhood of p. To explain this, we make a digression on local

operators.

19.2 Local Operators

An endomorphism of a vector space W is often called an operator on W . For exam-

ple, if W =C∞(R) is the vector space of C∞ functions on R, then the derivative d/dx

is an operator on W :
d

dx
f (x) = f ′(x).

The derivative has the property that the value of f ′(x) at a point p depends only on

the values of f in a small neighborhood of p. More precisely, if f = g on an open set

U in R, then f ′ = g′ on U . We say that the derivative is a local operator on C∞(R).

Definition 19.2. An operator D : Ω∗(M)→Ω∗(M) is said to be local if for all k≥ 0,

whenever a k-form ω ∈ Ωk(M) restricts to 0 on an open set U in M, then Dω ≡ 0

on U .

Here by restricting to 0 on U , we mean that ωp = 0 at every point p in U , and

the symbol “≡ 0” means “is identically zero”: (Dω)p = 0 at every point p in U . An

equivalent criterion for an operator D to be local is that for all k ≥ 0, whenever two

k-forms ω ,τ ∈Ωk(M) agree on an open set U , then Dω ≡ Dτ on U .
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Example. Define the integral operator

I : C∞([a,b])→C∞([a,b])

by

I( f ) =
∫ b

a
f (t)dt.

Here I( f ) is a number, which we view as a constant function on [a,b]. The integral

is not a local operator, since the value of I( f ) at any point p depends on the values

of f over the entire interval [a,b].

Proposition 19.3. Any antiderivation D on Ω∗(M) is a local operator.

Proof. Suppose ω ∈ Ωk(M) and ω ≡ 0 on an open subset U . Let p be an arbitrary

point in U . It suffices to prove that (Dω)p = 0.

Choose a C∞ bump function f at p supported in U . In particular, f ≡ 1 in a

neighborhood of p in U . Then f ω ≡ 0 on M, since if a point q is in U , then ωq = 0,

and if q is not in U , then f (q) = 0. Applying the antiderivation property of D to f ω ,

we get

0 = D(0) = D( f ω) = (D f )∧ω +(−1)0 f ∧ (Dω).

Evaluating the right-hand side at p, noting that ωp = 0 and f (p) = 1, gives 0 =
(Dω)p. ⊓⊔

Remark. The same proof shows that a derivation on Ω∗(M) is also a local operator.

19.3 Existence of an Exterior Derivative on a Manifold

To define an exterior derivative on a manifold M, let ω be a k-form on M and p ∈M.

Choose a chart (U,x1, . . . ,xn) about p. Suppose ω = ∑aI dxI on U . In Subsec-

tion 19.1 we showed the existence of an exterior derivative dU on U with the property

dU ω = ∑daI ∧dxI on U. (19.2)

Define (dω)p = (dU ω)p. We now show that (dU ω)p is independent of the chart U

containing p. If (V,y1, . . . ,yn) is another chart about p and ω = ∑bJdyJ on V , then

on U ∩V ,

∑aI dxI = ∑bJ dyJ.

On U ∩V there is a unique exterior derivative

dU∩V : Ω∗(U ∩V )→Ω∗(U ∩V ).

By the properties of the exterior derivative, on U ∩V

dU∩V

(
∑aI dxI

)
= dU∩V

(
∑bJ dyJ

)
,

or ∑daI ∧dxI = ∑dbJ ∧dyJ.
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In particular, (
∑daI ∧dxI

)
p
=
(
∑dbJ ∧dyJ

)
p
.

Thus, (dω)p = (dUω)p is well defined, independently of the chart (U,x1, . . . ,xn).
As p varies over all points of M, this defines an operator

d : Ω∗(M)→Ω∗(M).

To check properties (i), (ii), and (iii), it suffices to check them at each point p ∈M.

As in Subsection 19.1, the verification reduces to the same calculation as for the

exterior derivative on Rn in Proposition 4.7.

19.4 Uniqueness of the Exterior Derivative

Suppose D : Ω∗(M)→ Ω∗(M) is an exterior derivative. We will show that D coin-

cides with the exterior derivative d defined in Subsection 19.3.

If f is a C∞ function and X a C∞ vector field on M, then by condition (iii) of

Definition 19.1,

(D f )(X) = X f = (df )(X).

Therefore, D f = df on functions f ∈Ω0(M).
Next consider a wedge product of exact 1-forms df 1∧·· ·∧df k:

D(df 1∧·· ·∧df k)

= D(D f 1∧·· ·∧D f k) (because D f i = df i)

=
k

∑
i=1

(−1)i−1D f 1∧·· ·∧DD f i∧·· ·∧D f k (D is an antiderivation)

= 0 (D2 = 0).

Finally, we show that D agrees with d on any k-form ω ∈ Ωk(M). Fix p ∈
M. Choose a chart (U,x1, . . . ,xn) about p and suppose ω = ∑aI dxI on U . Extend

the functions aI ,x
1, . . . ,xn on U to C∞ functions ãI, x̃

1, . . . , x̃n on M that agree with

aI,x
1, . . . ,xn on a neighborhood of V of p (by Proposition 18.8). Define

ω̃ =∑ ãI dx̃I ∈Ωk(M).

Then

ω ≡ ω̃ on V.

Since D is a local operator,

Dω = Dω̃ on V.

Thus,
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(Dω)p = (Dω̃)p = (D∑ ãI dx̃I)p

=
(
∑DãI ∧dx̃I +∑ ãI ∧Ddx̃I

)
p

=
(
∑dãI ∧dx̃I

)
p

(because Ddx̃I = DDx̃ = 0)

=
(
∑daI ∧dxI

)
p

(since D is a local operator)

= (dω)p.

We have proven the following theorem.

Theorem 19.4. On any manifold M there exists an exterior derivative d : Ω∗(M)→
Ω∗(M) characterized uniquely by the three properties of Definition 19.1.

19.5 Exterior Differentiation Under a Pullback

The pullback of differential forms commutes with the exterior derivative. This fact,

together with Proposition 18.11 that the pullback preserves the wedge product, is a

cornerstone of calculations involving the pullback. Using these two properties, we

will finally be in a position to prove that the pullback of a C∞ form under a C∞ map

is C∞.

Proposition 19.5 (Commutation of the pullback with d). Let F : N → M be a

smooth map of manifolds. If ω ∈Ωk(M), then dF∗ω = F∗dω .

Proof. The case k = 0, when ω is a C∞ function on M, is Proposition 17.10. Next

consider the case k ≥ 1. It suffices to verify dF∗ω = F∗dω at an arbitrary point p ∈
N. This reduces the proof to a local computation, i.e., computation in a coordinate

chart. If (V,y1, . . . ,ym) is a chart on M about F(p), then on V ,

ω = ∑aI dyi1 ∧·· ·∧dyik , I = (i1 < · · ·< ik),

for some C∞ functions aI on V and

F∗ω = ∑(F∗aI)F∗dyi1 ∧·· ·∧F∗dyik (Proposition 18.11)

= ∑(aI ◦ F)dFi1 ∧·· ·∧dFik (F∗dyi = dF∗yi = d(yi ◦ F) = dFi).

So

dF∗ω = ∑d(aI ◦ F)∧dFi1 ∧·· ·∧dFik .

On the other hand,

F∗dω = F∗
(
∑daI ∧dyi1 ∧·· ·∧dyik

)

= ∑F∗daI ∧F∗dyi1 ∧·· ·∧F∗dyik

= ∑d(F∗aI)∧dFi1 ∧·· ·∧dFik (by the case k = 0)

= ∑d(aI ◦ F)∧dFi1 ∧·· ·∧dFik .

Therefore,

dF∗ω = F∗dω . ⊓⊔
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Corollary 19.6. If U is an open subset of a manifold M and ω ∈ Ωk(M), then

(dω)|U = d(ω |U).
Proof. Let i : U →֒ M be the inclusion map. Then ω |U = i∗ω , so the corollary is

simply a restatement of the commutativity of d with i∗. ⊓⊔

Example. Let U be the open set ]0,∞[× ]0,2π [ in the (r,θ )-plane R2. Define F : U ⊂
R2→ R2 by

F(r,θ ) = (r cosθ ,r sin θ ).

If x,y are the standard coordinates on the target R2, compute the pullback F∗(dx∧
dy).

Solution. We first compute F∗dx:

F∗dx = dF∗x (Proposition 19.5)

= d(x ◦ F) (definition of the pullback of a function)

= d(r cosθ )

= (cosθ )dr− r sinθ dθ .

Similarly,

F∗dy = dF∗y = d(r sinθ ) = (sinθ )dr+ r cosθ dθ .

Since the pullback commutes with the wedge product (Proposition 18.11),

F∗(dx∧dy) = (F∗dx)∧ (F∗dy)

= ((cosθ )dr− r sin θ dθ )∧ ((sinθ )dr+ r cosθ dθ )

= (r cos2 θ + r sin2 θ )dr∧dθ (because dθ ∧dr =−dr∧dθ )

= r dr∧dθ . ⊓⊔
Proposition 19.7. If F : N→M is a C∞ map of manifolds and ω is a C∞ k-form on

M, then F∗ω is a C∞ k-form on N.

Proof. It is enough to show that every point in N has a neighborhood on which F∗ω
is C∞. Fix p ∈ N and choose a chart (V,y1, . . . ,ym) on M about F(p). Let Fi = yi ◦ F

be the ith coordinate of the map F in this chart. By the continuity of F , there is a

chart (U,x1, . . . ,xn) on N about p such that F(U)⊂V . Because ω is C∞, on V ,

ω = ∑
I

aI dyi1 ∧·· ·∧dyik

for some C∞ functions aI ∈ C∞(V ) (Proposition 18.7(i)⇒(ii)). By properties of the

pullback,

F∗ω = ∑(F∗aI)F
∗(dyi1)∧·· ·F∗(dyik) (Propositions 18.9 and 18.11)

= ∑(F∗aI)dF∗yi1 ∧·· ·∧dF∗yik (Proposition 19.5)

= ∑(aI ◦ F)dFi1 ∧·· ·∧dFik (F∗yi = yi ◦ F = Fi)

= ∑
I,J

(aI ◦ F)
∂ (Fi1 , . . . ,Fik )

∂ (x j1 , . . . ,x jk )
dxJ (Proposition 18.3).
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Since the aI ◦ F and ∂ (Fi1 , . . . ,Fik )/∂ (x j1 , . . . ,x jk ) are all C∞, F∗ω is C∞ by Propo-

sition 18.7(iii)⇒(i). ⊓⊔

In summary, if F : N → M is a C∞ map of manifolds, then the pullback map

F∗ : Ω∗(M)→ Ω∗(N) is a morphism of differential graded algebras, i.e., a degree-

preserving algebra homomorphism that commutes with the differential.

19.6 Restriction of k-Forms to a Submanifold

The restriction of a k-form to an immersed submanifold is just like the restriction of

a 1-form, but with k arguments. Let S be a regular submanifold of a manifold M. If

ω is a k-form on M, then the restriction of ω to S is the k-form ω |S on S defined by

(ω |S)p(v1, . . . ,vk) = ωp(v1, . . . ,vk)

for v1, . . . ,vk ∈ TpS ⊂ TpM. Thus, (ω |S)p is obtained from ωp by restricting the

domain of ωp to TpS×·· ·×TpS (k times). As in Proposition 17.14, the restriction of

k-forms is the same as the pullback under the inclusion map i : S →֒M.

A nonzero form on M may restrict to the zero form on a submanifold S. For ex-

ample, if S is a smooth curve in R2 defined by the nonconstant function f (x,y), then

df = (∂ f/∂x)dx+(∂ f/∂y)dy is a nonzero 1-form on R2, but since f is identically

zero on S, the differential df is also identically zero on S. Thus, (df )|S ≡ 0. Another

example is Problem 19.9.

One should distinguish between a nonzero form and a nowhere-zero or nowhere-

vanishing form. For example, xdy is a nonzero form on R2, meaning that it is not

identically zero. However, it is not nowhere-zero, because it vanishes on the y-axis.

On the other hand, dx and dy are nowhere-zero 1-forms on R2.

NOTATION. Since pullback and exterior differentiation commute, (d f )|S = d( f |S),
so one may write d f |S to mean either expression.

19.7 A Nowhere-Vanishing 1-Form on the Circle

In Example 17.15 we found a nowhere-vanishing 1-form −ydx+ x dy on the unit

circle. As an application of the exterior derivative, we will construct in a different

way a nowhere-vanishing 1-form on the circle. One advantage of the new method is

that it generalizes to the construction of a nowhere-vanishing top form on a smooth

hypersurface in Rn+1, a regular level set of a smooth function f : Rn+1→R. As we

will see in Section 21, the existence of a nowhere-vanishing top form is intimately

related to orientations on a manifold.

Example 19.8. Let S1 be the unit circle defined by x2 + y2 = 1 in R2. The 1-form dx

restricts from R2 to a 1-form on S1. At each point p ∈ S1, the domain of (dx|S1)p is

Tp(S
1) instead of Tp(R

2):

(dx|S1)p : Tp(S
1)→ R.
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At p = (1,0), a basis for the tangent space Tp(S
1) is ∂/∂y (Figure 19.1). Since

(dx)p

(
∂

∂y

)
= 0,

we see that although dx is a nowhere-vanishing 1-form on R2, it vanishes at (1,0)
when restricted to S1.

pb

∂
∂ y

Fig. 19.1. The tangent space to S1 at p = (1,0).

To find a nowhere-vanishing 1-form on S1, we take the exterior derivative of both

sides of the equation

x2 + y2 = 1.

Using the antiderivation property of d, we get

2xdx+2ydy = 0. (19.3)

Of course, this equation is valid only at a point (x,y) ∈ S1. Let

Ux = {(x,y) ∈ S1 | x 6= 0} and Uy = {(x,y) ∈ S1 | y 6= 0}.
By (19.3), on Ux∩Uy,

dy

x
=−dx

y
.

Define a 1-form ω on S1 by

ω =





dy

x
on Ux,

−dx

y
on Uy.

(19.4)

Since these two 1-forms agree on Ux∩Uy, ω is a well-defined 1-form on S1 =Ux∪Uy.

To show that ω is C∞ and nowhere-vanishing, we need charts. Let

U+
x = {(x,y) ∈ S1 | x > 0}.

We define similarly U−x , U+
y , U−y (Figure 19.2). On U+

x , y is a local coordinate, and

so dy is a basis for the cotangent space T ∗p (S
1) at each point p∈U+

x . Since ω = dy/x

on U+
x , ω is C∞ and nowhere zero on U+

x . A similar argument applies to dy/x on U−x
and −dx/y on U+

y and U−y . Hence, ω is C∞ and nowhere vanishing on S1.
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x

y

U+
xU−x

Fig. 19.2. Two charts on the unit circle.

Problems

19.1. Pullback of a differential form

Let U be the open set ]0,∞[ × ]0,π[ × ]0,2π[ in the (ρ,φ ,θ )-space R3. Define F : U → R3

by

F(ρ,φ ,θ ) = (ρ sinφ cosθ ,ρ sinφ sinθ ,ρ cosφ).

If x,y,z are the standard coordinates on the target R3, show that

F∗(dx∧dy∧dz) = ρ2 sinφ dρ ∧dφ ∧dθ .

19.2. Pullback of a differential form

Let F : R2→ R2 be given by

F(x,y) = (x2 +y2,xy).

If u,v are the standard coordinates on the target R2, compute F∗(udu+vdv).

19.3. Pullback of a differential form by a curve

Let τ be the 1-form τ = (−ydx + xdy)/(x2 + y2) on R2 −{0}. Define γ : R→ R2 −{0}
by γ(t) = (cos t,sin t). Compute γ∗τ . (This problem is related to Example 17.16 in that if

i : S1 →֒R2−{0} is the inclusion, then γ = i ◦ c and ω = i∗τ .)

19.4. Pullback of a restriction

Let F : N→M be a C∞ map of manifolds, U an open subset of M, and F |F−1(U) : F−1(U)→U

the restriction of F to F−1(U). Prove that if ω ∈ Ωk(M), then

(
F |F−1(U)

)∗
(ω|U ) = (F∗ω)|F−1(U).

19.5. Coordinate functions and differential forms

Let f 1, . . . , f n be C∞ functions on a neighborhood U of a point p in a manifold of dimension

n. Show that there is a neighborhood W of p on which f 1, . . . , f n form a coordinate system if

and only if (df 1 ∧·· ·∧df n)p 6= 0.

19.6. Local operators

An operator L : Ω∗(M)→ Ω∗(M) is support-decreasing if supp L(ω) ⊂ supp ω for every k-

form ω ∈ Ω∗(M) for all k ≥ 0. Show that an operator on Ω∗(M) is local if and only if it is

support-decreasing.
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19.7. Derivations of C∞ functions are local operators

Let M be a smooth manifold. The definition of a local operator D on C∞(M) is similar to

that of a local operator on Ω∗(M): D is local if whenever a function f ∈ C∞(M) vanishes

identically on an open subset U , then D f ≡ 0 on U . Prove that a derivation of C∞(M) is a

local operator on C∞(M).

19.8. Nondegenerate 2-forms

A 2-covector α on a 2n-dimensional vector space V is said to be nondegenerate if αn :=
α ∧ ·· · ∧α (n times) is not the zero 2n-covector. A 2-form ω on a 2n-dimensional manifold

M is said to be nondegenerate if at every point p ∈M, the 2-covector ωp is nondegenerate on

the tangent space TpM.

(a) Prove that on Cn with real coordinates x1,y1, . . . ,xn,yn, the 2-form

ω =
n

∑
j=1

dx j ∧dy j

is nondegenerate.

(b) Prove that if λ is the Liouville form on the total space T ∗M of the cotangent bundle of an

n-dimensional manifold M, then dλ is a nondegenerate 2-form on T ∗M.

19.9.* Vertical planes

Let x,y,z be the standard coordinates on R3. A plane in R3 is vertical if it is defined by

ax+by = 0 for some (a,b) 6= (0,0) ∈R2. Prove that restricted to a vertical plane, dx∧dy = 0.

19.10. Nowhere-vanishing form on S1

Prove that the nowhere-vanishing form ω on S1 constructed in Example 19.8 is the form

−ydx + xdy of Example 17.15. (Hint: Consider Ux and Uy separately. On Ux, substitute

dx =−(y/x)dy into −ydx+xdy.)

19.11. A C∞ nowhere-vanishing form on a smooth hypersurface

(a) Let f (x,y) be a C∞ function on R2 and assume that 0 is a regular value of f . By the

regular level set theorem, the zero set M of f (x,y) is a one-dimensional submanifold of

R2. Construct a C∞ nowhere-vanishing 1-form on M.

(b) Let f (x,y,z) be a C∞ function on R3 and assume that 0 is a regular value of f . By the

regular level set theorem, the zero set M of f (x,y,z) is a two-dimensional submanifold of

R3. Let fx, fy, fz be the partial derivatives of f with respect to x, y, z, respectively. Show

that the equalities
dx∧dy

fz
=

dy∧dz

fx
=

dz∧dx

fy

hold on M whenever they make sense, and therefore the three 2-forms piece together to

give a C∞ nowhere-vanishing 2-form on M.

(c) Generalize this problem to a regular level set of f (x1, . . . ,xn+1) in Rn+1.

19.12. Vector fields as derivations of C∞ functions

In Subsection 14.1 we showed that a C∞ vector field X on a manifold M gives rise to a deriva-

tion of C∞(M). We will now show that every derivation of C∞(M) arises from one and only

one vector field, as promised earlier. To distinguish the vector field from the derivation, we

will temporarily denote the derivation arising from X by ϕ(X). Thus, for any f ∈C∞(M),

(ϕ(X) f )(p) = Xp f for all p ∈M.
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(a) Let F =C∞(M). Prove that ϕ : X(M)→ Der(C∞(M)) is an F-linear map.

(b) Show that ϕ is injective.

(c) If D is a derivation of C∞(M) and p ∈M, define Dp : C∞
p (M)→C∞

p (M) by

Dp[ f ] = [D f̃ ] ∈C∞
p (M),

where [ f ] is the germ of f at p and f̃ is a global extension of f , such as those given by

Proposition 18.8. Show that Dp[ f ] is well defined. (Hint: Apply Problem 19.7.)

(d) Show that Dp is a derivation of C∞
p (M).

(e) Prove that ϕ : X(M)→ Der(C∞(M)) is an isomorphism of F-modules.

19.13. Twentieth-century formulation of Maxwell’s equations

In Maxwell’s theory of electricity and magnetism, developed in the late nineteenth century,

the electric field E = 〈E1,E2,E3〉 and the magnetic field B = 〈B1,B2,B3〉 in a vacuum R3 with

no charge or current satisfy the following equations:

∇×E =−∂B

∂ t
, ∇×B =

∂E

∂ t
,

divE = 0, divB = 0.

By the correspondence in Subsection 4.6, the 1-form E on R3 corresponding to the vector

field E is

E = E1 dx+E2 dy+E3 dz

and the 2-form B on R3 corresponding to the vector field B is

B = B1 dy∧dz+B2 dz∧dx+B3 dx∧dy.

Let R4 be space-time with coordinates (x,y,z, t). Then both E and B can be viewed as

differential forms on R4. Define F to be the 2-form

F = E ∧dt +B

on space-time. Decide which two of Maxwell’s equations are equivalent to the equation

dF = 0.

Prove your answer. (The other two are equivalent to d ∗F = 0 for a star-operator ∗ defined in

differential geometry. See [2, Section 19.1, p. 689].)
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§20 The Lie Derivative and Interior Multiplication

The only portion of this section necessary for the remainder of the book is Subsec-

tion 20.4 on interior multiplication. The rest may be omitted on first reading.

The construction of exterior differentiation in Section 19 is local and depends on

a choice of coordinates: if ω = ∑aI dxI , then

dω = ∑
∂aI

∂x j
dx j ∧dxI .

It turns out, however, that this d is in fact global and intrinsic to the manifold, i.e.,

independent of the choice of local coordinates. Indeed, for a C∞ 1-form ω and C∞

vector fields X , Y on a manifold M, one has the formula

(dω)(X ,Y ) = Xω(Y )−Yω(X)−ω([X ,Y ]).

In this section we will derive a global intrinsic formula like this for the exterior

derivative of a k-form.

The proof uses the Lie derivative and interior multiplication, two other intrinsic

operations on a manifold. The Lie derivative is a way of differentiating a vector field

or a differential form on a manifold along another vector field. For any vector field

X on a manifold, the interior multiplication ιX is an antiderivation of degree −1 on

differential forms. Being intrinsic operators on a manifold, both the Lie derivative

and interior multiplication are important in their own right in differential topology

and geometry.

20.1 Families of Vector Fields and Differential Forms

A collection {Xt} or {ωt} of vector fields or differential forms on a manifold is said

to be a 1-parameter family if the parameter t runs over some subset of the real line.

Let I be an open interval in R and let M be a manifold. Suppose {Xt} is a 1-parameter

family of vector fields on M defined for all t ∈ I except at t0 ∈ I. We say that the limit

limt→t0 Xt exists if every point p ∈M has a coordinate neighborhood (U,x1, . . . ,xn)
on which Xt |p = ∑ai(t, p)∂/∂xi|p and limt→t0 ai(t, p) exists for all i. In this case, we

set

lim
t→t0

Xt |p =
n

∑
i=1

lim
t→t0

ai(t, p)
∂

∂xi

∣∣∣∣
p

. (20.1)

In Problem 20.1 we ask the reader to show that this definition of the limit of Xt as

t→ t0 is independent of the choice of the coordinate neighborhood (U,x1, . . . ,xn).
A 1-parameter family {Xt}t∈I of smooth vector fields on M is said to depend

smoothly on t if every point in M has a coordinate neighborhood (U,x1, . . . ,xn) on

which

(Xt)p = ∑ai(t, p)
∂

∂xi

∣∣∣∣
p

, (t, p) ∈ I×U, (20.2)
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for some C∞ functions ai on I×U . In this case we also say that {Xt}t∈I is a smooth

family of vector fields on M.

For a smooth family of vector fields on M, one can define its derivative with

respect to t at t = t0 by

(
d

dt

∣∣∣∣
t=t0

Xt

)

p

= ∑
∂ai

∂ t
(t0, p)

∂

∂xi

∣∣∣∣
p

(20.3)

for (t0, p) ∈ I×U . It is easy to check that this definition is independent of the chart

(U,x1, . . . ,xn) containing p (Problem 20.3). Clearly, the derivative d/dt|t=t0Xt is a

smooth vector field on M.

Similarly, a 1-parameter family {ωt}t∈I of smooth k-forms on M is said to depend

smoothly on t if every point of M has a coordinate neighborhood (U,x1, . . . ,xn) on

which

(ωt)p = ∑bJ(t, p)dxJ |p, (t, p) ∈ I×U,

for some C∞ functions bJ on I×U . We also call such a family {ωt}t∈I a smooth

family of k-forms on M and define its derivative with respect to t to be

(
d

dt

∣∣∣∣
t=t0

ωt

)

p

= ∑
∂bJ

∂ t
(t0, p)dxJ|p.

As for vector fields, this definition is independent of the chart and defines a C∞ k-

form d/dt|t=t0ωt on M.

NOTATION. We write d/dt for the derivative of a smooth family of vector fields or

differential forms, but ∂/∂ t for the partial derivative of a function of several vari-

ables.

Proposition 20.1 (Product rule for d/dt). If {ωt} and {τt} are smooth families of

k-forms and ℓ-forms respectively on a manifold M, then

d

dt
(ωt ∧ τt) =

(
d

dt
ωt

)
∧ τt +ωt ∧

d

dt
τt .

Proof. Written out in local coordinates, this reduces to the usual product rule in

calculus. We leave the details as an exercise (Problem 20.4). ⊓⊔

Proposition 20.2 (Commutation of d/dt|t=t0 with d). If {ωt}t∈I is a smooth family

of differential forms on a manifold M, then

d

dt

∣∣∣∣
t=t0

dωt = d

(
d

dt

∣∣∣∣
t=t0

ωt

)
.

Proof. In this proposition, there are three operations—exterior differentiation, dif-

ferentiation with respect to t, and evaluation at t = t0. We will first show that d and

d/dt commute:
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d

dt
(dωt) = d

(
d

dt
ωt

)
. (20.4)

It is enough to check the equality at an arbitrary point p ∈M. Let (U,x1, . . . ,xn) be

a neighborhood of p such that ω = ∑J bJ dxJ for some C∞ functions bJ on I×U .

On U ,

d

dt
(dωt) =

d

dt
∑
J,i

∂bJ

∂xi
dxi∧dxJ (note that there is no dt term)

= ∑
i,J

∂

∂xi

(
∂bJ

∂ t

)
dxi∧dxJ (since bJ is C∞)

= d

(
∑
J

∂bJ

∂ t
dxJ

)
= d

(
d

dt
ωt

)
.

Evaluation at t = t0 commutes with d, because d involves only partial derivatives

with respect to the xi variables. Explicitly,

(
d

(
d

dt
ωt

))∣∣∣∣
t=t0

=

(
∑
i,J

∂

∂xi

∂

∂ t
bJ dxi∧dxJ

)∣∣∣∣∣
t=t0

= ∑
i,J

∂

∂xi

(
∂

∂ t

∣∣∣∣
t=t0

bJ

)
dxi∧dxJ = d

(
∂

∂ t

∣∣∣∣
t0

ωt

)
.

Evaluating both sides of (20.4) at t = t0 completes the proof of the proposition. ⊓⊔

20.2 The Lie Derivative of a Vector Field

In a first course on calculus, one defines the derivative of a real-valued function f on

R at a point p ∈R as

f ′(p) = lim
t→0

f (p+ t)− f (p)

t
.

The problem in generalizing this definition to the derivative of a vector field Y on a

manifold M is that at two nearby points p and q in M, the tangent vectors Yp and Yq

are in different vector spaces TpM and TqM and so it is not possible to compare them

by subtracting one from the other. One way to get around this difficulty is to use the

local flow of another vector field X to transport Yq to the tangent space TpM at p.

This leads to the definition of the Lie derivative of a vector field.

Recall from Subsection 14.3 that for any smooth vector field X on M and point

p in M, there is a neighborhood U of p on which the vector field X has a local flow;

this means that there exist a real number ε > 0 and a map

ϕ : ]− ε,ε[ ×U →M

such that if we set ϕt(q) = ϕ(t,q), then
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∂

∂ t
ϕt(q) = Xϕt(q), ϕ0(q) = q for q ∈U. (20.5)

In other words, for each q in U , the curve ϕt(q) is an integral curve of X with initial

point q. By definition, ϕ0 : U →U is the identity map. The local flow satisfies the

property

ϕs ◦ ϕt = ϕs+t

whenever both sides are defined (see (14.10)). Consequently, for each t the map

ϕt : U → ϕt(U) is a diffeomorphism onto its image, with a C∞ inverse ϕ−t :

ϕ−t ◦ ϕt = ϕ0 = 1, ϕt ◦ ϕ−t = ϕ0 = 1.

Let Y be a C∞ vector field on M. To compare the values of Y at ϕt(p) and at p,

we use the diffeomorphism ϕ−t : ϕt(U)→U to push Yϕt(p) into TpM (Figure 20.1).

b

b

Xp

Yϕt (p)ϕ−t∗(Yϕt (p))

Yp

p

ϕt(p)

Fig. 20.1. Comparing the values of Y at nearby points.

Definition 20.3. For X ,Y ∈ X(M) and p ∈M, let ϕ : ]− ε,ε[ × U →M be a local

flow of X on a neighborhood U of p and define the Lie derivative LXY of Y with

respect to X at p to be the vector

(LXY )p = lim
t→0

ϕ−t∗
(
Yϕt (p)

)
−Yp

t
= lim

t→0

(ϕ−t∗Y )p−Yp

t
=

d

dt

∣∣∣∣
t=0

(ϕ−t∗Y )p.

In this definition the limit is taken in the finite-dimensional vector space TpM.

For the derivative to exist, it suffices that {ϕ−t∗Y} be a smooth family of vector

fields on M. To show the smoothness of the family {ϕ−t∗Y}, we write out ϕ−t∗Y in

local coordinates x1, . . . ,xn in a chart. Let ϕ i
t and ϕ i be the ith components of ϕt and

ϕ respectively. Then

(ϕt)
i(p) = ϕ i(t, p) = (xi ◦ ϕ)(t, p).

By Proposition 8.11, relative to the frame {∂/∂x j}, the differential ϕt∗ at p is repre-

sented by the Jacobian matrix [∂ (ϕt)
i/∂x j(p)] = [∂ϕ i/∂x j(t, p)]. This means that
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ϕt∗

(
∂

∂x j

∣∣∣∣
p

)
= ∑

i

∂ϕ i

∂x j
(t, p)

∂

∂xi

∣∣∣∣
ϕt(p)

.

Thus, if Y = ∑b j ∂/∂x j, then

ϕ−t∗
(
Yϕt(p)

)
= ∑

j

b j(ϕ(t, p))ϕ−t∗

(
∂

∂x j

∣∣∣∣
ϕt(p)

)

= ∑
i, j

b j(ϕ(t, p))
∂ϕ i

∂x j
(−t, p)

∂

∂xi

∣∣∣∣
p

. (20.6)

When X and Y are C∞ vector fields on M, both ϕ i and b j are C∞ functions. The

formula (20.6) then shows that {ϕ−t∗Y} is a smooth family of vector fields on M. It

follows that the Lie derivative LXY exists and is given in local coordinates by

(LXY )p =
d

dt

∣∣∣∣
t=0

ϕ−t∗
(
Yϕt (p)

)

= ∑
i, j

∂

∂ t

∣∣∣∣
t=0

(
b j(ϕ(t, p))

∂ϕ i

∂x j
(−t, p)

)
∂

∂xi

∣∣∣∣
p

. (20.7)

It turns out that the Lie derivative of a vector field gives nothing new.

Theorem 20.4. If X and Y are C∞ vector fields on a manifold M, then the Lie deriva-

tive LXY coincides with the Lie bracket [X ,Y ].

Proof. It suffices to check the equality LXY = [X ,Y ] at every point. To do this,

we expand both sides in local coordinates. Suppose a local flow for X is ϕ :

]− ε,ε[ × U → M, where U is a coordinate chart with coordinates x1, . . . ,xn. Let

X = ∑ai ∂/∂xi and Y = ∑b j ∂/∂x j on U . The condition (20.5) that ϕt(p) be an

integral curve of X translates into the equations

∂ϕ i

∂ t
(t, p) = ai(ϕ(t, p)), i = 1, . . . ,n, (t, p) ∈ ]− ε,ε[ ×U.

At t = 0, ∂ϕ i/∂ t(0, p) = ai(ϕ(0, p)) = ai(p).
By Problem 14.12, the Lie bracket in local coordinates is

[X ,Y ] = ∑
i,k

(
ak ∂bi

∂xk
− bk ∂ai

∂xk

)
∂

∂xi
.

Expanding (20.7) by the product rule and the chain rule, we get

(LXY )p =

[
∑
i, j,k

(
∂b j

∂xk
(ϕ(t, p))

∂ϕk

∂ t
(t, p)

∂ϕ i

∂x j
(−t, p)

)
∂

∂xi

−∑
i, j

(
b j(ϕ(t, p))

∂

∂x j

∂ϕ i

∂ t
(−t, p)

)
∂

∂xi

]

t=0

= ∑
i, j,k

(
∂b j

∂xk
(p)ak(p)

∂ϕ i

∂x j
(0, p)

)
∂

∂xi
−∑

i, j

(
b j(p)

∂ai

∂x j
(p)

)
∂

∂xi
. (20.8)
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Since ϕ(0, p) = p, ϕ0 is the identity map and hence its Jacobian matrix is the identity

matrix. Thus,

∂ϕ i

∂x j
(0, p) = δ i

j, the Kronecker delta.

So (20.8) simplifies to

LXY = ∑
i,k

(
ak ∂bi

∂xk
−bk ∂ai

∂xk

)
∂

∂xi
= [X ,Y ]. ⊓⊔

Although the Lie derivative of a vector field gives us nothing new, in conjunction

with the Lie derivative of differential forms it turns out to be a tool of great utility,

for example, in the proof of the global formula for the exterior derivative in Theorem

20.14.

20.3 The Lie Derivative of a Differential Form

Let X be a smooth vector field and ω a smooth k-form on a manifold M. Fix a point

p ∈M and let ϕt : U →M be a flow of X in a neighborhood U of p. The definition

of the Lie derivative of a differential form is similar to that of the Lie derivative of a

vector field. However, instead of pushing a vector at ϕt(p) to p via (ϕ−t)∗, we now

pull the k-covector ωϕt(p) back to p via ϕ∗t .

Definition 20.5. For X a smooth vector field and ω a smooth k-form on a manifold

M, the Lie derivative LX ω at p ∈M is

(LX ω)p = lim
t→0

ϕ∗t
(
ωϕt (p)

)
−ωp

t
= lim

t→0

(ϕ∗t ω)p−ωp

t
=

d

dt

∣∣∣∣
t=0

(ϕ∗t ω)p .

By an argument similar to that for the existence of the Lie derivative LXY in

Section 20.2, one shows that {ϕ∗t ω} is a smooth family of k-forms on M by writing

it out in local coordinates. The existence of (LX ω)p follows.

Proposition 20.6. If f is a C∞ function and X a C∞ vector field on M, thenLX f = X f .

Proof. Fix a point p in M and let ϕt : U →M be a local flow of X as above. Then

(LX f )p =
d

dt

∣∣∣∣
t=0

(ϕ∗t f )p (definition of LX f )

=
d

dt

∣∣∣∣
t=0

( f ◦ ϕt)(p) (definition of ϕ∗t f )

= Xp f (Proposition 8.17),

since ϕt(p) is a curve through p with initial vector Xp. ⊓⊔
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20.4 Interior Multiplication

We first define interior multiplication on a vector space. If β is a k-covector on a

vector space V and v ∈ V , for k ≥ 2 the interior multiplication or contraction of β
with v is the (k−1)-covector ιvβ defined by

(ιvβ )(v2, . . . ,vk) = β (v,v2, . . . ,vk), v2, . . . ,vk ∈V.

We define ιvβ = β (v) ∈R for a 1-covector β on V and ιvβ = 0 for a 0-covector β (a

constant) on V .

Proposition 20.7. For 1-covectors α1, . . . ,αk on a vector space V and v ∈V,

ιv(α
1∧·· ·∧αk) =

k

∑
i=1

(−1)i−1α i(v)α1∧·· ·∧ α̂ i∧·· ·∧αk,

where the caret ̂ over α i means that α i is omitted from the wedge product.

Proof.
(

ιv

(
α1∧·· ·∧αk

))
(v2, . . . ,vk)

=
(

α1∧·· ·∧αk
)
(v,v2, . . . ,vk)

= det




α1(v) α1(v2) · · · α1(vk)
α2(v) α2(v2) · · · α2(vk)

...
...

. . .
...

αk(v) αk(v2) · · · αk(vk)


 (Proposition 3.27)

=
k

∑
i=1

(−1)i+1α i(v)det[αℓ(v j)]1≤ℓ≤k,ℓ 6=i
2≤ j≤k

(expansion along first column)

=
k

∑
i=1

(−1)i+1α i(v)
(

α1∧·· ·∧ α̂ i∧·· ·∧αk
)
(v2, . . . ,vk) (Proposition 3.27).

⊓⊔

Proposition 20.8. For v in a vector space V , let ιv :
∧∗(V∨)→∧∗−1(V∨) be interior

multiplication by v. Then

(i) ιv ◦ ιv = 0,

(ii) for β ∈ ∧k(V∨) and γ ∈ ∧ℓ(V∨),

ιv(β ∧ γ) = (ιvβ )∧ γ +(−1)kβ ∧ ιvγ.

In other words, ιv is an antiderivation of degree −1 whose square is zero.

Proof. (i) Let β ∈ ∧k(V∨). By the definition of interior multiplication,

(ιv(ιvβ ))(v3, . . . ,vk) = (ιvβ )(v,v3, . . . ,vk) = β (v,v,v3, . . . ,vk) = 0,

because β is alternating and there is a repeated variable v among its arguments.
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(ii) Since both sides of the equation are linear in β and in γ , we may assume that

β = α1∧·· ·∧αk, γ = αk+1∧·· ·∧αk+ℓ,

where the α i are all 1-covectors. Then

ιv(β ∧ γ)

= ιv(α
1∧·· ·∧αk+ℓ)

=

(
k

∑
i=1

(−1)i−1α i(v)α1∧·· ·∧ α̂ i∧·· ·∧αk

)
∧αk+1∧·· ·∧αk+ℓ

+(−1)kα1∧·· ·∧αk ∧
k

∑
i=1

(−1)i+1αk+i(v)αk+1∧·· ·∧ α̂k+i∧·· ·∧αk+ℓ

(by Proposition 20.7)

= (ιvβ )∧ γ +(−1)kβ ∧ ιvγ. ⊓⊔

Interior multiplication on a manifold is defined pointwise. If X is a smooth vector

field on M and ω ∈Ωk(M), then ιX ω is the (k−1)-form defined by (ιX ω)p = ιXpωp

for all p ∈M. The form ιX ω on M is smooth because for any smooth vector fields

X2, . . . ,Xk on M,

(ιX ω)(X2, . . . ,Xk) = ω(X ,X2, . . . ,Xk)

is a smooth function on M (Proposition 18.7(iii)⇒(i)). Of course, ιX ω = ω(X)
for a 1-form ω and ιX f = 0 for a function f on M. By the properties of interior

multiplication at each point p∈M (Proposition 20.8), the map ιX : Ω∗(M)→Ω∗(M)
is an antiderivation of degree−1 such that ιX ◦ ιX = 0.

Let F be the ring C∞(M) of C∞ functions on the manifold M. Because ιX ω is a

point operator—that is, its value at p depends only on Xp and ωp—it is F-linear in

either argument. This means that ιX ω is additive in each argument and moreover, for

any f ∈ F,

(i) ι f X ω = f ιX ω ;

(ii) ιX ( f ω) = f ιX ω .

Explicitly, the proof of (i) goes as follows. For any p ∈M,

(ι f X ω)p = ι f (p)Xp
ωp = f (p)ιXp ωp = ( f ιX ω)p.

Hence, ι f X ω = f ιX ω . The proof of (ii) is similar. Additivity is more or less obvious.

Example 20.9 (Interior multiplication on R2). Let X = x∂/∂x+ y∂/∂y be the ra-

dial vector field and α = dx∧ dy the area 2-form on the plane R2. Compute the

contraction ιX α .

Solution. We first compute ιX dx and ιX dy:
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ιX dx = dx(X) = dx

(
x

∂

∂x
+ y

∂

∂y

)
= x,

ιX dy = dy(X) = dy

(
x

∂

∂x
+ y

∂

∂y

)
= y.

By the antiderivation property of ιX ,

ιX α = ιX (dx∧dy) = (ιX dx)dy−dx(ιX dy) = xdy− ydx,

which restricts to the nowhere-vanishing 1-form ω on the circle S1 in Example 17.15.

20.5 Properties of the Lie Derivative

In this section we state and prove several basic properties of the Lie derivative. We

also relate the Lie derivative to two other intrinsic operators on differential forms on

a manifold: the exterior derivative and interior multiplication. The interplay of these

three operators results in some surprising formulas.

Theorem 20.10. Assume X to be a C∞ vector field on a manifold M.

(i) The Lie derivative LX : Ω∗(M)→Ω∗(M) is a derivation: it is an R-linear map

and if ω ∈Ωk(M) and τ ∈Ωℓ(M), then

LX (ω ∧ τ) = (LX ω)∧ τ +ω ∧ (LX τ).

(ii) The Lie derivative LX commutes with the exterior derivative d.

(iii) (Cartan homotopy formula) LX = dιX + ιXd.

(iv) (“Product” formula) For ω ∈Ωk(M) and Y1, . . . ,Yk ∈X(M),

LX (ω(Y1, . . . ,Yk)) = (LX ω)(Y1, . . . ,Yk)+
k

∑
i=1

ω(Y1, . . . ,LXYi, . . . ,Yk).

Proof. In the proof let p ∈M and let ϕt : U →M be a local flow of the vector field

X in a neighborhood U of p.

(i) Since the Lie derivative LX is d/dt of a vector-valued function of t, the derivation

property of LX is really just the product rule for d/dt (Proposition 20.1). More

precisely,

(LX (ω ∧ τ))p =
d

dt

∣∣∣∣
t=0

(ϕ∗t (ω ∧ τ))p

=
d

dt

∣∣∣∣
t=0

(ϕ∗t ω)p∧ (ϕ∗t τ)p

=

(
d

dt

∣∣∣∣
t=0

(ϕ∗t ω)p

)
∧ τp +ωp∧

d

dt

∣∣∣∣
t=0

(ϕ∗t τ)p

(product rule for d/dt)

= (LX ω)p∧ τp +ωp∧ (LX τ)p.
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(ii)

LX dω =
d

dt

∣∣∣∣
t=0

ϕ∗t dω (definition of LX )

=
d

dt

∣∣∣∣
t=0

dϕ∗t ω (d commutes with pullback)

= d

(
d

dt

∣∣∣∣
t=0

ϕ∗t ω

)
(by Proposition 20.2)

= dLX ω .

(iii) We make two observations that reduce the problem to a simple case. First, for

any ω ∈Ωk(M), to prove the equality LX ω = (dιX + ιX d)ω it suffices to check it at

any point p, which is a local problem. In a coordinate neighborhood (U,x1, . . . ,xn)
about p, we may assume by linearity that ω is a wedge product ω = f dxi1∧·· ·∧dxik .

Second, on the left-hand side of the Cartan homotopy formula, by (i) and (ii),

LX is a derivation that commutes with d. On the right-hand side, since d and ιX are

antiderivations, dιX + ιX d is a derivation by Problem 4.7. It clearly commutes with

d. Thus, both sides of the Cartan homotopy formula are derivations that commute

with d. Consequently, if the formula holds for two differential forms ω and τ , then

it holds for the wedge product ω ∧ τ as well as for dω . These observations reduce

the verification of (iii) to checking

LX f = (dιX + ιXd) f for f ∈C∞(U).

This is quite easy:

(dιX + ιX d) f = ιX df (because ιX f = 0)

= (df )(X) (definition of ιX )

= X f = LX f (Proposition 20.6).

(iv) We call this the “product” formula, even though there is no product in ω(Y1,

. . ., Yk), because this formula can be best remembered as though the juxtaposition

of symbols were a product. In fact, even its proof resembles that of the product

formula in calculus. To illustrate this, consider the case k = 2. Let ω ∈ Ω2(M) and

X ,Y,Z ∈X(M). The proof looks forbidding, but the idea is quite simple. To compare

the values of ω(Y,Z) at the two points ϕt(p) and p, we subtract the value at p from

the value at ϕt(p). The trick is to add and subtract terms so that each time only one of

the three variables ω , Y , and Z moves from one point to the other. By the definitions

of the Lie derivative and the pullback of a function,

(LX (ω(Y,Z)))p = lim
t→0

(ϕ∗t (ω(Y,Z)))p− (ω(Y,Z))p

t

= lim
t→0

ωϕt(p)

(
Yϕt(p),Zϕt(p)

)
−ωp(Yp,Zp)

t
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= lim
t→0

ωϕt(p)

(
Yϕt(p),Zϕt(p)

)
−ωp

(
ϕ−t∗

(
Yϕt (p)

)
,ϕ−t∗

(
Zϕt (p)

))

t
(20.9)

+ lim
t→0

ωp

(
ϕ−t∗

(
Yϕt (p)

)
,ϕ−t∗

(
Zϕt (p)

))
−ωp

(
Yp,ϕ−t∗

(
Zϕt(p)

))

t
(20.10)

+ lim
t→0

ωp

(
Yp,ϕ−t∗

(
Zϕt(p)

))
−ωp(Yp,Zp)

t
. (20.11)

In this sum the quotient in the first limit (20.9) is

(
ϕ∗t ωϕt(p)

)(
ϕ−t∗

(
Yϕt(p)

)
,ϕ−t∗

(
Zϕt (p)

))
−ωp

(
ϕ−t∗

(
Yϕt(p)

)
,ϕ−t∗

(
Zϕt(p)

))

t

=
ϕ∗t (ωϕt(p))−ωp

t

(
ϕ−t∗

(
Yϕt (p)

)
,ϕ−t∗

(
Zϕt(p)

))
.

On the right-hand side of this equality, the difference quotient has a limit at t = 0,

namely the Lie derivative (LX ω)p, and by (20.6) the two arguments of the difference

quotient are C∞ functions of t. Therefore, the right-hand side is a continuous function

of t and its limit as t goes to 0 is (LX ω)p(Yp,Zp) (by Problem 20.2).

By the bilinearity of ωp, the second term (20.10) is

lim
t→0

ωp

(
ϕ−t∗

(
Yϕt(p)

)
−Yp

t
,ϕ−t∗

(
Zϕt (p)

)
)

= ωp((LXY )p,Zp).

Similarly, the third term (20.11) is ωp(Yp,(LX Z)p).

Thus

LX (ω(Y,Z)) = (LX ω)(Y,Z)+ω(LXY,Z)+ω(Y,LX Z).

The general case is similar. ⊓⊔

Remark. Unlike interior multiplication, the Lie derivative LX ω is not F-linear in

either argument. By the derivation property of the Lie derivative (Theorem 20.10(i)),

LX ( f ω) = (LX f )ω + fLX ω = (X f )ω + fLX ω .

We leave the problem of expanding L f X ω as an exercise (Problem 20.7).

Theorem 20.10 can be used to calculate the Lie derivative of a differential form.

Example 20.11 (The Lie derivative on a circle). Let ω be the 1-form −ydx+ xdy

and let X be the tangent vector field −y∂/∂x+ x∂/∂y on the unit circle S1 from

Example 17.15. Compute the Lie derivative LX ω .
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Solution. By Proposition 20.6,

LX (x) = Xx =

(
−y

∂

∂x
+ x

∂

∂y

)
x =−y,

LX (y) = Xy =

(
−y

∂

∂x
+ x

∂

∂y

)
y = x.

Next we compute LX (−ydx):

LX (−ydx) =−(LX y)dx− yLX dx (LX is a derivation)

=−(LX y)dx− ydLX x (LX commutes with d)

=−xdx+ ydy.

Similarly, LX (xdy) =−ydy+ xdx. Hence, LX ω = LX (−ydx+ xdy) = 0.

20.6 Global Formulas for the Lie and Exterior Derivatives

The definition of the Lie derivative LX ω is local, since it makes sense only in a

neighborhood of a point. The product formula in Theorem 20.10(iv), however, gives

a global formula for the Lie derivative.

Theorem 20.12 (Global formula for the Lie derivative). For a smooth k-form ω
and smooth vector fields X ,Y1, . . . ,Yk on a manifold M,

(LX ω)(Y1, . . . ,Yk) = X(ω(Y1, . . . ,Yk))−
k

∑
i=1

ω(Y1, . . . , [X ,Yi], . . . ,Yk).

Proof. In Theorem 20.10(iv), LX(ω(Y1, . . . ,Yk)) = X(ω(Y1, . . . ,Yk)) by Proposition

20.6 and LXYi = [X ,Yi] by Theorem 20.4. ⊓⊔
The definition of the exterior derivative d is also local. Using the Lie derivative,

we obtain a very useful global formula for the exterior derivative. We first derive the

formula for the exterior derivative of a 1-form, the case most useful in differential

geometry.

Proposition 20.13. If ω is a C∞ 1-form and X and Y are C∞ vector fields on a mani-

fold M, then

dω(X ,Y ) = Xω(Y )−Yω(X)−ω([X ,Y ]).

Proof. It is enough to check the formula in a chart (U,x1, . . . ,xn), so we may assume

ω = ∑ai dxi. Since both sides of the equation are R-linear in ω , we may further

assume that ω = f dg, where f ,g ∈C∞(U).
In this case, dω = d( f dg) = df ∧dg and

dω(X ,Y ) = df (X)dg(Y )− df (Y )dg(X) = (X f )Y g− (Y f )Xg,

Xω(Y ) = X( f dg(Y )) = X( f Yg) = (X f )Y g+ f XYg,

Yω(X) = Y ( f dg(X)) = Y ( f Xg) = (Y f )Xg+ fYXg,

ω([X ,Y ]) = f dg([X ,Y ]) = f (XY −YX)g.
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It follows that

Xω(Y )−Yω(X)−ω([X ,Y ]) = (X f )Y g− (Y f )Xg = dω(X ,Y ). ⊓⊔

Theorem 20.14 (Global formula for the exterior derivative). Assume k ≥ 1. For

a smooth k-form ω and smooth vector fields Y0,Y1, . . . ,Yk on a manifold M,

(dω)(Y0, . . . ,Yk) =
k

∑
i=0

(−1)iYiω(Y0, . . . ,Ŷi, . . . ,Yk)

+ ∑
0≤i< j≤k

(−1)i+ jω([Yi,Yj],Y0, . . . ,Ŷi, . . . ,Ŷj, . . . ,Yk).

Proof. When k = 1, the formula is proven in Proposition 20.13.

Assuming the formula for forms of degree k− 1, we can prove it by induction

for a form ω of degree k. By the definition of ιY0
and Cartan’s homotopy formula

(Theorem 20.10(iii)),

(dω)(Y0,Y1, . . . ,Yk) = (ιY0
dω)(Y1, . . . ,Yk)

= (LY0
ω)(Y1, . . . ,Yk)− (dιY0

ω)(Y1, . . . ,Yk).

The first term of this expression can be computed using the global formula for the Lie

derivative LY0
ω , while the second term can be computed using the global formula

for d of a form of degree k−1. This kind of verification is best done by readers on

their own. We leave it as an exercise (Problem 20.6). ⊓⊔

Problems

20.1. The limit of a family of vector fields

Let I be an open interval, M a manifold, and {Xt} a 1-parameter family of vector fields on M

defined for all t 6= t0 ∈ I. Show that the definition of limt→t0 Xt in (20.1), if the limit exists, is

independent of coordinate charts.

20.2. Limits of families of vector fields and differential forms

Let I be an open interval containing 0. Suppose {ωt}t∈I and {Yt}t∈I are 1-parameter families

of 1-forms and vector fields respectively on a manifold M. Prove that if limt→0 ωt = ω0 and

limt→0Yt = Y0, then limt→0 ωt(Yt) = ω0(Y0). (Hint: Expand in local coordinates.) By the

same kind of argument, one can show that there is a similar formula for a family {ωt} of

2-forms: limt→0 ωt (Yt ,Zt) = ω0(Y0,Z0).

20.3.* Derivative of a smooth family of vector fields

Show that the definition (20.3) of the derivative of a smooth family of vector fields on M is

independent of the chart (U,x1, . . . ,xn) containing p.

20.4. Product rule for d/dt

Prove that if {ωt} and {τt} are smooth families of k-forms and ℓ-forms respectively on a

manifold M, then
d

dt
(ωt ∧ τt) =

(
d

dt
ωt

)
∧ τt +ωt ∧

d

dt
τt .
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20.5. Smooth families of forms and vector fields

If {ωt}t∈I is a smooth family of 2-forms and {Yt}t∈I and {Zt}t∈I are smooth families of vector

fields on a manifold M, prove that ωt(Xt ,Yt) is a C∞ function on I×M.

20.6.* Global formula for the exterior derivative

Complete the proof of Theorem 20.14.

20.7. F-Linearity and the Lie Derivative

Let ω be a differential form, X a vector field, and f a smooth function on a manifold. The

Lie derivative LX ω is not F-linear in either variable, but prove that it satisfies the following

identity:

L f X ω = fLX ω +df ∧ ιX ω.

(Hint: Start with Cartan’s homotopy formula LX = dιX + ιX d.)

20.8. Bracket of the Lie Derivative and Interior Multiplication

If X and Y are smooth vector fields on a manifold M, prove that on differential forms on M

LX ιY − ιYLX = ι[X ,Y ].

(Hint: Let ω ∈ Ωk(M) and Y,Y1, . . . ,Yk−1 ∈ X(M). Apply the global formula for LX to

(ιYLX ω)(Y1, . . . ,Yk−1) = (LX ω)(Y,Y1, . . . ,Yk−1).)

20.9. Interior multiplication on Rn

Let ω = dx1 ∧ ·· ·∧ dxn be the volume form and X = ∑xi ∂/∂xi the radial vector field on Rn.

Compute the contraction ιX ω .

20.10. The Lie derivative on the 2-sphere

Let ω = xdy∧dz−ydx∧dy+ zdx∧dy and X =−y∂/∂x+x∂/∂y on the unit 2-sphere S2 in

R3. Compute the Lie derivative LX ω .



Chapter 6

Integration

On a manifold one integrates not functions as in calculus onRn but differential forms.

There are actually two theories of integration on manifolds, one in which the inte-

gration is over a submanifold and the other in which the integration is over what is

called a singular chain. Singular chains allow one to integrate over an object such as

a closed rectangle in R2:

[a,b]× [c,d] := {(x,y) ∈R2 | a≤ x≤ b, c≤ y≤ d},

which is not a submanifold of R2 because of its corners.

For simplicity we will discuss only integration of smooth forms over a submani-

fold. For integration of noncontinuous forms over more general sets, the reader may

consult the many excellent references in the bibliography, for example [3, Section

VI.2], [7, Section 8.2], or [25, Chapter 14].

For integration over a manifold to be well defined, the manifold needs to be ori-

ented. We begin the chapter with a discussion of orientations on a manifold. We

then enlarge the category of manifolds to include manifolds with boundary. Our

treatment of integration culminates in Stokes’s theorem for an n-dimensional man-

ifold. Stokes’s theorem for a surface with boundary in R3 was first published as a

question in the Smith’s Prize Exam that Stokes set at the University of Cambridge

in 1854. It is not known whether any student solved the problem. According to

[21, p. 150], the same theorem had appeared four years earlier in a letter of Lord

Kelvin to Stokes, which only goes to confirm that the attribution of credit in mathe-

matics is fraught with pitfalls. Stokes’s theorem for a general manifold resulted from

the work of many mathematicians, including Vito Volterra (1889), Henri Poincaré

(1899), Edouard Goursat (1917), and Élie Cartan (1899 and 1922). First there were

many special cases, then a general statement in terms of coordinates, and finally a

general statement in terms of differential forms. Cartan was the master of differen-

tial forms par excellence, and it was in his work that the differential form version of

Stokes’s theorem found its clearest expression.

© Springer Science+Business Media, LLC 2011
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§21 Orientations

It is a familiar fact from vector calculus that line and surface integrals depend on

the orientation of the curve or surface over which the integration takes place: revers-

ing the orientation changes the sign of the integral. The goal of this section is to

define orientation for n-dimensional manifolds and to investigate various equivalent

characterizations of orientation.

We assume all vector spaces in this section to be finite-dimensional and real. An

orientation of a finite-dimensional real vector space is simply an equivalence class

of ordered bases, two ordered bases being equivalent if and only if their transition

matrix has positive determinant. By its alternating nature, a multicovector of top

degree turns out to represent perfectly an orientation of a vector space.

An orientation on a manifold is a choice of an orientation for each tangent space

satisfying a continuity condition. Globalizing n-covectors over a manifold, we ob-

tain differential n-forms. An orientation on an n-manifold can also be given by an

equivalence class of C∞ nowhere-vanishing n-forms, two such forms being equiva-

lent if and only if one is a multiple of the other by a positive function. Finally, a

third way to represent an orientation on a manifold is through an oriented atlas, an

atlas in which any two overlapping charts are related by a transition function with

everywhere positive Jacobian determinant.

21.1 Orientations of a Vector Space

On R1 an orientation is one of two directions (Figure 21.1).

Fig. 21.1. Orientations of a line.

On R2 an orientation is either counterclockwise or clockwise (Figure 21.2).

Fig. 21.2. Orientations of a plane.
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e2

e3 = thumb

e1 = index finger

Fig. 21.3. Right-handed orientation (e1,e2,e3) of R3.

e2 = index finger

e3 = thumb

e1

Fig. 21.4. Left-handed orientation (e2,e1,e3) of R3.

On R3 an orientation is either right-handed (Figure 21.3) or left-handed (Fig-

ure 21.4). The right-handed orientation of R3 is the choice of a Cartesian coordinate

system such that if you hold out your right hand with the index finger curling from

the vector e1 in the x-axis to the vector e2 in the y-axis, then your thumb points in the

direction of of the vector e3 in the z-axis.

How should one define an orientation for R4, R5, and beyond? If we analyze

the three examples above, we see that an orientation can be specified by an ordered

basis for Rn. Let e1, . . . ,en be the standard basis for Rn. For R1 an orientation could

be given by either e1 or −e1. For R2 the counterclockwise orientation is (e1,e2),
while the clockwise orientation is (e2,e1). For R3 the right-handed orientation is

(e1,e2,e3), and the left-handed orientation is (e2,e1,e3).

For any two ordered bases (u1,u2) and (v1,v2) for R2, there is a unique nonsin-

gular 2×2 matrix A = [ai
j] such that

u j =
2

∑
i=1

via
i
j, j = 1,2,



238 §21 Orientations

called the change-of-basis matrix from (v1,v2) to (u1,u2). In matrix notation, if we

write ordered bases as row vectors, for example, [u1 u2] for the basis (u1,u2), then

[u1 u2] = [v1 v2]A.

We say that two ordered bases are equivalent if the change-of-basis matrix A has pos-

itive determinant. It is easy to check that this is indeed an equivalence relation on the

set of all ordered bases for R2. It therefore partitions ordered bases into two equiva-

lence classes. Each equivalence class is called an orientation of R2. The equivalence

class containing the ordered basis (e1,e2) is the counterclockwise orientation and the

equivalence class of (e2,e1) is the clockwise orientation.

The general case is similar. We assume all vector spaces in this section to be

finite-dimensional. Two ordered bases u = [u1 · · · un] and v = [v1 · · · vn] of a vector

space V are said to be equivalent, written u∼ v, if u = vA for an n×n matrix A with

positive determinant. An orientation of V is an equivalence class of ordered bases.

Any finite-dimensional vector space has two orientations. If µ is an orientation of a

finite-dimensional vector space V , we denote the other orientation by −µ and call it

the opposite of the orientation µ .

The zero-dimensional vector space {0} is a special case because it does not have

a basis. We define an orientation on {0} to be one of the two signs + and −.

NOTATION. A basis for a vector space is normally written v1, . . . ,vn, without paren-

theses, brackets, or braces. If it is an ordered basis, then we enclose it in parenthe-

ses: (v1, . . . ,vn). In matrix notation, we also write an ordered basis as a row vector

[v1 · · · vn]. An orientation is an equivalence class of ordered bases, so the notation is

[(v1, . . . ,vn)], where the brackets now stand for equivalence class.

21.2 Orientations and n-Covectors

Instead of using an ordered basis, we can also use an n-covector to specify an orien-

tation of an n-dimensional vector space V . This approach to orientations is based on

the fact that the space
∧n(V∨) of n-covectors on V is one-dimensional.

Lemma 21.1. Let u1, . . . ,un and v1, . . . ,vn be vectors in a vector space V . Suppose

u j =
n

∑
i=1

via
i
j, j = 1, . . . ,n,

for a matrix A = [ai
j] of real numbers. If β is an n-covector on V , then

β (u1, . . . ,un) = (det A)β (v1, . . . ,vn).

Proof. By hypothesis,

u j = ∑
i

via
i
j.

Since β is n-linear,
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β (u1, . . . ,un) = β
(
∑vi1a

i1
1 , . . . ,∑vin ain

n

)
= ∑a

i1
1 · · ·ain

n β (vi1 , . . . ,vin).

For β (vi1 , . . . ,vin) to be nonzero, the subscripts i1, . . . , in must be all distinct. An or-

dered n-tuple I = (i1, . . . , in) with distinct components corresponds to a permutation

σI of 1, . . . ,n with σI( j) = i j for j = 1, . . . ,n. Since β is an alternating n-tensor,

β (vi1 , . . . ,vin) = (sgnσI)β (v1, . . . ,vn).

Thus,

β (u1, . . . ,un) = ∑
σI∈Sn

(sgnσI)a
i1
1 · · ·ain

n β (v1, . . . ,vn) = (det A)β (v1, . . . ,vn). ⊓⊔

As a corollary, if u1, . . . ,un and v1, . . . ,vn are ordered bases of a vector space V ,

then

β (u1, . . . ,un) and β (v1, . . . ,vn) have the same sign

⇐⇒ det A > 0

⇐⇒ u1, . . . ,un and v1, . . . ,vn are equivalent ordered bases.

We say that the n-covector β determines or specifies the orientation (v1, . . . ,vn) if

β (v1, . . . ,vn)> 0. By the preceding corollary, this is a well-defined notion, indepen-

dent of the choice of ordered basis for the orientation. Moreover, two n-covectors β
and β ′ on V determine the same orientation if and only if β = aβ ′ for some positive

real number a. We define an equivalence relation on the nonzero n-covectors on the

n-dimensional vector space V by setting

β ∼ β ′ ⇐⇒ β = aβ ′ for some a > 0.

Thus, in addition to an equivalence class of ordered bases, an orientation of V is also

given by an equivalence class of nonzero n-covectors on V .

A linear isomorphism
∧n(V∨) ≃ R identifies the set of nonzero n-covectors on

V with R−{0}, which has two connected components. Two nonzero n-covectors β
and β ′ on V are in the same component if and only if β = aβ ′ for some real number

a > 0. Thus, each connected component of
∧n(V∨)−{0} determines an orientation

of V .

Example. Let e1,e2 be the standard basis for R2 and α1,α2 its dual basis. Then the

2-covector α1∧α2 determines the counterclockwise orientation of R2, since

(
α1∧α2

)
(e1,e2) = 1 > 0.

Example. Let ∂/∂x|p,∂/∂y|p be the standard basis for the tangent space Tp(R
2),

and (dx)p,(dy)p its dual basis. Then (dx∧ dy)p determines the counterclockwise

orientation of Tp(R
2).
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21.3 Orientations on a Manifold

Recall that every vector space of dimension n has two orientations, corresponding

to the two equivalence classes of ordered bases or the two equivalence classes of

nonzero n-covectors. To orient a manifold M, we orient the tangent space at each

point in M, but of course this has to be done in a “coherent” way so that the orienta-

tion does not change abruptly anywhere.

As we learned in Subsection 12.5, a frame on an open set U ⊂M is an n-tuple

(X1, . . . ,Xn) of possibly discontinuous vector fields on U such that at every point

p ∈U , the n-tuple (X1,p, . . . ,Xn,p) of vectors is an ordered basis for the tangent space

TpM. A global frame is a frame defined on the entire manifold M, while a local

frame about p ∈M is a frame defined on some neighborhood of p. We introduce an

equivalence relation on frames on U :

(X1, . . . ,Xn)∼ (Y1, . . . ,Yn) ⇐⇒ (X1,p, . . . ,Xn,p)∼ (Y1,p, . . . ,Yn,p) for all p ∈U.

In other words, if Yj = ∑i ai
jXi, then two frames (X1, . . . ,Xn) and (Y1, . . . ,Yn) are

equivalent if and only if the change-of-basis matrix A = [ai
j] has positive determinant

at every point in U .

A pointwise orientation on a manifold M assigns to each p ∈ M an orientation

µp of the tangent space TpM. In terms of frames, a pointwise orientation on M is

simply an equivalence class of possibly discontinuous frames on M. A pointwise

orientation µ on M is said to be continuous at p ∈ M if p has a neighborhood U

on which µ is represented by a continuous frame; i.e., there exist continuous vector

fields Y1, . . . ,Yn on U such that µq =
[(

Y1,q, . . . ,Yn,q

)]
for all q ∈U . The pointwise

orientation µ is continuous on M if it is continuous at every point p ∈M. Note that

a continuous pointwise orientation need not be represented by a continuous global

frame; it suffices that it be locally representable by a continuous local frame. A

continuous pointwise orientation on M is called an orientation on M. A manifold is

said to be orientable if it has an orientation. A manifold together with an orientation

is said to be oriented.

Example. The Euclidean space Rn is orientable with orientation given by the contin-

uous global frame (∂/∂ r1, . . . ,∂/∂ rn).

Example 21.2 (The open Möbius band). Let R be the rectangle

R = {(x,y) ∈ R2 | 0≤ x≤ 1, −1 < y < 1}.

The open Möbius band M (Figures 21.5 and 21.6) is the quotient of the rectangle R

by the equivalence relation generated by

(0,y)∼ (1,−y). (21.1)

The interior of R is the open rectangle

U = {(x,y) ∈R2 | 0 < x < 1, −1 < y < 1}.
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Fig. 21.5. Möbius band.

b b

e2

−e2

p q

0 1
−1

1

b b
p q

0 1
−1

1

e1

e2

e1

e2

e1

e2

p = (0,0)

q = (1,0)

Fig. 21.6. Nonorientability of the Möbius band.

Suppose the Möbius band M is orientable. An orientation on M restricts to an ori-

entation on U . To avoid confusion with an ordered pair of numbers, in this example

we write an ordered basis without the parentheses. For the sake of definiteness, we

first assume the orientation on U to be given by e1,e2. By continuity the orientations

at the points (0,0) and (1,0) are also given by e1,e2. But under the identification

(21.1), the ordered basis e1,e2 at (1,0) maps to e1,−e2 at (0,0). Thus, at (0,0) the

orientation has to be given by both e1,e2 and e1,−e2, a contradiction. Assuming the

orientation on U to be given by e2,e1 also leads to a contradiction. This proves that

the Möbius band is not orientable.

Proposition 21.3. A connected orientable manifold M has exactly two orientations.

Proof. Let µ and ν be two orientations on M. At any point p ∈M, µp and νp are

orientations of TpM. They either are the same or are opposite orientations. Define a

function f : M→ {±1} by

f (p) =

{
1 if µp = νp,

−1 if µp =−νp.

Fix a point p ∈M. By continuity, there exists a connected neighborhood U of p on

which µ = [(X1, . . . ,Xn)] and ν = [(Y1, . . . ,Yn)] for some continuous vector fields Xi

and Yj on U . Then there is a matrix-valued function A = [ai
j] : U → GL(n,R) such

that Yj =∑i ai
jXi. By Proposition 12.12 and Remark 12.13, the entries ai

j are continu-

ous, so that the determinant det A : U → R× is continuous also. By the intermediate

value theorem, the continuous nowhere-vanishing function det A on the connected

set U is everywhere positive or everywhere negative. Hence, µ = ν or µ = −ν on
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U . This proves that the function f : M→ {±1} is locally constant. Since a locally

constant function on a connected set is constant (Problem 21.1), µ = ν or µ = −ν
on M. ⊓⊔

21.4 Orientations and Differential Forms

While the definition of an orientation on a manifold as a continuous pointwise ori-

entation is geometrically intuitive, in practice it is easier to manipulate the nowhere-

vanishing top forms that specify a pointwise orientation. In this section we show

that the continuity condition on pointwise orientations translates to a C∞ condition

on nowhere-vanishing top forms.

If f is a real-valued function on a set M, we use the notation f > 0 to mean that

f is everywhere positive on M.

Lemma 21.4. A pointwise orientation [(X1, . . . ,Xn)] on a manifold M is continuous

if and only if each point p ∈ M has a coordinate neighborhood (U,x1, . . . ,xn) on

which the function (dx1∧·· ·∧dxn)(X1, . . . ,Xn) is everywhere positive.

Proof.

(⇒) Assume that the pointwise orientation µ = [(X1, . . . ,Xn)] on M is continuous.

This does not mean that the global frame (X1, . . . ,Xn) is continuous. What it means is

that every point p∈M has a neighborhoodW on which µ is represented by a continu-

ous frame (Y1, . . . ,Yn). Choose a connected coordinate neighborhood (U,x1, . . . ,xn)
of p contained in W and let ∂i = ∂/∂xi. Then Yj = ∑i bi

j ∂i for a continuous ma-

trix function [bi
j] : U → GL(n,R), the change-of-basis matrix at each point. By

Lemma 21.1,

(
dx1∧·· ·∧dxn

)
(Y1, . . . ,Yn) =

(
det [bi

j]
)(

dx1∧·· ·∧dxn
)
(∂1, . . . ,∂n) = det [bi

j],

which is never zero, because [bi
j] is nonsingular. As a continuous nowhere-vanishing

real-valued function on a connected set, (dx1 ∧ ·· · ∧ dxn)(Y1, . . . ,Yn) is everywhere

positive or everywhere negative on U . If it is negative, then by setting x̃1 =−x1, we

have on the chart (U, x̃1,x2, . . . ,xn) that

(
dx̃1∧dx2∧·· ·∧dxn

)
(Y1, . . . ,Yn)> 0.

Renaming x̃1 as x1, we may assume that on the coordinate neighborhood (U,x1, . . .,
xn) of p, the function (dx1∧·· ·∧dxn)(Y1, . . . ,Yn) is always positive.

Since µ = [(X1, . . . ,Xn)] = [(Y1, . . . ,Yn)] on U , the change-of-basis matrixC = [ci
j]

such that Xj = ∑i ci
jYi has positive determinant. By Lemma 21.1 again, on U ,

(
dx1∧·· ·∧dxn

)
(X1, . . . ,Xn) = (det C)

(
dx1∧·· ·∧dxn

)
(Y1, . . . ,Yn)> 0.

(⇐) On the chart (U,x1, . . . ,xn), suppose Xj = ∑ai
j ∂i. As before,

(
dx1∧·· ·∧dxn

)
(X1, . . . ,Xn) =

(
det [ai

j]
)(

dx1∧·· ·∧dxn
)
(∂1, . . . ,∂n) = det [ai

j].
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By hypothesis, the left-hand side of the equalities above is positive. Therefore, on

U , det [ai
j] > 0 and [(X1, . . . ,Xn)] = [(∂1, . . . ,∂n)], which proves that the pointwise

orientation µ is continuous at p. Since p was arbitrary, µ is continuous on M. ⊓⊔
Theorem 21.5. A manifold M of dimension n is orientable if and only if there exists

a C∞ nowhere-vanishing n-form on M.

Proof.

(⇒) Suppose [(X1, . . . ,Xn)] is an orientation on M. By Lemma 21.4, each point p

has a coordinate neighborhood (U,x1, . . . ,xn) on which
(
dx1∧·· ·∧dxn

)
(X1, . . . ,Xn)> 0. (21.2)

Let {(Uα ,x
1
α , . . . ,x

n
α)} be a collection of these charts that covers M, and let {ρα} be

a C∞ partition of unity subordinate to the open cover {Uα}. Being a locally finite

sum, the n-form ω = ∑α ρα dx1
α ∧·· ·∧dxn

α is well defined and C∞ on M. Fix p ∈M.

Since ρα(p)≥ 0 for all α and ρα(p)> 0 for at least one α , by (21.2),

ωp (X1,p, . . . ,Xn,p) = ∑
α

ρα(p)
(
dx1

α ∧·· ·∧dxn
α

)
p
(X1,p, . . . ,Xn,p)> 0.

Therefore, ω is a C∞ nowhere-vanishing n-form on M.

(⇐) Suppose ω is a C∞ nowhere-vanishing n-form on M. At each point p ∈ M,

choose an ordered basis (X1,p, . . . ,Xn,p) for TpM such that ωp (X1,p, . . . ,Xn,p) > 0.

Fix p ∈M and let (U,x1, . . . ,xn) be a connected coordinate neighborhood of p. On

U , ω = f dx1 ∧ ·· · ∧ dxn for a C∞ nowhere-vanishing function f . Being continuous

and nowhere vanishing on a connected set, f is everywhere positive or everywhere

negative on U . If f > 0, then on the chart (U,x1, . . . ,xn),
(
dx1∧·· ·∧dxn

)
(X1, . . . ,Xn)> 0.

If f < 0, then on the chart (U,−x1,x2, . . . ,xn),
(
d(−x1)∧dx2∧·· ·∧dxn

)
(X1, . . . ,Xn)> 0.

In either case, by Lemma 21.4, µ = [(X1, . . . ,Xn)] is a continuous pointwise orienta-

tion on M. ⊓⊔
Example 21.6 (Orientability of a regular zero set). By the regular level set theorem,

if 0 is a regular value of a C∞ function f (x,y,z) on R3, then the zero set f−1(0) is a

C∞ manifold. In Problem 19.11 we constructed a nowhere-vanishing 2-form on the

regular zero set of a C∞ function. It then follows from Theorem 21.5 that the regular

zero set of a C∞ function on R3 is orientable.

As an example, the unit sphere S2 in R3 is orientable. As another example, since

an open Möbius band is not orientable (Example 21.2), it cannot be realized as the

regular zero set of a C∞ function on R3.

According to a classical theorem from algebraic topology, a continuous vector

field on an even-dimensional sphere must vanish somewhere [18, Theorem 2.28, p.

135]. Thus, although the sphere S2 has a continuous pointwise orientation, any global

frame (X1,X2) that represents the orientation is necessarily discontinuous.
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If ω and ω ′ are two nowhere-vanishing C∞ n-forms on a manifold M of dimen-

sion n, then ω = f ω ′ for some nowhere-vanishing function f on M. Locally, on a

chart (U,x1, . . . ,xn), ω = hdx1∧·· ·∧dxn and ω ′ = gdx1∧·· ·∧dxn, where h and g

are C∞ nowhere-vanishing functions on U . Therefore, f = h/g is also a C∞ nowhere-

vanishing function on U . Since U is an arbitrary chart, f is C∞ and nowhere van-

ishing on M. On a connected manifold M, such a function f is either everywhere

positive or everywhere negative. In this way the nowhere-vanishing C∞ n-forms on a

connected orientable manifold M are partitioned into two equivalence classes by the

equivalence relation

ω ∼ ω ′ ⇐⇒ ω = f ω ′ with f > 0.

To each orientation µ = [(X1, . . . ,Xn)] on a connected orientable manifold M, we

associate the equivalence class of a C∞ nowhere-vanishing n-form ω on M such that

ω(X1, . . . ,Xn) > 0. (Such an ω exists by the proof of Theorem 21.5.) If µ 7→ [ω ],
then −µ 7→ [−ω ]. On a connected orientable manifold, this sets up a one-to-one

correspondence

{orientations on M} ←→
{

equivalence classes of

C∞ nowhere-vanishing

n-forms on M

}
, (21.3)

each side being a set of two elements. By considering one connected component at a

time, we see that the bijection (21.3) still holds for an arbitrary orientable manifold,

each connected component having two possible orientations and two equivalence

classes of C∞ nowhere-vanishing n-forms. If ω is a C∞ nowhere-vanishing n-form

such that ω(X1, . . . ,Xn) > 0, we say that ω determines or specifies the orientation

[(X1, . . . ,Xn)] and we call ω an orientation form on M. An oriented manifold can

be described by a pair (M, [ω ]), where [ω ] is the equivalence class of an orientation

form on M. We sometimes write M, instead of (M, [ω ]), for an oriented manifold

if it is clear from the context what the orientation is. For example, unless otherwise

specified, Rn is oriented by dx1∧·· ·∧dxn.

Remark 21.7 (Orientations on zero-dimensional manifolds). A connected manifold

of dimension 0 is a point. The equivalence class of a nowhere-vanishing 0-form on a

point is either [−1] or [1]. Hence, a connected zero-dimensional manifold is always

orientable. Its two orientations are specified by the two numbers ±1. A general

zero-dimensional manifold M is a countable discrete set of points (Example 5.13),

and an orientation on M is given by a function that assigns to each point of M either

1 or −1.

A diffeomorphism F : (N, [ωN ])→ (M, [ωM ]) of oriented manifolds is said to

be orientation-preserving if [F∗ωM] = [ωN ]; it is orientation-reversing if [F∗ωM] =
[−ωN ].

Proposition 21.8. Let U and V be open subsets of Rn, both with the standard orien-

tation inherited from Rn. A diffeomorphism F : U → V is orientation-preserving if

and only if the Jacobian determinant det[∂Fi/∂x j] is everywhere positive on U.
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Proof. Let x1, . . . ,xn and y1, . . . ,yn be the standard coordinates on U ⊂ Rn and V ⊂
Rn. Then

F∗(dy1∧·· ·∧dyn) = d(F∗y1)∧·· ·∧d(F∗yn) (Propositions 18.11 and 19.5)

= d(y1 ◦ F)∧·· ·∧d(yn ◦ F) (definition of pullback)

= dF1∧·· ·∧dFn

= det

[
∂Fi

∂x j

]
dx1∧·· ·∧dxn (by Corollary 18.4(ii)).

Thus, F is orientation-preserving if and only if det[∂Fi/∂x j] is everywhere positive

on U . ⊓⊔

21.5 Orientations and Atlases

Using the characterization of an orientation-preserving diffeomorphism by the sign

of its Jacobian determinant, we can describe orientability of manifolds in terms of

atlases.

Definition 21.9. An atlas on M is said to be oriented if for any two overlap-

ping charts (U,x1, . . . ,xn) and (V,y1, . . . ,yn) of the atlas, the Jacobian determinant

det[∂yi/∂x j] is everywhere positive on U ∩V .

Theorem 21.10. A manifold M is orientable if and only if it has an oriented atlas.

Proof.

(⇒) Let µ = [(X1, . . . ,Xn)] be an orientation on the manifold M. By Lemma 21.4,

each point p ∈M has a coordinate neighborhood (U,x1, . . . ,xn) on which

(
dx1∧·· ·∧dxn

)
(X1, . . . ,Xn)> 0.

We claim that the collection U= {(U,x1, . . . ,xn)} of these charts is an oriented atlas.

If (U,x1, . . . ,xn) and (V,y1, . . . ,yn) are two overlapping charts from U, then on

U ∩V ,

(
dx1∧·· ·∧dxn

)
(X1, . . . ,Xn)> 0 and

(
dy1∧·· ·∧dyn

)
(X1, . . . ,Xn)> 0. (21.4)

Since dy1 ∧ ·· · ∧ dyn =
(
det [∂yi/∂x j]

)
dx1 ∧ ·· · ∧ dxn, it follows from (21.4) that

det [∂yi/∂x j]> 0 on U ∩V . Therefore, U is an oriented atlas.

(⇒) Suppose {(U,x1, . . . ,xn)} is an oriented atlas. For each p ∈ (U,x1, . . . ,xn), de-

fine µp to be the equivalence class of the ordered basis (∂/∂x1|p, . . . ,∂/∂xn|p) for

TpM. If two charts (U,x1, . . . ,xn) and (V,y1, . . . ,yn) in the oriented atlas contain p,

then by the orientability of the atlas, det [∂yi/∂x j]> 0, so that (∂/∂x1|p, . . . ,∂/∂xn|p)
is equivalent to (∂/∂y1|p, . . . ,∂/∂yn|p). This proves that µ is a well-defined point-

wise orientation on M. It is continuous because every point p has a coordinate neigh-

borhood (U,x1, . . . ,xn) on which µ = [(∂/∂x1, . . . ,∂/∂xn)] is represented by a con-

tinuous frame. ⊓⊔
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Definition 21.11. Two oriented atlases {(Uα ,φα )} and {(Vβ ,ψβ )} on a manifold M

are said to be equivalent if the transition functions

φα ◦ ψ−1
β : ψβ (Uα ∩Vβ )→ φα(Uα ∩Vβ )

have positive Jacobian determinant for all α,β .

It is not difficult to show that this is an equivalence relation on the set of oriented

atlases on a manifold M (Problem 21.3).

In the proof of Theorem 21.10, an oriented atlas {(U,x1, . . . ,xn)} on a mani-

fold M determines an orientation U ∋ p 7→ [(∂/∂x1|p, . . . ,∂/∂xn|p)] on M, and con-

versely, an orientation [(X1, . . . ,Xn)] on M gives rise to an oriented atlas {(U,x1, . . . ,xn)}
on M such that

(
dx1∧·· ·∧dxn

)
(X1, . . . ,Xn)> 0 on U . We leave it as an exercise to

show that for an orientable manifold M, the two induced maps

{
equivalence classes of

oriented atlases on M

} // {orientations on M}oo

are well defined and inverse to each other. Therefore, one can also specify an orien-

tation on an orientable manifold by an equivalence class of oriented atlases.

For an oriented manifold M, we denote by −M the same manifold but with the

opposite orientation. If {(U,φ)} = {(U,x1,x2, . . . ,xn)} is an oriented atlas specify-

ing the orientation of M, then an oriented atlas specifying the orientation of −M is

{(U, φ̃)}= {(U,−x1,x2, . . . ,xn)}.

Problems

21.1.* Locally constant map on a connected space

A map f : S→ Y between two topological spaces is locally constant if for every p ∈ S there

is a neighborhood U of p such that f is constant on U . Show that a locally constant map

f : S→Y on a nonempty connected space S is constant. (Hint: Show that for every y ∈Y , the

inverse image f−1(y) is open. Then S =
⋃

y∈Y f−1(y) exhibits S as a disjoint union of open

subsets.)

21.2. Continuity of pointwise orientations

Prove that a pointwise orientation [(X1, . . . ,Xn)] on a manifold M is continuous if and only

if every point p ∈ M has a coordinate neighborhood (U,φ) = (U,x1, . . . ,xn) such that for

all q ∈ U , the differential φ∗,q : TqM → Tf (q)R
n ≃ Rn carries the orientation of TqM to the

standard orientation of Rn in the following sense:
(
φ∗X1,q, . . . ,φ∗Xn,q

)
∼ (∂/∂ r1, . . . ,∂/∂ rn).

21.3. Equivalence of oriented atlases

Show that the relation in Definition 21.11 is an equivalence relation.

21.4. Orientation-preserving diffeomorphisms

Let F : (N, [ωN ])→ (M, [ωM ]) be an orientation-preserving diffeomorphism. If {(Vα ,ψα )}=
{(Vα ,y

1
α , . . . ,y

n
α )} is an oriented atlas on M that specifies the orientation of M, show that

{(F−1Vα ,F
∗ψα )}= {(F−1Vα ,F

1
α , . . . ,F

n
α )} is an oriented atlas on N that specifies the orien-

tation of N, where Fi
α = yi

α ◦ F .
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21.5. Orientation-preserving or orientation-reversing diffeomorphisms

Let U be the open set (0,∞)× (0,2π) in the (r,θ )-plane R2. We define F : U ⊂ R2→ R2 by

F(r,θ )= (r cosθ ,r sinθ ). Decide whether F is orientation-preserving or orientation-reversing

as a diffeomorphism onto its image.

21.6. Orientability of a regular level set in Rn+1

Suppose f (x1, . . . ,xn+1) is a C∞ function on Rn+1 with 0 as a regular value. Show that the

zero set of f is an orientable submanifold of Rn+1. In particular, the unit n-sphere Sn in Rn+1

is orientable.

21.7. Orientability of a Lie group

Show that every Lie group G is orientable by constructing a nowhere-vanishing top form on G.

21.8. Orientability of a parallelizable manifold

Show that a parallelizable manifold is orientable. (In particular, this shows again that every

Lie group is orientable.)

21.9. Orientability of the total space of the tangent bundle

Let M be a smooth manifold and π : T M→M its tangent bundle. Show that if {(U,φ)} is any

atlas on M, then the atlas {(TU, φ̃)} on T M, with φ̃ defined in equation (12.1), is oriented.

This proves that the total space T M of the tangent bundle is always orientable, regardless of

whether M is orientable.

21.10. Oriented atlas on a circle

In Example 5.16 we found an atlas U = {(Ui,φi)}4
i=1 on the unit circle S1. Is U an oriented

atlas? If not, alter the coordinate functions φi to make U into an oriented atlas.
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§22 Manifolds with Boundary

The prototype of a manifold with boundary is the closed upper half-space

Hn = {(x1, . . . ,xn) ∈ Rn | xn ≥ 0},

with the subspace topology inherited from Rn. The points (x1, . . . ,xn) in Hn with

xn > 0 are called the interior points of Hn, and the points with xn = 0 are called the

boundary points of Hn. These two sets are denoted by (Hn)◦ and ∂ (Hn), respec-

tively (Figure 22.1).

xn

int(Hn)

∂ (Hn)

Fig. 22.1. Upper half-space.

In the literature the upper half-space often means the open set

{(x1, . . . ,xn) ∈Rn | xn > 0}.

We require that Hn include the boundary in order for it to serve as a model for

manifolds with boundary.

If M is a manifold with boundary, then its boundary ∂M turns out to be a manifold

of dimension one less without boundary. Moreover, an orientation on M induces

an orientation on ∂M. The choice of the induced orientation on the boundary is a

matter of convention, guided by the desire to make Stokes’s theorem sign-free. Of the

various ways to describe the boundary orientation, two stand out for their simplicity:

(1) contraction of an orientation form on M with an outward-pointing vector field on

∂M and (2) “outward vector first.”

22.1 Smooth Invariance of Domain in Rn

To discuss C∞ functions on a manifold with boundary, we need to extend the defini-

tion of a C∞ function to allow nonopen domains.

Definition 22.1. Let S ⊂ Rn be an arbitrary subset. A function f : S → Rm is

smooth at a point p in S if there exist a neighborhoodU of p in Rn and a C∞ function

f̃ : U → Rm such that f̃ = f on U ∩S. The function is smooth on S if it is smooth at

each point of S.
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With this definition it now makes sense to speak of an arbitrary subset S ⊂ Rn

being diffeomorphic to an arbitrary subset T ⊂ Rm; this will be the case if and only

if there are smooth maps f : S→ T ⊂Rm and g : T → S⊂Rn that are inverse to each

other.

Exercise 22.2 (Smooth functions on a nonopen set).* Using a partition of unity, show that a

function f : S→ Rm is C∞ on S⊂Rn if and only if there exist an open set U in Rn containing

S and a C∞ function f̃ : U → Rm such that f = f̃ |S.

The following theorem is the C∞ analogue of a classical theorem in the contin-

uous category. We will use it to show that interior points and boundary points are

invariant under diffeomorphisms of open subsets of Hn.

Theorem 22.3 (Smooth invariance of domain). Let U ⊂ Rn be an open subset,

S ⊂ Rn an arbitrary subset, and f : U → S a diffeomorphism. Then S is open in Rn.

More succinctly, a diffeomorphism between an open subset U of Rn and an ar-

bitrary subset S of Rn forces S to be open in Rn. The theorem is not automatic. A

diffeomorphism f : Rn ⊃U → S ⊂ Rn takes an open subset of U to an open subset

of S. Thus, a priori we know only that f (U) is open in S, not that f (U), which is S,

is open in Rn. It is crucial that the two Euclidean spaces be of the same dimension.

For example, there are a diffeomorphism between the open interval ]0,1[ in R1 and

the open segment S = ]0,1[×{0} in R2, but S is not open in R2.

Proof. Let f (p) be an arbitrary point in S, with p ∈U . Since f : U → S is a diffeo-

morphism, there are an open set V ⊂Rn containing S and a C∞ map g : V →Rn such

that g|S = f−1. Thus,

U
f→V

g→ Rn

satisfies

g ◦ f = 1U : U →U ⊂ Rn,

the identity map on U . By the chain rule,

g∗, f (p) ◦ f∗,p = 1TpU : TpU → TpU ≃ Tp(R
n),

the identity map on the tangent space TpU . Hence, f∗,p is injective. Since U and V

have the same dimension, f∗,p : TpU → Tf (p)V is invertible. By the inverse function

theorem, f is locally invertible at p. This means that there are open neighborhoods

Up of p in U and Vf (p) of f (p) in V such that f : Up→Vf (p) is a diffeomorphism. It

follows that

f (p) ∈Vf (p) = f (Up)⊂ f (U) = S.

Since V is open in Rn and Vf (p) is open in V , the set Vf (p) is open in Rn. By the local

criterion for openness (Lemma A.2), S is open in Rn. ⊓⊔

Proposition 22.4. Let U and V be open subsets of the upper half-space Hn and

f : U → V a diffeomorphism. Then f maps interior points to interior points and

boundary points to boundary points.
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Proof. Let p ∈U be an interior point. Then p is contained in an open ball B, which

is actually open in Rn (not just in Hn). By smooth invariance of domain, f (B) is

open in Rn (again not just in Hn). Therefore, f (B) ⊂ (Hn)◦. Since f (p) ∈ f (B),
f (p) is an interior point of Hn.

If p is a boundary point in U ∩ ∂Hn, then f−1( f (p)) = p is a boundary point.

Since f−1 : V →U is a diffeomorphism, by what has just been proven, f (p) cannot

be an interior point. Thus, f (p) is a boundary point. ⊓⊔

Remark 22.5. Replacing Euclidean spaces by manifolds throughout this subsection,

one can prove in exactly the same way smooth invariance of domain for manifolds:

if there is a diffeomorphism between an open subset U of an n-dimensional manifold

N and an arbitrary subset S of another n-dimensional manifold M, then S is open

in M.

22.2 Manifolds with Boundary

In the upper half-space Hn one may distinguish two kinds of open subsets, depend-

ing on whether the set is disjoint from the boundary or intersects the boundary (Fig-

ure 22.2). Charts on a manifold are homeomorphic to only the first kind of open sets.

Fig. 22.2. Two types of open subsets of Hn.

A manifold with boundary generalizes the definition of a manifold by allowing both

kinds of open sets. We say that a topological space M is locally Hn if every point

p ∈M has a neighborhood U homeomorphic to an open subset of Hn.

Definition 22.6. A topological n-manifold with boundary is a second countable,

Hausdorff topological space that is locally Hn.

Let M be a topological n-manifold with boundary. For n ≥ 2, a chart on M is

defined to be a pair (U,φ) consisting of an open set U in M and a homeomorphism

φ : U → φ(U)⊂H
n

of U with an open subset φ(U) of Hn. As Example 22.9 (p. 254) will show, a slight

modification is necessary when n = 1: we need to allow two local models, the right

half-line H1 and the left half-line
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L1 := {x ∈R | x≤ 0}.

A chart (U,φ) in dimension 1 consists of an open set U in M and a homeomorphism

φ of U with an open subset of H1 or L1. With this convention, if (U,x1,x2, . . . ,xn)
is a chart of an n-dimensional manifold with boundary, then so is (U,−x1,x2, . . . ,xn)
for any n≥ 1. A manifold with boundary has dimension at least 1, since a manifold

of dimension 0, being a discrete set of points, necessarily has empty boundary.

A collection {(U,φ)} of charts is a C∞ atlas if for any two charts (U,φ) and

(V,ψ), the transition map

ψ ◦ φ−1 : φ(U ∩V )→ ψ(U ∩V )⊂H
n

is a diffeomorphism. A C∞ manifold with boundary is a topological manifold with

boundary together with a maximal C∞ atlas.

A point p of M is called an interior point if in some chart (U,φ), the point φ(p)
is an interior point of Hn. Similarly, p is a boundary point of M if φ(p) is a boundary

point of Hn. These concepts are well defined, independent of the charts, because if

(V,ψ) is another chart, then the diffeomorphism ψ ◦ φ−1 maps φ(p) to ψ(p), and so

by Proposition 22.4, φ(p) and ψ(p) are either both interior points or both boundary

points (Figure 22.3). The set of boundary points of M is denoted by ∂M.

b b

bφ ψ

p

Fig. 22.3. Boundary charts.

Most of the concepts introduced for a manifold extend word for word to a man-

ifold with boundary, the only difference being that now a chart can be either of two

types and the local model is Hn (or L1). For example, a function f : M→ R is C∞

at a boundary point p ∈ ∂M if there is a chart (U,φ) about p such that f ◦ φ−1 is C∞

at φ(p) ∈Hn. This in turn means that f ◦ φ−1 has a C∞ extension to a neighborhood

of φ(p) in Rn.

In point-set topology there are other notions of interior and boundary, defined for

a subset A of a topological space S. A point p ∈ S is said to be an interior point of A

if there exists an open subset U of S such that

p ∈U ⊂ S.

The point p ∈ S is an exterior point of A if there exists an open subset U of S such

that

p ∈U ⊂ S−A.
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Finally, p ∈ S is a boundary point of A if every neighborhood of p contains both a

point in A and a point not in A. We denote by int(A), ext(A), and bd(A) the sets of

interior, exterior, and boundary points respectively of A in S. Clearly, the topological

space S is the disjoint union

S = int(A) ∐ ext(A) ∐ bd(A).

In case the subset A ⊂ S is a manifold with boundary, we call int(A) the topo-

logical interior and bd(A) the topological boundary of A, to distinguish them from

the manifold interior A◦ and the manifold boundary ∂A. Note that the topological

interior and the topological boundary of a set depend on an ambient space, while the

manifold interior and the manifold boundary are intrinsic.

Example 22.7 (Topological boundary versus manifold boundary). Let A be the open

unit disk in R2:

A = {x ∈ R2 | ‖x‖< 1}.
Then its topological boundary bd(A) in R2 is the unit circle, while its manifold

boundary ∂A is the empty set (Figure 22.4).

If B is the closed unit disk in R2, then its topological boundary bd(B) and its

manifold boundary ∂B coincide; both are the unit circle.

⊂ R2

A

⊂ R2

B

⊂H2

D

Fig. 22.4. Interiors and boundaries.

Example 22.8 (Topological interior versus manifold interior). Let S be the upper

half-plane H2 and let D be the subset (Figure 22.4)

D = {(x,y) ∈H
2 | y≤ 1}.

The topological interior of D is the set

int(D) = {(x,y) ∈H2 | 0≤ y < 1},
containing the x-axis, while the manifold interior of D is the set

D◦ = {(x,y) ∈H2 | 0 < y < 1},
not containing the x-axis.

To indicate the dependence of the topological interior of a set A on its ambient

space S, we might denote it by intS(A) instead of int(A). Then in this example, the

topological interior int
H2(D) of D in H2 is as above, but the topological interior

intR2(D) of D in R2 coincides with D◦.
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22.3 The Boundary of a Manifold with Boundary

Let M be a manifold of dimension n with boundary ∂M. If (U,φ) is a chart on M,

we denote by φ ′ = φ |U∩∂M the restriction of the coordinate map φ to the boundary.

Since φ maps boundary points to boundary points,

φ ′ : U ∩∂M→ ∂Hn = Rn−1.

Moreover, if (U,φ) and (V,ψ) are two charts on M, then

ψ ′ ◦ (φ ′)−1 : φ ′(U ∩V ∩∂M)→ ψ ′(U ∩V ∩∂M)

is C∞. Thus, an atlas {(Uα ,φα)} for M induces an atlas {(Uα ∩∂M,φα |Uα∩∂M)} for

∂M, making ∂M into a manifold of dimension n−1 without boundary.

22.4 Tangent Vectors, Differential Forms, and Orientations

Let M be a manifold with boundary and let p ∈ ∂M. As in Subsection 2.2, two C∞

functions f : U → R and g : V → R defined on neighborhoods U and V of p in M

are said to be equivalent if they agree on some neighborhood W of p contained in

U ∩V . A germ of C∞ functions at p is an equivalence class of such functions. With

the usual addition, multiplication, and scalar multiplication of germs, the set C∞
p (M)

of germs of C∞ functions at p is an R-algebra. The tangent space TpM at p is then

defined to be the vector space of all point-derivations on the algebra C∞
p (M).

For example, for p in the boundary of the upper half-plane H2, ∂/∂x|p and

∂/∂y|p are both derivations on C∞
p (H

2). The tangent space Tp(H
2) is represented

by a 2-dimensional vector space with the origin at p. Since ∂/∂y|p is a tangent vector

to H2 at p, its negative−∂/∂y|p is also a tangent vector at p (Figure 22.5), although

there is no curve through p in H2 with initial velocity−∂/∂y|p.

b
p

− ∂
∂y

∣∣∣
p

Fig. 22.5. A tangent vector at the boundary.

The cotangent space T ∗p M is defined to be the dual of the tangent space:

T ∗p M = Hom(TpM,R).

Differential k-forms on M are defined as before, as sections of the vector bundle∧k(T ∗M). A differential k-form is C∞ if it is C∞ as a section of the vector bundle
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∧k(T ∗M). For example, dx∧ dy is a C∞ 2-form on H2. An orientation on an n-

manifold M with boundary is again a continuous pointwise orientation on M.

The discussion in Section 21 on orientations goes through word for word for

manifolds with boundary. Thus, the orientability of a manifold with boundary is

equivalent to the existence of a C∞ nowhere-vanishing top form and to the existence

of an oriented atlas. At one point in the proof of Lemma 21.4, it was necessary to

replace the chart (U,x1,x2, . . . ,xn) by (U,−x1,x2, . . . ,xn). This would not have been

possible for n = 1 if we had not allowed the left half-line L1 as a local model in the

definition of a chart on a 1-dimensional manifold with boundary.

Example 22.9. The closed interval [0,1] is a C∞ manifold with boundary. It has an

atlas with two charts (U1,φ1) and (U2,φ2), where U1 = [0,1[, φ1(x) = x, and U2 =
]0,1], φ2(x) = 1− x. With d/dx as a continuous pointwise orientation, [0,1] is an

oriented manifold with boundary. However, {(U1,φ1),(U2,φ2)} is not an oriented

atlas, because the Jacobian determinant of the transition function (φ2 ◦ φ−1
1 )(x) = 1−

x is negative. If we change the sign of φ2, then {(U1,φ1),(U2,−φ2)} is an oriented

atlas. Note that −φ2(x) = x−1 maps ]0,1] into the left half-line L1 ⊂ R. If we had

allowed only H1 as a local model for a 1-dimensional manifold with boundary, the

closed interval [0,1] would not have an oriented atlas.

22.5 Outward-Pointing Vector Fields

Let M be a manifold with boundary and p ∈ ∂M. We say that a tangent vector

Xp ∈ Tp(M) is inward-pointing if Xp /∈ Tp(∂M) and there are a positive real number

ε and a curve c : [0,ε[ → M such that c(0) = p, c((0,ε[) ⊂ M◦, and c′(0) = Xp.

A vector Xp ∈ Tp(M) is outward-pointing if −Xp is inward-pointing. For example,

on the upper half-plane H2, the vector ∂/∂y|p is inward-pointing and the vector

−∂/∂y|p is outward-pointing at a point p on the x-axis.

A vector field along ∂M is a function X that assigns to each point p in ∂M a

vector Xp in the tangent space TpM (as opposed to Tp(∂M)). In a coordinate neigh-

borhood (U,x1, . . . ,xn) of p in M, such a vector field X can be written as a linear

combination

Xq = ∑
i

ai(q)
∂

∂xi

∣∣∣∣
q

, q ∈ ∂M.

The vector field X along ∂M is said to be smooth at p∈M if there exists a coordinate

neighborhood of p for which the functions ai on ∂M are C∞ at p; it is said to be

smooth if it is smooth at every point p. In terms of local coordinates, a vector Xp is

outward-pointing if and only if an(p)< 0 (see Figure 22.5 and Problem 22.3).

Proposition 22.10. On a manifold M with boundary ∂M, there is a smooth outward-

pointing vector field along ∂M.

Proof. Cover ∂M with coordinate open sets
(
Uα ,x

1
α , . . . ,x

n
α

)
in M. On each Uα the

vector field Xα =−∂/∂xn
α along Uα ∩∂M is smooth and outward-pointing. Choose

a partition of unity {ρα}α∈A on ∂M subordinate to the open cover {Uα ∩∂M}α∈A.

Then one can check that X := ∑ρα Xα is a smooth outward-pointing vector field

along ∂M (Problem 22.4). ⊓⊔
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22.6 Boundary Orientation

In this section we show that the boundary of an orientable manifold M with boundary

is an orientable manifold (without boundary, by Subsection 22.3). We will designate

one of the orientations on the boundary as the boundary orientation. It is easily

described in terms of an orientation form or of a pointwise orientation on ∂M.

Proposition 22.11. Let M be an oriented n-manifold with boundary. If ω is an ori-

entation form on M and X is a smooth outward-pointing vector field on ∂M, then

ιX ω is a smooth nowhere-vanishing (n− 1)-form on ∂M. Hence, ∂M is orientable.

Proof. Since ω and X are both smooth on ∂M, so is the contraction ιX ω (Subsec-

tion 20.4). We will now prove by contradiction that ιX ω is nowhere-vanishing on

∂M. Suppose ιX ω vanishes at some p∈ ∂M. This means that (ιX ω)p (v1, . . . ,vn−1)=
0 for all v1, . . . ,vn−1 ∈ Tp(∂M). Let e1, . . . ,en−1 be a basis for Tp(∂M). Then

Xp,e1, . . . ,en−1 is a basis for TpM, and

ωp (Xp,e1, . . . ,en−1) = (ιX ω)p (e1, . . . ,en−1) = 0.

By Problem 3.9, ωp ≡ 0 on TpM, a contradiction. Therefore, ιX ω is nowhere van-

ishing on ∂M. By Theorem 21.5, ∂M is orientable. ⊓⊔

In the notation of the preceding proposition, we define the boundary orientation

on ∂M to be the orientation with orientation form ιX ω . For the boundary orientation

to be well defined, we need to check that it is independent of the choice of the ori-

entation form ω and of the outward-pointing vector field X . The verification is not

difficult (see Problem 22.5).

Proposition 22.12. Suppose M is an oriented n-manifold with boundary. Let p be

a point of the boundary ∂M and let Xp be an outward-pointing vector in TpM. An

ordered basis (v1, . . . ,vn−1) for Tp(∂M) represents the boundary orientation at p if

and only if the ordered basis (Xp,v1, . . . ,vn−1) for TpM represents the orientation on

M at p.

To make this rule easier to remember, we summarize it under the rubric “outward

vector first.”

Proof. For p in ∂M, let (v1, . . . ,vn−1) be an ordered basis for the tangent space

Tp(∂M). Then

(v1, . . . ,vn−1) represents the boundary orientation on ∂M at p

⇐⇒ (ιXp ωp)(v1, . . . ,vn−1)> 0

⇐⇒ ωp(Xp,v1, . . . ,vn−1)> 0

⇐⇒ (Xp,v1, . . . ,vn−1) represents the orientation on M at p. ⊓⊔
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Example 22.13 (The boundary orientation on ∂Hn). An orientation form for the

standard orientation on the upper half-space Hn is ω = dx1 ∧ ·· · ∧ dxn. A smooth

outward-pointing vector field on ∂Hn is −∂/∂xn. By definition, an orientation form

for the boundary orientation on ∂Hn is given by the contraction

ι−∂/∂xn(ω) =−ι∂/∂xn(dx1∧·· ·∧dxn−1∧dxn)

=−(−1)n−1 dx1∧·· ·∧dxn−1∧ ι∂/∂xn(dxn)

= (−1)n dx1∧·· ·∧dxn−1.

Thus, the boundary orientation on ∂H1 = {0} is given by −1, the boundary orienta-

tion on ∂H2, given by dx1, is the usual orientation on the real line R (Figure 22.6(a)),

and the boundary orientation on ∂H3, given by −dx1∧dx2, is the clockwise orien-

tation in the (x1,x2)-plane R2 (Figure 22.6(b)).

(a) Boundary orientation on ∂H2 = R.

x1

x2

x3

(b) Boundary orientation on ∂H3 = R2.

Fig. 22.6. Boundary orientations.

Example. The closed interval [a,b] in the real line with coordinate x has a standard

orientation given by the vector field d/dx, with orientation form dx. At the right

endpoint b, an outward vector is d/dx. Hence, the boundary orientation at b is given

by ιd/dx(dx) = +1. Similarly, the boundary orientation at the left endpoint a is given

by ι−d/dx(dx) =−1.

Example. Suppose c : [a,b]→M is a C∞ immersion whose image is a 1-dimensional

manifold C with boundary. An orientation on [a,b] induces an orientation on C via

the differential c∗,p : Tp([a,b])→ TpC at each point p ∈ [a,b]. In a situation like

this, we give C the orientation induced from the standard orientation on [a,b]. The

boundary orientation on the boundary of C is given by +1 at the endpoint c(b) and

−1 at the initial point c(a).

Problems

22.1. Topological boundary versus manifold boundary

Let M be the subset [0,1[ ∪ {2} of the real line. Find its topological boundary bd(M) and its

manifold boundary ∂M.
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22.2. Topological boundary of an intersection

Let A and B be two subsets of a topological space S. Prove that

bd(A∩B)⊂ bd(A)∪bd(B).

22.3.* Inward-pointing vectors at the boundary

Let M be a manifold with boundary and let p ∈ ∂M. Show that Xp ∈ TpM is inward-pointing

if and only if in any coordinate chart (U,x1, . . . ,xn) centered at p, the coefficient of (∂/∂xn)p

in Xp is positive.

22.4.* Smooth outward-pointing vector field along the boundary

Show that the vector field X = ∑ρα Xα defined in the proof of Proposition 22.10 is a smooth

outward-pointing vector field along ∂M.

22.5. Boundary orientation

Let M be an oriented manifold with boundary, ω an orientation form for M, and X a C∞

outward-pointing vector field along ∂M.

(a) If τ is another orientation form on M, then τ = f ω for a C∞ everywhere-positive function

f on M. Show that ιX τ = f ιX ω and therefore, ιX τ ∼ ιX ω on ∂M. (Here “∼” is the

equivalence relation defined in Subsection 21.4.)

(b) Prove that if Y is another C∞ outward-pointing vector field along ∂M, then ιX ω ∼ ιY ω on

∂M.

22.6.* Induced atlas on the boundary

Assume n ≥ 2 and let (U,φ) and (V,ψ) be two charts in an oriented atlas of an orientable n-

manifold M with boundary. Prove that if U ∩V ∩∂M 6=∅, then the restriction of the transition

function ψ ◦ φ−1 to the boundary B := φ(U ∩V )∩∂Hn,

(ψ ◦ φ−1)|B : φ(U ∩V )∩∂Hn→ ψ(U ∩V )∩∂Hn,

has positive Jacobian determinant. (Hint: Let φ = (x1, . . . ,xn) and ψ = (y1, . . . ,yn). Show that

the Jacobian matrix of ψ ◦ φ−1 in local coordinates is block triangular with J(ψ ◦ φ−1)|B and

∂yn/∂xn as the diagonal blocks, and that ∂yn/∂xn > 0.)

Thus, if {(Uα ,φα)} is an oriented atlas for a manifold M with boundary, then the induced

atlas {(Uα ∩∂M,φα |Uα∩∂ M)} for ∂M is oriented.

22.7.* Boundary orientation of the left half-space

Let M be the left half-space

{(x1, . . . ,xn) ∈ Rn | x1 ≤ 0},

with orientation form dx1 ∧·· ·∧dxn. Show that an orientation form for the boundary orienta-

tion on ∂M = {(0,x2, . . . ,xn) ∈ Rn} is dx2 ∧·· ·∧dxn.

Unlike the upper half-space Hn, whose boundary orientation takes on a sign (Example

22.13), this exercise shows that the boundary orientation for the left half-space has no sign.

For this reason some authors use the left half-space as the model of a manifold with boundary,

e.g., [7].

22.8. Boundary orientation on a cylinder

Let M be the cylinder S1 × [0,1] with the counterclockwise orientation when viewed from

the exterior (Figure 22.7(a)). Describe the boundary orientation on C0 = S1×{0} and C1 =
S1×{1}.
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C1

C0

(a) Oriented cylinder.

X = ∑xi ∂
∂ xi

(b) Radial vector field on a sphere.

Fig. 22.7. Boundary orientations.

22.9. Boundary orientation on a sphere

Orient the unit sphere Sn in Rn+1 as the boundary of the closed unit ball. Show that an

orientation form on Sn is

ω =
n+1

∑
i=1

(−1)i−1xi dx1 ∧·· · ∧ d̂xi∧·· ·∧dxn+1,

where the caret ̂ over dxi indicates that dxi is to be omitted. (Hint: An outward-pointing

vector field on Sn is the radial vector field X = ∑xi ∂/∂xi as in Figure 22.7(b).)

x

y

y

z

x

Fig. 22.8. Projection of the upper hemisphere to a disk.

22.10. Orientation on the upper hemisphere of a sphere

Orient the unit sphere Sn in Rn+1 as the boundary of the closed unit ball. Let U be the upper

hemisphere

U = {x ∈ Sn | xn+1 > 0}.
It is a coordinate chart on the sphere with coordinates x1, . . . ,xn.

(a) Find an orientation form on U in terms of dx1, . . . ,dxn.

(b) Show that the projection map π : U → Rn,

π(x1, . . . ,xn,xn+1) = (x1, . . . ,xn),

is orientation-preserving if and only if n is even (Figure 22.8).
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22.11. Antipodal map on a sphere and the orientability of RPn

(a) The antipodal map a : Sn→ Sn on the n-sphere is defined by

a(x1, . . . ,xn+1) = (−x1, . . . ,−xn+1).

Show that the antipodal map is orientation-preserving if and only if n is odd.

(b) Use part (a) and Problem 21.6 to prove that an odd-dimensional real projective space RPn

is orientable.
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§23 Integration on Manifolds

In this chapter we first recall Riemann integration for a function over a closed rect-

angle in Euclidean space. By Lebesgue’s theorem, this theory can be extended to

integrals over domains of integration, bounded subsets of Rn whose boundary has

measure zero.

The integral of an n-form with compact support in an open set of Rn is defined

to be the Riemann integral of the corresponding function. Using a partition of unity,

we define the integral of an n-form with compact support on a manifold by writing

the form as a sum of forms each with compact support in a coordinate chart. We

then prove the general Stokes theorem for an oriented manifold and show how it

generalizes the fundamental theorem for line integrals as well as Green’s theorem

from calculus.

23.1 The Riemann Integral of a Function on Rn

We assume that the reader is familiar with the theory of Riemann integration in Rn,

as in [26] or [35]. What follows is a brief synopsis of the Riemann integral of a

bounded function over a bounded set in Rn.

A closed rectangle in Rn is a Cartesian product R = [a1,b1]× ·· · × [an,bn] of

closed intervals in R, where ai,bi ∈R. Let f : R→R be a bounded function defined

on a closed rectangle R. The volume vol(R) of the closed rectangle R is defined to be

vol(R) :=
n

∏
i=1

(bi−ai). (23.1)

A partition of the closed interval [a,b] is a set of real numbers {p0, . . . , pn} such that

a = p0 < p1 < · · ·< pn = b.

A partition of the rectangle R is a collection P = {P1, . . . ,Pn}, where each Pi is a

partition of [ai,bi]. The partition P divides the rectangle R into closed subrectangles,

which we denote by R j (Figure 23.1).

We define the lower sum and the upper sum of f with respect to the partition P

to be

L( f ,P) := ∑(inf
R j

f ) vol(R j), U( f ,P) := ∑(sup
R j

f ) vol(R j),

where each sum runs over all subrectangles of the partition P. For any partition P,

clearly L( f ,P) ≤U( f ,P). In fact, more is true: for any two partitions P and P′ of

the rectangle R,

L( f ,P) ≤U( f ,P′),

which we show next.
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b b b b

b

b

b

a1 b1

a2

b2

Fig. 23.1. A partition of a closed rectangle.

A partition P′ = {P′1, . . . ,P′n} is a refinement of the partition P = {P1, . . . ,Pn} if

Pi ⊂ P′i for all i = 1, . . . ,n. If P′ is a refinement of P, then each subrectangle R j of P

is subdivided into subrectangles R′jk of P′, and it is easily seen that

L( f ,P) ≤ L( f ,P′), (23.2)

because if R′jk ⊂ R j, then infR j
f ≤ infR′

jk
f . Similarly, if P′ is a refinement of P, then

U( f ,P′)≤U( f ,P). (23.3)

Any two partitions P and P′ of the rectangle R have a common refinement Q =
{Q1, . . . ,Qn} with Qi = Pi∪P′i . By (23.2) and (23.3),

L( f ,P) ≤ L( f ,Q) ≤U( f ,Q) ≤U( f ,P′).

It follows that the supremum of the lower sum L( f ,P) over all partitions P of R is

less than or equal to the infimum of the upper sum U( f ,P) over all partitions P of

R. We define these two numbers to be the lower integral
∫

R
f and the upper integral

∫
R f , respectively:

∫

R

f := sup
P

L( f ,P),

∫

R
f := inf

P
L( f ,P).

Definition 23.1. Let R be a closed rectangle in Rn. A bounded function f : R→ R

is said to be Riemann integrable if
∫

R
f =

∫
R f ; in this case, the Riemann integral

of f is this common value, denoted by
∫

R f (x)dx1 · · ·dxn, where x1, . . . ,xn are the

standard coordinates on Rn.

Remark. When we speak of a rectangle [a1,b1]×·· ·× [an,bn] in Rn, we have already

tacitly chosen n coordinates axes, with coordinates x1, . . . ,xn. Thus, the definition of

a Riemann integral depends on the coordinates x1, . . . ,xn.

If f : A ⊂ Rn → R, then the extension of f by zero is the function f̃ : Rn → R

such that
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f̃ (x) =

{
f (x) for x ∈ A,

0 for x /∈ A.

Now suppose f : A→ R is a bounded function on a bounded set A in Rn. Enclose A

in a closed rectangle R and define the Riemann integral of f over A to be

∫

A
f (x)dx1 · · ·dxn =

∫

R
f̃ (x)dx1 · · ·dxn

if the right-hand side exists. In this way we can deal with the integral of a bounded

function whose domain is an arbitrary bounded set in Rn.

The volume vol(A) of a subset A⊂Rn is defined to be the integral
∫

A 1dx1 · · ·dxn

if the integral exists. This concept generalizes the volume of a closed rectangle

defined in (23.1).

23.2 Integrability Conditions

In this section we describe some conditions under which a function defined on an

open subset of Rn is Riemann integrable.

Definition 23.2. A set A⊂ Rn is said to have measure zero if for every ε > 0, there

is a countable cover {Ri}∞
i=1 of A by closed rectangles Ri such that ∑∞

i=1 vol(Ri)< ε .

The most useful integrability criterion is the following theorem of Lebesgue [26,

Theorem 8.3.1, p. 455].

Theorem 23.3 (Lebesgue’s theorem). A bounded function f : A→R on a bounded

subset A⊂ Rn is Riemann integrable if and only if the set Disc( f̃ ) of discontinuities

of the extended function f̃ has measure zero.

Proposition 23.4. If a continuous function f : U → R defined on an open subset U

of Rn has compact support, then f is Riemann integrable on U.

Proof. Being continuous on a compact set, the function f is bounded. Being com-

pact, the set supp f is closed and bounded in Rn. We claim that the extension f̃ is

continuous.

Since f̃ agrees with f on U , the extended function f̃ is continuous on U . It

remains to show that f̃ is continuous on the complement of U in Rn as well. If

p /∈U , then p /∈ supp f . Since supp f is a closed subset of Rn, there is an open ball B

containing p and disjoint from supp f . On this open ball, f̃ ≡ 0, which implies that

f̃ is continuous at p /∈U . Thus, f̃ is continuous on Rn. By Lebesgue’s theorem, f is

Riemann integrable on U . ⊓⊔

Example 23.5. The continuous function f : ]− 1,1[→ R, f (x) = tan(πx/2), is de-

fined on an open subset of finite length in R, but is not bounded (Figure 23.2). The

support of f is the open interval ]− 1,1[, which is not compact. Thus, the function

f does not satisfy the hypotheses of either Lebesgue’s theorem or Proposition 23.4.

Note that it is not Riemann integrable.
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x

y

1−1

Fig. 23.2. The function f (x) = tan(πx/2) on ]−1,1[.

Remark. The support of a real-valued function is the closure in its domain of the

subset where the function is not zero. In Example 23.5, the support of f is the open

interval ]− 1,1[, not the closed interval [−1,1], because the domain of f is ]− 1,1[,
not R.

Definition 23.6. A subset A ⊂ Rn is called a domain of integration if it is bounded

and its topological boundary bd(A) is a set of measure zero.

Familiar plane figures such as triangles, rectangles, and circular disks are all

domains of integration in R2.

Proposition 23.7. Every bounded continuous function f defined on a domain of in-

tegration A in Rn is Riemann integrable over A.

Proof. Let f̃ : Rn → R be the extension of f by zero. Since f is continuous on A,

the extension f̃ is necessarily continuous at all interior points of A. Clearly, f̃ is

continuous at all exterior points of A also, because every exterior point has a neigh-

borhood contained entirely in Rn−A, on which f̃ is identically zero. Therefore, the

set Disc( f̃ ) of discontinuities of f̃ is a subset of bd(A), a set of measure zero. By

Lebesgue’s theorem, f is Riemann integrable on A. ⊓⊔

23.3 The Integral of an n-Form on Rn

Once a set of coordinates x1, . . . ,xn has been fixed on Rn, n-forms on Rn can be

identified with functions on Rn, since every n-form on Rn can be written as ω =
f (x)dx1 ∧ ·· · ∧ dxn for a unique function f (x) on Rn. In this way the theory of

Riemann integration of functions on Rn carries over to n-forms on Rn.

Definition 23.8. Let ω = f (x)dx1 ∧ ·· · ∧ dxn be a C∞ n-form on an open subset

U ⊂ Rn, with standard coordinates x1, . . . ,xn. Its integral over a subset A ⊂ U is

defined to be the Riemann integral of f (x):
∫

A
ω =

∫

A
f (x)dx1 ∧·· ·∧dxn :=

∫

A
f (x)dx1 · · ·dxn,
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if the Riemann integral exists.

In this definition the n-form must be written in the order dx1 ∧ ·· · ∧ dxn. To

integrate, for example, τ = f (x)dx2∧dx1 over A⊂ R2, one would write

∫

A
τ =

∫

A
− f (x)dx1∧dx2 =−

∫

A
f (x)dx1 dx2.

Example. If f is a bounded continuous function defined on a domain of integration

A in Rn, the the integral
∫

A f dx1∧·· ·∧dxn exists by Proposition 23.7.

Let us see how the integral of an n-form ω = f dx1∧·· ·∧dxn on an open subset

U ⊂ Rn transforms under a change of variables. A change of variables on U is

given by a diffeomorphism T : Rn ⊃ V → U ⊂ Rn. Let x1, . . . ,xn be the standard

coordinates on U and y1, . . . ,yn the standard coordinates on V . Then T i := xi ◦ T =
T ∗(xi) is the ith component of T . We will assume that U and V are connected,

and write x = (x1, . . . ,xn) and y = (y1, . . . ,yn). Denote by J(T ) the Jacobian matrix

[∂T i/∂y j]. By Corollary 18.4(ii),

dT 1∧·· ·∧dT n = det(J(T ))dy1∧·· ·∧dyn.

Hence,

∫

V
T ∗ω =

∫

V
(T ∗ f )T ∗dx1∧·· ·∧T ∗dxn (Proposition 18.11)

=

∫

V
( f ◦ T )dT 1∧·· ·∧dT n (because T ∗d = dT ∗)

=
∫

V
( f ◦ T )det(J(T ))dy1∧·· ·∧dyn

=

∫

V
( f ◦ T )det(J(T ))dy1 · · ·dyn. (23.4)

On the other hand, the change-of-variables formula from advanced calculus gives

∫

U
ω =

∫

U
f dx1 · · ·dxn =

∫

V
( f ◦ T )|det(J(T ))|dy1 · · ·dyn, (23.5)

with an absolute-value sign around the Jacobian determinant. Equations (23.4) and

(23.5) differ by the sign of det(J(T )). Hence,

∫

V
T ∗ω =±

∫

U
ω , (23.6)

depending on whether the Jacobian determinant det(J(T )) is positive or negative.

By Proposition 21.8, a diffeomorphism T : Rn ⊃ V → U ⊂ Rn is orientation-

preserving if and only if its Jacobian determinant det(J(T )) is everywhere positive

on V . Equation (23.6) shows that the integral of a differential form is not invari-

ant under all diffeomorphisms of V with U , but only under orientation-preserving

diffeomorphisms.
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23.4 Integral of a Differential Form over a Manifold

Integration of an n-form on Rn is not so different from integration of a function. Our

approach to integration over a general manifold has several distinguishing features:

(i) The manifold must be oriented (in fact, Rn has a standard orientation).

(ii) On a manifold of dimension n, one can integrate only n-forms, not functions.

(iii) The n-forms must have compact support.

Let M be an oriented manifold of dimension n, with an oriented atlas {(Uα ,φα )}
giving the orientation of M. Denote by Ωk

c(M) the vector space of C∞ k-forms with

compact support on M. Suppose {(U,φ)} is a chart in this atlas. If ω ∈Ωn
c(U) is an

n-form with compact support on U , then because φ : U→ φ(U) is a diffeomorphism,

(φ−1)∗ω is an n-form with compact support on the open subset φ(U) ⊂ Rn. We

define the integral of ω on U to be

∫

U
ω :=

∫

φ(U)
(φ−1)∗ω . (23.7)

If (U,ψ) is another chart in the oriented atlas with the same U , then φ ◦
ψ−1 : ψ(U)→ φ(U) is an orientation-preserving diffeomorphism, and so

∫

φ(U)
(φ−1)∗ω =

∫

ψ(U)
(φ ◦ ψ−1)∗(φ−1)∗ω =

∫

ψ(U)
(ψ−1)∗ω .

Thus, the integral
∫

U ω on a chart U of the atlas is well defined, independent of

the choice of coordinates on U . By the linearity of the integral on Rn, if ω ,τ ∈
Ωn

c(U), then ∫

U
ω + τ =

∫

U
ω +

∫

U
τ.

Now let ω ∈ Ωn
c(M). Choose a partition of unity {ρα} subordinate to the open

cover {Uα}. Because ω has compact support and a partition of unity has locally

finite supports, all except finitely many ραω are identically zero by Problem 18.6. In

particular,

ω = ∑
α

ρα ω

is a finite sum. Since by Problem 18.4(b),

supp(ρα ω)⊂ suppρα ∩ suppω ,

supp(ρα ω) is a closed subset of the compact set suppω . Hence, supp(ραω) is com-

pact. Since ραω is an n-form with compact support in the chart Uα , its integral∫
Uα

ρα ω is defined. Therefore, we can define the integral of ω over M to be the finite

sum ∫

M
ω := ∑

α

∫

Uα

ρα ω . (23.8)

For this integral to be well defined, we must show that it is independent of the

choices of oriented atlas and partition of unity. Let {Vβ} be another oriented atlas
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of M specifying the orientation of M, and {χβ} a partition of unity subordinate to

{Vβ}. Then {(Uα ∩Vβ ,φα |Uα∩Uβ
)} and {(Uα ∩Vβ ,ψβ |Uα∩Uβ

)} are two new atlases

of M specifying the orientation of M, and

∑
α

∫

Uα

ρα ω = ∑
α

∫

Uα

ρα ∑
β

χβ ω (because ∑
β

χβ = 1)

= ∑
α

∑
β

∫

Uα

ρα χβ ω (these are finite sums)

= ∑
α

∑
β

∫

Uα∩Vβ

ρα χβ ω ,

where the last line follows from the fact that the support of ρα χβ is contained in

Uα ∩Vβ . By symmetry, ∑β

∫
Vβ

χβ ω is equal to the same sum. Hence,

∑
α

∫

Uα

ραω =∑
β

∫

Vβ

χβ ω ,

proving that the integral (23.8) is well defined.

Proposition 23.9. Let ω be an n-form with compact support on an oriented man-

ifold M of dimension n. If −M denotes the same manifold but with the opposite

orientation, then
∫
−M ω =−∫M ω .

Thus, reversing the orientation of M reverses the sign of an integral over M.

Proof. By the definition of an integral ((23.7) and (23.8)), it is enough to show that

for every chart (U,φ) = (U,x1, . . . ,xn) and differential form τ ∈Ωn
c(U), if (U, φ̄) =

(U,−x1,x2, . . . ,xn) is the chart with the opposite orientation, then

∫

φ̄(U)

(
φ̄−1

)∗
τ =−

∫

φ(U)

(
φ−1

)∗
τ.

Let r1, . . . ,rn be the standard coordinates onRn. Then xi = ri ◦ φ and ri = xi ◦ φ−1.

With φ̄ , the only difference is that when i = 1,

−x1 = r1 ◦ φ̄ and r1 =−x1 ◦ φ̄−1.

Suppose τ = f dx1∧·· ·∧dxn on U . Then

(φ̄−1)∗τ = ( f ◦ φ̄−1)d(x1 ◦ φ̄−1)∧d(x2 ◦ φ̄−1)∧·· ·∧d(xn ◦ φ̄−1)

=−( f ◦ φ̄−1)dr1∧dr2∧·· ·∧drn. (23.9)

Similarly, (
φ−1

)∗
τ =

(
f ◦ φ−1

)
dr1∧dr2∧·· ·∧drn.

Since φ ◦ φ̄−1 : φ̄(U)→ φ(U) is given by
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(φ ◦ φ̄−1)(a1,a2, . . . ,an) = (−a1,a2, . . . ,an),

the absolute value of its Jacobian determinant is

|J(φ ◦ φ̄−1)|= |−1|= 1. (23.10)

Therefore,

∫

φ̄(U)

(
φ̄−1

)∗
τ =−

∫

φ̄(U)

(
f ◦ φ̄−1

)
dr1 · · ·drn (by (23.9))

=−
∫

φ̄(U)
( f ◦ φ−1) ◦ (φ ◦ φ̄−1)|J(φ ◦ φ̄−1)|dr1 · · ·drn (by (23.10))

=−
∫

φ(U)
( f ◦ φ−1)dr1 · · ·drn (by the change-of-variables formula)

=−
∫

φ(U)

(
φ−1

)∗
τ. ⊓⊔

The treatment of integration above can be extended almost word for word to

oriented manifolds with boundary. It has the virtue of simplicity and is of great

utility in proving theorems. However, it is not practical for actual computation of

integrals; an n-form multiplied by a partition of unity can rarely be integrated as a

closed expression. To calculate explicitly integrals over an oriented n-manifold M, it

is best to consider integrals over a parametrized set.

Definition 23.10. A parametrized set in an oriented n-manifold M is a subset A

together with a C∞ map F : D→M from a compact domain of integration D⊂Rn to

M such that A = F(D) and F restricts to an orientation-preserving diffeomorphism

from int(D) to F(int(D)). Note that by smooth invariance of domain for manifolds

(Remark 22.5), F(int(D)) is an open subset of M. The C∞ map F : D→ A is called

a parametrization of A.

If A is a parametrized set in M with parametrization F : D→ A and ω is a C∞ n-

form on M, not necessarily with compact support, then we define
∫

A ω to be
∫

D F∗ω .

It can be shown that the definition of
∫

A ω is independent of the parametrization

and that in case A is a manifold, it agrees with the earlier definition of integration

over a manifold. Subdividing an oriented manifold into a union of parametrized

sets can be an effective method of calculating an integral over the manifold. We

will not delve into this theory of integration (see [31, Theorem 25.4, p. 213] or [25,

Proposition 14.7, p. 356]), but will content ourselves with an example.

Example 23.11 (Integral over a sphere). In spherical coordinates, ρ is the distance√
x2 + y2 + z2 of the point (x,y,z) ∈ R3 to the origin, ϕ is the angle that the vector

〈x,y,z〉 makes with the positive z-axis, and θ is the angle that the vector 〈x,y〉 in the

(x,y)-plane makes with the positive x-axis (Figure 23.3(a)). Let ω be the 2-form on

the unit sphere S2 in R3 given by
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θ

ϕ ρ

x

y

z

(a) Spherical coordinates in R3

θ

ϕ

2π

π

F

(b) A parametrization by spherical coordinates

Fig. 23.3. The sphere as a parametrized set.

ω =





dy∧dz

x
for x 6= 0,

dz∧dx

y
for y 6= 0,

dx∧dy

z
for z 6= 0.

Calculate

∫

S2
ω .

Up to a factor of 2, the form ω is the 2-form on S2 from Problem 19.11(b).

In Riemannian geometry, it is shown that ω is the area form of the sphere S2 with

respect to the Euclidean metric. Therefore, the integral

∫

S2
ω is the surface area of

the sphere.

Solution. The sphere S2 has a parametrization by spherical coordinates (Figure 23.3(b)):

F(ϕ ,θ ) = (sinϕ cosθ ,sinϕ sinθ ,cosϕ)

on D = {(ϕ ,θ ) ∈R2 | 0≤ ϕ ≤ π , 0≤ θ ≤ 2π}. Since

F∗x = sinϕ cosθ , F∗y = sinϕ sin θ , and F∗z = cosϕ ,

we have

F∗dy = dF∗y = cosϕ sinθ dϕ + sinϕ cosθ dθ

and

F∗dz =−sinϕ dϕ ,

so for x 6= 0,

F∗ω =
F∗dy∧F∗dz

F∗x
= sinϕ dϕ ∧dθ .
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For y 6= 0 and z 6= 0, similar calculations show that F∗ω is given by the same formula.

Therefore, F∗ω = sinϕ dϕ ∧dθ everywhere on D, and

∫

S2
ω =

∫

D
F∗ω =

∫ 2π

0

∫ π

0
sinϕ dϕ dθ = 2π

[
− cosϕ

]π
0
= 4π . ⊓⊔

Integration over a zero-dimensional manifold

The discussion of integration so far assumes implicitly that the manifold M has di-

mension n≥ 1. We now treat integration over a zero-dimensional manifold. A com-

pact oriented manifold M of dimension 0 is a finite collection of points, each point

oriented by +1 or −1. We write this as M = ∑ pi−∑q j. The integral of a 0-form

f : M→R is defined to be the sum

∫

M
f = ∑ f (pi)−∑ f (q j).

23.5 Stokes’s Theorem

Let M be an oriented manifold of dimension n with boundary. We give its boundary

∂M the boundary orientation and let i : ∂M →֒ M be the inclusion map. If ω is an

(n−1)-form on M, it is customary to write
∫

∂M ω instead of
∫

∂M i∗ω .

Theorem 23.12 (Stokes’s theorem). For any smooth (n− 1)-form ω with compact

support on the oriented n-dimensional manifold M,

∫

M
dω =

∫

∂M
ω .

Proof. Choose an atlas {(Uα ,φα)} for M in which each Uα is diffeomorphic to either

Rn or Hn via an orientation-preserving diffeomorphism. This is possible since any

open disk is diffeomorphic to Rn and any half-disk containing its boundary diameter

is diffeomorphic to Hn (see Problem 1.5). Let {ρα} be a C∞ partition of unity

subordinate to {Uα}. As we showed in the preceding section, the (n−1)-form ρα ω
has compact support in Uα .

Suppose Stokes’s theorem holds for Rn and for Hn. Then it holds for all the

charts Uα in our atlas, which are diffeomorphic to Rn or Hn. Also, note that

(∂M)∩Uα = ∂Uα .

Therefore,
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∫

∂M
ω =

∫

∂M
∑
α

ραω

(
∑
α

ρα = 1

)

= ∑
α

∫

∂M
ραω

(
∑
α

ρα ω is a finite sum by Problem 18.6

)

= ∑
α

∫

∂Uα

ραω (suppραω ⊂Uα)

= ∑
α

∫

Uα

d(ραω) (Stokes’s theorem for Uα)

= ∑
α

∫

M
d(ραω) (suppd(ραω)⊂Uα)

=
∫

M
d
(
∑ραω

) (
∑
α

ρα ω is a finite sum

)

=

∫

M
dω .

Thus, it suffices to prove Stokes’s theorem for Rn and for Hn. We will give a

proof only for H2, since the general case is similar (see Problem 23.4).

Proof of Stokes’s theorem for the upper half-plane H2. Let x,y be the coordinates

on H2. Then the standard orientation on H2 is given by dx∧ dy, and the bound-

ary orientation on ∂H2 is given by ι−∂/∂y (dx∧dy) = dx.

The form ω is a linear combination

ω = f (x,y)dx+ g(x,y)dy (23.11)

for C∞ functions f , g with compact support in H2. Since the supports of f and g are

compact, we may choose a real number a> 0 large enough that the supports of f and

g are contained in the interior of the square [−a,a]× [0,a]. We will use the notation

fx, fy to denote the partial derivatives of f with respect to x and y, respectively. Then

dω =

(
∂g

∂x
− ∂ f

∂y

)
dx∧dy = (gx− fy)dx∧dy,

and
∫

H2
dω =

∫

H2
gx dxdy−

∫

H2
fy dxdy

=

∫ ∞

0

∫ ∞

−∞
gx dxdy−

∫ ∞

−∞

∫ ∞

0
fy dydx

=

∫ a

0

∫ a

−a
gx dxdy−

∫ a

−a

∫ a

0
fy dydx. (23.12)

In this expression, ∫ a

−a
gx(x,y)dx = g(x,y)

]a
x=−a

= 0

because suppg lies in the interior of [−a,a]× [0,a]. Similarly,
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∫ a

0
fy(x,y)dy = f (x,y)

]a

y=0
=− f (x,0)

because f (x,a) = 0. Thus, (23.12) becomes

∫

H2
dω =

∫ a

−a
f (x,0)dx.

On the other hand, ∂H2 is the x-axis and dy = 0 on ∂H2. It follows from (23.11)

that ω = f (x,0)dx when restricted to ∂H2 and

∫

∂H2
ω =

∫ a

−a
f (x,0)dx.

This proves Stokes’s theorem for the upper half-plane. ⊓⊔

23.6 Line Integrals and Green’s Theorem

We will now show how Stokes’s theorem for a manifold unifies some of the theorems

of vector calculus on R2 and R3. Recall the calculus notation F ·dr = Pdx+Qdy+
Rdz for F = 〈P,Q,R〉 and r = (x,y,z). As in calculus, we assume in this section

that functions, vector fields, and regions of integration have sufficient smoothness or

regularity properties so that all the integrals are defined.

Theorem 23.13 (Fundamental theorem for line integrals). Let C be a curve in

R3, parametrized by r(t) = (x(t),y(t),z(t)), a≤ t ≤ b, and let F be a vector field on

R3. If F = grad f for some scalar function f , then

∫

C
F ·dr = f (r(b))− f (r(a)).

Suppose in Stokes’s theorem we take M to be a curve C with parametrization

r(t), a≤ t ≤ b, and ω to be the function f on C. Then

∫

C
dω =

∫

C
df =

∫

C

∂ f

∂x
dx+

∂ f

∂y
dy+

∂ f

∂ z
dz =

∫

C
grad f ·dr

and ∫

∂C
ω = f

]r(b)
r(a)

= f (r(b))− f (r(a)).

In this case Stokes’s theorem specializes to the fundamental theorem for line inte-

grals.

Theorem 23.14 (Green’s theorem). If D is a plane region with boundary ∂D, and

P and Q are C∞ functions on D, then

∫

∂D
Pdx+Qdy =

∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA.
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In this statement, dA is the usual calculus notation for dxdy. To obtain Green’s

theorem, let M be a plane region D with boundary ∂D and let ω be the 1-form

Pdx+Qdy on D. Then ∫

∂D
ω =

∫

∂D
Pdx+Qdy

and
∫

D
dω =

∫

D
Py dy∧dx+Qx dx∧dy =

∫

D
(Qx−Py)dx∧dy

=

∫

D
(Qx−Py)dxdy =

∫

D
(Qx−Py)dA.

In this case Stokes’s theorem is Green’s theorem in the plane.

Problems

23.1. Area of an ellipse

Use the change-of-variables formula to compute the area enclosed by the ellipse

x2/a2 +y2/b2 = 1

in R2.

23.2. Characterization of boundedness in Rn

Prove that a subset A⊂ Rn is bounded if and only if its closure Ā in Rn is compact.

23.3.* Integral under a diffeomorphism

Suppose N and M are connected, oriented n-manifolds and F : N→ M is a diffeomorphism.

Prove that for any ω ∈Ωk
c(M), ∫

N
F∗ω =±

∫

M
ω,

where the sign depends on whether F is orientation-preserving or orientation-reversing.

23.4.* Stokes’s theorem

Prove Stokes’s theorem for Rn and for Hn.

23.5. Area form on the sphere S2

Prove that the area form ω on S2 in Example 23.11 is equal to the orientation form

xdy∧dz−ydx∧dz+ zdx∧dy

of S2 in Problem 22.9.



Chapter 7

De Rham Theory

Henri Poincaré

(1854–1912)

By the fundamental theorem for line integrals

(Theorem 23.13), if a smooth vector field F is the

gradient of a scalar function f , then for any two

points p and q in R3, the line integral
∫

C F · dr over

a curve C from p to q is independent of the curve.

In this case, the line integral
∫

C F · dr can be com-

puted in terms of its values at the two endpoints as

f (q)− f (p). Similarly, by the classical Stokes the-

orem for a surface, the surface integral of smooth a

vector field F over an oriented surface S with bound-

ary C in R3 can be evaluated as an integral over the

curve C if F is the curl of another vector field. It is

thus of interest to know whether a vector field R3

is the gradient of a function or is the curl of an-

other vector field. By the correspondence of Sec-

tion 4.6 between vector fields and differential forms,

this translates into whether a differential form ω on

R3 is exact.

Considerations such as these led Henri Poincaré to look for conditions under

which a differential form is exact on Rn. Of course, a necessary condition is that

the form ω be closed. Poincaré proved in 1887 that for k = 1,2,3, a k-form on Rn

is exact if and only if it is closed, a lemma that now bears his name. Vito Volterra

published in 1889 the first complete proof of the Poincaré lemma for all k.

It turns out that whether every closed form on a manifold is exact depends on

the topology of the manifold. For example, on R2 every closed k-form is exact for

k > 0, but on the punctured plane R2−{(0,0)} there are closed 1-forms that are not

exact. The extent to which closed forms are not exact is measured by the de Rham

cohomology, possibly the most important diffeomorphism invariant of a manifold.

© Springer Science+Business Media, LLC 2011
L.W. Tu, An Introduction to Manifolds, Universitext, DOI 10.1007/978-1-4419-7400-6_8, 273
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Georges de Rham

(1903–1990)

In a series of groundbreaking papers, starting

with “Analysis situs” [33] in 1895, Poincaré intro-

duced the concept of homology and laid the founda-

tions of modern algebraic topology. Roughly speak-

ing, a compact submanifold with no boundary is

a cycle, and a cycle is homologous to zero if it is

the boundary of another manifold. The equivalence

classes of cycles under the homology relation are

called homology classes. In his doctoral thesis [8]

in 1931, Georges de Rham showed that differential

forms satisfy the same axioms as cycles and bound-

aries, in effect proving a duality between what are

now called de Rham cohomology and singular ho-

mology with real coefficients. Although he did not

define explicitly de Rham cohomology in this paper,

it was implicit in his work. A formal definition of de

Rham cohomology appeared in 1938 [9].

§24 De Rham Cohomology

In this section we define de Rham cohomology, prove some of its basic properties,

and compute two elementary examples: the de Rham cohomology vector spaces of

the real line and of the unit circle.

24.1 De Rham Cohomology

Suppose F(x,y) = 〈P(x,y),Q(x,y)〉 is a smooth vector field representing a force on

an open subset U of R2, and C is a parametrized curve c(t) = (x(t),y(t)) in U from

a point p to a point q, with a≤ t ≤ b. Then the work done by the force in moving a

particle from p to q along C is given by the line integral
∫

C Pdx+Qdy.

Such a line integral is easy to compute if the vector field F is the gradient of a

scalar function f (x,y):
F = grad f = 〈 fx, fy〉,

where fx = ∂ f/∂x and fy = ∂ f/∂y. By Stokes’s theorem, the line integral is simply

∫

C
fx dx+ fy dy =

∫

C
df = f (q)− f (p).

A necessary condition for the vector field F = 〈P,Q〉 to be a gradient is that

Py = fxy = fyx = Qx.

The question is now the following: if Py−Qx = 0, is the vector field F = 〈P,Q〉 on

U the gradient of some scalar function f (x,y) on U?
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In Section 4.6 we established a one-to-one correspondence between vector fields

and differential 1-forms on an open subset of R3. There is a similar correspondence

on an open subset of any Rn. For R2, it is as follows:

vector fields ←→ differential 1-forms,

F = 〈P,Q〉 ←→ ω = Pdx+Qdy,

grad f = 〈 fx, fy〉 ←→ df = fx dx+ fy dy,

Qx−Py = 0 ←→ dω = (Qx−Py)dx∧dy = 0.

In terms of differential forms the question above becomes the following: if the 1-

form ω = Pdx+Qdy is closed on U , is it exact? The answer to this question is

sometimes yes and sometimes no, depending on the topology of U .

Just as for an open subset of Rn, a differential form ω on a manifold M is said to

be closed if dω = 0, and exact if ω = dτ for some form τ of degree one less. Since

d2 = 0, every exact form is closed. In general, not every closed form is exact.

Let Zk(M) be the vector space of all closed k-forms and Bk(M) the vector space

of all exact k-forms on the manifold M. Because every exact form is closed, Bk(M) is

a subspace of Zk(M). The quotient vector space Hk(M) := Zk(M)/Bk(M) measures

the extent to which closed k-forms fail to be exact, and is called the de Rham co-

homology of M in degree k. As explained in Appendix D, the quotient vector space

construction introduces an equivalence relation on Zk(M):

ω ′ ∼ ω in Zk(M) iff ω ′ −ω ∈ Bk(M).

The equivalence class of a closed form ω is called its cohomology class and denoted

by [ω ]. Two closed forms ω and ω ′ determine the same cohomology class if and

only if they differ by an exact form:

ω ′ = ω +dτ.

In this case we say that the two closed forms ω and ω ′ are cohomologous.

Proposition 24.1. If the manifold M has r connected components, then its de Rham

cohomology in degree 0 is H0(M) = Rr. An element of H0(M) is specified by an

ordered r-tuple of real numbers, each real number representing a constant function

on a connected component of M.

Proof. Since there are no nonzero exact 0-forms,

H0(M) = Z0(M) = {closed 0-forms}.

Supposed f is a closed 0-form on M; i.e., f is a C∞ function on M such that

df = 0. On any chart (U,x1, . . . ,xn),

df =∑
∂ f

∂xi
dxi.
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Thus, df = 0 on U if and only if all the partial derivatives ∂ f/∂xi vanish identically

on U . This in turn is equivalent to f being locally constant on U . Hence, the closed

0-forms on M are precisely the locally constant functions on M. Such a function must

be constant on each connected component of M. If M has r connected components,

then a locally constant function on M can be specified by an ordered set of r real

numbers. Thus, Z0(M) =Rr. ⊓⊔

Proposition 24.2. On a manifold M of dimension n, the de Rham cohomology Hk(M)
vanishes for k > n.

Proof. At any point p ∈M, the tangent space TpM is a vector space of dimension n.

If ω is a k-form on M, then ωp ∈ Ak(TpM), the space of alternating k-linear functions

on TpM. By Corollary 3.31, if k > n, then Ak(TpM) = 0. Hence, for k > n, the only

k-form on M is the zero form. ⊓⊔

24.2 Examples of de Rham Cohomology

Example 24.3 (De Rham cohomology of the real line). Since the real line R1 is con-

nected, by Proposition 24.1,

H0(R1) = R.

For dimensional reasons, on R1 there are no nonzero 2-forms. This implies that

every 1-form on R1 is closed. A 1-form f (x)dx on R1 is exact if and only if there is

a C∞ function g(x) on R1 such that

f (x)dx = dg = g′(x)dx,

where g′(x) is the calculus derivative of g with respect to x. Such a function g(x) is

simply an antiderivative of f (x), for example

g(x) =
∫ x

0
f (t)dt.

This proves that every 1-form onR1 is exact. Therefore, H1(R1) = 0. In combination

with Proposition 24.2, we have

Hk(R1) =

{
R for k = 0,

0 for k ≥ 1.

Example 24.4 (De Rham cohomology of a circle). Let S1 be the unit circle in the

xy-plane. By Proposition 24.1, because S1 is connected, H0(S1) = R, and because

S1 is one-dimensional, Hk(S1) = 0 for all k≥ 2. It remains to compute H1(S1).
Recall from Subsection 18.7 the map h : R → S1, h(t) = (cost,sin t). Let

i : [0,2π ] → R be the inclusion map. Restricting the domain of h to [0,2π ] gives

a parametrization F := h ◦ i : [0,2π ]→ S1 of the circle. In Examples 17.15 and

17.16, we found a nowhere-vanishing 1-form ω = −ydx+ xdy on S1 and showed

that F∗ω = i∗h∗ω = i∗dt = dt. Thus,
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∫

S1
ω =

∫

F([0,2π ])
ω =

∫

[0,2π ]
F∗ω =

∫ 2π

0
dt = 2π .

Since the circle has dimension 1, all 1-forms on S1 are closed, so Ω1(S1) =
Z1(S1). The integration of 1-forms on S1 defines a linear map

ϕ : Z1(S1) = Ω1(S1)→R, ϕ(α) =

∫

S1
α.

Because ϕ(ω) = 2π 6= 0, the linear map ϕ : Ω1(S1)→ R is onto.

By Stokes’s theorem, the exact 1-forms on S1 are in kerϕ . Conversely, we will

show that all 1-forms in kerϕ are exact. Suppose α = f ω is a smooth 1-form on S1

such that ϕ(α) = 0. Let f̄ = h∗ f = f ◦ h ∈ Ω0(R). Then f̄ is periodic of period 2π
and

0 =
∫

S1
α =

∫

F([0,2π ])
α =

∫

[0,2π ]
F∗α =

∫

[0,2π ]
(i∗h∗ f )(t) ·F∗ω =

∫ 2π

0
f̄ (t)dt.

Lemma 24.5. Suppose f̄ is a C∞ periodic function of period 2π onR and
∫ 2π

0 f̄ (u)du=
0. Then f̄ dt = dḡ for a C∞ periodic function ḡ of period 2π on R.

Proof. Define ḡ ∈Ω0(R) by

ḡ(t) =

∫ t

0
f̄ (u)du.

Since
∫ 2π

0 f̄ (u)du = 0 and f̄ is periodic of period 2π ,

ḡ(t +2π) =

∫ 2π

0
f̄ (u)du+

∫ t+2π

2π
f̄ (u)du

= 0+

∫ t+2π

2π
f̄ (u)du =

∫ t

0
f̄ (u)du = ḡ(t).

Hence, ḡ(t) is also periodic of period 2π on R. Moreover,

dḡ = ḡ′(t)dt = f̄ (t)dt. ⊓⊔
Let ḡ be the periodic function of period 2π on R from Lemma 24.5. By Proposi-

tion 18.12, ḡ = h∗g for some C∞ function g on S1. It follows that

dḡ = dh∗g = h∗(dg).

On the other hand,

f̄ (t)dt = (h∗ f )(h∗ω) = h∗( f ω) = h∗α.

Since h∗ : Ω1(S1)→ Ω1(R) is injective, α = dg. This proves that the kernel of ϕ
consists of exact forms. Therefore, integration induces an isomorphism

H1(S1) =
Z1(S1)

B1(S1)

∼→ R.

In the next section we will develop a tool, the Mayer–Vietoris sequence, using

which the computation of the cohomology of the circle becomes more or less routine.
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24.3 Diffeomorphism Invariance

For any smooth map F : N→M of manifolds, there is a pullback map F∗ : Ω∗(M)→
Ω∗(N) of differential forms. Moreover, the pullback F∗ commutes with the exterior

derivative d (Proposition 19.5).

Lemma 24.6. The pullback map F∗ sends closed forms to closed forms, and sends

exact forms to exact forms.

Proof. Suppose ω is closed. By the commutativity of F∗ with d,

dF∗ω = F∗dω = 0.

Hence, F∗ω is also closed.

Next suppose ω = dτ is exact. Then

F∗ω = F∗dτ = dF∗τ.

Hence, F∗ω is exact. ⊓⊔

It follows that F∗ induces a linear map of quotient spaces, denoted by F#:

F# :
Zk(M)

Bk(M)
→ Zk(N)

Bk(N)
, F#([ω ]) = [F∗(ω)].

This is a map in cohomology,

F# : Hk(M)→ Hk(N),

called the pullback map in cohomology.

Remark 24.7. The functorial properties of the pullback map F∗ on differential forms

easily yield the same functorial properties for the induced map in cohomology:

(i) If 1M : M→M is the identity map, then 1#
M : Hk(M)→Hk(M) is also the iden-

tity map.

(ii) If F : N→M and G : M→ P are smooth maps, then

(G ◦ F)# = F# ◦ G#.

It follows from (i) and (ii) that (Hk( ),F#) is a contravariant functor from the

category of C∞ manifolds and C∞ maps to the category of vector spaces and linear

maps. By Proposition 10.3, if F : N → M is a diffeomorphism of manifolds, then

F# : Hk(M)→ Hk(N) is an isomorphism of vector spaces.

In fact, the usual notation for the induced map in cohomology is F∗, the same

as for the pullback map on differential forms. Unless there is a possibility of confu-

sion, henceforth we will follow this convention. It is usually clear from the context

whether F∗ is a map in cohomology or on forms.
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24.4 The Ring Structure on de Rham Cohomology

The wedge product of differential forms on a manifold M gives the vector space

Ω∗(M) of differential forms a product structure. This product structure induces a

product structure in cohomology: if [ω ] ∈Hk(M) and [τ] ∈Hℓ(M), define

[ω ]∧ [τ] = [ω ∧ τ] ∈Hk+ℓ(M). (24.1)

For the product to be well defined, we need to check three things about closed forms

ω and τ:

(i) The wedge product ω ∧ τ is a closed form.

(ii) The class [ω ∧ τ] is independent of the choice of representative for [τ]. In other

words, if τ is replaced by a cohomologous form τ ′ = τ +dσ , then in the equa-

tion

ω ∧ τ ′ = ω ∧ τ +ω ∧dσ ,

we need to show that ω ∧dσ is exact.

(iii) The class [ω ∧ τ] is independent of the choice of representative for [ω ].

These all follow from the antiderivation property of d. For example, in (i), since

ω and τ are closed,

d(ω ∧ τ) = (dω)∧ τ +(−1)kω ∧dτ = 0.

In (ii),

d(ω ∧σ) = (dω)∧σ +(−1)kω ∧dσ = (−1)kω ∧dσ (since dω = 0),

which shows that ω ∧dσ is exact. Item (iii) is analogous to (ii), with the roles of ω
and τ reversed.

If M is a manifold of dimension n, we set

H∗(M) =
n⊕

k=0

Hk(M).

What this means is that an element α of H∗(M) is uniquely a finite sum of cohomol-

ogy classes in Hk(M) for various k’s:

α = α0 + · · ·+αn, αk ∈ Hk(M).

Elements of H∗(M) can be added and multiplied in the same way that one would add

or multiply polynomials, except here multiplication is the wedge product. It is easy

to check that under addition and multiplication, H∗(M) satisfies all the properties of

a ring, called the cohomology ring of M. The ring H∗(M) has a natural grading by

the degree of a closed form. Recall that a ring A is graded if it can be written as

a direct sum A =
⊕∞

k=0 Ak so that the ring multiplication sends Ak×Aℓ to Ak×ℓ. A

graded ring A =
⊕∞

k=0 Ak is said to be anticommutative if for all a ∈ Ak and b ∈ Aℓ,
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a ·b = (−1)kℓb ·a.

In this terminology, H∗(M) is an anticommutative graded ring. Since H∗(M) is also

a real vector space, it is in fact an anticommutative graded algebra over R.

Suppose F : N → M is a C∞ map of manifolds. Because F∗(ω ∧ τ) = F∗ω ∧
F∗τ for differential forms ω and τ on M (Proposition 18.11), the linear map

F∗ : H∗(M)→ H∗(N) is a ring homomorphism. By Remark 24.7, if F : N → M

is a diffeomorphism, then the pullback F∗ : H∗(M)→H∗(N) is a ring isomorphism.

To sum up, de Rham cohomology gives a contravariant functor from the cate-

gory of C∞ manifolds to the category of anticommutative graded rings. If M and

N are diffeomorphic manifolds, then H∗(M) and H∗(N) are isomorphic as anticom-

mutative graded rings. In this way the de Rham cohomology becomes a powerful

diffeomorphism invariant of C∞ manifolds.

Problems

24.1. Nowhere-vanishing 1-forms

Prove that a nowhere-vanishing 1-form on a compact manifold cannot be exact.

24.2. Cohomology in degree zero

Suppose a manifold M has infinitely many connected components. Compute its de Rham

cohomology vector space H0(M) in degree 0. (Hint: By second countability, the number of

connected components of a manifold is countable.)
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§25 The Long Exact Sequence in Cohomology

A cochain complex C is a collection of vector spaces {Ck}k∈Z together with a se-

quence of linear maps dk : Ck→Ck+1,

· · · →C−1 d−1−→C0 d0−→C1 d1−→C2 d2−→ ·· · ,

such that

dk ◦ dk−1 = 0 (25.1)

for all k. We will call the collection of linear maps {dk} the differential of the cochain

complex C.

The vector space Ω∗(M) of differential forms on a manifold M together with the

exterior derivative d is a cochain complex, the de Rham complex of M:

0→Ω0(M)
d→Ω1(M)

d→Ω2(M)
d→ ··· , d ◦ d = 0.

It turns out that many of the results on the de Rham cohomology of a manifold de-

pend not on the topological properties of the manifold, but on the algebraic properties

of the de Rham complex. To better understand de Rham cohomology, it is useful to

isolate these algebraic properties. In this section we investigate the properties of a

cochain complex that constitute the beginning of a subject known as homological

algebra.

25.1 Exact Sequences

This subsection is a compendium of a few basic properties of exactness that will be

used over and over again.

Definition 25.1. A sequence of homomorphisms of vector spaces

A
f→ B

g→C

is said to be exact at B if im f = kerg. A sequence of homomorphisms

A0 f0−→ A1 f1−→ A2 f2−→ ·· · fn−1−→ An

that is exact at every term except the first and the last is simply said to be an exact

sequence. A five-term exact sequence of the form

0→ A→ B→C→ 0

is said to be short exact.

The same definition applies to homomorphisms of groups or modules, but we are

mainly concerned with vector spaces.
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Remark. (i) When A = 0, the sequence

0
f→ B

g→C

is exact if and only if

kerg = im f = 0,

so that g is injective.

(ii) Similarly, when C = 0, the sequence

A
f→ B

g→ 0

is exact if and only if

im f = kerg = B,

so that f is surjective.

The following two propositions are very useful for dealing with exact sequences.

Proposition 25.2 (A three-term exact sequence). Suppose

A
f→ B

g→C

is an exact sequence. Then

(i) the map f is surjective if and only if g is the zero map;

(ii) the map g is injective if and only if f is the zero map.

Proof. Problem 25.1. ⊓⊔

Proposition 25.3 (A four-term exact sequence).

(i) The four-term sequence 0→ A
f→ B→ 0 of vector spaces is exact if and only if

f : A→ B is an isomorphism.

(ii) If

A
f→ B→C→ 0

is an exact sequence of vector spaces, then there is a linear isomorphism

C ≃ coker f :=
B

im f
.

Proof. Problem 25.2. ⊓⊔
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25.2 Cohomology of Cochain Complexes

If C is a cochain complex, then by (25.1),

imdk−1 ⊂ kerdk.

We can therefore form the quotient vector space

Hk(C) :=
kerdk

imdk−1

,

which is called the kth cohomology vector space of the cochain complex C. It is

a measure of the extent to which the cochain complex C fails to be exact at Ck.

Elements of the vector space Ck are called cochains of degree k or k-cochains for

short. A k-cochain in kerdk is called a k-cocycle and a k-cochain in imdk−1 is called

a k-coboundary. The equivalence class [c]∈Hk(C) of a k-cocycle c ∈ kerdk is called

its cohomology class. We denote the subspaces of k-cocycles and k-coboundaries of

C by Zk(C) and Bk(C) respectively. The letter Z for cocycles comes from Zyklen, the

German word for cycles.

To simplify the notation we will usually omit the subscript in dk, and write d ◦
d = 0 instead of dk ◦ dk−1 = 0.

Example. In the de Rham complex, a cocycle is a closed form and a coboundary is

an exact form.

If A and B are two cochain complexes with differentials d and d′ respectively, a

cochain map ϕ : A→ B is a collection of linear maps ϕk : Ak→ Bk, one for each k,

that commute with d and d′:

d′ ◦ ϕk = ϕk+1 ◦ d.

In other words, the following diagram is commutative:

· · · // Ak−1
d //

ϕk−1

��

Ak
d //

ϕk

��

Ak+1 //

ϕk+1

��

· · ·

· · · // Bk−1

d′
// Bk

d′
// Bk+1 // · · · .

We will usually omit the subscript k in ϕk.

A cochain map ϕ : A→ B naturally induces a linear map in cohomology

ϕ∗ : Hk(A)→Hk(B)

by

ϕ∗[a] = [ϕ(a)]. (25.2)

To show that this is well defined, we need to check that a cochain map takes cocycles

to cocycles, and coboundaries to coboundaries:



284 §25 The Long Exact Sequence in Cohomology

(i) for a ∈ Zk(A), d′(ϕ(a)) = ϕ(da) = 0;

(ii) for a′ ∈ Ak−1, ϕ(da′) = d′(ϕ(a′)).

Example 25.4.

(i) For a smooth map F : N → M of manifolds, the pullback map F∗ : Ω∗(M)→
Ω∗(N) on differential forms is a cochain map, because F∗ commutes with d

(Proposition 19.5). By the discussion above, there is an induced map F∗ : H∗(M)→
H∗(N) in cohomology, as we saw once before, after Lemma 24.6.

(ii) If X is a C∞ vector field on a manifold M, then the Lie derivative LX : Ω∗(M)→
Ω∗(M) commutes with d (Theorem 20.10(ii)). By (25.2), LX induces a linear

map L∗X : H∗(M)→H∗(M) in cohomology.

25.3 The Connecting Homomorphism

A sequence of cochain complexes

0→A
i→B

j→ C→ 0

is short exact if i and j are cochain maps and for each k,

0→ Ak ik→ Bk jk→Ck→ 0

is a short exact sequence of vector spaces. Since we usually omit subscripts on

cochain maps, we will write i, j instead of ik, jk .

Given a short exact sequence as above, we can construct a linear map d∗ : Hk(C)
→ Hk+1(A), called the connecting homomorphism, as follows. Consider the short

exact sequences in dimensions k and k+1:

0 // Ak+1
i // Bk+1

j // Ck+1 // 0

0 // Ak
i

//

d

OO

Bk
j

//

d

OO

Ck //

d

OO

0.

To keep the notation simple, we use the same symbol d to denote the a priori distinct

differentials dA, dB, dC of the three cochain complexes. Start with [c]∈Hk(C). Since

j : Bk→Ck is onto, there is an element b ∈ Bk such that j(b) = c. Then db ∈ Bk+1 is

in ker j because

jdb = djb (by the commutativity of the diagram)

= dc = 0 (because c is a cocycle).

By the exactness of the sequence in degree k+1, ker j = im i. This implies that

db= i(a) for some a in Ak+1. Once b is chosen, this a is unique because i is injective.

The injectivity of i also implies that da = 0, since
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i(da) = d(ia) = ddb = 0. (25.3)

Therefore, a is a cocycle and defines a cohomology class [a]. We set

d∗[c] = [a] ∈ Hk+1(A).

In defining d∗[c] we made two choices: a cocycle c to represent the cohomology

class [c]∈Hk(C) and then an element b∈ Bk that maps to c under j. For d∗ to be well

defined, one must show that the cohomology class [a] ∈ Hk+1(A) does not depend

on these choices.

Exercise 25.5 (Connecting homomorphism).* Show that the connecting homomorphism

d∗ : Hk(C)→ Hk+1(A)

is a well-defined linear map.

The recipe for defining the connecting homomorphism d∗ is best remembered as

a zig-zag diagram,

a // i // db

b
�

j
// //

_
d

OO

c,

where a // // db means that a maps to db under an injection and b
� // // c means

that b maps to c under a surjection.

25.4 The Zig-Zag Lemma

The zig-zag lemma produces a long exact sequence in cohomology from a short exact

sequence of cochain complexes. It is most useful when some of the terms in the long

exact sequence are known to be zero, for then by exactness, the adjacent maps will

be injections, surjections, or even isomorphisms. For example, if the cohomology of

one of the three cochain complexes is zero, then the cohomology vector spaces of

the other two cochain complexes will be isomorphic.

Theorem 25.6 (The zig-zag lemma). A short exact sequence of cochain complexes

0→A
i→B

j→ C→ 0

gives rise to a long exact sequence in cohomology:

Hk+1(A)
i∗ // · · · ,

Hk(A)
i∗ // Hk(B)

j∗ // Hk(C)

BCED
89

d∗

?> //

· · · j∗ // Hk−1(C)
:;=<

89
d∗

?> // (25.4)
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where i∗ and j∗ are the maps in cohomology induced from the cochain maps i and j,

and d∗ is the connecting homomorphism.

To prove the theorem one needs to check exactness at Hk(A), Hk(B), and Hk(C)
for each k. The proof is a sequence of trivialities involving what is commonly called

diagram-chasing. As an example, we prove exactness at Hk(C).

Claim. im j∗ ⊂ kerd∗.

Proof. Let [b] ∈ Hk(B). Then

d∗ j∗[b] = d∗[ j(b)].

In the recipe above for d∗, we can choose the element in Bk that maps to j(b) to be

b. Then db ∈ Bk+1. Because b is a cocycle, db = 0. Following the zig-zag diagram

0 db// i //

b
_

d

OO

j(b),
� j // //

= 0

we see that since i(0) = 0 = db, we must have d∗[ j(b)] = [0]. So j∗[b] ∈ kerd∗. ⊓⊔

Claim. kerd∗ ⊂ im j∗.

Proof. Suppose d∗[c] = [a] = 0, where [c] ∈ Hk(C). This means that a = da′ for

some a′ ∈ Ak. The calculation of d∗[c] can be represented by the zig-zag diagram

a // i // db

a′
_

d

OO

b
_

d

OO

� j // // c,

where b is an element in Bk with j(b) = c and i(a) = db. Then b− i(a′) is a cocycle

in Bk that maps to c under j:

d(b− i(a′)) = db−di(a′) = db− id(a′) = db− ia = 0,

j(b− i(a′)) = j(b)− ji(a′) = j(b) = c.

Therefore,

j∗[b− i(a′)] = [c].

So [c] ∈ im j∗. ⊓⊔

These two claims together imply the exactness of (25.4) at Hk(C). As for the

exactness of the cohomology sequence (25.4) at Hk(A) and at Hk(B), we will leave

it as an exercise (Problem 25.3).
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Problems

25.1. A three-term exact sequence

Prove Proposition 25.1.

25.2. A four-term exact sequence

Prove Proposition 25.2.

25.3. Long exact cohomology sequence

Prove the exactness of the cohomology sequence (25.4) at Hk(A) and Hk(B).

25.4.* The snake lemma1

Use the zig-zag lemma to prove the following:

The snake lemma. A commutative diagram with exact rows

0 // A1 // B1 // C1 // 0

0 // A0 //

α

OO

B0 //

β

OO

C0 //

γ

OO

0

induces a long exact sequence

cokerα // cokerβ // cokerγ // 0.

0 // kerα // kerβ // kerγ

BCED
89?>

//

1The snake lemma, also called the serpent lemma, derives its name from the shape of the

long exact sequence in it, usually drawn as an S. It may be the only result from homological

algebra that has made its way into popular culture. In the 1980 film It’s My Turn there is a

scene in which the actress Jill Clayburgh, who plays a mathematics professor, explains the

proof of the snake lemma.
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§26 The Mayer–Vietoris Sequence

As the example of the cohomology of the real line R1 illustrates, calculating the

de Rham cohomology of a manifold amounts to solving a canonically given system

of differential equations on the manifold and, in case it is not solvable, to finding

obstructions to its solvability. This is usually quite difficult to do directly. We in-

troduce in this section one of the most useful tools in the calculation of de Rham

cohomology, the Mayer–Vietoris sequence. Another tool, the homotopy axiom, will

come in the next section.

26.1 The Mayer–Vietoris Sequence

Let {U,V} be an open cover of a manifold M, and let iU : U →M, iU(p) = p, be the

inclusion map. Then the pullback

i∗U : Ωk(M)→Ωk(U)

is the restriction map that restricts the domain of a k-form on M to U : i∗U ω = ω |U .

In fact, there are four inclusion maps that form a commutative diagram:

U �
u

iU

((QQQQQQ

U ∩V
(

�

jU 55kkkkkk
�
v

jV
))SSSSSS M.

V )

	

iV

66mmmmmm

By restricting a k-form from M to U and to V , we get a homomorphism of vector

spaces

i : Ωk(M)→Ωk(U)⊕Ωk(V ),

σ 7→ (i∗U σ , i∗V σ) = (σ |U ,σ |V ).

Define the map

j : Ωk(U)⊕Ωk(V )→Ωk(U ∩V )

by

j(ω ,τ) = j∗V τ− j∗U ω = τ|U∩V −ω |U∩V . (26.1)

If U ∩V is empty, we define Ωk(U ∩V ) = 0. In this case, j is simply the zero

map. We call i the restriction map and j the difference map. Since the direct sum

Ω∗(U)⊕Ω∗(V ) is the de Rham complex Ω∗(U ∐ V ) of the disjoint union U ∐ V ,

the exterior derivative d on Ω∗(U)⊕Ω∗(V ) is given by d(ω ,τ) = (dω ,dτ).

Proposition 26.1. Both the restriction map i and the difference map j commute with

the exterior derivative d.
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Proof. This is a consequence of the commutativity of d with the pullback (Proposi-

tion 19.5). For σ ∈Ωk(M),

diσ = d(i∗U σ , i∗V σ) = (di∗U σ ,di∗V σ) = (i∗U dσ , i∗V dσ) = idσ .

For (ω ,τ) ∈Ωk(U)⊕Ωk(V ),

d j(ω ,τ) = d( j∗V τ− j∗U ω) = j∗V dτ− j∗U dω = jd(ω ,τ). ⊓⊔

Thus, i and j are cochain maps.

Proposition 26.2. For each integer k ≥ 0, the sequence

0→Ωk(M)
i→Ωk(U)⊕Ωk(V )

j→Ωk(U ∩V )→ 0 (26.2)

is exact.

Proof. Exactness at the first two terms Ωk(M) and Ωk(U)⊕Ωk(V ) is straightfor-

ward. We leave it as an exercise (Problem 26.1). We will prove exactness at

Ωk(U ∩V).
To prove the surjectivity of the difference map

j : Ωk(U)⊕Ωk(V )→Ωk(U ∩V ),

it is best to consider first the case of functions on M =R1. Let f be a C∞ function on

U ∩V as in Figure 26.1. We have to write f as the difference of a C∞ function on V

and a C∞ function on U .

( )

(

)

ρU

ρV
U

V

fρU f

Fig. 26.1. Writing f as the difference of a C∞ function on V and a C∞ function on U .

Let {ρU ,ρV} be a partition of unity subordinate to the open cover {U,V}. Define

fV : V →R by
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fV (x) =

{
ρU(x) f (x) for x ∈U ∩V ,

0 for x ∈V − (U ∩V ).

Exercise 26.3 (Smooth extension of a function). Prove that fV is a C∞ function on V .

The function fV is called the extension by zero of ρU f from U∩V to V . Similarly,

we define fU to be the extension by zero of ρV f from U ∩V to U . Note that to

“extend” the domain of f from U ∩V to one of the two open sets, we multiply by the

partition function of the other open set. Since

j(− fU , fV ) = fV |U∩V + fU |U∩V = ρU f +ρV f = f on U ∩V,

j is surjective.

For differential k-forms on a general manifold M, the formula is similar. For

ω ∈ Ωk(U ∩V ), define ωU to be the extension by zero of ρV ω from U ∩V to U ,

and ωV to be the extension by zero of ρUω from U ∩V to V . On U ∩V , (−ωU ,ωV )
restricts to (−ρV ω ,ρUω). Hence, j maps (−ωU ,ωV ) ∈Ωk(U)⊕Ωk(V ) to

ρV ω− (−ρUω) = ω ∈Ωk(U ∩V ).

This shows that j is surjective and the sequence (26.2) is exact at Ωk(U ∩V ). ⊓⊔

It follows from Proposition 26.2 that the sequence of cochain complexes

0→Ω∗(M)
i→Ω∗(U)⊕Ω∗(V )

j→Ω∗(U ∩V)→ 0

is short exact. By the zig-zag lemma (Theorem 25.6), this short exact sequence of

cochain complexes gives rise to a long exact sequence in cohomology, called the

Mayer–Vietoris sequence:

Hk+1(M)
i∗ // · · · .

Hk(M)
i∗ // Hk(U)⊕Hk(V )

j∗ // Hk(U ∩V )

BCED
89

d∗

?> //

· · ·
j∗ // Hk−1(U ∩V )

:;=<
89

d∗

?> // (26.3)

In this sequence i∗ and j∗ are induced from i and j:

i∗[σ ] = [i(σ)] = ([σ |U ], [σ |V ]) ∈Hk(U)⊕Hk(V ),

j∗([ω ], [τ]) = [ j(ω ,τ)] = [τ|U∩V −ω |U∩V ] ∈ Hk(U ∩V ).

By the recipe of Section 25.3, the connecting homomorphism d∗ : Hk(U ∩V )→
Hk+1(M) is obtained in three steps as in the diagrams below:
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Ωk+1(M) // i // Ωk+1(U)⊕Ωk+1(V )

Ωk(U)⊕Ωk(V )

d

OO

j // // Ωk(U ∩V ),

α // i

(3)
// (−dζU ,dζV )

� j // // 0

(−ζU ,ζV )
_

d (2)

OO

� j

(1)
// // ζ .

_

d

OO

(1) Starting with a closed k-form ζ ∈ Ωk(U ∩V ) and using a partition of unity

{ρU ,ρV} subordinate to {U,V}, one can extend ρU ζ by zero from U ∩V to

a k-form ζV on V and extend ρV ζ by zero from U ∩V to a k-form ζU on U (see

the proof of Proposition 26.2). Then

j(−ζU ,ζV ) = ζV |U∩V + ζU |U∩V = (ρU +ρV )ζ = ζ .

(2) The commutativity of the square for d and j shows that the pair (−dζU ,dζV )
maps to 0 under j. More formally, since jd = dj and since ζ is a cocycle,

j(−dζU ,dζV ) = jd(−ζU ,ζV ) = dj(−ζU ,ζV ) = dζ = 0.

It follows that the (k+1)-forms−dζU on U and dζV on V agree on U ∩V .

(3) Therefore, −dζU on U and dζV patch together to give a global (k+ 1)-form α
on M. Diagram-chasing shows that α is closed (see (25.3)). By Section 25.3,

d∗[ζ ] = [α] ∈Hk+1(M).

Because Ωk(M) = 0 for k ≤−1, the Mayer–Vietoris sequence starts with

0→H0(M)→ H0(U)⊕H0(V )→ H0(U ∩V )→ ··· .

Proposition 26.4. In the Mayer–Vietoris sequence, if U, V , and U ∩V are connected

and nonempty, then

(i) M is connected and

0→ H0(M)→H0(U)⊕H0(V )→H0(U ∩V )→ 0

is exact;

(ii) we may start the Mayer–Vietoris sequence with

0→H1(M)
i∗→H1(U)⊕H1(V )

j∗→ H1(U ∩V)→ ··· .

Proof.

(i) The connectedness of M follows from a lemma in point-set topology (Proposi-

tion A.44). It is also a consequence of the Mayer–Vietoris sequence. On a nonempty,

connected open set, the de Rham cohomology in dimension 0 is simply the vector

space of constant functions (Proposition 24.1). By (26.1), the map

j∗ : H0(U)⊕H0(V )→H0(U ∩V )

is given by
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(u,v) 7→ v−u, u,v ∈ R.

This map is clearly surjective. The surjectivity of j∗ implies that

im j∗ = H0(U ∩V ) = kerd∗,

from which we conclude that d∗ : H0(U ∩V )→ H1(M) is the zero map. Thus the

Mayer–Vietoris sequence starts with

0→ H0(M)
i∗→R⊕R

j∗→ R
d∗→ 0. (26.4)

This short exact sequence shows that

H0(M)≃ im i∗ = ker j∗.

Since

ker j∗ = {(u,v) | v− u = 0}= {(u,u) ∈ R⊕R} ≃R,

H0(M)≃ R, which proves that M is connected.

(ii) From (i) we know that d∗ : H0(U ∩V )→ H1(M) is the zero map. Thus, in the

Mayer–Vietoris sequence, the sequence of two maps

H0(U ∩V )
d∗→ H1(M)

i∗→H1(U)⊕H1(V )

may be replaced by

0→ H1(M)
i∗→H1(U)⊕H1(V )

without affecting exactness. ⊓⊔

26.2 The Cohomology of the Circle

In Example 24.4 we showed that integration of 1-forms induces an isomorphism of

H1(S1) with R. In this section we apply the Mayer–Vietoris sequence to give an

alternative computation of the cohomology of the circle.

Cover the circle with two open arcs U and V as in Figure 26.2. The intersection

U∩V is the disjoint union of two open arcs, which we call A and B. Since an open arc

is diffeomorphic to an open interval and hence to the real line R1, the cohomology

rings of U and V are isomorphic to that of R1, and the cohomology ring of U ∩V

to that of the disjoint union R1
∐ R1. They fit into the Mayer–Vietoris sequence,

which we arrange in tabular form:

S1 U ∐ V U ∩V

H2 → 0 → 0 → 0

H1 d∗→ H1(S1)→ 0 → 0

H0 0 → R
i∗→ R⊕R

j∗→ R⊕R
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U V

)(

)(

A

B

Fig. 26.2. An open cover of the circle.

From the exact sequence

0→R
i∗−→ R⊕R

j∗−→ R⊕R
d∗−→ H1(S1)→ 0

and Problem 26.2, we conclude that dimH1(S1) = 1. Hence, the cohomology of the

circle is given by

Hk(S1) =

{
R for k = 0,1,

0 otherwise.

By analyzing the maps in the Mayer–Vietoris sequence, it is possible to write

down an explicit generator for H1(S1). First, according to Proposition 24.1, an

element of H0(U)⊕H0(V ) is an ordered pair (u,v) ∈ R⊕R, representing a con-

stant function u on U and a constant function v on V . An element of H0(U ∩V ) =
H0(A)⊕H0(B) is an ordered pair (a,b) ∈R⊕R, representing a constant function a

on A and a constant function b on B. The restriction map j∗U : Z0(U)→ Z0(U ∩V ) is

the restriction of a constant function on U to the two connected components A and B

of the intersection U ∩V :

j∗U (u) = u|U∩V = (u,u) ∈ Z0(A)⊕Z0(B).

Similarly,

j∗V (v) = v|U∩V = (v,v) ∈ Z0(A)⊕Z0(B).

By (26.1), j : Z0(U)⊕Z0(V )→ Z0(U ∩V ) is given by

j(u,v) = v|U∩V −u|U∩V = (v,v)− (u,u) = (v− u,v−u).

Hence, in the Mayer–Vietoris sequence, the induced map j∗ : H0(U)⊕H0(V )→
H0(U ∩V ) is given by

j∗(u,v) = (v− u,v− u).

The image of j∗ is therefore the diagonal ∆ in R2:

∆ = {(a,a) ∈ R2}.



294 §26 The Mayer–Vietoris Sequence

Since H1(S1) is isomorphic to R, a generator of H1(S1) is simply a nonzero element.

Moreover, because d∗ : H0(U ∩V )→H1(S1) is surjective and

kerd∗ = im j∗ = ∆,

such a nonzero element in H1(S1) is the image under d∗ of an element (a,b) ∈
H0(U ∩V )≃R2 with a 6= b.

1

0

f

V

fV

V
dfV

U
− fU

U
−dfU

Fig. 26.3. A generator of H1 of the circle.

So we may start with (a,b) = (1,0)∈H0(U ∩V ). This corresponds to a function

f with value 1 on A and 0 on B. Let {ρU ,ρV} be a partition of unity subordinate to

the open cover {U,V}, and let fU , fV be the extensions by zero of ρV f ,ρU f from

U ∩V to U and to V , respectively. By the proof of Proposition 26.2, j(− fU , fV ) = f

on U ∩V . From Section 25.3, d∗(1,0) is represented by a 1-form on S1 whose

restriction to U is −dfU and whose restriction to V is dfV . Now fV is the function on

V that is ρU on A and 0 on V−A, so dfV is a 1-form on V whose support is contained

entirely in A. A similar analysis shows that −dfU restricts to the same 1-form on

A, because ρU +ρV = 1. The extension of either dfV or −dfU by zero to a 1-form

on S1 represents a generator of H1(S1). It is a bump 1-form on S1 supported in A

(Figure 26.3).

The explicit description of the map j∗ gives another way to compute H1(S1), for

by the exactness of the Mayer–Vietoris sequence and the first isomorphism theorem

of linear algebra, there is a sequence of vector-space isomorphisms

H1(S1) = imd∗ ≃ R⊕R

kerd∗
=

R⊕R

im j∗
≃ R⊕R

im j∗
≃ R2

R
≃ R.
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26.3 The Euler Characteristic

If the cohomology vector space Hk(M) of an n-manifold M is finite-dimensional for

every k, we define its Euler characteristic to be the alternating sum

χ(M) =
n

∑
k=0

(−1)k dimHk(M).

As a corollary of the Mayer–Vietoris sequence, the Euler characteristic of U ∪V is

computable from those of U , V , and U ∩V , as follows.

Exercise 26.5 (Euler characteristics in terms of an open cover). Suppose a manifold M

has an open cover {U,V} and the spaces M, U , V , and U ∩V all have finite-dimensional

cohomology. By applying Problem 26.2 to the Mayer–Vietoris sequence, prove that

χ(M)− (χ(U)+χ(V ))+χ(U ∩V ) = 0.

Problems

26.1. Short exact Mayer–Vietoris sequence

Prove the exactness of (26.2) at Ωk(M) and at Ωk(U)⊕Ωk(V ).

26.2. Alternating sum of dimensions

Let

0→ A0 d0−→ A1 d1−→ A2 d2−→ ·· · → Am→ 0

be an exact sequence of finite-dimensional vector spaces. Show that

m

∑
k=0

(−1)k dimAk = 0.

(Hint: By the rank–nullity theorem from linear algebra,

dimAk = dimkerdk +dimimdk.

Take the alternating sum of these equations over k and use the fact that dimkerdk = dimimdk−1

to simplify it.)
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§27 Homotopy Invariance

The homotopy axiom is a powerful tool for computing de Rham cohomology. While

homotopy is normally defined in the continuous category, since we are primarily

interested in smooth manifolds and smooth maps, our notion of homotopy will be

smooth homotopy. It differs from the usual homotopy in topology only in that all the

maps are assumed to be smooth. In this section we define smooth homotopy, state

the homotopy axiom for de Rham cohomology, and compute a few examples. We

postpone the proof of the homotopy axiom to Section 29.

27.1 Smooth Homotopy

Let M and N be manifolds. Two C∞ maps f ,g : M→ N are (smoothly) homotopic if

there is a C∞ map

F : M×R→ N

such that

F(x,0) = f (x) and F(x,1) = g(x)

for all x ∈M; the map F is called a homotopy from f to g. A homotopy F from f to

g can be viewed as a smoothly varying family of maps { ft : M→ N | t ∈ R}, where

ft(x) = F(x, t), x ∈M,

such that f0 = f and f1 = g. We can think of the parameter t as time and a homotopy

as an evolution through time of the map f0 : M→ N. If f and g are homotopic, we

write

f ∼ g.

Since any open interval is diffeomorphic to R (Problem 1.3), in the definition

of homotopy we could have used any open interval containing 0 and 1, instead of

R. The advantage of an open interval over the closed interval [0,1] is that an open

interval is a manifold without boundary.

b

b

f (x)

g(x)

Fig. 27.1. Straight-line homotopies.
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Example 27.1 (Straight-line homotopy). Let f and g be C∞ maps from a manifold

M to Rn. Define F : M×R→ Rn by

F(x, t) = f (x)+ t(g(x)− f (x)) = (1− t) f (x)+ tg(x).

Then F is a homotopy from f to g, called the straight-line homotopy from f to g

(Figure 27.1).

Exercise 27.2 (Homotopy). Let M and N be manifolds. Prove that homotopy is an equiva-

lence relation on the set of all C∞ maps from M to N.

27.2 Homotopy Type

As usual, 1M denotes the identity map on a manifold M.

Definition 27.3. A map f : M→ N is a homotopy equivalence if it has a homotopy

inverse, i.e., a map g : N→M such that g ◦ f is homotopic to the identity 1M on M

and f ◦ g is homotopic to the identity 1N on N:

g ◦ f ∼ 1M and f ◦ g∼ 1N .

In this case we say that M is homotopy equivalent to N, or that M and N have the

same homotopy type.

Example. A diffeomorphism is a homotopy equivalence.

bc

b

b

x

x
‖x‖

Fig. 27.2. The punctured plane retracts to the unit circle.

Example 27.4 (Homotopy type of the punctured plane). Let i : S1→R2−{0} be the

inclusion map and let r : R2−{0}→ S1 be the map
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r(x) =
x

‖x‖ .

Then r ◦ i is the identity map on S1.

We claim that

i ◦ r : R2−{0}→R2−{0}

is homotopic to the identity map. Note that in the definition of a smooth homo-

topy F(x, t), the domain of t is required to be the entire real line. The straight-line

homotopy

H(x, t) = (1− t)x+ t
x

‖x‖ , (x, t) ∈ (R2−{0})×R,

will be fine if t is restricted to the closed interval [0,1]. However, if t is allowed to

be any real number, then H(x, t) may be equal to 0. Indeed, for t = ‖x‖/(‖x‖− 1),
H(x, t) = 0, and so H does not map into R2−{0}. To correct this problem, we

modify the straight-line homotopy so that for all t the modified map F(x, t) is always

a positive multiple of x and hence never zero. Set

F(x, t) = (1− t)2x+ t2 x

‖x‖ =
(
(1− t)2+

t2

‖x‖

)
x.

Then

F(x, t) = 0 ⇐⇒ (1− t)2 = 0 and
t2

‖x‖ = 0

⇐⇒ t = 1 = 0, a contradiction.

Therefore, F : (R2−{0})×R→R2−{0} provides a homotopy between the identity

map on R2−{0} and i ◦ r (Figure 27.2). It follows that r and i are homotopy inverse

to each other, and R2−{0} and S1 have the same homotopy type.

Definition 27.5. A manifold is contractible if it has the homotopy type of a point.

In this definition, by “the homotopy type of a point” we mean the homotopy type

of a set {p} whose single element is a point. Such a set is called a singleton set or

just a singleton.

Example 27.6 (The Euclidean space Rn is contractible). Let p be a point in Rn,

i : {p} → Rn the inclusion map, and r : Rn → {p} the constant map. Then r ◦ i =
1{p}, the identity map on {p}. The straight-line homotopy provides a homotopy

between the constant map i ◦ r : Rn→Rn and the identity map on Rn:

F(x, t) = (1− t)x+ t r(x) = (1− t)x+ t p.

Hence, the Euclidean space Rn and the set {p} have the same homotopy type.
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27.3 Deformation Retractions

Let S be a submanifold of a manifold M, with i : S→M the inclusion map.

Definition 27.7. A retraction from M to S is a map r : M→ S that restricts to the

identity map on S; in other words, r ◦ i = 1S. If there is a retraction from M to S, we

say that S is a retract of M.

Definition 27.8. A deformation retraction from M to S is a map F : M×R→ M

such that for all x ∈M,

(i) F(x,0) = x,

(ii) there is a retraction r : M→ S such that F(x,1) = r(x),
(iii) for all s ∈ S and t ∈R, F(s, t) = s.

If there is a deformation retraction from M to S, we say that S is a deformation retract

of M.

Setting ft (x) = F(x, t), we can think of a deformation retraction F : M×R→M

as a family of maps ft : M→M such that

(i) f0 is the identity map on M,

(ii) f1(x) = r(x) for some retraction r : M→ S,

(iii) for every t the map ft : M→M restricts to the identity on S.

We may rephrase condition (ii) in the definition as follows: there is a retraction

r : M→ S such that f1 = i ◦ r. Thus, a deformation retraction is a homotopy between

the identity map 1M and i ◦ r for a retraction r : M→ S such that this homotopy leaves

S fixed for all time t.

Example. Any point p in a manifold M is a retract of M; simply take a retraction to

be the constant map r : M→{p}.

Example. The map F in Example 27.4 is a deformation retraction from the punctured

plane R2−{0} to the unit circle S1. The map F in Example 27.6 is a deformation

retraction from Rn to a singleton {p}.

Generalizing Example 27.4, we prove the following theorem.

Proposition 27.9. If S ⊂ M is a deformation retract of M, then S and M have the

same homotopy type.

Proof. Let F : M×R→M be a deformation retraction and let r(x) = f1(x) = F(x,1)
be the retraction. Because r is a retraction, the composite

S
i→M

r→ S, r ◦ i = 1S,

is the identity map on S. By the definition of a deformation retraction, the composite
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M
r→ S

i→M

is f1 and the deformation retraction provides a homotopy

f1 = i ◦ r ∼ f0 = 1M.

Therefore, r : M→ S is a homotopy equivalence, with homotopy inverse i : S→M.

⊓⊔

27.4 The Homotopy Axiom for de Rham Cohomology

We state here the homotopy axiom and derive a few consequences. The proof will

be given in Section 29.

Theorem 27.10 (Homotopy axiom for de Rham cohomology). Homotopic maps

f0, f1 : M→ N induce the same map f ∗0 = f ∗1 : H∗(N)→ H∗(M) in cohomology.

Corollary 27.11. If f : M→ N is a homotopy equivalence, then the induced map in

cohomology

f ∗ : H∗(N)→ H∗(M)

is an isomorphism.

Proof (of Corollary). Let g : N→M be a homotopy inverse to f . Then

g ◦ f ∼ 1M, f ◦ g∼ 1N .

By the homotopy axiom,

(g ◦ f )∗ = 1H∗(M), ( f ◦ g)∗ = 1H∗(N).

By functoriality,

f ∗ ◦ g∗ = 1H∗(M), g∗ ◦ f ∗ = 1H∗(N).

Therefore, f ∗ is an isomorphism in cohomology. ⊓⊔

Corollary 27.12. Suppose S is a submanifold of a manifold M and F is a deformation

retraction from M to S. Let r : M→ S be the retraction r(x) = F(x,1). Then r induces

an isomorphism in cohomology

r∗ : H∗(S) ∼→ H∗(M).

Proof. The proof of Proposition 27.9 shows that a retraction r : M→ S is a homotopy

equivalence. Apply Corollary 27.11. ⊓⊔

Corollary 27.13 (Poincaré lemma). Since Rn has the homotopy type of a point, the

cohomology of Rn is

Hk(Rn) =

{
R for k = 0,

0 for k > 0.
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More generally, any contractible manifold will have the same cohomology as a

point.

Example 27.14 (Cohomology of a punctured plane). For any p ∈ R2, the translation

x 7→ x− p is a diffeomorphism of R2−{p} with R2−{0}. Because the punctured

plane R2−{0} and the circle S1 have the same homotopy type (Example 27.4), they

have isomorphic cohomology. Hence, Hk(R2−{p})≃ Hk(S1) for all k≥ 0.

Example. The central circle of an open Möbius band M is a deformation retract of

M (Figure 27.3). Thus, the open Möbius band has the homotopy type of a circle. By

the homotopy axiom,

Hk(M) = Hk(S1) =

{
R for k = 0,1,

0 for k > 1.

Fig. 27.3. The Möbius band deformation retracts to its central circle.

Problems

27.1. Homotopy equivalence

Let M, N, and P be manifolds. Prove that if M and N are homotopy equivalent and N and P

are homotopy equivalent, then M and P are homotopy equivalent.

27.2. Contractibility and path-connectedness

Show that a contractible manifold is path-connected.

27.3. Deformation retraction from a cylinder to a circle

Show that the circle S1×{0} is a deformation retract of the cylinder S1×R.
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§28 Computation of de Rham Cohomology

With the tools developed so far, we can compute the cohomology of many manifolds.

This section is a compendium of some examples.

28.1 Cohomology Vector Space of a Torus

Cover a torus M with two open subsets U and V as shown in Figure 28.1.

A B

U ∩V ∼ S1
∐ S1M U ∐ V

Fig. 28.1. An open cover {U,V} of a torus.

Both U and V are diffeomorphic to a cylinder and therefore have the homotopy

type of a circle (Problem 27.3). Similarly, the intersection U ∩V is the disjoint union

of two cylinders A and B and has the homotopy type of a disjoint union of two circles.

Our knowledge of the cohomology of a circle allows us to fill in many terms in the

Mayer–Vietoris sequence:

M U ∐ V U ∩V

H2
d∗1→ H2(M) → 0

H1
d∗0→ H1(M)

i∗→ R⊕R
β→ R⊕R

H0 0→ R → R⊕R
α→ R⊕R

(28.1)

Let jU : U ∩V →U and jV : U ∩V → V be the inclusion maps. Recall that H0

of a connected manifold is the vector space of constant functions on the manifold

(Proposition 24.1). If a ∈ H0(U) is the constant function with value a on U , then

j∗U a = a|U∩V ∈ H0(U ∩V ) is the constant function with the value a on each compo-

nent of U ∩V , that is,

j∗U a = (a,a).
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Therefore, for (a,b) ∈ H0(U)⊕H0(V ),

α(a,b) = b|U∩V −a|U∩V = (b,b)− (a,a) = (b− a,b−a).

Similarly, let us now describe the map

β : H1(U)⊕H1(V )→H1(U ∩V ) = H1(A)⊕H1(B).

Since A is a deformation retract of U , the restriction H∗(U)→ H∗(A) is an isomor-

phism, so if ωU generates H1(U), then j∗U ωU is a generator of H1 on A and on B.

Identifying H1(U ∩V ) with R⊕R, we write j∗U ωU = (1,1). Let ωV be a generator

of H1(V ). The pair of real numbers

(a,b) ∈ H1(U)⊕H1(V )≃ R⊕R

stands for (aωU ,bωV ). Then

β (a,b) = j∗V (bωV )− j∗U(aωU) = (b,b)− (a,a) = (b− a,b− a).

By the exactness of the Mayer–Vietoris sequence,

H2(M) = imd∗1 (because H2(U)⊕H2(V ) = 0)

≃ H1(U ∩V )/kerd∗1 (by the first isomorphism theorem)

≃ (R⊕R)/ imβ

≃ (R⊕R)/R≃ R.

Applying Problem 26.2 to the Mayer–Vietoris sequence (28.1), we get

1−2+2−dim H1(M)+ 2−2+dim H2(M) = 0.

Since dimH2(M) = 1, this gives dimH1(M) = 2.

As a check, we can also compute H1(M) from the Mayer–Vietoris sequence

using our knowledge of the maps α and β :

H1(M)≃ ker i∗ ⊕ im i∗ (by the first isomorphism theorem)

≃ imd∗0⊕kerβ (exactness of the M–V sequence)

≃ (H0(U ∩V )/kerd∗0)⊕ kerβ (first isomorphism theorem for d∗0)

≃ ((R⊕R)/ imα)⊕R

≃ R⊕R.

28.2 The Cohomology Ring of a Torus

A torus is the quotient of R2 by the integer lattice Λ = Z2. The quotient map

π : R2→ R2/Λ
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induces a pullback map on differential forms,

π∗ : Ω∗(R2/Λ)→Ω∗(R2).

Since π : R2 → R2/Λ is a local diffeomorphism, its differential π∗ : Tq(R
2) →

Tπ(q)(R
2/Λ) is an isomorphism at each point q∈R2. In particular, π is a submersion.

By Problem 18.8, π∗ : Ω∗(R2/Λ)→Ω∗(R2) is an injection.

For λ ∈ Λ, define ℓλ : R2→R2 to be translation by λ ,

ℓλ (q) = q+λ , q ∈R2.

A differential form ω̄ on R2 is said to be invariant under translation by λ ∈ Λ if

ℓ∗λ ω̄ = ω̄ . The following proposition generalizes the description of differential forms

on a circle given in Proposition 18.12, where Λ was the lattice 2πZ.

Proposition 28.1. The image of the injection π∗ : Ω∗(R2/Λ)→ Ω∗(R2) is the sub-

space of differential forms on R2 invariant under translations by elements of Λ.

Proof. For all q ∈ R2,

(π ◦ ℓλ )(q) = π(q+λ ) = π(q).

Hence, π ◦ ℓλ = π . By the functoriality of the pullback,

π∗ = ℓ∗λ ◦ π∗.

Thus, for any ω ∈ Ωk(R2/Λ), π∗ω = ℓ∗λ π∗ω . This proves that π∗ω is invariant

under all translations ℓλ , λ ∈ Λ.

Conversely, suppose ω̄ ∈Ωk(R2) is invariant under translations ℓλ for all λ ∈ Λ.

For p ∈ R2/Λ and v1, . . . ,vk ∈ Tp(R
2/Λ), define

ωp(v1, . . . ,vk) = ω̄ p̄(v̄1, . . . , v̄k) (28.2)

for any p̄ ∈ π−1(p) and v̄1, . . . , v̄k ∈ Tp̄R
2 such that π∗v̄i = vi. Note that once p̄ is

chosen, v̄1, . . . , v̄k are unique, since π∗ : Tp̄(R
2)→ Tp(R

2/Λ) is an isomorphism. For

ω to be well defined, we need to show that it is independent of the choice of p̄. Now

any other point in π−1(p) may be written as p̄+λ for some λ ∈ Λ. By invariance,

ω̄ p̄ = (ℓ∗λ ω̄) p̄ = ℓ∗λ (ω̄ p̄+λ ).

So

ω̄ p̄(v̄1, . . . , v̄k) = ℓ∗λ (ω̄ p̄+λ )(v̄1, . . . , v̄k) = ω̄ p̄+λ (ℓλ∗v̄1, . . . , ℓλ∗v̄k). (28.3)

Since π ◦ ℓλ = π , we have π∗ (ℓλ∗v̄i) = π∗v̄i = vi. Thus, (28.3) shows that ωp is

independent of the choice of p̄, and ω ∈ Ωk(R2/Λ) is well defined. Moreover, by

(28.2), for any p̄ ∈ R2 and v̄1, . . . , v̄k ∈ Tp̄(R
2),

ω̄ p̄(v̄1, . . . , v̄k) = ωπ( p̄)(π∗v̄1, . . . ,π∗v̄k) = (π∗ω) p̄(v̄1, . . . , v̄k).

Hence, ω̄ = π∗ω . ⊓⊔
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Let x,y be the standard coordinates on R2. Since for any λ ∈ Λ,

ℓ∗λ (dx) = d(ℓ∗λ x) = d(x+λ ) = dx,

by Proposition 28.1 the 1-form dx on R2 is π∗ of a 1-form α on the torus R2/Λ.

Similarly, dy is π∗ of a 1-form β on the torus.

Note that

π∗(dα) = d(π∗α) = d(dx) = 0.

Since π∗ : Ω∗(R2/Z2)→Ω∗(R2) is injective, dα = 0. Similarly, dβ = 0. Thus, both

α and β are closed 1-forms on the torus.

Proposition 28.2. Let M be the torus R2/Z2. A basis for the cohomology vector

space H∗(M) is represented by the forms 1, α , β , α ∧β .

Proof. Let I be the closed interval [0,1], and i : I2 →֒ R2 the inclusion map of the

closed square I2 into R2. The composite map F = π ◦ i : I2 →֒ R2→ R2/Z2 repre-

sents the torus M = R2/Z2 as a parametrized set. Then F∗α = i∗(π∗α) = i∗dx, the

restriction of dx to the square I2. Similarly, F∗β = i∗dy.

As an integral over a parametrized set,

∫

M
α ∧β =

∫

F(I2)
α ∧β =

∫

I2
F∗(α ∧β ) =

∫

I2
dx∧dy =

∫ 1

0

∫ 1

0
dxdy = 1.

Thus, the closed 2-form α ∧β represents a nonzero cohomology class on M. Since

H2(M) = R by the computation of Subsection 28.1, the cohomology class [α ∧β ] is

a basis for H2(M).
Next we show that the cohomology classes of the closed 1-forms α , β on M

constitute a basis for H1(M). Let i1, i2 : I → R2 be given by i1(t) = (t,0), i2(t) =
(0, t). Define two closed curves C1, C2 in M = R2/Z2 as the images of the maps

(Figure 28.2)

ck : I
ik−→ R2 π−→M =R2/Z2, k = 1,2,

c1(t) = [(t,0)], c2(t) = [(0, t)].

Each curve Ci is a smooth manifold and a parametrized set with parametrization ci.

C1

C2 C1

C2

Fig. 28.2. Two closed curves on a torus.
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Moreover,

c∗1α = (π ◦ i1)
∗α = i∗1π∗α = i∗1dx = di∗1x = dt,

c∗1β = (π ◦ i1)
∗β = i∗1π∗β = i∗1dy = di∗1y = 0.

Similarly, c∗2α = 0 and c∗2β = dt. Therefore,

∫

C1

α =

∫

c1(I)
α =

∫

I
c∗1α =

∫ 1

0
dt = 1

and ∫

C1

β =

∫

c1(I)
β =

∫

I
c∗1β =

∫ 1

0
0 = 0.

In the same way,
∫

C2
α = 0 and

∫
C2

β = 1.

Because
∫

C1
α 6= 0 and

∫
C2

β 6= 0, neither α nor β is exact on M. Furthermore, the

cohomology classes [α] and [β ] are linearly independent, for if [α] were a multiple of

[β ], then
∫

C1
α would have to be a nonzero multiple of

∫
C1

β = 0. By Subsection 28.1,

H1(M) is two-dimensional. Hence, [α], [β ] is a basis for H1(M).
In degree 0, H0(M) has basis [1], as is true for any connected manifold M. ⊓⊔

The ring structure of H∗(M) is clear from this proposition. Abstractly it is the

algebra

∧
(a,b) := R[a,b]/(a2,b2,ab+ba), dega = 1, degb = 1,

called the exterior algebra on two generators a and b of degree 1.

28.3 The Cohomology of a Surface of Genus g

Using the Mayer–Vietoris sequence to compute the cohomology of a manifold often

leads to ambiguities, because there may be several unknown terms in the sequence.

We can resolve these ambiguities if we can describe explicitly the maps occurring in

the sequence. Here is an example of how this might be done.

Lemma 28.3. Suppose p is a point in a compact oriented surface M without bound-

ary, and i : C → M −{p} is the inclusion of a small circle around the puncture

(Figure 28.3). Then the restriction map

i∗ : H1(M−{p})→ H1(C)

is the zero map.

Proof. An element [ω ] ∈H1(M−{p}) is represented by a closed 1-form ω on M−
{p}. Because the linear isomorphism H1(C) ≃ H1(S1) ≃ R is given by integration

over C, to identify i∗[ω ] in H1(C), it suffices to compute the integral
∫

C i∗ω .
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p

C

M

Fig. 28.3. Punctured surface.

If D is the open disk in M bounded by the curve C, then M−D is a compact

oriented surface with boundary C. By Stokes’s theorem,

∫

C
i∗ω =

∫

∂ (M−D)
i∗ω =

∫

M−D
dω = 0,

because dω = 0. Hence, i∗ : H1(M−{p})→ H1(C) is the zero map. ⊓⊔

Proposition 28.4. Let M be a torus, p a point in M, and A the punctured torus M−
{p}. The cohomology of A is

Hk(A) =





R for k = 0,

R2 for k = 1,

0 for k > 1.

Proof. Cover M with two open sets, A and a disk U containing p. Since A, U , and A∩
U are all connected, we may start the Mayer–Vietoris sequence with the H1(M) term

(Proposition 26.4(ii)). With H∗(M) known from Section 28.1, the Mayer–Vietoris

sequence becomes

M U ∐ A U ∩A∼ S1

H2
d∗1→ R → H2(A) → 0

H1 0 → R⊕R
β→ H1(A)

α→ H1(S1)

Because H1(U) = 0, the map α : H1(A)→ H1(S1) is simply the restriction map

i∗. By Lemma 28.3, α = i∗ = 0. Hence,

H1(A) = kerα = imβ ≃ H1(M) ≃ R⊕R

and there is an exact sequence of linear maps

0→H1(S1)
d∗1→R→H2(A)→ 0.

Since H1(S1)≃ R, it follows that H2(A) = 0. ⊓⊔
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Proposition 28.5. The cohomology of a compact orientable surface Σ2 of genus 2 is

Hk(Σ2) =





R for k = 0,2,

R4 for k = 1,

0 for k > 2.

Σ2 U ∐ V U ∩V ∼ S1

Fig. 28.4. An open cover {U,V} of a surface of genus 2.

Proof. Cover Σ2 with two open sets U and V as in Figure 28.4. Since U , V , and

U ∩V are all connected, the Mayer–Vietoris sequence begins with

M U ∐ V U ∩V ∼ S1

H2 → H2(Σ2)→ 0

H1 0→ H1(Σ2)→ R2⊕R2 α−→ R

The map α : H1(U)⊕H1(V )→H1(S1) is the difference map

α(ωU ,ωV ) = j∗V ωV − j∗UωU ,

where jU and jV are inclusions of an S1 in U ∩V into U and V , respectively. By

Lemma 28.3, j∗U = j∗V = 0, so α = 0. It then follows from the exactness of the

Mayer–Vietoris sequence that

H1(Σ2)≃ H1(U)⊕H1(V )≃R4

and

H2(Σ2)≃ H1(S1)≃ R. ⊓⊔

A genus-2 surface Σ2 can be obtained as the quotient space of an octagon with

its edges identified following the scheme of Figure 28.5.

To see this, first cut Σ2 along the circle e as in Figure 28.6.

Then the two halves A and B are each a torus minus an open disk (Figure 28.7), so

that each half can be represented as a pentagon, before identification (Figure 28.8).

When A and B are glued together along e, we obtain the octagon in Figure 28.5.
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a

b

c

d

c

d
a

b

Fig. 28.5. A surface of genus 2 as a quotient space of an octagon.

A B

e

Fig. 28.6. A surface of genus 2 cut along a curve e.

d b

c a

d b

c a
e e

Fig. 28.7. Two halves of a surface of genus 2.

c

d

c

d

e

A

a

b

a

b

e

B

Fig. 28.8. Two halves of a surface of genus 2.
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By Lemma 28.3, if p ∈ Σ2 and i : C→ Σ2−{p} is a small circle around p in Σ2,

then the restriction map

i∗ : H1(Σ2−{p})→H1(C)

is the zero map. This allows us to compute inductively the cohomology of a compact

orientable surface Σg of genus g.

Exercise 28.6 (Surface of genus 3). Compute the cohomology vector space of Σ2−{p} and

then compute the cohomology vector space of a compact orientable surface Σ3 of genus 3.

Problems

28.1. Real projective plane

Compute the cohomology of the real projective plane RP2 (Figure 28.9).

bb

a

a

Fig. 28.9. The real projective plane.

28.2. The n-sphere

Compute the cohomology of the sphere Sn.

28.3. Cohomology of a multiply punctured plane

(a) Let p,q be distinct points in R2. Compute the de Rham cohomology of R2−{p,q}.
(b) Let p1, . . . , pn be distinct points in R2. Compute the de Rham cohomology of R2 −
{p1, . . . , pn}.

28.4. Cohomology of a surface of genus g

Compute the cohomology vector space of a compact orientable surface Σg of genus g.

28.5. Cohomology of a 3-dimensional torus

Compute the cohomology ring of R3/Z3.



29.1 Reduction to Two Sections 311

§29 Proof of Homotopy Invariance

In this section we prove the homotopy invariance of de Rham cohomology.

If f : M→ N is a C∞ map, the pullback maps on differential forms and on coho-

mology classes are normally both denoted by f ∗. Since this might cause confusion in

the proof of homotopy invariance, in this section we revert to our original convention

of denoting the pullback of forms by

f ∗ : Ωk(N)→Ωk(M)

and the induced map in cohomology by

f # : Hk(N)→Hk(M).

The relation between these two maps is

f #[ω ] = [ f ∗ω ]

for [ω ] ∈ Hk(N).

Theorem 29.1 (Homotopy axiom for de Rham cohomology). Two smoothly ho-

motopic maps f ,g : M→ N of manifolds induce the same map in cohomology:

f # = g# : Hk(N)→Hk(M).

We first reduce the problem to two special maps i0 and i1 : M→M×R, which are

the 0-section and the 1-section, respectively, of the product line bundle M×R→M:

i0(x) = (x,0), i1(x) = (x,1).

Then we introduce the all-important technique of cochain homotopy. By finding a

cochain homotopy between i∗0 and i∗1, we prove that they induce the same map in

cohomology.

29.1 Reduction to Two Sections

Suppose f and g : M→ N are smoothly homotopic maps. Let F : M×R→ N be a

smooth homotopy from f to g. This means that

F(x,0) = f (x), F(x,1) = g(x) (29.1)

for all x ∈M. For each t ∈ R, define it : M→M×R to be the section it(x) = (x, t).
We can restate (29.1) as

F ◦ i0 = f , F ◦ i1 = g.

By the functoriality of the pullback (Remark 24.7),
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f # = i#0 ◦ F#, g# = i#1 ◦ F#.

This reduces proving homotopy invariance to the special case

i#0 = i#1.

The two maps i0, i1 : M→M×R are obviously smoothly homotopic via the identity

map

1M×R : M×R→M×R.

29.2 Cochain Homotopies

The usual method for showing that two cochain maps ϕ , ψ : A→B induce the same

map in cohomology is to find a linear map K : A→B of degree−1 such that

ϕ−ψ = d ◦ K +K ◦ d.

Such a map K is called a cochain homotopy from ϕ to ψ . Note that K is not assumed

to be a cochain map. If a is a cocycle in A, then

ϕ(a)−ψ(a) = dKa+Kda = dKa

is a coboundary, so that in cohomology

ϕ#[a] = [ϕ(a)] = [ψ(a)] = ψ#[a].

Thus, the existence of a cochain homotopy between ϕ and ψ implies that the induced

maps ϕ# and ψ# in cohomology are equal.

Remark. Given two cochain maps ϕ ,ψ : A→ B, if one could find a linear map

K : A→ B of degree −1 such that ϕ −ψ = d ◦ K on A, then ϕ# would be equal to

ψ# in cohomology. However, such a map almost never exists; it is necessary to have

the term K ◦ d as well. The cylinder construction in homology theory [30, p. 65]

shows why it is natural to consider d ◦ K +K ◦ d.

29.3 Differential Forms on M×R

Recall that a sum ∑α ωα of C∞ differential forms on a manifold M is said to be

locally finite if the collection {suppωα} of supports is locally finite. This means that

every point p in M has a neighborhood Vp such that Vp intersects only finitely many

of the sets suppωα . If suppωα is disjoint from Vp, then ωα ≡ 0 on Vp. Thus, on Vp

the locally finite sum ∑α ωα is actually a finite sum. As an example, if {ρα} is a

partition of unity, then the sum ∑ρα is locally finite.

Let π : M×R→M be the projection to the first factor. In this subsection we will

show that every C∞ differential form on M×R is a locally finite sum of the following

two types of forms:
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(I) f (x, t)π∗η ,

(II) f (x, t)dt ∧π∗η ,

where f (x, t) is a C∞ function on M×R and η is a C∞ form on M.

In general, a decomposition of a differential form on M×R into a locally finite

sum of type-I and type-II forms is far from unique. However, once we fix an atlas

{(Uα ,φα )} on M, a C∞ partition of unity {ρα} subordinate to {Uα}, and a collection

{gα} of C∞ functions on M such that

gα ≡ 1 on suppρα and suppgα ⊂Uα ,

then there is a well-defined procedure to produce uniquely such a locally finite sum.

The existence of the functions gα follows from the smooth Urysohn lemma (Prob-

lem 13.3).

In the proof of the decomposition procedure, we will need the following simple

but useful lemma on the extension of a C∞ form by zero.

Lemma 29.2. Let U be an open subset of a manifold M. If a smooth k-form τ ∈
Ωk(U) defined on U has support in a closed subset of M contained in U, then τ can

be extended by zero to a smooth k-form on M.

Proof. Problem 29.1. ⊓⊔

Fix an atlas {(Uα ,φα )}, a partition of unity {ρα}, and a collection {gα} of C∞

functions as above. Then {π−1Uα} is an open cover of M×R, and {π∗ρα} is a

partition of unity subordinate to {π−1Uα} (Problem 13.6).

Let ω be any C∞ k-form on M×R and let ωα = (π∗ρα)ω . Since ∑π∗ρα = 1,

ω = ∑
α

(π∗ρα)ω = ∑
α

ωα . (29.2)

Because {suppπ∗ρα} is locally finite, (29.2) is a locally finite sum. By Problem 18.4,

suppωα ⊂ suppπ∗ρα ∩ suppω ⊂ suppπ∗ρα ⊂ π−1Uα .

Let φα = (x1, . . . ,xn). Then on π−1Uα , which is homeomorphic to Uα ×R, we have

coordinates π∗x1, . . . ,π∗xn, t. For the sake of simplicity, we sometimes write xi in-

stead of π∗xi. On π−1Uα the k-form ωα may be written uniquely as a linear combi-

nation

ωα = ∑
I

aI dxI +∑
J

bJ dt ∧dxJ, (29.3)

where aI and bJ are C∞ functions on π−1Uα . This decomposition shows that ωα is

a finite sum of type-I and type-II forms on π−1Uα . By Problem 18.5, the supports

of aI and bI are contained in suppωα , hence in suppπ∗ρα , a closed set in M×R.

Therefore, by the lemma above, aI and bJ can be extended by zero to C∞ functions on

M×R. Unfortunately, dxI and dxJ make sense only on Uα and cannot be extended

to M, at least not directly.
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To extend the decomposition (29.3) to M×R, the trick is to multiply ωα by

π∗gα . Since suppωα ⊂ suppπ∗ρα and π∗gα ≡ 1 on suppπ∗ρα , we have the equality

ωα = (π∗gα)ωα . Therefore,

ωα = (π∗gα)ωα = ∑
I

aI(π
∗gα)dxI +∑

J

bJ dt ∧ (π∗gα)dxJ,

= ∑
I

aIπ
∗(gα dxI)+∑

J

bJ dt ∧π∗(gα dxJ). (29.4)

Now suppgα is a closed subset of M contained in Uα , so by Lemma 29.2 again,

gα dxI can be extended by zero to M. Equations (29.2) and (29.4) prove that ω is a

locally finite sum of type-I and type-II forms on M×R. Moreover, given {(Uα ,φα)},
{ρα}, and {gα}, the decomposition in (29.4) is unique.

29.4 A Cochain Homotopy Between i∗0 and i∗1

In the rest of the proof, fix an atlas {(Uα ,φα )} for M, a C∞ partition of unity {ρα}
subordinate to {Uα}, and a collection {gα} of C∞ functions on M as in Section 29.3.

Let ω ∈Ωk(M×R). Using (29.2) and (29.4), we decompose ω into a locally finite

sum

ω = ∑
α

ωα = ∑
α ,I

aα
I π∗(gα dxI

α)+∑
α ,J

bα
J dt ∧π∗(gα dxJ

α),

where we now attach an index α to aI , bJ , xI , and xJ to indicate their dependence

on α .

Define

K : Ω∗(M×R)→Ω∗−1(M)

by the following rules:

(i) on type-I forms,

K( f π∗η) = 0;

(ii) on type-II forms,

K( f dt ∧π∗η) =

(∫ 1

0
f (x, t)dt

)
η ;

(iii) K is linear over locally finite sums.

Thus,

K(ω) = K

(
∑
α

ωα

)
= ∑

α ,J

(∫ 1

0
bα

J (x, t)dt

)
gα dxJ

α . (29.5)

Given the data {(Uα ,φα)}, {ρα}, {gα}, the decomposition ω = ωα with ωα as

in (29.4) is unique. Therefore, K is well defined. It is not difficult to show that so

defined, K is the unique linear operator Ω∗(M×R)→ Ω∗−1(M) satisfying (i), (ii),

and (iii) (Problem 29.3), so it is in fact independent of the data {(Uα ,φα )}, {ρα},
and {gα}.
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29.5 Verification of Cochain Homotopy

We check in this subsection that

d ◦ K +K ◦ d = i∗1− i∗0. (29.6)

Lemma 29.3. (i) The exterior derivative d is R-linear over locally finite sums.

(ii) Pullback by a C∞ map is R-linear over locally finite sums.

Proof. (i) Suppose ∑ωα is a locally finite sum of C∞ k-forms. This implies that every

point p has a neighborhood on which the sum is finite. Let U be such a neighborhood.

Then
(
d ∑ωα

)
|U = d

((
∑ωα

)
|U
)

(Corollary 19.6)

= d
(
∑ωα |U

)

= ∑d(ωα |U)
(
∑ωα |U is a finite sum

)

= ∑(dωα)|U (Corollary 19.6)

=
(
∑dωα

)
|U .

Since M can be covered by such neighborhoods, d (∑ωα) = ∑dωα on M. The

homogeneity property d(rω) = rd(ω) for r ∈ R and ω ∈Ωk(M) is trivial.

(ii) The proof is similar to (i) and is relegated to Problem 29.2. ⊓⊔
By linearity of K, d, i∗0, and i∗1 over locally finite sums, it suffices to check

the equality (29.6) on any coordinate open set. Fix a coordinate open set (U ×R,

π∗x1, . . . ,π∗xn, t) on M×R. On type-I forms,

Kd( f π∗η) = K

(
∂ f

∂ t
dt ∧π∗η +∑

i

∂ f

∂xi
π∗dxi∧π∗η + f π∗dη

)
.

In the sum on the right-hand side, the second and third terms are type-I forms; they

map to 0 under K. Thus,

Kd( f π∗η) = K

(
∂ f

∂ t
dt ∧π∗η

)
=

(∫ 1

0

∂ f

∂ t
dt

)
η

= ( f (x,1)− f (x,0))η = (i∗1− i∗0)( f (x, t)π∗η) .

Since dK( f π∗η) = d(0) = 0, on type-I forms,

d ◦ K +K ◦ d = i∗1− i∗0.

On type-II forms, by the antiderivation property of d,

dK( f dt ∧π∗η) = d

((∫ 1

0
f (x, t)dt

)
η

)

= ∑
(

∂

∂xi

∫ 1

0
f (x, t)dt

)
dxi∧η +

(∫ 1

0
f (x, t)dt

)
dη

= ∑
(∫ 1

0

∂ f

∂xi
(x, t)dt

)
dxi∧η +

(∫ 1

0
f (x, t)dt

)
dη .
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In the last equality, differentiation under the integral sign is permissible because

f (x, t) is C∞. Furthermore,

Kd( f dt ∧π∗η) = K (d( f dt)∧π∗η− f dt ∧dπ∗η)

= K

(
∑

i

∂ f

∂xi
dxi∧dt∧π∗η

)
−K( f dt ∧π∗dη)

=−∑
i

(∫ 1

0

∂ f

∂xi
(x, t)dt

)
dxi∧η−

(∫ 1

0
f (x, t)dt

)
dη .

Thus, on type-II forms,

d ◦ K +K ◦ d = 0.

On the other hand,

i∗1( f (x, t)dt ∧π∗η) = 0

because i∗1 dt = di∗1t = d(1) = 0. Similarly, i∗0 also vanishes on type-II forms. There-

fore,

d ◦ K +K ◦ d = 0 = i∗1− i∗0

on type-II forms.

This completes the proof that K is a cochain homotopy between i∗0 and i∗1. The

existence of the cochain homotopy K proves that the induced maps in cohomology

i#0 and i#1 are equal. As we pointed out in Section 29.1,

f # = i#0 ◦ F# = i#1 ◦ F# = g#.

Problems

29.1. Extension by zero of a smooth k-form

Prove Lemma 29.2.

29.2. Linearity of pullback over locally finite sums

Let h : N →M be a C∞ map, and ∑ωα a locally finite sum of C∞ k-forms on M. Prove that

h∗ (∑ωα ) = ∑h∗ωα .

29.3. The cochain homotopy K

(a) Check that defined by (29.5), the linear map K satisfies the three rules in Section 29.4.

(b) Prove that a linear operator satisfying the three rules in Section 29.4 is unique if it exists.



Appendices

§A Point-Set Topology

Point-set topology, also called “general topology,” is concerned with properties that

remain invariant under homeomorphisms (continuous maps having continuous in-

verses). The basic development in the subject took place in the late nineteenth and

early twentieth centuries. This appendix is a collection of basic results from point-set

topology that are used throughout the book.

A.1 Topological Spaces

The prototype of a topological space is the Euclidean space Rn. However, Euclidean

space comes with many additional structures, such as a metric, coordinates, an inner

product, and an orientation, that are extraneous to its topology. The idea behind the

definition of a topological space is to discard all those properties of Rn that have

nothing to do with continuous maps, thereby distilling the notion of continuity to its

very essence.

In advanced calculus one learns several characterizations of a continuous map,

among which is the following: a map f from an open subset of Rn to Rm is contin-

uous if and only if the inverse image f−1(V ) of any open set V in Rm is open in Rn.

This shows that continuity can be defined solely in terms of open sets.

To define open sets axiomatically, we look at properties of open sets in Rn. Recall

that in Rn the distance between two points p and q is given by

d(p,q) =

[
n

∑
i=1

(pi− qi)2

]1/2

,

and the open ball B(p,r) with center p ∈ Rn and radius r > 0 is the set

B(p,r) = {x ∈Rn | d(x, p)< r}.
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A set U in Rn is said to be open if for every p in U , there is an open ball B(p,r) with

center p and radius r such that B(p,r)⊂U (Figure A.1). It is clear that the union of

an arbitrary collection {Uα} of open sets is open, but the same need not be true of

the intersection of infinitely many open sets.

b

p
U

B(p,r)

Fig. A.1. An open set in Rn.

Example. The intervals ]− 1/n,1/n[, n = 1,2,3, . . . , are all open in R1, but their

intersection
⋂∞

n=1 ]−1/n,1/n[ is the singleton set {0}, which is not open.

What is true is that the intersection of a finite collection of open sets in Rn is

open. This leads to the definition of a topology on a set.

Definition A.1. A topology on a set S is a collection T of subsets containing both

the empty set ∅ and the set S such that T is closed under arbitrary unions and finite

intersections; i.e., if Uα ∈ T for all α in an index set A, then
⋃

α∈A Uα ∈ T and if

U1, . . . ,Un ∈ T, then
⋂n

i=1 Ui ∈ T.

The elements of T are called open sets and the pair (S,T) is called a topological

space. To simplify the notation, we sometimes simply refer to a pair (S,T) as “the

topological space S” when there is no chance of confusion. A neighborhood of a

point p in S is an open set U containing p. If T1 and T2 are two topologies on a set

S and T1 ⊂ T2, then we say that T1 is coarser than T1, or that T2 is finer than T1.

A coarser topology has fewer open sets; conversely, a finer topology has more open

sets.

Example. The open subsets of Rn as we understand them in advanced calculus form

a topology on Rn, the standard topology of Rn. In this topology a set U is open in Rn

if and only if for every p∈U , there is an open ball B(p,ε) with center p and radius ε
contained in U . Unless stated otherwise, Rn will always have its standard topology.

The criterion for openness in Rn has a useful generalization to a topological

space.

Lemma A.2 (Local criterion for openness). Let S be a topological space. A subset

A is open in S if and only if for every p∈A, there is an open set V such that p∈V ⊂A.
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Proof.

(⇒) If A is open, we can take V = A.

(⇐) Suppose for every p ∈ A there is an open set Vp such that p ∈Vp ⊂ A. Then

A⊂
⋃

p∈A

Vp ⊂ A,

so that equality A =
⋃

p∈A Vp holds. As a union of open sets, A is open. ⊓⊔

Example. For any set S, the collection T = {∅,S} consisting of the empty set ∅ and

the entire set S is a topology on S, sometimes called the trivial or indiscrete topology.

It is the coarsest topology on a set.

Example. For any set S, let T be the collection of all subsets of S. Then T is a

topology on S, called the discrete topology. A singleton set is a set with a single

element. The discrete topology can also be characterized as the topology in which

every singleton subset {p} is open. A topological space having the discrete topology

is called a discrete space. The discrete topology is the finest topology on a set.

The complement of an open set is called a closed set. By de Morgan’s laws

from set theory, arbitrary intersections and finite unions of closed sets are closed

(Problem A.3). One may also specify a topology by describing all the closed sets.

Remark. When we say that a topology is closed under arbitrary union and finite

intersection, the word “closed” has a different meaning from that of a “closed subset.”

Example A.3 (Finite-complement topology on R1). Let T be the collection of subsets

of R1 consisting of the empty set ∅, the line R1 itself, and the complements of finite

sets. Suppose Fα and Fi are finite subsets of R1 for α ∈ some index set A and

i = 1, . . . ,n. By de Morgan’s laws,

⋃

α

(
R1−Fα

)
= R1−

⋂

α

Fα and

n⋂

i=1

(
R1−Fi

)
= R1−

n⋃

i=1

Fi.

Since the arbitrary intersection
⋂

α∈A Fα and the finite union
⋃n

i=1 Fi are both finite,

T is closed under arbitrary unions and finite intersections. Thus, T defines a topology

on R1, called the finite-complement topology.

For the sake of definiteness, we have defined the finite-complement topology on

R1, but of course, there is nothing specific about R1 here. One can define in exactly

the same way the finite-complement topology on any set.

Example A.4 (Zariski topology). One well-known topology is the Zariski topology

from algebraic geometry. Let K be a field and let S be the vector space Kn. Define

a subset of Kn to be Zariski closed if it is the zero set Z( f1, . . . , fr) of finitely many

polynomials f1, . . . , fr on Kn. To show that these are indeed the closed subsets of
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a topology, we need to check that they are closed under arbitrary intersections and

finite unions.

Let I = ( f1, . . . , fr) be the ideal generated by f1, . . . , fr in the polynomial ring

K[x1, . . . ,xn]. Then Z( f1, . . . , fr) = Z(I), the zero set of all the polynomials in the

ideal I. Conversely, by the Hilbert basis theorem [11, §9.6, Th. 21], any ideal in

K[x1, . . . ,xn] has a finite set of generators. Hence, the zero set of finitely many poly-

nomials is the same as the zero set of an ideal in K[x1, . . . ,xn]. If I = ( f1, . . . , fr) and

J = (g1, . . . ,gs) are two ideals, then the product ideal IJ is the ideal in K[x1, . . . ,xn]
generated by all products fig j, 1≤ i≤ r, 1≤ j ≤ s. If {Iα}α∈A is a family of ideals

in K[x1, . . . ,xn], then their sum ∑α Iα is the smallest ideal in K[x1, . . . ,xn] containing

all the ideals Iα .

Exercise A.5 (Intersection and union of zero sets). Let Iα , I, and J be ideals in the polyno-

mial ring K[x1, . . . ,xn]. Show that

(i)
⋂

α

Z(Iα) = Z

(
∑
α

Iα

)

and

(ii) Z(I)∪Z(J) = Z(IJ).

The complement of a Zariski-closed subset of Kn is said to be Zariski open. If

I = (0) is the zero ideal, then Z(I) = Kn, and if I = (1) = K[x1, . . . ,xn] is the entire

ring, then Z(I) is the empty set ∅. Hence, both the empty set and Kn are Zariski

open. It now follows from Exercise A.5 that the Zariski-open subsets of Kn form a

topology on Kn, called the Zariski topology on Kn. Since the zero set of a polynomial

on R1 is a finite set, the Zariski topology on R1 is precisely the finite-complement

topology of Example A.3.

A.2 Subspace Topology

Let (S,T) be a topological space and A a subset of S. Define TA to be the collection

of subsets

TA = {U ∩A |U ∈ T}.
By the distributive property of union and intersection,

⋃

α

(Uα ∩A) =

(⋃

α

Uα

)
∩A

and

⋂

i

(Ui∩A) =

(⋂

i

Ui

)
∩A,

which shows that TA is closed under arbitrary unions and finite intersections. More-

over, ∅, A ∈ TA. So TA is a topology on A, called the subspace topology or the
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relative topology of A in S, and elements of TA are said to be open in A. To empha-

size the fact that an open set U in A need not be open in S, we also say that U is open

relative to A or relatively open in A. The subset A of S with the subspace topology

TA is called a subspace of S.

If A is an open subset of a topological space S, then a subset of A is relatively

open in A if and only if it is open in S.

Example. Consider the subset A = [0,1] of R1. In the subspace topology, the half-

open interval [0,1/2[ is open relative to A, because

[
0, 1

2

[
=
]
− 1

2
, 1

2

[
∩A.

(See Figure A.2.)

( [ ) ]

0 1
2

- 1
2

1

Fig. A.2. A relatively open subset of [0,1].

A.3 Bases

It is generally difficult to describe directly all the open sets in a topology T. What

one can usually do is to describe a subcollection B of T such that any open set is

expressible as a union of open sets in B.

Definition A.6. A subcollection B of a topology T on a topological space S is a

basis for the topology T if given an open set U and point p in U , there is an open set

B ∈ B such that p ∈ B ⊂U . We also say that B generates the topology T or that B

is a basis for the topological space S.

Example. The collection of all open balls B(p,r) in Rn, with p ∈ Rn and r a positive

real number, is a basis for the standard topology of Rn.

Proposition A.7. A collection B of open sets of S is a basis if and only if every open

set in S is a union of sets in B.

Proof.

(⇒) Suppose B is a basis and U is an open set in S. For every p ∈U , there is a basic

open set Bp ∈B such that p ∈ Bp ⊂U . Therefore, U =
⋃

p∈U Bp.

(⇐) Suppose every open set in S is a union of open sets in B. Given an open set U

and a point p in U , since U =
⋃

Bα∈B Bα , there is a Bα ∈ B such that p ∈ Bα ⊂U .

Hence, B is a basis. ⊓⊔
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The following proposition gives a useful criterion for deciding whether a collec-

tion B of subsets is a basis for some topology.

Proposition A.8. A collection B of subsets of a set S is a basis for some topology T

on S if and only if

(i) S is the union of all the sets in B, and

(ii) given any two sets B1 and B2 ∈ B and a point p ∈ B1∩B2, there is a set B ∈B

such that p ∈ B⊂ B1∩B2 (Figure A.3).

b

p
B

B1 B2

Fig. A.3. Criterion for a basis.

Proof.

(⇒) (i) follows from Proposition A.7.

(ii) If B is a basis, then B1 and B2 are open sets and hence so is B1 ∩B2. By the

definition of a basis, there is a B ∈B such that p ∈ B⊂ B1∩B2.

(⇐) Define T to be the collection consisting of all sets that are unions of sets in B.

Then the empty set ∅ and the set S are in T and T is clearly closed under arbitrary

union. To show that T is closed under finite intersection, let U =
⋃

µ Bµ and V =⋃
ν Bν be in T, where Bµ ,Bν ∈B. Then

U ∩V =

(⋃

µ

Bµ

)
∩
(⋃

ν

Bν

)
=
⋃

µ,ν

(Bµ ∩Bν).

Thus, any p in U ∩V is in Bµ ∩Bν for some µ ,ν . By (ii) there is a set Bp in B

such that p ∈ Bp ⊂ Bµ ∩Bν . Therefore,

U ∩V =
⋃

p∈U∩V

Bp ∈ T. ⊓⊔

Proposition A.9. Let B = {Bα} be a basis for a topological space S, and A a sub-

space of S. Then {Bα ∩A} is a basis for A.

Proof. Let U ′ be any open set in A and p ∈U ′. By the definition of subspace topol-

ogy, U ′ =U ∩A for some open set U in S. Since p∈U ∩A⊂U , there is a basic open

set Bα such that p ∈ Bα ⊂U . Then

p ∈ Bα ∩A⊂U ∩A =U ′,

which proves that the collection {Bα ∩A | Bα ∈B} is a basis for A. ⊓⊔
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A.4 First and Second Countability

First and second countability of a topological space have to do with the countability

of a basis. Before taking up these notions, we begin with an example. We say that a

point in Rn is rational if all of its coordinates are rational numbers. Let Q be the set

of rational numbers and Q+ the set of positive rational numbers. From real analysis,

it is well known that every open interval in R contains a rational number.

Lemma A.10. Every open set in Rn contains a rational point.

Proof. An open set U in Rn contains an open ball B(p,r), which in turn contains

an open cube ∏n
i=1 Ii, where Ii is the open interval ]pi− (r/

√
n), pi + (r/

√
n)[ (see

Problem A.4). For each i, let qi be a rational number in Ii. Then (q1, . . . ,qn) is a

rational point in ∏n
i=1 Ii ⊂ B(p,r)⊂U . ⊓⊔

Proposition A.11. The collection Brat of all open balls in Rn with rational centers

and rational radii is a basis for Rn.

b b

p q
r

Fig. A.4. A ball with rational center q and rational radius r/2.

Proof. Given an open set U in Rn and point p in U , there is an open ball B(p,r′) with

positive real radius r′ such that p ∈ B(p,r′)⊂U . Take a rational number r in ]0,r′[.
Then p ∈ B(p,r)⊂U . By Lemma A.10, there is a rational point q in the smaller ball

B(p,r/2). We claim that

p ∈ B
(

q,
r

2

)
⊂ B(p,r). (A.1)

(See Figure A.4.) Since d(p,q)< r/2, we have p∈ B(q,r/2). Next, if x ∈ B(q,r/2),
then by the triangle inequality,

d(x, p)≤ d(x,q)+ d(q, p)<
r

2
+

r

2
= r.

So x ∈ B(p,r). This proves the claim (A.1). Because p ∈ B(q,r/2)⊂U , the collec-

tion Brat of open balls with rational centers and rational radii is a basis for Rn. ⊓⊔
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Both of the sets Q and Q+ are countable. Since the centers of the balls in Brat

are indexed by Qn, a countable set, and the radii are indexed by Q+, also a countable

set, the collection Brat is countable.

Definition A.12. A topological space is said to be second countable if it has a

countable basis.

Example A.13. Proposition A.11 shows that Rn with its standard topology is second

countable. With the discrete topology, Rn would not be second countable. More

generally, any uncountable set with the discrete topology is not second countable.

Proposition A.14. A subspace A of a second-countable space S is second countable.

Proof. By Proposition A.9, if B= {Bi} is a countable basis for S, then BA := {Bi∩
A} is a countable basis for A. ⊓⊔

Definition A.15. Let S be a topological space and p a point in S. A basis of neighbor-

hoods at p or a neighborhood basis at p is a collection B= {Bα} of neighborhoods

of p such that for any neighborhood U of p, there is a Bα ∈B such that p ∈ Bα ⊂U .

A topological space S is first countable if it has a countable basis of neighborhoods

at every point p ∈ S.

Example. For p ∈ Rn, let B(p,1/n) be the open ball of center p and radius 1/n in

Rn. Then {B(p,1/n)}∞
n=1 is a neighborhood basis at p. Thus, Rn is first countable.

Example. An uncountable discrete space is first countable but not second countable.

Every second-countable space is first countable (the proof is left to Problem A.18).

Suppose p is a point in a first-countable topological space and {Vi}∞
i=1 is a count-

able neighborhood basis at p. By taking Ui = V1 ∩ ·· · ∩Vi, we obtain a countable

descending sequence

U1 ⊃U2 ⊃U3 ⊃ ·· ·
that is also a neighborhood basis at p. Thus, in the definition of first countability,

we may assume that at every point the countable neighborhood basis at the point is a

descending sequence of open sets.

A.5 Separation Axioms

There are various separation axioms for a topological space. The only ones we will

need are the Hausdorff condition and normality.

Definition A.16. A topological space S is Hausdorff if given any two distinct points

x,y in S, there exist disjoint open sets U,V such that x ∈U and y ∈ V . A Hausdorff

space is normal if given any two disjoint closed sets F,G in S, there exist disjoint

open sets U,V such that F ⊂U and G⊂V (Figure A.5).
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b b

x y
U V F

G

U V

Fig. A.5. The Hausdorff condition and normality.

Proposition A.17. Every singleton set (a one-point set) in a Hausdorff space S is

closed.

Proof. Let x ∈ S. For any y∈ S−{x}, by the Hausdorff condition there exist an open

set U ∋ x and an open set V ∋ y such that U and V are disjoint. In particular,

y ∈V ⊂ S−U ⊂ S−{x}.

By the local criterion for openness (Lemma A.2), S−{x} is open. Therefore, {x} is

closed. ⊓⊔

Example. The Euclidean space Rn is Hausdorff, for given distinct points x,y in Rn,

if ε = 1
2
d(x,y), then the open balls B(x,ε) and B(y,ε) will be disjoint (Figure A.6).

b

b

x

y

Fig. A.6. Two disjoint neighborhoods in Rn.

Example A.18 (Zariski topology). Let S = Kn be a vector space of dimension n over

a field K, endowed with the Zariski topology. Every open set U in S is of the form

S− Z(I), where I is an ideal in K[x1, . . . ,xn]. The open set U is nonempty if and

only if I is not the zero ideal. In the Zariski topology any two nonempty open sets

intersect: if U = S−Z(I) and V = S−Z(J) are nonempty, then I and J are nonzero

ideals and

U ∩V = (S−Z(I))∩ (S−Z(J))

= S− (Z(I)∪Z(J)) (de Morgan’s law)

= S−Z(IJ), (Exercise A.5)
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which is nonempty because IJ is not the zero ideal. Therefore, Kn with the Zariski

topology is not Hausdorff.

Proposition A.19. Any subspace A of a Hausdorff space S is Hausdorff.

Proof. Let x and y be distinct points in A. Since S is Hausdorff, there exist disjoint

neighborhoods U and V of x and y respectively in S. Then U ∩ A and V ∩A are

disjoint neighborhoods of x and y respectively in A. ⊓⊔

A.6 Product Topology

The Cartesian product of two sets A and B is the set A×B of all ordered pairs (a,b)
with a ∈ A and b ∈ B. Given two topological spaces X and Y , consider the collection

B of subsets of X×Y of the form U×V , with U open in X and V open in Y . We will

call elements of B basic open sets in X×Y . If U1×V1 and U2×V2 are in B, then

(U1×V1)∩ (U2×V2) = (U1∩U2)× (V1∩V2),

which is also in B (Figure A.7). From this, it follows easily that B satisfies the

conditions of Proposition A.8 for a basis and generates a topology on X ×Y , called

the product topology. Unless noted otherwise, this will always be the topology we

assign to the product of two topological spaces.

U1

U2

V1

V2

| |
| |

−

−

−

−

X

Y

Fig. A.7. Intersection of two basic open subsets in X×Y .

Proposition A.20. Let {Ui} and {Vj} be bases for the topological spaces X and Y ,

respectively. Then {Ui×Vj} is a basis for X×Y.

Proof. Given an open set W in X×Y and point (x,y) ∈W , we can find a basic open

set U×V in X×Y such that (x,y) ∈U×V ⊂W . Since U is open in X and {Ui} is a

basis for X ,
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x ∈Ui ⊂U

for some Ui. Similarly,

y ∈Vj ⊂V

for some Vj. Therefore,

(x,y) ∈Ui×Vj ⊂U×V ⊂W.

By the definition of a basis, {Ui×Vj} is a basis for X×Y . ⊓⊔
Corollary A.21. The product of two second-countable spaces is second countable.

Proposition A.22. The product of two Hausdorff spaces X and Y is Hausdorff.

Proof. Given two distinct points (x1,y1),(x2,y2) in X×Y , without loss of generality

we may assume that x1 6= x2. Since X is Hausdorff, there exist disjoint open sets

U1,U2 in X such that x1 ∈ U1 and x2 ∈ U2. Then U1×Y and U2×Y are disjoint

neighborhoods of (x1,y1) and (x2,y2) (Figure A.8), so X×Y is Hausdorff. ⊓⊔

(x1, y1)

(x2, y2)

x1 x2 X

Y

U1 U2| | | |

Fig. A.8. Two disjoint neighborhoods in X ×Y .

The product topology can be generalized to the product of an arbitrary collection

{Xα}α∈A of topological spaces. Whatever the definition of the product topology, the

projection maps παi
: ∏α Xα → Xαi

, παi
(∏xα) = xαi

should all be continuous. Thus,

for each open set Uαi
in Xαi

, the inverse image π−1
αi

(Uαi
) should be open in ∏α Xα .

By the properties of open sets, a finite intersection
⋂r

i=1 π−1
αi

(Uαi
) should also be

open. Such a finite intersection is a set of the form ∏α∈AUα , where Uα is open in

Xα and Uα = Xα for all but finitely many α ∈ A. We define the product topology

on the Cartesian product ∏α∈A Xα to be the topology with basis consisting of sets of

this form. The product topology is the coarsest topology on ∏α Xα such that all the

projection maps παi
: ∏α Xα → Xαi

are continuous.

A.7 Continuity

Let f : X → Y be a function of topological spaces. Mimicking the definition from

advanced calculus, we say that f is continuous at a point p in X if for every neigh-

borhood V of f (p) in Y , there is a neighborhood U of p in X such that f (U) ⊂ V .

We say that f is continuous on X if it is continuous at every point of X .
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Proposition A.23 (Continuity in terms of open sets). A function f : X → Y is con-

tinuous if and only if the inverse image of any open set is open.

Proof.

(⇒) Suppose V is open in Y . To show that f−1(V ) is open in X , let p ∈ f−1(V ).
Then f (p) ∈ V . Since f is assumed to be continuous at p, there is a neighborhood

U of p such that f (U) ⊂ V . Therefore, p ∈U ⊂ f−1(V ). By the local criterion for

openness (Lemma A.2), f−1(V ) is open in X .

(⇐) Let p be a point in X , and V a neighborhood of f (p) in Y . By hypothesis,

f−1(V ) is open in X . Since f (p) ∈V , p ∈ f−1(V ). Then U = f−1(V ) is a neighbor-

hood of p such that f (U) = f ( f−1(V ))⊂V , so f is continuous at p. ⊓⊔

Example A.24 (Continuity of an inclusion map). If A is a subspace of X , then the

inclusion map i : A→ X , i(a) = a is continuous.

Proof. If U is open in X , then i−1(U) =U ∩A, which is open in the subspace topol-

ogy of A. ⊓⊔

Example A.25 (Continuity of a projection map). The projection π : X ×Y → X ,

π(x,y) = x, is continuous.

Proof. Let U be open in X . Then π−1(U) = U ×Y , which is open in the product

topology on X×Y . ⊓⊔

Proposition A.26. The composition of continuous maps is continuous: if f : X → Y

and g : Y → Z are continuous, then g ◦ f : X → Z is continuous.

Proof. Let V be an open subset of Z. Then

(g ◦ f )−1(V ) = f−1(g−1(V )),

because for any x ∈ X ,

x ∈ (g ◦ f )−1(V ) iff g( f (x)) ∈V iff f (x) ∈ g−1(V ) iff x ∈ f−1(g−1(V )).

By Proposition A.23, since g is continuous, g−1(V ) is open in Y . Similarly, since f

is continuous, f−1(g−1(V )) is open in X . By Proposition A.23 again, g ◦ f : X → Z

is continuous. ⊓⊔

If A is a subspace of X and f : X → Y is a function, the restriction of f to A,

f |A : A→ Y,

is defined by

( f |A)(a) = f (a).

With i : A→ X being the inclusion map, the restriction f |A is the composite f ◦ i.

Since both f and i are continuous (Example A.24) and the composition of continuous

functions is continuous (Proposition A.26), we have the following corollary.
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Corollary A.27. The restriction f |A of a continuous function f : X → Y to a sub-

space A is continuous.

Continuity may also be phrased in terms of closed sets.

Proposition A.28 (Continuity in terms of closed sets). A function f : X → Y is

continuous if and only if the inverse image of any closed set is closed.

Proof. Problem A.9. ⊓⊔

A map f : X → Y is said to be open if the image of every open set in X is open

in Y ; similarly, f : X → Y is said to be closed if the image of every closed set in X is

closed in Y .

If f : X → Y is a bijection, then its inverse map f−1 : Y → X is defined. In this

context, for any subset V ⊂Y , the notation f−1(V ) a priori has two meanings. It can

mean either the inverse image of V under the map f ,

f−1(V ) = {x ∈ X | f (x) ∈V},

or the image of V under the map f−1,

f−1(V ) = { f−1(y) ∈ X | y ∈V}.

Fortunately, because y= f (x) if and only if x= f−1(y), these two meanings coincide.

A.8 Compactness

While its definition may not be intuitive, the notion of compactness is of central

importance in topology. Let S be a topological space. A collection {Uα} of open

subsets of S is said to cover S or to be an open cover of S if S ⊂ ⋃α Uα . Of course,

because S is the ambient space, this condition is equivalent to S=
⋃

α Uα . A subcover

of an open cover is a subcollection whose union still contains S. The topological

space S is said to be compact if every open cover of S has a finite subcover.

With the subspace topology, a subset A of a topological space S is a topological

space in its own right. The subspace A can be covered by open sets in A or by open

sets in S. An open cover of A in S is a collection {Uα} of open sets in S that covers

A. In this terminology, A is compact if and only if every open cover of A in A has a

finite subcover.

Proposition A.29. A subspace A of a topological space S is compact if and only if

every open cover of A in S has a finite subcover.

Proof.

(⇒) Assume A compact and let {Uα} be an open cover of A in S. This means that

A⊂⋃α Uα . Hence,

A⊂
(⋃

α

Uα

)
∩A =

⋃

α

(Uα ∩A).
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A

Fig. A.9. An open cover of A in S.

Since A is compact, the open cover {Uα ∩A} has a finite subcover {Uαi
∩A}r

i=1.

Thus,

A⊂
r⋃

i=1

(Uαi
∩A)⊂

r⋃

i=1

Uαi
,

which means that {Uαi
}r

i=1 is a finite subcover of {Uα}.
(⇐) Suppose every open cover of A in S has a finite subcover, and let {Vα} be an

open cover of A in A. Then each Vα is equal to Uα ∩A for some open set Uα in S.

Since

A⊂
⋃

α

Vα ⊂
⋃

α

Uα ,

by hypothesis there are finitely many sets Uαi
such that A⊂⋃i Uαi

. Hence,

A⊂
(⋃

i

Uαi

)
∩A =

⋃

i

(Uαi
∩A) =

⋃

i

Vαi
.

So {Vαi
} is a finite subcover of {Vα} that covers A. Therefore, A is compact. ⊓⊔

Proposition A.30. A closed subset F of a compact topological space S is compact.

Proof. Let {Uα} be an open cover of F in S. The collection {Uα ,S−F} is then an

open cover of S. By the compactness of S, there is a finite subcover {Uαi
,S−F} that

covers S, so F ⊂ ⋃iUαi
. This proves that F is compact. ⊓⊔

Proposition A.31. In a Hausdorff space S, it is possible to separate a compact subset

K and a point p not in K by disjoint open sets; i.e., there exist an open set U ⊃ K

and an open set V ∋ p such that U ∩V =∅.

Proof. By the Hausdorff property, for every x∈K, there are disjoint open sets Ux ∋ x

and Vx ∋ p. The collection {Ux}x∈K is a cover of K by open subsets of S. Since K is

compact, it has a finite subcover {Uxi
}.

Let U =
⋃

iUxi
and V =

⋂
iVxi

. Then U is an open set of S containing K. Being

the intersection of finitely many open sets containing p, V is an open set containing

p. Moreover, the set

U ∩V =
⋃

i

(Uxi
∩V )

is empty, since each Uxi
∩V is contained in Uxi

∩Vxi
, which is empty. ⊓⊔
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Proposition A.32. Every compact subset K of a Hausdorff space S is closed.

Proof. By the preceding proposition, for every point p in S−K, there is an open set

V such that p ∈V ⊂ S−K. This proves that S−K is open. Hence, K is closed. ⊓⊔
Exercise A.33 (Compact Hausdorff space).* Prove that a compact Hausdorff space is nor-

mal. (Normality was defined in Definition A.16.)

Proposition A.34. The image of a compact set under a continuous map is compact.

Proof. Let f : X → Y be a continuous map and K a compact subset of X . Suppose

{Uα} is a cover of f (K) by open subsets of Y . Since f is continuous, the inverse

images f−1(Uα) are all open. Moreover,

K ⊂ f−1( f (K)) ⊂ f−1

(⋃

α

Uα

)
=
⋃

α

f−1(Uα).

So { f−1(Uα)} is an open cover of K in X . By the compactness of K, there is a finite

subcollection { f−1(Uαi
)} such that

K ⊂
⋃

i

f−1(Uαi
) = f−1

(⋃

i

Uαi

)
.

Then f (K) ⊂⋃iUαi
. Thus, f (K) is compact. ⊓⊔

Proposition A.35. A continuous map f : X → Y from a compact space X to a Haus-

dorff space Y is a closed map.

Proof. Let F be a closed subset of the compact space X . By Proposition A.30, F is

compact. As the image of a compact set under a continuous map, f (F) is compact in

Y (Proposition A.34). As a compact subset of the Hausdorff space Y , f (F) is closed

(Proposition A.32). ⊓⊔

A continuous bijection f : X → Y whose inverse is also continuous is called a

homeomorphism.

Corollary A.36. A continuous bijection f : X → Y from a compact space X to a

Hausdorff space Y is a homeomorphism.

Proof. By Proposition A.28, to show that f−1 : Y → X is continuous, it suffices to

prove that for every closed set F in X , the set ( f−1)−1(F) = f (F) is closed in Y , i.e.,

that f is a closed map. The corollary then follows from Proposition A.35. ⊓⊔
Exercise A.37 (Finite union of compact sets). Prove that a finite union of compact subsets

of a topological space is compact.

We mention without proof an important result. For a proof, see [29, Theo-

rem 26.7, p. 167, and Theorem 37.3, p. 234].

Theorem A.38 (The Tychonoff theorem). The product of any collection of compact

spaces is compact in the product topology.
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A.9 Boundedness in Rn

A subset A of Rn is said to be bounded if it is contained in some open ball B(p,r);
otherwise, it is unbounded.

Proposition A.39. A compact subset of Rn is bounded.

Proof. If A were an unbounded subset of Rn, then the collection {B(0, i)}∞
i=1 of open

balls with radius increasing to infinity would be an open cover of A in Rn that does

not have a finite subcover. ⊓⊔

By Propositions A.39 and A.32, a compact subset of Rn is closed and bounded.

The converse is also true.

Theorem A.40 (The Heine–Borel theorem). A subset of Rn is compact if and only

if it is closed and bounded.

For a proof, see for example [29].

A.10 Connectedness

Definition A.41. A topological space S is disconnected if it is the union S =U ∪V

of two disjoint nonempty open subsets U and V (Figure A.10). It is connected if

it is not disconnected. A subset A of S is disconnected if it is disconnected in the

subspace topology.

U V

Fig. A.10. A disconnected space.

Proposition A.42. A subset A of a topological space S is disconnected if and only if

there are open sets U and V in S such that

(i) U ∩A 6=∅, V ∩A 6=∅,

(ii) U ∩V ∩A =∅,

(iii) A⊂U ∪V.

A pair of open sets in S with these properties is called a separation of A (Figure A.11).

Proof. Problem A.15. ⊓⊔
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U V

A

Fig. A.11. A separation of A.

Proposition A.43. The image of a connected space X under a continuous map

f : X → Y is connected.

Proof. Suppose f (X) is not connected. Then there is a separation {U,V} of f (X) in

Y . By the continuity of f , both f−1(U) and f−1(V ) are open in X . We claim that

{ f−1(U), f−1(V )} is a separation of X .

(i) Since U ∩ f (X) 6=∅, the open set f−1(U) is nonempty.

(ii) If x∈ f−1(U)∩ f−1(V ), then f (x) ∈U∩V ∩ f (X) =∅, a contradiction. Hence,

f−1(U)∩ f−1(V ) is empty.

(iii) Since f (X)⊂U ∪V , we have X ⊂ f−1(U ∪V ) = f−1(U)∪ f−1(V ).

The existence of a separation of X contradicts the connectedness of X . This contra-

diction proves that f (X) is connected. ⊓⊔

Proposition A.44. In a topological space S, the union of a collection of connected

subsets Aα having a point p in common is connected.

Proof. Suppose
⋃

α Aα =U ∪V , where U and V are disjoint open subsets of
⋃

α Aα .

The point p ∈ ⋃α Aα belongs to U or V . Assume without loss of generality that

p ∈U .

For each α ,

Aα = Aα ∩ (U ∪V ) = (Aα ∩U)∪ (Aα ∩V ).

The two open sets Aα ∩U and Aα ∩V of Aα are clearly disjoint. Since p ∈ Aα ∩U ,

Aα ∩U is nonempty. By the connectedness of Aα , Aα ∩V must be empty for all α .

Hence,

V =
(⋃

α

Aα

)
∩V =

⋃

α

(Aα ∩V )

is empty. So
⋃

α Aα must be connected. ⊓⊔

A.11 Connected Components

Let x be a point in a topological space S. By Proposition A.44, the union Cx of all

connected subsets of S containing x is connected. It is called the connected compo-

nent of S containing x.
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Proposition A.45. Let Cx be a connected component of a topological space S. Then

a connected subset A of S is either disjoint from Cx or is contained entirely in Cx.

Proof. If A and Cx have a point in common, then by Proposition A.44, A∪Cx is a

connected set containing x. Hence, A∪Cx ⊂Cx, which implies that A⊂Cx. ⊓⊔

Accordingly, the connected component Cx is the largest connected subset of S

containing x in the sense that it contains every connected subset of S containing x.

Corollary A.46. For any two points x,y in a topological space S, the connected com-

ponents Cx and Cy either are disjoint or coincide.

Proof. If Cx and Cy are not disjoint, then by Proposition A.45, they are contained in

each other. In this case, Cx =Cy. ⊓⊔

As a consequence of Corollary A.46, the connected components of S partition S

into disjoint subsets.

A.12 Closure

Let S be a topological space and A a subset of S.

Definition A.47. The closure of A in S, denoted by A, cl(A), or clS(A), is defined to

be the intersection of all the closed sets containing A.

The advantage of the bar notation A is its simplicity, while the advantage of the

clS(A) notation is its indication of the ambient space S. If A⊂ B⊂ S, then the closure

of A in B and the closure of A in S need not be the same. In this case, it is useful to

have the notations clB(A) and clM(A) for the two closures.

As an intersection of closed sets, A is a closed set. It is the smallest closed set

containing A in the sense that any closed set containing A contains A.

Proposition A.48 (Local characterization of closure). Let A be a subset of a topo-

logical space S. A point p∈ S is in the closure cl(A) if and only if every neighborhood

of p contains a point of A (Figure A.12).

Here by “local,” we mean a property satisfied by a basis of neighborhoods at a

point.

Proof. We will prove the proposition in the form of its contrapositive:

p /∈ cl(A) ⇐⇒ there is a neighborhood of p disjoint from A.

(⇒) Suppose

p /∈ cl(A) =
⋂
{F closed in S | F ⊃ A}.

Then p /∈ some closed set F containing A. It follows that p ∈ S−F , an open set

disjoint from A.

(⇐) Suppose p ∈ an open set U disjoint from A. Then the complement F := S−U

is a closed set containing A and not containing p. Therefore, p /∈ cl(A). ⊓⊔
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b

p
A

Fig. A.12. Every neighborhood of p contains a point of A.

Example. The closure of the open disk B(0,r) in R2 is the closed disk

B(0,r) = {p ∈R2 | d(p,0)≤ r}.

Definition A.49. A point p in S is an accumulation point of A if every neighborhood

of p in S contains a point of A other than p. The set of all accumulation points of A

is denoted by ac(A).

If U is a neighborhood of p in S, we call U−{p} a deleted neighborhood of p.

An equivalent condition for p to be an accumulation point of A is to require that every

deleted neighborhood of p in S contain a point of A. In some books an accumulation

point is called a limit point.

Example. If A = [0,1[ ∪ {2} in R1, then the closure of A is [0,1]∪{2}, but the set of

accumulation points of A is only the closed interval [0,1].

Proposition A.50. Let A be a subset of a topological space S. Then

cl(A) = A∪ ac(A).

Proof.

(⊃) By definition, A ⊂ cl(A). By the local characterization of closure (Proposition

A.48), ac(A)⊂ cl(A). Hence, A∪ ac(A)⊂ cl(A).

(⊂) Suppose p ∈ cl(A). Either p∈ A or p /∈ A. If p∈ A, then p∈ A∪ac(A). Suppose

p /∈ A. By Proposition A.48, every neighborhood of p contains a point of A, which

cannot be p, since p /∈ A. Therefore, every deleted neighborhood of p contains a

point of A. In this case,

p ∈ ac(A)⊂ A∪ ac(A).

So cl(A)⊂ A∪ ac(A). ⊓⊔

Proposition A.51. A set A is closed if and only if A = A.

Proof.

(⇐) If A = A, then A is closed because A is closed.

(⇒) Suppose A is closed. Then A is a closed set containing A, so that A⊂ A. Because

A⊂ A, equality holds. ⊓⊔
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Proposition A.52. If A⊂ B in a topological space S, then A⊂ B.

Proof. Since B contains B, it also contains A. As a closed subset of S containing A,

it contains A by definition. ⊓⊔
Exercise A.53 (Closure of a finite union or finite intersection). Let A and B be subsets of

a topological space S. Prove the following:

(a) A∪B = A∪B,

(b) A∩B⊂ A∩B.

The example of A =]a,0[ and B =]0,b[ in the real line shows that in general, A∩B 6= A∩B.

A.13 Convergence

Let S be a topological space. A sequence in S is a map from the set Z+ of positive

integers to S. We write a sequence as 〈xi〉 or x1,x2,x3, . . ..

Definition A.54. The sequence 〈xi〉 converges to p if for every neighborhood U of

p, there is a positive integer N such that for all i≥ N, xi ∈U . In this case we say that

p is a limit of the sequence 〈xi〉 and write xi→ p or limi→∞ xi = p.

Proposition A.55 (Uniqueness of the limit). In a Hausdorff space S, if a sequence

〈xi〉 converges to p and to q, then p = q.

Proof. Problem A.19. ⊓⊔
Thus, in a Hausdorff space we may speak of the limit of a convergent sequence.

Proposition A.56 (The sequence lemma). Let S be a topological space and A a

subset of S. If there is a sequence 〈ai〉 in A that converges to p, then p ∈ cl(A). The

converse is true if S is first countable.

Proof.

(⇒) Suppose ai→ p, where ai ∈ A for all i. By the definition of convergence, every

neighborhood U of p contains all but finitely many of the points ai. In particular, U

contains a point in A. By the local characterization of closure (Proposition A.48),

p ∈ cl(A).

(⇐) Suppose p ∈ cl(A). Since S is first countable, we can find a countable basis of

neighborhoods {Un} at p such that

U1 ⊃U2 ⊃ ·· · .
By the local characterization of closure, in each Ui there is a point ai ∈ A. We claim

that the sequence 〈ai〉 converges to p. If U is any neighborhood of p, then by the

definition of a basis of neighborhoods at p, there is a UN such that p ∈UN ⊂U . For

all i≥ N, we then have

Ui ⊂UN ⊂U.

Therefore, for all i≥ N,

ai ∈Ui ⊂U.

This proves that 〈ai〉 converges to p. ⊓⊔
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Problems

A.1. Set theory

If U1 and U2 are subsets of a set X , and V1 and V2 are subsets of a set Y , prove that

(U1×V1)∩ (U2×V2) = (U1 ∩U2)× (V1 ∩V2).

A.2. Union and intersection

Suppose U1 ∩V1 =U2 ∩V2 = ∅ in a topological space S. Show that the intersection U1 ∩U2

is disjoint from the union V1 ∪V2. (Hint: Use the distributive property of an intersection over

a union.)

A.3. Closed sets

Let S be a topological space. Prove the following two statements.

(a) If {Fi}n
i=1 is a finite collection of closed sets in S, then

⋃n
i=1 Fi is closed.

(b) If {Fα}α∈A is an arbitrary collection of closed sets in S, then
⋂

α Fα is closed.

A.4. Cubes versus balls

Prove that the open cube ]− a,a[n is contained in the open ball B(0,
√

na), which in turn is

contained in the open cube ]−√na,
√

na[n. Therefore, open cubes with arbitrary centers in

Rn form a basis for the standard topology on Rn.

A.5. Product of closed sets

Prove that if A is closed in X and B is closed in Y , then A×B is closed in X×Y .

A.6. Characterization of a Hausdorff space by its diagonal

Let S be a topological space. The diagonal ∆ in S×S is the set

∆ = {(x,x) ∈ S×S}.

Prove that S is Hausdorff if and only if the diagonal ∆ is closed in S×S. (Hint: Prove that S is

Hausdorff if and only if S×S−∆ is open in S×S.)

A.7. Projection

Prove that if X and Y are topological spaces, then the projection π : X ×Y → X , π(x,y) = x,

is an open map.

A.8. The ε-δ criterion for continuity

Prove that a function f : A→ Rm is continuous at p ∈ A if and only if for every ε > 0, there

exists a δ > 0 such that for all x ∈ A satisfying d(x, p)< δ , one has d( f (x), f (p))< ε .

A.9. Continuity in terms of closed sets

Prove Proposition A.28.

A.10. Continuity of a map into a product

Let X , Y1, and Y2 be topological spaces. Prove that a map f = ( f1, f2) : X → Y1 ×Y2 is

continuous if and only if both components fi : X →Yi are continuous.

A.11. Continuity of the product map

Given two maps f : X → X ′ and g : Y → Y ′ of topological spaces, we define their product to

be

f ×g : X×Y → X ′ ×Y ′, ( f ×g)(x,y) = ( f (x),g(y)).

Note that if π1 : X ×Y → X and π2 : X ×Y → Y are the two projections, then f × g =
( f ◦ π1, f ◦ π2). Prove that f ×g is continuous if and only if both f and g are continuous.
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A.12. Homeomorphism

Prove that if a continuous bijection f : X → Y is a closed map, then it is a homeomorphism

(cf. Corollary A.36).

A.13.* The Lindelöf condition

Show that if a topological space is second countable, then it is Lindelöf; i.e., every open cover

has a countable subcover.

A.14. Compactness

Prove that a finite union of compact sets in a topological space S is compact.

A.15.* Disconnected subset in terms of a separation

Prove Proposition A.42.

A.16. Local connectedness

A topological space S is said to be locally connected at p ∈ S if for every neighborhood U of

p, there is a connected neighborhood V of p such that V ⊂U . The space S is locally connected

if it is locally connected at every point. Prove that if S is locally connected, then the connected

components of S are open.

A.17. Closure

Let U be an open subset and A an arbitrary subset of a topological space S. Prove that U ∩ Ā 6=
∅ if and only if U ∩A 6=∅.

A.18. Countability

Prove that every second-countable space is first countable.

A.19.* Uniqueness of the limit

Prove Proposition A.55.

A.20.* Closure in a product

Let S and Y be topological spaces and A⊂ S. Prove that

clS×Y (A×Y ) = clS(A)×Y

in the product space S×Y .

A.21. Dense subsets

A subset A of a topological space S is said to be dense in S if its closure clS(A) equals S.

(a) Prove that A is dense in S if and only if for every p∈ S, every neighborhood U of p contains

a point of A.

(b) Let K be a field. Prove that a Zariski-open subset U of Kn is dense in Kn. (Hint: Example

A.18.)
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§B The Inverse Function Theorem on Rn and Related

Results

This appendix reviews three logically equivalent theorems from real analysis: the

inverse function theorem, the implicit function theorem, and the constant rank theo-

rem, which describe the local behavior of a C∞ map from Rn to Rm. We will assume

the inverse function theorem and from it deduce the other two in the simplest cases.

In Section 11 these theorems are applied to manifolds in order to clarify the local

behavior of a C∞ map when the map has maximal rank at a point or constant rank in

a neighborhood.

B.1 The Inverse Function Theorem

A C∞ map f : U → Rn defined on an open subset U of Rn is locally invertible or a

local diffeomorphism at a point p in U if f has a C∞ inverse in some neighborhood of

p. The inverse function theorem gives a criterion for a map to be locally invertible.

We call the matrix J f = [∂ f i/∂x j] of partial derivatives of f the Jacobian matrix of

f and its determinant det[∂ f i/∂x j] the Jacobian determinant of f .

Theorem B.1 (Inverse function theorem). Let f : U→Rn be a C∞ map defined on

an open subset U of Rn. At any point p in U, the map f is invertible in some neigh-

borhood of p if and only if the Jacobian determinant det[∂ f i/∂x j (p)] is not zero.

For a proof, see for example [35, Theorem 9.24, p. 221]. Although the inverse

function theorem apparently reduces the invertibility of f on an open set to a single

number at p, because the Jacobian determinant is a continuous function, the non-

vanishing of the Jacobian determinant at p is equivalent to its nonvanishing in a

neighborhood of p.

Since the linear map represented by the Jacobian matrix J f (p) is the best linear

approximation to f at p, it is plausible that f is invertible in a neighborhood of p if

and only if J f (p) is also, i.e., if and only if det(J f (p)) 6= 0.

B.2 The Implicit Function Theorem

In an equation such as f (x,y) = 0, it is often impossible to solve explicitly for one

of the variables in terms of the other. If we can show the existence of a function

y = h(x), which we may or may not be able to write down explicitly, such that

f (x,h(x)) = 0, then we say that f (x,y) = 0 can be solved implicitly for y in terms

of x. The implicit function theorem provides a sufficient condition on a system of

equations f i(x1, . . . ,xn) = 0, i = 1, . . . ,m, under which locally a set of variables can

be solved implicitly as C∞ functions of the other variables.

Example. Consider the equation
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f (x,y) = x2 + y2− 1 = 0.

The solution set is the unit circle in the xy-plane.

x

y

1−1

Fig. B.1. The unit circle.

From the picture we see that in a neighborhood of any point other than (±1,0),
y is a function of x. Indeed,

y =±
√

1− x2,

and either function is C∞ as long as x 6=±1. At (±1,0), there is no neighborhood on

which y is a function of x.

On a smooth curve f (x,y) = 0 in R2,

y can be expressed as a function of x in a neighborhood of a point (a,b)

⇐⇒ the tangent line to f (x,y) = 0 at (a,b) is not vertical

⇐⇒ the normal vector grad f := 〈 fx, fy〉 to f (x,y) = 0 at (a,b)

is not horizontal

⇐⇒ fy(a,b) 6= 0.

The implicit function theorem generalizes this condition to higher dimensions. We

will deduce the implicit function theorem from the inverse function theorem.

Theorem B.2 (Implicit function theorem). Let U be an open subset in Rn×Rm and

f : U → Rm a C∞ map. Write (x,y) = (x1, . . . ,xn,y1, . . . ,ym) for a point in U. At a

point (a,b)∈U where f (a,b) = 0 and the determinant det[∂ f i/∂y j(a,b)] is nonzero,

there exist a neighborhood A×B of (a,b) in U and a unique function h : A→ B such

that in A×B⊂U ⊂ Rn×Rm,

f (x,y) = 0 ⇐⇒ y = h(x).

Moreover, h is C∞.

Proof. To solve f (x,y) = 0 for y in terms of x using the inverse function theorem,

we first turn it into an inverse problem. For this, we need a map between two open
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x

y

b

(a,b)

U1

f (x,y) = 0

F = (x, f )

u

v

V1

b

(a,0)

Fig. B.2. F−1 maps the u-axis to the zero set of f .

sets of the same dimension. Since f (x,y) is a map from an open set U in Rn+m to

Rm, it is natural to extend f to a map F : U →Rn+m by adjoining x to it as the first n

components:

F(x,y) = (u,v) = (x, f (x,y)).

To simplify the exposition, we will assume in the rest of the proof that n= m= 1.

Then the Jacobian matrix of F is

JF =

[
1 0

∂ f/∂x ∂ f/∂y

]
.

At the point (a,b),

det JF(a,b) =
∂ f

∂y
(a,b) 6= 0.

By the inverse function theorem, there are neighborhoods U1 of (a,b) and V1 of

F(a,b) = (a,0) in R2 such that F : U1 → V1 is a diffeomorphism with C∞ inverse

F−1 (Figure B.2). Since F : U1→V1 is defined by

u = x,

v = f (x,y),

the inverse map F−1 : V1→U1 must be of the form

x = u,

y = g(u,v)

for some C∞ function g : V1→ R. Thus, F−1(u,v) = (u,g(u,v)).
The two compositions F−1 ◦ F and F ◦ F−1 give

(x,y) = (F−1 ◦ F)(x,y) = F−1(x, f (x,y)) = (x,g(x, f (x,y))) ,

(u,v) = (F ◦ F−1)(u,v) = F(u,g(u,v)) = (u, f (u,g(u,v))) .

Hence,
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y = g(x, f (x,y)) for all (x,y) ∈U1, (B.1)

v = f (u,g(u,v)) for all (u,v) ∈V1. (B.2)

If f (x,y) = 0, then (B.1) gives y = g(x,0). This suggests that we define h(x) =
g(x,0) for all x ∈ R1 for which (x,0) ∈V1. The set of all such x is homeomorphic to

V1∩ (R1×{0}) and is an open subset of R1. Since g is C∞ by the inverse function

theorem, h is also C∞.

Claim. For (x,y) ∈U1 such that (x,0) ∈V1,

f (x,y) = 0 ⇐⇒ y = h(x).

Proof (of Claim).

(⇒) As we saw already, from (B.1), if f (x,y) = 0, then

y = g(x, f (x,y)) = g(x,0) = h(x). (B.3)

(⇐) If y = h(x) and in (B.2) we set (u,v) = (x,0), then

0 = f (x,g(x,0)) = f (x,h(x)) = f (x,y). ⊓⊔

By the claim, in some neighborhood of (a,b) ∈ U1, the zero set of f (x,y) is

precisely the graph of h. To find a product neighborhood of (a,b) as in the statement

of the theorem, let A1×B be a neighborhood of (a,b) contained in U1 and let A =
h−1(B)∩A1. Since h is continuous, A is open in the domain of h and hence in R1.

Then h(A)⊂ B,

A×B⊂ A1×B⊂U1, and A×{0}⊂V1.

By the claim, for (x,y) ∈ A×B,

f (x,y) = 0 ⇐⇒ y = h(x).

Equation (B.3) proves the uniqueness of h. ⊓⊔

Replacing a partial derivative such as ∂ f/∂y with a Jacobian matrix [∂ f i/∂y j],
we can prove the general case of the implicit function theorem in exactly the same

way. Of course, in the theorem y1, . . . ,ym need not be the last m coordinates in Rn+m;

they can be any set of m coordinates in Rn+m.

Theorem B.3. The implicit function theorem is equivalent to the inverse function

theorem.

Proof. We have already shown, at least for one typical case, that the inverse function

theorem implies the implicit function theorem. We now prove the reverse implica-

tion.

So assume the implicit function theorem, and let f : U→Rn be a C∞ map defined

on an open subset U of Rn such that at some point p ∈U , the Jacobian determinant
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det[∂ f i/∂x j(p)] is nonzero. Finding a local inverse for y = f (x) near p amounts to

solving the equation

g(x,y) = f (x)− y = 0

for x in terms of y near (p, f (p)). Note that ∂gi/∂x j = ∂ f i/∂x j. Hence,

det

[
∂gi

∂x j
(p, f (p))

]
= det

[
∂ f i

∂x j
(p)

]
6= 0.

By the implicit function theorem, x can be expressed in terms of y locally near

(p, f (p)); i.e., there is a C∞ function x = h(y) defined in a neighborhood of f (p)
in Rn such that

g(x,y) = f (x)− y = f (h(y))− y = 0.

Thus, y = f (h(y)). Since y = f (x),

x = h(y) = h( f (x)).

Therefore, f and h are inverse functions defined near p and f (p) respectively. ⊓⊔

B.3 Constant Rank Theorem

Every C∞ map f : U → Rm on an open set U of Rn has a rank at each point p in U ,

namely the rank of its Jacobian matrix [∂ f i/∂x j (p)].

Theorem B.4 (Constant rank theorem). If f : Rn ⊃U → Rm has constant rank k

in a neighborhood of a point p ∈U, then after a suitable change of coordinates near

p in U and f (p) in Rm, the map f assumes the form

(x1, . . . ,xn) 7→ (x1, . . . ,xk,0, . . . ,0).

More precisely, there are a diffeomorphism G of a neighborhood of p in U sending p

to the origin in Rn and a diffeomorphism F of a neighborhood of f (p) in Rm sending

f (p) to the origin in Rm such that

(F ◦ f ◦ G)−1(x1, . . . ,xn) = (x1, . . . ,xk,0, . . . ,0).

Proof (for n=m= 2, k = 1). Suppose f = ( f 1, f 2) : R2⊃U→R2 has constant rank

1 in a neighborhood of p ∈U . By reordering the functions f 1, f 2 or the variables x,

y, we may assume that ∂ f 1/∂x(p) 6= 0. (Here we are using the fact that f has rank

≥ 1 at p.) Define G : U →R2 by

G(x,y) = (u,v) = ( f 1(x,y),y).

The Jacobian matrix of G is

JG =

[
∂ f 1/∂x ∂ f 1/∂y

0 1

]
.
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Since det JG(p) = ∂ f 1/∂x(p) 6= 0, by the inverse function theorem there are neigh-

borhoods U1 of p ∈ R2 and V1 of G(p) ∈ R2 such that G : U1→ V1 is a diffeomor-

phism. By making U1 a sufficiently small neighborhood of p, we may assume that f

has constant rank 1 on U1.

On V1,

(u,v) = (G ◦ G−1)(u,v) = ( f 1 ◦ G−1,y ◦ G−1)(u,v).

Comparing the first components gives u = ( f 1 ◦ G−1)(u,v). Hence,

( f ◦ G−1)(u,v) = ( f 1 ◦ G−1, f 2 ◦ G−1)(u,v)

= (u, f 2 ◦ G−1(u,v))

= (u,h(u,v)),

where we set h = f 2 ◦ G−1.

Because G−1 : V1→U1 is a diffeomorphism and f has constant rank 1 on U1, the

composite f ◦ G−1 has constant rank 1 on V1. Its Jacobian matrix is

J( f ◦ G−1) =

[
1 0

∂h/∂u ∂h/∂v

]
.

For this matrix to have constant rank 1, ∂h/∂v must be identically zero on V1. (Here

we are using the fact that f has rank ≤ 1 in a neighborhood of p.) Thus, h is a

function of u alone and we may write

( f ◦ G−1)(u,v) = (u,h(u)).

Finally, let F : R2 → R2 be the change of coordinates F(x,y) = (x,y− h(x)).
Then

(F ◦ f ◦ G−1)(u,v) = F(u,h(u)) = (u,h(u)− h(u)) = (u,0). ⊓⊔

Example B.5. If a C∞ map f : Rn ⊃U → Rn defined on an open subset U of Rn has

nonzero Jacobian determinant det(J f (p)) at a point p ∈U , then by continuity it has

nonzero Jacobian determinant in a neighborhood of p. Therefore, it has constant

rank n in a neighborhood of p.

Problems

B.1.* The rank of a matrix

The rank of a matrix A, denoted by rkA, is defined to be the number of linearly independent

columns of A. By a theorem in linear algebra, it is also the number of linearly independent

rows of A. Prove the following lemma.

Lemma. Let A be an m× n matrix (not necessarily square), and k a positive integer. Then

rkA≥ k if and only if A has a nonsingular k× k submatrix. Equivalently, rkA ≤ k−1 if and

only if all k×k minors of A vanish. (A k×k minor of a matrix A is the determinant of a k×k

submatrix of A.)
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B.2.* Matrices of rank at most r

For an integer r ≥ 0, define Dr to be the subset of Rm×n consisting of all m×n real matrices

of rank at most r. Show that Dr is a closed subset of Rm×n. (Hint: Use Problem B.1.)

B.3.* Maximal rank

We say that the rank of an m×n matrix A is maximal if rkA=min(m,n). Define Dmax to be the

subset of Rm×n consisting of all m×n matrices of maximal rank r. Show that Dmax is an open

subset of Rm×n. (Hint: Suppose n≤ m. Then Dmax = Rm×n−Dn−1. Apply Problem B.2.)

B.4.* Degeneracy loci and maximal-rank locus of a map

Let F : S→ Rm×n be a continuous map from a topological space S to the space Rm×n. The

degeneracy locus of rank r of F is defined to be

Dr(F) := {x ∈ S | rkF(x)≤ r}.

(a) Show that the degeneracy locus Dr(F) is a closed subset of S. (Hint: Dr(F) = F−1(Dr),
where Dr was defined in Problem B.2.)

(b) Show that the maximal-rank locus of F ,

Dmax(F) := {x ∈ S | rkF(x) is maximal},

is an open subset of S.

B.5. Rank of a composition of linear maps

Suppose V , W , V ′, W ′ are finite-dimensional vector spaces.

(a) Prove that if the linear map L : V →W is surjective, then for any linear map f : W →W ′,
rk( f ◦ L) = rk f .

(b) Prove that if the linear map L : V →W is injective, then for any linear map g : V ′ → V ,

rk(L ◦ g) = rkg.

B.6. Constant rank theorem

Generalize the proof of the constant rank theorem (Theorem B.4) in the text to arbitrary n, m,

and k.

B.7. Equivalence of the constant rank theorem and the inverse function theorem

Use the constant rank theorem (Theorem B.4) to prove the inverse function theorem (Theo-

rem B.1). Hence, the two theorems are equivalent.
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§C Existence of a Partition of Unity in General

This appendix contains a proof of Theorem 13.7 on the existence of a C∞ partition

of unity on a general manifold.

Lemma C.1. Every manifold M has a countable basis all of whose elements have

compact closure.

Recall that if A is a subset of a topological space X , the notation A denotes the

closure of A in X .

Proof (of Lemma C.1). Start with a countable basis B for M and consider the sub-

collection S of elements in B that have compact closure. We claim that S is again a

basis. Given an open subset U ⊂ M and point p ∈U , choose a neighborhood V of

p such that V ⊂U and V has compact closure. This is always possible since M is

locally Euclidean.

Since B is a basis, there is an open set B ∈B such that

p ∈ B⊂V ⊂U.

Then B ⊂ V . Because V is compact, so is the closed subset B. Hence, B ∈ S. Since

for any open set U and any p ∈U , we have found a set B ∈ S such that p ∈ B⊂U ,

the collection S of open sets is a basis. ⊓⊔

Proposition C.2. Every manifold M has a countable increasing sequence of subsets

V1 ⊂V1 ⊂V2 ⊂V2 ⊂ ·· · ,

with each Vi open and Vi compact, such that M is the union of the Vi’s (Figure C.1).

Proof. By Lemma C.1, M has a countable basis {Bi}∞
i=1 with each Bi compact. Any

basis of M of course covers M. Set V1 = B1. By compactness, V1 is covered by

finitely many of the Bi’s. Define i1 to be the smallest integer≥ 2 such that

V1 ⊂ B1∪B2∪·· ·∪Bi1 .

Suppose open sets V1, . . . ,Vm have been defined, each with compact closure. As

before, by compactness, Vm is covered by finitely many of the Bi’s. If im is the

smallest integer≥ m+1 and ≥ im−1 such that

Vm ⊂ B1∪B2∪·· ·∪Bim ,

then we set

Vm+1 = B1∪B2∪·· ·∪Bim .

Since a finite union of compact sets is compact and
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Vm+1 ⊂ B1∪B2∪·· ·∪Bim

is a closed subset of a compact set, Vm+1 is compact. Since im ≥m+1, Bm+1⊂Vm+1.

Thus,

M =
⋃

Bi ⊂
⋃

Vi ⊂M.

This proves that M =
⋃∞

i=1 Vi. ⊓⊔

) ) ) ) ) ) )
V1 V2 V3 Vi−1 Vi Vi+1 Vi+2. . .

[ ]

( )

compact

open

Fig. C.1. A nested open cover.

Define V0 to be the empty set. For each i ≥ 1, because Vi+1−Vi is a closed

subset of the compact Vi+1, it is compact. Moreover, it is contained in the open set

Vi+2−Vi−1.

Theorem 13.7 (Existence of a C∞ partition of unity). Let {Uα}α∈A be an open

cover of a manifold M.

(i) There is a C∞ partition of unity {ϕk}∞
k=1 with every ϕk having compact support

such that for each k, suppϕk ⊂Uα for some α ∈A.

(ii) If we do not require compact support, then there is a C∞ partition of unity {ρα}
subordinate to {Uα}.

Proof.

(i) Let {Vi}∞
i=0 be an open cover of M as in Proposition C.2, with V0 the empty set.

The idea of the proof is quite simple. For each i, we find finitely many smooth bump

functions ψ i
j on M, each with compact support in the open set Vi+2−Vi−1 as well as

in some Uα , such that their sum ∑ j ψ i
j is positive on the compact set Vi+1−Vi. The

collection {suppψ i
j} of supports over all i, j will be locally finite. Since the compact

sets Vi+1−Vi cover M, the locally finite sum ψ = ∑i, j ψ i
j will be positive on M. Then

{ψ i
j/ψ} is a C∞ partition of unity satisfying the conditions in (i).

We now fill in the details. Fix an integer i ≥ 1. For each p in the compact set

Vi+1−Vi, choose an open set Uα containing p from the open cover {Uα}. Then p

is in the open set Uα ∩ (Vi+2−Vi−1). Let ψp be a C∞ bump function on M that is

positive on a neighborhood Wp of p and has support in Uα ∩ (Vi+2−Vi−1). Since

suppψp is a closed set contained in the compact set Vi+2, it is compact.

The collection {Wp | p∈Vi+1−Vi} is an open cover of the compact set Vi+1−Vi,

and so there is a finite subcover {Wp1
, . . . ,Wpm}, with associated bump functions
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ψp1
, . . . ,ψpm . Since m, Wp j

, and ψp j
all depend on i, we relabel them as m(i),

W i
1, . . . ,W

i
m(i), and ψ i

1, . . . ,ψ
i
m(i).

In summary, for each i≥ 1, we have found finitely many open sets W i
1, . . . ,W

i
m(i)

and finitely many C∞ bump functions ψ i
1, . . . ,ψ

i
m(i) such that

(1) ψ i
j > 0 on W i

j for j = 1, . . . ,m(i);

(2) W i
1, . . . ,W

i
m(i) cover the compact set Vi+1−Vi;

(3) suppψ i
j ⊂Uαi j

∩ (Vi+2−Vi−1) for some αi j ∈A;

(4) suppψ i
j is compact.

As i runs from 1 to ∞, we obtain countably many bump functions {ψ i
j}. The

collection of their supports, {suppψ i
j}, is locally finite, since only finitely many of

these sets intersect any Vi. Indeed, since

suppψℓ
j ⊂Vℓ+2−Vℓ−1

for all ℓ, as soon as ℓ≥ i+1,
(

suppψℓ
j

)
∩Vi = the empty set ∅.

Any point p ∈M is contained in the compact set Vi+1−Vi for some i, and there-

fore p ∈W i
j for some (i, j). For this (i, j), ψ i

j(p) > 0. Hence, the sum ψ := ∑i, j ψ i
j

is locally finite and everywhere positive on M. To simplify the notation, we now

relabel the countable set {ψ i
j} as {ψ1,ψ2,ψ3, . . .}. Define

ϕk =
ψk

ψ
.

Then ∑ϕk = 1 and

suppϕk = suppψk ⊂Uα

for some α ∈ A. So {ϕk} is a partition of unity with compact support such that for

each k, suppϕk ⊂Uα for some α ∈ A.

(ii) For each k = 1,2, . . . , let τ(k) be an index in A such that

suppϕk ⊂Uτ(k)

as in the preceding paragraph. Group the collection {ϕk} according to τ(k) and

define

ρα = ∑
τ(k)=α

ϕk

if there is a k with τ(k) = α; otherwise, set ρα = 0. Then

∑
α∈A

ρα = ∑
α∈A

∑
τ(k)=α

ϕk =
∞

∑
k=1

ϕk = 1.

By Problem 13.7,

suppρα ⊂
⋃

τ(k)=α

suppϕk ⊂Uα .

Hence, {ρα} is a C∞ partition of unity subordinate to {Uα}. ⊓⊔
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§D Linear Algebra

This appendix gathers together a few facts from linear algebra used throughout the

book, especially in Sections 24 and 25.

The quotient vector space is a construction in which one reduces a vector space

to a smaller space by identifying a subspace to zero. It represents a simplification,

much like the formation of a quotient group or of a quotient ring. For a linear map

f : V →W of vector spaces, the first isomorphism theorem of linear algebra gives an

isomorphism between the quotient space V/ker f and the image of f . It is one of the

most useful results in linear algebra.

We also discuss the direct sum and the direct product of a family of vector spaces,

as well as the distinction between an internal and an external direct sum.

D.1 Quotient Vector Spaces

If V is a vector space and W is a subspace of V , a coset of W in V is a subset of

the form

v+W = {v+w | w ∈W}

for some v ∈V .

Two cosets v+W and v′+W are equal if and only if v′ = v+w for some w ∈W ,

or equivalently, if and only if v′ − v ∈W . This introduces an equivalence relation on

V :

v∼ v′ ⇐⇒ v′ − v ∈W ⇐⇒ v+W = v′+W.

A coset of W in V is simply an equivalence class under this equivalence relation.

Any element of v+W is called a representative of the coset v+W .

The set V/W of all cosets of W in V is again a vector space, with addition and

scalar multiplication defined by

(u+W)+ (v+W) = (u+ v)+W,

r(v+W) = rv+W

for u,v ∈V and r ∈ R. We call V/W the quotient vector space or the quotient space

of V by W .

Example D.1. For V = R2 and W a line through the origin in R2, a coset of W in

R2 is a line in R2 parallel to W . (For the purpose of this discussion, two lines in R2

are parallel if and only if they coincide or fail to intersect. This definition differs

from the usual one in plane geometry in allowing a line to be parallel to itself.) The

quotient space R2/W is the collection of lines in R2 parallel to W (Figure D.1).
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bv

v+W

W
L

Fig. D.1. Quotient vector space of R2 by W .

D.2 Linear Transformations

Let V and W be vector spaces over R. A map f : V →W is called a linear transfor-

mation, a vector space homomorphism, a linear operator, or a linear map over R if

for all u, v ∈V and r ∈R,

f (u+ v) = f (u)+ f (v),

f (ru) = r f (u).

Example D.2. Let V = R2 and W a line through the origin in R2 as in Example D.1.

If L is a line through the origin not parallel to W , then L will intersect each line in R2

parallel to W in one and only one point. This one-to-one correspondence

L→ R2/W,

v 7→ v+W,

preserves addition and scalar multiplication, and so is an isomorphism of vector

spaces. Thus, in this example the quotient space R2/W can be identified with the

line L.

If f : V →W is a linear transformation, the kernel of f is the set

ker f = {v ∈V | f (v) = 0}

and the image of f is the set

im f = { f (v) ∈W | v ∈V}.

The kernel of f is a subspace of V and the image of f is a subspace of W . Hence,

one can form the quotient spaces V/ker f and W/ im f . This latter space, W/ im f ,

denoted by coker f , is called the cokernel of the linear map f : V →W .

For now, denote by K the kernel of f . The linear map f : V →W induces a linear

map f̄ : V/K→ im f , by

f̄ (v+K) = f (v).

It is easy to check that f̄ is linear and bijective. This gives the following fundamental

result of linear algebra.
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Theorem D.3 (The first isomorphism theorem). Let f : V →W be a homomor-

phism of vector spaces. Then f induces an isomorphism

f̄ :
V

ker f

∼−→ im f .

D.3 Direct Product and Direct Sum

Let {Vα}α∈I be a family of real vector spaces. The direct product ∏α Vα is the set of

all sequences (vα) with vα ∈Vα for all α ∈ I, and the direct sum
⊕

α Vα is the subset

of the direct product ∏α Vα consisting of sequences (vα) such that vα = 0 for all but

finitely many α ∈ I. Under componentwise addition and scalar multiplication,

(vα)+ (wα) = (vα +wα),

r(vα ) = (rvα) , r ∈ R,

both the direct product ∏α Vα and the direct sum⊕αVα are real vector spaces. When

the index set I is finite, the direct sum coincides with the direct product. In particular,

for two vector spaces A and B,

A⊕B = A×B = {(a,b) | a ∈ A and b ∈ B}.

The sum of two subspaces A and B of a vector space V is the subspace

A+B = {a+b∈V | a ∈ A, b ∈ B}.

If A∩B = {0}, this sum is called an internal direct sum and written A⊕i B. In an

internal direct sum A⊕i B, every element has a representation as a+ b for a unique

a ∈ A and a unique b ∈ B. Indeed, if a+b = a′+b′ ∈ A⊕i B, then

a−a′ = b′ −b ∈ A∩B = {0}.

Hence, a = a′ and b = b′.
In contrast to the internal direct sum A⊕i B, the direct sum A⊕B is called the

external direct sum. In fact, the two notions are isomorphic: the natural map

ϕ : A⊕B→ A⊕i B,

(a,b) 7→ a+b

is easily seen to be a linear isomorphism. For this reason, in the literature the internal

direct sum is normally denoted by A⊕B, just like the external direct sum.

If V = A⊕i B, then A is called a complementary subspace to B in V . In Ex-

ample D.2, the line L is a complementary subspace to W , and we may identify the

quotient vector space R2/W with any complementary subspace to W .

In general, if W is a subspace of a vector space V and W ′ is a complementary

subspace to W , then there is a linear map

ϕ : W ′ →V/W,

w′ 7→ w′+W.
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Exercise D.4. Show that ϕ : W ′ →V/W is an isomorphism of vector spaces.

Thus, the quotient space V/W may be identified with any complementary sub-

space to W in V . This identification is not canonical, for there are many complemen-

tary subspaces to a given subspace W and there is no reason to single out any one of

them. However, when V has an inner product 〈 , 〉, one can single out a canonical

complementary subspace, the orthogonal complement of W :

W⊥ = {v ∈V | 〈v,w〉 = 0 for all w ∈W}.

Exercise D.5. Check that W⊥ is a complementary subspace to W .

In this case, there is a canonical identification W⊥ ∼→V/W .

Let f : V →W be a linear map of finite-dimensional vector spaces. It follows

from the first isomorphism theorem and Problem D.1 that

dimV −dim(ker f ) = dim(im f ).

Since the dimension is the only isomorphism invariant of a vector space, we therefore

have the following corollary of the first isomorphism theorem.

Corollary D.6. If f : V →W is a linear map of finite-dimensional vector spaces,

then there is a vector space isomorphism

V ≃ ker f ⊕ im f .

(The right-hand side is an external direct sum because ker f and im f are not sub-

spaces of the same vector space.)

Problems

D.1. Dimension of a quotient vector space

Prove that if w1, . . . ,wm is a basis for W that extends to a basis w1, . . . ,wm,v1, . . . ,vn for V ,

then v1 +W, . . . ,vn +W is a basis for V/W . Therefore,

dimV/W = dimV −dimW.

D.2. Dimension of a direct sum

Prove that if a1, . . . ,am is a basis for a vector space A and b1, . . . ,bn is a basis for a vector space

B, then (ai,0),(0,b j), i = 1, . . . ,m, j = 1, . . . ,n, is a basis for the direct sum A⊕B. Therefore,

dimA⊕B = dimA+dimB.
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§E Quaternions and the Symplectic Group

First described by William Rowan Hamilton in 1843, quaternions are elements of

the form

q = a+ ib+ jc+kd, a,b,c,d ∈ R,

that add componentwise and multiply according to the distributive property and the

rules

i2 = j2 = k2 =−1,

i j = k, jk = i, ki = j,

i j =−j i, jk =−kj, ki =−ik.

A mnemonic for the three rules i j = k, jk = i, ki = j is that in going clockwise

around the circle
i

k j

,

the product of two successive elements is the next one. Under addition and multi-

plication, the quaternions satisfy all the properties of a field except the commutative

property for multiplication. Such an algebraic structure is called a skew field or a di-

vision ring. In honor of Hamilton, the usual notation for the skew field of quaternions

is H.

A division ring that is also an algebra over a field K is called a division algebra

over K. The real and complex fields R and C are commutative division algebras over

R. By a theorem of Ferdinand Georg Frobenius [13] from 1878, the skew field H of

quaternions has the distinction of being the only (associative) division algebra over

R other than R and C.1

In this appendix we will derive the basic properties of quaternions and define

the symplectic group in terms of quaternions. Because of the familiarity of complex

matrices, quaternions are often represented by 2×2 complex matrices. Correspond-

ingly, the symplectic group also has a description as a group of complex matrices.

One can define vector spaces and formulate linear algebra over a skew field, just

as one would for vector spaces over a field. The only difference is that over a skew

field it is essential to keep careful track of the order of multiplication. A vector space

over H is called a quaternionic vector space. We denote by Hn the quaternionic

vector space of n-tuples of quaternions. There are many potential pitfalls stemming

from a choice of left and right, for example:

1If one allows an algebra to be nonassociative, then there are other division algebras over

R, for example Cayley’s octonians.
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(1) Should i, j, k be written on the left or on the right of a scalar?

(2) Should scalars multiply on the left or on the right of Hn?

(3) Should elements of Hn be represented as column vectors or as row vectors?

(4) Should a linear transformation be represented by multiplication by a matrix on

the left or on the right?

(5) In the definition of the quaternion inner product, should one conjugate the first

or the second argument?

(6) Should a sesquilinear form on Hn be conjugate-linear in the first or the second

argument?

The answers to these questions are not arbitrary, since the choice for one question

may determine the correct choices for all the others. A wrong choice will lead to

inconsistencies.

E.1 Representation of Linear Maps by Matrices

Relative to given bases, a linear map of vector spaces over a skew field will also be

represented by a matrix. Since maps are written on the left of their arguments as

in f (x), we will choose our convention so that a linear map f corresponds to left

multiplication by a matrix. In order for a vector in Hn to be multiplied on the left by

a matrix, the elements of Hn must be column vectors, and for left multiplication by a

matrix to be a linear map, scalar multiplication on Hn should be on the right. In this

way, we have answered (1), (2), (3), and (4) above.

Let K be a skew field and let V and W be vector spaces over K, with scalar

multiplication on the right. A map f : V →W is linear over K or K-linear if for all

x,y ∈V and q ∈ K,

f (x+ y) = f (x)+ f (y),

f (xq) = f (x)q.

An endomorphism or a linear transformation of a vector space V over K is a K-

linear map from V to itself. The endomorphisms of V over K form an algebra over

K, denoted by EndK(V ). An endomorphism f : V → V is invertible if it has a two-

sided inverse, i.e., a linear map g : V →V such that f ◦ g = g ◦ f = 1V . An invertible

endomorphism of V is also called an automorphism of V . The general linear group

GL(V ) is by definition the group of all automorphisms of the vector space V . When

V = Kn, we also write GL(n,K) for GL(V ).
To simplify the presentation, we will discuss matrix representation only for en-

domorphisms of the vector space Kn. Let ei be the column vector with 1 in the ith

row and 0 everywhere else. The set e1, . . . ,en is called the standard basis for Kn. If

f : Kn→ Kn is K-linear, then

f (e j) = ∑
i

eia
i
j

for some matrix A = [ai
j] ∈ Kn×n, called the matrix of f (relative to the standard

basis). Here ai
j is the entry in the ith row and jth column of the matrix A. For

x = ∑ j e jx
j ∈ Kn,
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f (x) = ∑
j

f (e j)x
j = ∑

i, j

eia
i
jx

j.

Hence, the ith component of the column vector f (x) is

( f (x))i = ∑
j

ai
jx

j.

In matrix notation,

f (x) = Ax.

If g : Kn→ Kn is another linear map and g(e j) = ∑i eib
i
j, then

( f ◦ g)(e j) = f

(
∑
k

ekbk
j

)
= ∑

k

f (ek)b
k
j = ∑

i,k

eia
i
kbk

j.

Thus, if A= [ai
j] and B = [bi

j] are the matrices representing f and g respectively, then

the matrix product AB is the matrix representing the composite f ◦ g. Therefore,

there is an algebra isomorphism

EndK(K
n)
∼→ Kn×n

between endomorphisms of Kn and n× n matrices over K. Under this isomorphism,

the group GL(n,K) corresponds to the group of all invertible n×n matrices over K.

E.2 Quaternionic Conjugation

The conjugate of a quaternion q = a+ ib+ jc+kd is defined to be

q̄ = a− ib− jc−kd.

It is easily shown that conjugation is an antihomomorphism from the ring H to itself:

it preserves addition, but under multiplication,

pq = q̄p̄ for p,q ∈H.

The conjugate of a matrix A = [ai
j] ∈Hm×n is Ā =

[
ai

j

]
, obtained by conjugating

each entry of A. The transpose AT of the matrix A is the matrix whose (i, j)-entry is

the ( j, i)-entry of A. In contrast to the case for complex matrices, when A and B are

quaternion matrices, in general

AB 6= ĀB̄, AB 6= B̄Ā, and (AB)T 6= BT AT .

However, it is true that

AB
T
= B̄T ĀT ,

as one sees by a direct computation.
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E.3 Quaternionic Inner Product

The quaternionic inner product on Hn is defined to be

〈x,y〉= ∑
i

xiyi = x̄T y, x,y ∈Hn,

with conjugation on the first argument x = 〈x1, . . . ,xn〉. For any q ∈H,

〈xq,y〉= q̄〈x,y〉 and 〈x,yq〉= 〈x,y〉q.

If conjugation were on the second argument, then the inner product would not have

the correct linearity property with respect to scalar multiplication on the right.

For quaternion vector spaces V and W , we say that a map f : V ×W → H is

sesquilinear over H if it is conjugate-linear on the left in the first argument and

linear on the right in the second argument: for all v ∈V , w ∈W , and q ∈H,

f (vq,w) = q̄ f (v,w),

f (v,wq) = f (v,w)q.

In this terminology, the quaternionic inner product is sesquilinear over H.

E.4 Representations of Quaternions by Complex Numbers

A quaternion can be identified with a pair of complex numbers:

q = a+ ib+ jc+kd = (a+ ib)+ j(c− id) = u+ jv ←→ (u,v).

Thus, H is a vector space over C with basis 1, j, and Hn is a vector space over C with

basis e1, . . . ,en, je1, . . . , jen.

Proposition E.1. Let q be a quaternion and let u, v be complex numbers.

(i) If q = u+ jv, then q̄ = ū− jv.

(ii) ju j−1 = ū.

Proof. Problem E.1. ⊓⊔
By Proposition E.1(ii), for any complex vector v∈Cn, one has jv= v̄ j. Although

jei = ei j, elements of Hn should be written as u+ jv, not as u+ v j, so that the map

Hn→C2n, u+ jv 7→ (u,v), will be a complex vector space isomorphism.

For any quaternion q = u+ jv, left multiplication ℓq : H→ H by q is H-linear

and a fortiori C-linear. Since

ℓq(1) = u+ jv,

ℓq(j) = (u+ jv)j =−v̄+ j ū,

the matrix of ℓq as a C-linear map relative to the basis 1, j for H over C is the 2× 2

complex matrix
[

u −v̄
v ū

]
. The map H→ EndC(C

2), q 7→ ℓq is an injective algebra

homomorphism over R, giving rise to a representation of the quaternions by 2× 2

complex matrices.
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E.5 Quaternionic Inner Product in Terms of Complex

Components

Let x= x1+jx2 and y= y1+jy2 be in Hn, with x1,x2,y1,y2 ∈Cn. We will express the

quaternionic inner product 〈x,y〉 in terms of the complex vectors x1, x2, y1, y2 ∈ Cn.

By Proposition E.1,

〈x,y〉= x̄T y =
(
x̄T

1 − jxT
2

)
(y1 + jy2) (since x̄ = x̄1− jx2)

=
(
x̄T

1 y1 + x̄T
2 y2

)
+ j
(
xT

1 y2− xT
2 y1

)
(since xT

2 j = j x̄T
2 and x̄T

1 j = jxT
1 ).

Let

〈x,y〉1 = x̄T
1 y1 + x̄T

2 y2 =
n

∑
i=1

x̄i
1yi

1 + x̄i
2yi

2

and

〈x,y〉2 = xT
1 y2− xT

2 y1 =
n

∑
i=1

xi
1yi

2− xi
2yi

1.

So the quaternionic inner product 〈 , 〉 is the sum of a Hermitian inner product and j

times a skew-symmetric bilinear form on C2n:

〈 , 〉= 〈 , 〉1 + j〈 , 〉2.

Let x = x1 + jx2 ∈Hn. By skew-symmetry, 〈x,x〉2 = 0, so that

〈x,x〉= 〈x,x〉1 = ‖x1‖2 +‖x2‖2 ≥ 0.

The norm of a quaternionic vector x = x1 + jx2 is defined to be

‖x‖=
√
〈x,x〉=

√
‖x1‖2 +‖x2‖2.

In particular, the norm of a quaternion q = a+ ib+ jc+kd is

‖q‖=
√

a2 + b2 + c2 +d2.

E.6 H-Linearity in Terms of Complex Numbers

Recall that an H-linear map of quaternionic vector spaces is a map that is additive

and commutes with right multiplication rq for any quaternion q.

Proposition E.2. Let V be a quaternionic vector space. A map f : V →V is H-linear

if and only if it is C-linear and f ◦ rj = rj ◦ f .

Proof. (⇒) Clear.

(⇐) Suppose f is C-linear and f commutes with rj. By C-linearity, f is additive

and commutes with ru for any complex number u. Any q ∈ H can be written as

q = u+ jv for some u,v ∈ C; moreover, rq = ru+jv = ru + rv ◦ rj (note the order

reversal in rjv = rv ◦ rj). Since f is additive and commutes with ru, rv, and rj, it

commutes with rq for any q ∈H. Therefore, f is H-linear. ⊓⊔
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Because the map rj : Hn→Hn is neither H-linear nor C-linear, it cannot be rep-

resented by left multiplication by a complex matrix. If q = u+ jv ∈ Hn, where

u,v ∈ Cn, then

rj(q) = q j = (u+ jv) j =−v̄+ j ū.

In matrix notation,

rj

([
u

v

])
=

[
−v̄

ū

]
= c

([
0 −1

1 0

][
u

v

])
=−c

(
J

[
u

v

])
, (E.1)

where c denotes complex conjugation and J is the 2×2 matrix
[

0 1
−1 0

]
.

E.7 Symplectic Group

Let V be a vector space over a skew field K with conjugation, and let B : V ×V → K

be a bilinear or sesquilinear function over K. Such a function is often called a bilinear

or sesquilinear form over K. A K-linear automorphism f : V →V is said to preserve

the form B if

B( f (x), f (y)) = B(x,y) for all x,y ∈V.

The set of these automorphisms is a subgroup of the general linear group GL(V ).
When K is the skew field R, C, or H, and B is the Euclidean, Hermitian, or

quaternionic inner product respectively on Kn, the subgroup of GL(n,K) consisting

of automorphisms of Kn preserving each of these inner products is called the orthog-

onal, unitary, or symplectic group and denoted by O(n), U(n), or Sp(n) respectively.

Naturally, the automorphisms in these three groups are called orthogonal, unitary,

or symplectic automorphisms.

In particular, the symplectic group is the group of automorphisms f of Hn such

that

〈 f (x), f (y)〉 = 〈x,y〉 for all x,y ∈Hn.

In terms of matrices, if A is the quaternionic matrix of such an f , then

〈 f (x), f (y)〉 = Ax
T

Ay = x̄T ĀT Ay = x̄T y for all x,y ∈Hn.

Therefore, f ∈ Sp(n) if and only if its matrix A satisfies ĀT A = I. Because Hn =
Cn⊕ jCn is isomorphic to C2n as a complex vector space and an H-linear map is

necessarily C-linear, the group GL(n,H) is isomorphic to a subgroup of GL(2n,C)
(see Problem E.2).

Example. Under the algebra isomorphisms EndH(H)≃H, elements of Sp(1) corre-

spond to quaternions q = a+ ib+ jc+kd such that

q̄q = a2 + b2 + c2 + d2 = 1.

These are precisely quaternions of norm 1. Therefore, under the chain of real vector

space isomorphisms EndH(H) ≃ H ≃ R4, the group Sp(1) maps to S3, the unit 3-

sphere in R4.
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The complex symplectic group Sp(2n,C) is the subgroup of GL(2n,C) consisting

of automorphisms of C2n preserving the skew-symmetric bilinear form B : C2n×
C2n→ C,

B(x,y) =
n

∑
i=1

xiyn+i− xn+iyi = xT Jy, J =

[
0 In

−In 0

]
,

where In is the n× n identity matrix. If f : C2n×C2n → C is given by f (x) = Ax,

then

f ∈ Sp(2n,C) ⇐⇒ B( f (x), f (y)) = B(x,y) for all x,y ∈ C2n

⇐⇒ (Ax)T JAy = xT (AT JA)y = xT Jy for all x,y ∈C2n

⇐⇒ AT JA = J.

Theorem E.3. Under the injection GL(n,H) →֒ GL(2n,C), the symplectic group

Sp(n) maps isomorphically to the intersection U(2n)∩Sp(2n,C).

Proof.

f ∈ Sp(n)
⇐⇒ f : Hn→Hn is H-linear and preserves the quaternionic inner product

⇐⇒ f : C2n→ C2n is C-linear, f ◦ rj = rj ◦ f , and f preserves the Hermitian

inner product and the standard skew-symmetric bilinear form on C2n (by

Proposition E.2 and Section E.5)

⇐⇒ f ◦ rj = rj ◦ f and f ∈ U(2n)∩Sp(2n,C).

We will now show that if f ∈U(2n), then the condition f ◦ rj = rj ◦ f is equivalent

to f ∈ Sp(2n,C). Let f ∈U(2n) and let A be the matrix of f relative to the standard

basis in C2n. Then

( f ◦ rj)(x) = (rj ◦ f )(x) for all x ∈ C2n

⇐⇒ −Ac(Jx) =−c(JAx) for all x ∈ C2n (by (E.1))

⇐⇒ c(ĀJx) = c(JAx) for all x ∈C2n

⇐⇒ ĀJx = JAx for all x ∈ C2n

⇐⇒ J = Ā−1JA

⇐⇒ J = AT JA (since A ∈ U(2n))

⇐⇒ f ∈ Sp(2n,C).

Therefore, the condition f ◦ rj = rj ◦ f is redundant if f ∈ U(2n)∩Sp(2n,C). By

the first paragraph of this proof, there is a group isomorphism Sp(n) ≃ U(2n)∩
Sp(2n,C). ⊓⊔

Problems

E.1. Quaternionic conjugation

Prove Proposition E.1.
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E.2. Complex representation of an H-linear map

Suppose an H-linear map f : Hn→Hn is represented relative to the standard basis e1, . . . ,en by

the matrix A = u+ jv ∈Hn×n, where u, v ∈ Cn×n. Show that as a C-linear map, f : Hn→Hn

is represented relative to the basis e1, . . . ,en, je1, . . . , jen by the matrix
[

u −v̄
v ū

]
.

E.3. Symplectic and unitary groups of small dimension

For a field K, the special linear group SL(n,K) is the subgroup of GL(n,K) consisting of all

automorphisms of Kn of determinant 1, and the special unitary group SU(n) is the subgroup

of U(n) consisting of unitary automorphisms of Cn of determinant 1. Prove the following

identifications or group isomorphisms.

(a) Sp(2,C) = SL(2,C).
(b) Sp(1)≃ SU(2). (Hint: Use Theorem E.3 and part (a).)

(c)

SU(2)≃
{[

u −v̄

v ū

]
∈ C2×2

∣∣∣∣ uū+vv̄ = 1

}
.

(Hint: Use part (b) and the representation of quaternions by 2× 2 complex matrices in

Subsection E.4.)
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3.6 Inversions

As a matrix, τ =
[

1 2 3 4 5
2 3 4 5 1

]
. Scanning the second row, we see that τ has four inversions: (2,1),

(3,1), (4,1), (5,1). ♦♦

3.13 Symmetrizing operator

A k-linear function h : V → R is symmetric if and only if τh = h for all τ ∈ Sk. Now

τ(S f ) = τ ∑
σ∈Sk

σ f = ∑
σ∈Sk

(τσ) f .

As σ runs over all elements of the permutation groups Sk, so does τσ . Hence,

∑
σ∈Sk

(τσ) f = ∑
τσ∈Sk

(τσ) f = S f .

This proves that τ(S f ) = S f . ♦♦

3.15 Alternating operator

f (v1,v2,v3)− f (v1,v3,v2)+ f (v2,v3,v1)− f (v2,v1,v3)+ f (v3,v1,v2)− f (v3,v2,v1). ♦♦

3.20 Wedge product of two 2-covectors

( f ∧g)(v1,v2,v3,v4)

= f (v1,v2)g(v3,v4)− f (v1,v3)g(v2,v4)+ f (v1,v4)g(v2,v3)

+ f (v2,v3)g(v1,v4)− f (v2,v4)g(v1,v3)+ f (v3,v4)g(v1,v2). ♦♦

3.22 Sign of a permutation

We can achieve the permutation τ from the initial configuration 1,2, . . . ,k+ ℓ in k steps.

(1) First, move the element k to the very end across the ℓ elements k + 1, . . . ,k + ℓ. This

requires ℓ transpositions.

(2) Next, move the element k−1 across the ℓ elements k+1, . . . ,k+ ℓ.
(3) Then move the element k−2 across the same ℓ elements, and so on.

Each of the k steps requires ℓ transpositions. In the end we achieve τ from the identity using

ℓk transpositions.
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Alternatively, one can count the number of inversions in the permutation τ . There are k

inversions starting with k+ 1, namely, (k+ 1,1), . . . ,(k+ 1,k). Indeed, for each i = 1, . . . , ℓ,
there are k inversions starting with k+ i. Hence, the total number of inversions in τ is kℓ. By

Proposition 3.8, sgn(τ) = (−1)kℓ. ♦♦

4.3 A basis for 3-covectors

By Proposition 3.29, a basis for A3(Tp(R
4)) is

(
dx1 ∧dx2 ∧dx3

)
p
,
(
dx1 ∧dx2 ∧dx4

)
p
,(

dx1 ∧dx3 ∧dx4
)

p
,
(
dx2 ∧dx3 ∧dx4

)
p
. ♦♦

4.4 Wedge product of a 2-form with a 1-form

The (2,1)-shuffles are (1 < 2,3), (1 < 3,2), (2 < 3,1), with respective signs +, −, +. By

equation (3.6),

(ω ∧ τ)(X ,Y,Z) = ω(X ,Y )τ(Z)−ω(X ,Z)τ(Y )+ω(Y,Z)τ(X). ♦♦

6.14 Smoothness of a map to a circle

Without further justification, the fact that both cos t and sint are C∞ proves only the smooth-

ness of (cos t,sin t) as a map from R to R2. To show that F : R→ S1 is C∞, we need to cover S1

with charts (Ui,φi) and examine in turn each φi ◦ F : F−1(Ui)→R. Let {(Ui,φi) | i = 1, . . . ,4}
be the atlas of Example 5.16. On F−1(U1), φ1 ◦ F(t) = (x ◦ F)(t) = cos t is C∞. On F−1(U3),
φ3 ◦ F(t) = sint is C∞. Similar computations on F−1(U2) and F−1(U4) prove the smoothness

of F . ♦♦

6.18 Smoothness of a map to a Cartesian product

Fix p ∈ N, let (U,φ) be a chart about p, and let (V1 ×V2,ψ1 × ψ2) be a chart about

( f1(p), f2(p)). We will be assuming either ( f1, f2) smooth or both fi smooth. In either

case, ( f1, f2) is continuous. Hence, by choosing U sufficiently small, we may assume

( f1, f2)(U)⊂V1×V2. Then

(ψ1×ψ2) ◦ ( f1, f2) ◦ φ−1 = (ψ1 ◦ f1 ◦ φ−1,ψ2 ◦ f2 ◦ φ−1)

maps an open subset of Rn to an open subset of Rm1+m2 . It follows that ( f1, f2) is C∞ at p if

and only if both f1 and f2 are C∞ at p. ♦♦

7.11 Real projective space as a quotient of a sphere

Define f̄ : RPn→ Sn/∼ by f̄ ([x]) = [ x
‖x‖ ] ∈ Sn/∼. This map is well defined because f̄ ([tx]) =

[ tx
|tx| ] = [± x

‖x‖ ] = [ x
‖x‖ ]. Note that if π1 : Rn+1 −{0} → RPn and π2 : Sn → Sn/∼ are the

projection maps, then there is a commutative diagram

Rn−{0} f //

π1

��

Sn

π2

��
RPn

f̄

// Sn/∼ .

By Proposition 7.1, f̄ is continuous because π2 ◦ f is continuous.

Next define g : Sn→ Rn+1−{0} by g(x) = x. This map induces a map ḡ : Sn/∼→ RPn,

ḡ([x]) = [x]. By the same argument as above, ḡ is well defined and continuous. Moreover,

ḡ ◦ f̄ ([x]) =

[
x

‖x‖

]
= [x],

f̄ ◦ ḡ([x]) = [x],
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so f̄ and ḡ are inverses to each other. ♦♦

8.14 Velocity vector versus the calculus derivative

As a vector at the point c(t) in the real line, c′(t) equals ad/dx|c(t) for some scalar a. Applying

both sides of the equality to x, we get c′(t)x = adx/dx|c(t) = a. By the definition of c′(t),

a = c′(t)x = c∗

(
d

dt

∣∣∣∣
c(t)

)
x =

d

dt

∣∣∣∣
c(t)

x ◦ c =
d

dt

∣∣∣∣
c(t)

c = ċ(t).

Hence, c′(t) = ċ(t)d/dx|c(t). ♦♦

13.1 Bump function supported in an open set

Let (V,φ) be a chart centered at q such that V is diffeomorphic to an open ball B(0,r). Choose

real numbers a and b such that

B(0,a)⊂ B(0,b)⊂ B(0,b)⊂ B(0,r).

With the σ given in (13.2), the function σ ◦ φ , extended by zero to M, gives the desired bump

function. ♦♦

15.2 Left multiplication

Let ia : G→ G×G be the inclusion map ia(x) = (a,x). It is clearly C∞. Then ℓa(x) = ax =
(µ ◦ ia)(x). Since ℓa = µ ◦ ia is the composition of two C∞ maps, it is C∞. Moreover, because

it has a two-sided C∞ inverse ℓa−1 , it is a diffeomorphism. ♦♦

15.7 Space of symmetric matrices

Let

A = [ai j] =




a11 a12 · · · a1n

∗ a22 · · · a2n

..

.
..
.

. . .
..
.

∗ ∗ · · · ann




be a symmetric matrix. The symmetry condition a ji = ai j implies that the entries below

the diagonal are determined by the entries above the diagonal, and that there are no further

conditions on the the entries above or on the diagonal. Thus, the dimension of Sn is equal to

the number of entries above or on the diagonal. Since there are n such entries in the first row,

n−1 in the second row, and so on,

dimSn = n+(n−1)+(n−2)+ · · · +1 =
n(n+1)

2
. ♦♦

15.10 Induced topology versus the subspace topology

A basic open set in the induced topology on H is the image under f of an open interval in L.

Such a set is not open in the subspace topology. A basic open set in the subspace topology

on H is the intersection of H with the image of an open ball in R2 under the projection

π : R2→ R2/Z2; it is a union of infinitely many open intervals. Thus, the subspace topology

is a subset of the induced topology, but not vice versa. ♦♦

15.15 Distributivity over a convergent series

(i) We may assume a 6= 0, for otherwise there is nothing to prove. Let ε > 0. Since sm → s,

there exists an integer N such that for all m≥ N, ‖s− sm‖< ε/‖a‖. Then for m≥ N,

‖as−asm‖ ≤ ‖a‖‖s− sm‖< ‖a‖
(

ε

‖a‖

)
= ε.
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Hence, asm→ as.

(ii) Set sm = ∑m
k=0 bk and s = ∑∞

k=0 bk. The convergence of the series ∑∞
k=0 bk means that

sm → s. By (i), asm → as, which means that the sequence asm = ∑m
k=0 abk converges to

a∑∞
k=0 bk . Hence, ∑∞

k=0 abk = a∑∞
k=0 bk. ♦♦

18.5 Transition formula for a 2-form

ai j = ω(∂/∂xi,∂/∂x j) = ∑
k<ℓ

bkℓ dyk ∧dyℓ(∂/∂xi,∂/∂x j)

= ∑
k<ℓ

bkℓ

(
dyk(∂/∂xi)dyℓ(∂/∂x j)−dyk(∂/∂x j)dyℓ(∂/∂xi)

)

= ∑
k<ℓ

bkℓ

(
∂yk

∂xi

∂yℓ

∂x j
− ∂yk

∂x j

∂yℓ

∂xi

)
= ∑

k<ℓ

bkℓ
∂ (yk,yℓ)

∂ (xi,x j)
. ♦♦

Alternative solution: by Proposition 18.3,

dyk ∧dyℓ = ∑
i< j

∂ (yk,yℓ)

∂ (xi,x j)
dxi∧dx j.

Hence,

∑
i< j

ai j dxi∧dx j = ∑
k<ℓ

bkℓ dyk ∧dyℓ = ∑
i< j

∑
k<ℓ

bkℓ
∂ (yk,yℓ)

∂ (xi,x j)
dxi∧dx j.

Comparing the coefficients of dxi∧dx j gives

ai j = ∑
k<ℓ

bkℓ
∂ (yk,yℓ)

∂ (xi,x j)
. ♦♦

22.2 Smooth functions on a nonopen set

By definition, for each p in S there are an open set Up in Rn and a C∞ function f̃ p : Up→ Rm

such that f = f̃ p on Up∩S. Extend the domain of f̃ p to Rn by defining it to be zero on Rn−Up.

Let U =
⋃

p∈S Up. Choose a partition of unity {σp}p∈S on U subordinate to the open cover

{Up}p∈S of U and define the function f̃ : U → Rm by

f̃ = ∑
p∈S

σp f̃p. (∗)

Because suppσp ⊂Up, the product σp f̃p is zero and hence smooth outside Up; as a product

of two C∞ functions on Up, σp f̃p is C∞ on Up. Therefore, σp f̃p is C∞ on Rn. Since the sum

(∗) is locally finite, f̃ is well defined and C∞ on Rn for the usual reason. (Every point q ∈U

has a neighborhood Wq that intersects only finitely many of of the sets suppσp, p ∈ S. Hence,

the sum (∗) is a finite sum on Wq.)

Let q ∈ S. If q ∈Up, then f̃ p(q) = f (q), and if q /∈Up, then σp(q) = 0. Thus, for q ∈ S,

one has

f̃ (q) = ∑
p∈S

σp(q) f̃ p(q) = ∑
p∈S

σp(q) f (q) = f (q). ♦♦

25.5 Connecting homomorphism

The proof that the cohomology class of a is independent of the choice of b as preimage of c

can be summarized in the commutative diagram
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a′′

da′′

_

d

OO

b−b′//
i

//

db−db′

_
d

OO

0.
�

j
// //

= a−a′ // i //

Suppose b,b′ ∈ Bk both map to c under j. Then j(b− b′) = jb− jb′ = c− c = 0. By the

exactness at Bk, b−b′ = i(a′′) for some a′′ ∈ Ak.

With the choice of b as preimage, the element d∗[c] is represented by a cocycle a ∈ Ak+1

such that i(a) = db. Similarly, with the choice of b′ as preimage, the element d∗[c] is repre-

sented by a cocycle a′ ∈ Ak+1 such that i(a′) = db′. Then i(a− a′) = d(b− b′) = di(a′′) =
id(a′′). Since i is injective, a−a′ = da′′, and thus [a] = [a′]. This proves that d∗[c] is indepen-

dent of the choice of b.

The proof that the cohomology class of a is independent of the choice of c in the coho-

mology class [c] can be summarized by the commutative diagram

= 0a−a′ db−db′// i //

b−b′ c−c′
� j // //

b′′ c′′.
�

j
// //

_
d

OO

_

d

OO

_

d

OO

Suppose [c] = [c′] ∈ Hk(C). Then c− c′ = dc′′ for some c′′ ∈ Ck−1. By the surjectivity of

j : Bk−1→Ck−1, there is a b′′ ∈Bk−1 that maps to c′′ under j. Choose b∈Bk such that j(b)= c

and let b′ = b−db′′ ∈ Bk. Then j(b′) = j(b)− jdb′′ = c−d j(b′′) = c−dc′′ = c′. With the

choice of b as preimage, d∗[c] is represented by a cocycle a ∈ Ak+1 such that i(a) = db. With

the choice of b′ as preimage, d∗[c] is represented by a cocycle a′ ∈ Ak+1 such that i(a′) = db′.
Then

i(a−a′) = d(b−b′) = ddb′′ = 0.

By the injectivity of i, a = a′, so [a] = [a′]. This shows that d∗[c] is independent of the choice

of c in the cohomology class [c]. ♦♦

A.33 Compact Hausdorff space

Let S be a compact Hausdorff space, and A, B two closed subsets of S. By Proposition A.30, A

and B are compact. By Proposition A.31, for any a ∈ A there are disjoint open sets Ua ∋ a and

Va ⊃ B. Since A is compact, the open cover {Ua}a∈A for A has a finite subcover {Uai
}n

i=1. Let

U =
⋃n

i=1 Uai
and V =

⋂n
i=1 Vai

. Then A⊂U and B⊂V . The open sets U and V are disjoint

because if x ∈U ∩V , then x ∈Uai
for some i and x ∈Vai

for the same i, contradicting the fact

that Uai
∩Vai

=∅. ♦♦



Hints and Solutions to Selected End-of-Section

Problems

Problems with complete solutions are starred (*). Equations are numbered consecutively

within each problem.

1.2* A C∞ function very flat at 0

(a) Assume x > 0. For k = 1, f ′(x) = (1/x2)e−1/x. With p2(y) = y2, this verifies the claim.

Now suppose f (k)(x) = p2k(1/x)e−1/x . By the product rule and the chain rule,

f (k+1)(x) = p2k−1

(
1

x

)
·
(
− 1

x2

)
e−1/x + p2k

(
1

x

)
· 1

x2
e−1/x

=

(
q2k+1

(
1

x

)
+q2k+2

(
1

x

))
e−1/x

= p2k+2

(
1

x

)
e−1/x,

where qn(y) and pn(y) are polynomials of degree n in y. By induction, the claim is true for all

k ≥ 1. It is trivially true for k = 0 also.

(b) For x > 0, the formula in (a) shows that f (x) is C∞. For x < 0, f (x)≡ 0, which is trivially

C∞. It remains to show that f (k)(x) is defined and continuous at x = 0 for all k.

Suppose f (k)(0) = 0. By the definition of the derivative,

f (k+1)(0) = lim
x→0

f (k)(x)− f (k)(0)

x
= lim

x→0

f (k)(x)

x
.

The limit from the left is clearly 0. So it suffices to compute the limit from the right:

lim
x→0+

f (k)(x)

x
= lim

x→0+

p2k

(
1
x

)
e−1/x

x
= lim

x→0+
p2k+1

(
1

x

)
e−1/x (1.2.1)

= lim
y→∞

p2k+1(y)

ey

(
replacing

1

x
by y

)
.

Applying l’Hôpital’s rule 2k+ 1 times, we reduce this limit to 0. Hence, f (k+1)(0) = 0. By

induction, f (k)(0) = 0 for all k ≥ 0.

A similar computation as (1.2.1) for limx→0 f (k)(x) = 0 proves that f (k)(x) is continuous

at x = 0. ♦♦
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1.3 (b) h(t) = (π/(b−a))(t−a)− (π/2).

1.5

(a) The line passing through (0,0,1) and (a,b,c) has a parametrization

x = at, y = bt, z = (c−1)t +1.

This line intersects the xy-plane when

z = 0⇔ t =
1

1−c
⇔ (x,y) =

(
a

1−c
,

b

1−c

)
.

To find the inverse of g, write down a parametrization of the line through (u,v,0) and

(0,0,1) and solve for the intersection of this line with S.

1.6* Taylor’s theorem with remainder to order 2

To simplify the notation, we write 0 for (0,0). By Taylor’s theorem with remainder, there exist

C∞ functions g1,g2 such that

f (x,y) = f (0)+xg1(x,y)+yg2(x,y). (1.6.1)

Applying the theorem again, but to g1 and g2, we obtain

g1(x,y) = g1(0)+xg11(x,y)+yg12(x,y), (1.6.2)

g2(x,y) = g2(0)+xg21(x,y)+yg22(x,y). (1.6.3)

Since g1(0) = ∂ f/∂x(0) and g2(0) = ∂ f /∂y(0), substituting (1.6.2) and (1.6.3) into (1.6.1)

gives the result. ♦♦

1.7* A function with a removable singularity

In Problem 1.6, set x = t and y = tu. We obtain

f (t, tu)= f (0)+ t
∂ f

∂x
(0)+ tu

∂ f

∂y
(0)+ t2(· · ·),

where

(· · ·) = g11(t, tu)+ug12(t, tu)+u2g22(t, tu)

is a C∞ function of t and u. Since f (0) = ∂ f /∂x(0) = ∂ f/∂y(0) = 0,

f (t, tu)

t
= t(· · ·),

which is clearly C∞ in t,u and agrees with g when t = 0. ♦♦

1.8 See Example 1.2(ii).

3.1 f = ∑gi j α i⊗α j .

3.2

(a) Use the formula dimker f +dimim f = dimV .

(b) Choose a basis e1, . . . ,en−1 for ker f , and extend it to a basis e1, . . . ,en−1,en for V . Let

α1, . . . ,αn be the dual basis for V∨. Write both f and g in terms of this dual basis.

3.3 We write temporarily α I for α i1 ⊗·· ·⊗α ik and eJ for (e j1 , . . . ,e jk).
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(a) Prove that f = ∑ f (eI)α
I by showing that both sides agree on all (eJ). This proves that

the set {α I} spans.

(b) Suppose ∑cIα
I = 0. Applying both sides to eJ gives cJ = ∑cIα I(eJ) = 0. This proves

that the set {α I} is linearly independent.

3.9 To compute ω(v1, . . . ,vn) for any v1, . . . ,vn ∈ V , write v j = ∑i eia
i
j and use the fact that

ω is multilinear and alternating.

3.10* Linear independence of covectors

(⇒) If α1, . . . ,αk are linearly dependent, then one of them is a linear combination of the

others. Without loss of generality, we may assume that

αk =
k−1

∑
i=1

ciα
i.

In the wedge product α1 ∧ ·· · ∧αk−1 ∧ (∑k−1
i=1 ciα

i), every term has a repeated α i. Hence,

α1 ∧·· ·∧αk = 0.

(⇐) Suppose α1, . . . ,αk are linearly independent. Then they can be extended to a basis

α1, . . . ,αk, . . . ,αn for V∨. Let v1, . . . ,vn be the dual basis for V . By Proposition 3.27,

(α1 ∧·· ·∧αk)(v1, . . . ,vk) = det[α i(v j)] = det[δ i
j] = 1.

Hence, α1 ∧·· ·∧αk 6= 0. ♦♦

3.11* Exterior multiplication

(⇐) Clear because α ∧α = 0.

(⇒) Suppose α ∧ γ = 0. Extend α to a basis α1, . . . ,αn for V∨, with α1 = α . Write γ =

∑cJαJ , where J runs over all strictly ascending multi-indices 1 ≤ j1 < · · · < jk ≤ n. In the

sum α ∧ γ = ∑cJα ∧αJ , all the terms α ∧αJ with j1 = 1 vanish, since α = α1. Hence,

0 = α ∧ γ = ∑
j1 6=1

cJα ∧αJ .

Since {α ∧αJ} j1 6=1 is a subset of a basis for Ak+1(V ), it is linearly independent, and so all cJ

are 0 if j1 6= 1. Thus,

γ = ∑
j1=1

cJαJ = α ∧
(

∑
j1=1

cJα j2 ∧·· ·∧α jk

)
. ♦♦

4.1 ω(X) = yz, dω =−dx∧dz.

4.2 Write ω = ∑i< j ci j dxi ∧ dx j . Then ci j(p) = ωp(ei,e j), where ei = ∂/∂xi . Calculate

c12(p), c13(p), and c23(p). The answer is ωp = p3 dx1 ∧dx2.

4.3 dx = cosθ dr− r sin θ dθ , dy = sinθ ,dr+ r cosθ dθ , dx∧dy = r dr∧dθ .

4.4 dx∧dy∧dz = ρ2 sinφ dρ ∧dφ ∧dθ .

4.5 α ∧β = (a1b1 +a2b2 +a3b3)dx1 ∧dx2 ∧dx3.

5.3 The image φ4(U14) =
{
(x,z) | −1 < z < 1, 0 < x <

√
1− z2

}
.

The transition function (φ1 ◦ φ−1
4 )(x,z) = φ1(x,y,z) = (y,z) =

(
−
√

1−x2− z2,z
)

is a C∞

function of x,z.
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5.4* Existence of a coordinate neighborhood

Let Uβ be any coordinate neighborhood of p in the maximal atlas. Any open subset of Uβ is

again in the maximal atlas, because it is C∞ compatible with all the open sets in the maximal

atlas. Thus Uα :=Uβ ∩U is a coordinate neighborhood such that p ∈Uα ⊂U .

6.3* Group of automorphisms of a vector space

The manifold structure GL(V )e is the maximal atlas on GL(V ) containing the coordinate chart

(GL(V ),φe). The manifold structure GL(V )u is the maximal atlas on GL(V ) containing the

coordinate chart (GL(V ),φu). The two maps φe : GL(V )→ Rn×n and φu : GL(V )→ Rn×n

are C∞ compatible, because φe ◦ φ−1
u : GL(n,R)→GL(n,R) is conjugation by the change-of-

basis matrix from u to e. Therefore, the two maximal atlases are in fact the same. ♦♦

7.4* Quotient space of a sphere with antipodal points identified

(a) Let U be an open subset of Sn. Then π−1(π(U))=U∪a(U), where a : Sn→ Sn, a(x)=−x,

is the antipodal map. Since the antipodal map is a homeomorphism, a(U) is open, and hence

π−1(π(U)) is open. By the definition of quotient topology, π(U) is open. This proves that π
is an open map.

(b) The graph R of the equivalence relation ∼ is

R = {(x,x) ∈ Sn×Sn} ∪ {(x,−x) ∈ Sn×Sn}= ∆ ∪ (1×a)(∆).

By Corollary 7.8, because Sn is Hausdorff, the diagonal ∆ in Sn× Sn is closed. Since 1×
a : Sn×Sn→ Sn×Sn, (x,y) 7→ (x,−y) is a homeomorphism, (1×a)(∆) is also closed. As a

union of the two closed sets ∆ and (1×a)(∆), R is closed in Sn×Sn. By Theorem 7.7, Sn/∼
is Hausdorff. ♦♦

7.5* Orbit space of a continuous group action

Let U be an open subset of S. For each g ∈ G, since right multiplication by g is a homeomor-

phism S→ S, the set Ug is open. But

π−1(π(U)) = ∪g∈G Ug,

which is a union of open sets, hence is open. By the definition of the quotient topology, π(U)
is open. ♦♦

7.9* Compactness of real projective space

By Exercise 7.11 there is a continuous surjective map π : Sn → RPn. Since the sphere Sn is

compact, and the continuous image of a compact set is compact (Proposition A.34), RPn is

compact. ♦♦

8.1* Differential of a map

To determine the coefficient a in F∗(∂/∂x) = a∂/∂u+b∂/∂v+c∂/∂w, we apply both sides

to u to get

F∗

(
∂

∂x

)
u =

(
a

∂

∂u
+b

∂

∂v
+c

∂

∂w

)
u = a.

Hence,

a = F∗

(
∂

∂x

)
u =

∂

∂x
(u ◦ F) =

∂

∂x
(x) = 1.

Similarly,

b = F∗

(
∂

∂x

)
v =

∂

∂x
(v ◦ F) =

∂

∂x
(y) = 0

and
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c = F∗

(
∂

∂x

)
w =

∂

∂x
(w ◦ F) =

∂

∂x
(xy) = y.

So F∗(∂/∂x) = ∂/∂u+y∂/∂w. ♦♦

8.3 One can directly calculate a = F∗(X)u and b = F∗(X)v or more simply, one can apply

Problem 8.2. The answer is a =−(sinα)x− (cosα)y, b = (cosα)x− (sinα)y.

8.5* Velocity of a curve in local coordinates

We know that c′(t) = ∑a j∂/∂x j . To compute ai, evaluate both sides on xi:

ai =

(
∑a j ∂

∂x j

)
xi = c′(t)xi = c∗

(
d

dt

)
xi =

d

dt
(xi ◦ c) =

d

dt
ci = ċi(t). ♦♦

8.6 c′(0) =−2y∂/∂x+2x∂/∂y.

8.7* Tangent space to a product

If (U,φ) = (U,x1, . . . ,xm) and (V,ψ) = (V,y1, . . . ,yn) are charts about p in M and q in N

respectively, then by Proposition 5.18, a chart about (p,q) in M×N is

(U×V,φ ×ψ) = (U ×V,(π∗1 φ ,π∗2 ψ)) = (U×V, x̄1, . . . , x̄n, ȳ1, . . . , ȳn),

where x̄i = π∗1 xi and ȳi = π∗2 yi. Let π1∗
(
∂/∂ x̄ j

)
= ∑ai

j ∂/∂xi. Then

ai
j = π1∗

(
∂

∂ x̄ j

)
xi =

∂

∂ x̄ j

(
xi ◦ π1

)
=

∂ x̄i

∂ x̄ j
= δ i

j.

Hence,

π1∗

(
∂

∂ x̄ j

)
=∑

i

δ i
j

∂

∂xi
=

∂

∂x j
.

This really means that

π1∗

(
∂

∂ x̄ j

∣∣∣∣
(p,q)

)
=

∂

∂x j

∣∣∣∣
p

. (8.7.1)

Similarly,

π1∗

(
∂

∂ ȳ j

)
= 0, π2∗

(
∂

∂ x̄ j

)
= 0, π2∗

(
∂

∂ ȳ j

)
=

∂

∂y j
. (8.7.2)

A basis for T(p,q)(M×N) is

∂

∂ x̄1

∣∣∣∣
(p,q)

, . . . ,
∂

∂ x̄m

∣∣∣∣
(p,q)

,
∂

∂ ȳ1

∣∣∣∣
(p,q)

, . . . ,
∂

∂ ȳn

∣∣∣∣
(p,q)

.

A basis for TpM×TqN is

(
∂

∂x1

∣∣∣∣
p

,0

)
, . . . ,

(
∂

∂xm

∣∣∣∣
p

,0

)
,

(
0,

∂

∂y1

∣∣∣∣
q

)
, . . . ,

(
0,

∂

∂yn

∣∣∣∣
q

)
.

By (8.7.1) and (8.7.2), the linear map (π1∗,π2∗) maps a basis of T(p,q)(M×N) to a basis of

TpM×TqN. It is therefore an isomorphism. ♦♦
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8.8 (a) Let c(t) be a curve starting at e in G with c′(0) = Xe. Then α(t) = (c(t),e) is a curve

starting at (e,e) in G×G with α ′(0) = (Xe,0). Compute µ∗,(e,e) using α(t).

8.9* Transforming vectors to coordinate vectors

Let (V,y1, . . . ,yn) be a chart about p. Suppose (Xj)p = ∑i ai
j ∂/∂yi|p. Since (X1)p, . . . ,(Xn)p

are linearly independent, the matrix A = [ai
j] is nonsingular.

Define a new coordinate system x1, . . . ,xn by

yi =
n

∑
j=1

ai
j x j for i = 1, . . . ,n. (8.9.1)

By the chain rule,

∂

∂x j
= ∑

i

∂yi

∂x j

∂

∂yi
= ∑ai

j

∂

∂yi
.

At the point p,
∂

∂x j

∣∣∣∣
p

=∑ai
j

∂

∂yi

∣∣∣∣
p

= (Xj)p.

In matrix notation, 


y1

...

yn


= A




x1

...

xn


 , so




x1

...

xn


= A−1




y1

...

yn


 .

This means that (8.9.1) is equivalent to x j = ∑n
i=1

(
A−1

) j

i
yi. ♦♦

8.10 (a) For all x≤ p, f (x)≤ f (p). Hence,

f ′(p) = lim
x→p−

f (x)− f (p)

x− p
≥ 0. (8.10.1)

Similarly, for all x≥ p, f (x)≤ f (p), so that

f ′(p) = lim
x→p+

f (x)− f (p)

x− p
≤ 0. (8.10.2)

The two inequalities (8.10.1) and (8.10.2) together imply that f ′(p) = 0.

9.1 c ∈ R−{0,−108}.

9.2 Yes, because it is a regular level set of the function f (x,y,z,w) = x5 +y5 + z5 +w5.

9.3 Yes; see Example 9.12.

9.4* Regular submanifolds

Let p∈ S. By hypothesis there is an open set U in R2 such that on U ∩S one of the coordinates

is a C∞ function of the other. Without loss of generality, we assume that y = f (x) for some

C∞ function f : A⊂ R→ B⊂ R, where A and B are open sets in R and V := A×B⊂U . Let

F : V →R2 be given by F(x,y) = (x,y− f (x)). Since F is a diffeomorphism onto its image, it

can be used as a coordinate map. In the chart (V,x,y− f (x)), V ∩S is defined by the vanishing

of the coordinate y− f (x). This proves that S is a regular submanifold of R2. ♦♦

9.5 (R3,x,y,z− f (x,y)) is an adapted chart for R3 relative to Γ( f ).

9.6 Differentiate (9.3) with respect to t.

9.10* The transversality theorem
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(a) f−1(U)∩ f−1(S) = f−1(U ∩S) = f−1(g−1(0)) = (g ◦ f )−1(0).

(b) Let p ∈ f−1(U)∩ f−1(S) = f−1(U ∩ S). Then f (p) ∈U ∩ S. Because S is a fiber of g,

the pushforward g∗(Tf (p)S) equals 0. Because g : U → Rk is a projection, g∗(Tf (p)M) =

T0(R
k). Applying g∗ to the transversality equation (9.4), we get

g∗ f∗(TpN) = g∗(Tf (p)M) = T0(R
k).

Hence, g ◦ f : f−1(U) → Rk is a submersion at p. Since p is an arbitrary point of

f−1(U)∩ f−1(S) = (g ◦ f )−1(0), this set is a regular level set of g ◦ f .

(c) By the regular level set theorem, f−1(U)∩ f−1(S) is a regular submanifold of f−1(U)⊂
N. Thus every point p ∈ f−1(S) has an adapted chart relative to f−1(S) in N. ♦♦

10.7 Let e1, . . . ,en be a basis for V and α1, . . . ,αn the dual basis for V∨. Then a basis for

An(V ) is α1 ∧ ·· ·∧αn and L∗(α1 ∧ ·· · ∧αn) = cα1 ∧ ·· · ∧αn for some constant c. Suppose

L(e j) = ∑i ai
jei. Compute c in terms of ai

j .

11.1 Let c(t) = (x1(t), . . . ,xn+1(t)) be a curve in Sn with c(0) = p and c′(0) = Xp. Differenti-

ate ∑i(x
i)2(t) = 1 with respect to t. Let H be the plane {(a1,a2,a3) ∈ R3 |∑ai pi = 0}. Show

that Tp(S
2) ⊂ H. Because both sets are linear spaces and have the same dimension, equality

holds.

11.3* Critical points of a smooth map on a compact manifold

First Proof. Suppose f : N→Rm has no critical point. Then it is a submersion. The projection

to the first factor, π : Rm→R, is also a submersion. It follows that the composite π ◦ f : N→
R is a submersion. This contradicts the fact that as a continuous function from a compact

manifold to R, the function π ◦ f has a maximum and hence a critical point (see Problem 8.10).

Second Proof. Suppose f : N → Rm has no critical point. Then it is a submersion. Since a

submersion is an open map (Corollary 11.6), the image f (N) is open in Rm. But the contin-

uous image of a compact set is compact and a compact subset of Rm is closed and bounded.

Hence, f (N) is a nonempty proper closed subset of Rm. This is a contradiction, because being

connected, Rm cannot have a nonempty proper subset that is both open and closed. ♦♦

11.4 At p= (a,b,c), i∗(∂/∂u|p) = ∂/∂x−(a/c)∂/∂ z, and i∗(∂/∂v|p)= ∂/∂y−(b/c)∂/∂ z.

11.5 Use Proposition A.35 to show that f is a closed map. Then apply Problem A.12.

12.1* The Hausdorff condition on the tangent bundle

Let (p,v) and (q,w) be distinct points of the tangent bundle T M.

Case 1: p 6= q. Because M is Hausdorff, p and q can be separated by disjoint neighborhoods

U and V . Then TU and TV are disjoint open subsets of T M containing (p,v) and (q,w),
respectively.

Case 2: p = q. Let (U,φ) be a coordinate neighborhood of p. Then (p,v) and (p,w) are

distinct points in the open set TU . Since TU is homeomorphic to the open subset φ(U)×Rn

of R2n, and any subspace of a Hausdorff space is Hausdorff, TU is Hausdorff. Therefore,

(p,v) and (p,w) can be separated by disjoint open sets in TU . ♦♦

13.1* Support of a finite sum

Let A be the set where ∑ρi is not zero and Ai the set where ρi is not zero:

A =
{

x ∈M |∑ρi(x) 6= 0
}
, Ai = {x ∈M | ρi(x) 6= 0}.
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If ∑ρi(x) 6= 0, then at least one ρi(x) must be nonzero. This implies that A ⊂ ⋃Ai. Taking

the closure of both sides gives cl(A)⊂ ⋃Ai. For a finite union,
⋃

Ai =
⋃

Ai (Exercise A.53).

Hence,

supp
(
∑ρi

)
= cl(A)⊂

⋃
Ai =

⋃
Ai =

⋃
suppρi. ♦♦

13.2* Locally finite family and compact set

For each p ∈ K, let Wp be a neighborhood of p that intersects only finitely many of the sets

Aα . The collection {Wp}p∈K is an open cover of K. By compactness, K has a finite subcover

{Wpi
}r

i=1. Since each Wpi
intersects only finitely many of the Aα , the finite union W :=⋃r

i=1 Wpi
intersects only finitely many of the Aα . ♦♦

13.3 (a) Take f = ρM−B.

13.5* Support of the pullback by a projection

Let A = {p ∈M | f (p) 6= 0}. Then supp f = clM(A). Observe that

(π∗ f )(p,q) = f (p) 6= 0 iff p ∈ A.

Hence,

{(p,q) ∈M×N | (π∗ f )(p,q) 6= 0}= A×N.

So

supp(π∗ f ) = clM×N(A×N) = clM(A)×N = (supp f )×N

by Problem A.20. ♦♦

13.7* Closure of a locally finite union

(⊃) Since Aα ⊂
⋃

Aα , taking the closure of both sides gives

Aα ⊂
⋃

Aα .

Hence,
⋃

Aα ⊂
⋃

Aα .

(⊂) Instead of proving
⋃

Aα ⊂
⋃

Aα , we will prove the contrapositive: if p /∈ ⋃Aα , then

p /∈ ⋃Aα . Suppose p /∈ ⋃Aα . By local finiteness, p has a neighborhood W that meets only

finitely many of the Aα ’s, say Aα1
, . . . ,Aαm

(see the figure below).

b

W

Aα2

Aα1

Aα3

p

Since p 6∈ Aα for any α , p 6∈ ⋃m
i=1 Aαi

. Note that W is disjoint from Aα for all α 6= αi, so

W −⋃m
i=1 Aαi

is disjoint from Aα for all α . Because
⋃m

i=1 Aαi
is closed, W −⋃m

i=1 Aαi
is an

open set containing p disjoint from
⋃

Aα . By the local characterization of closure (Proposition

A.48), p 6∈ ⋃Aα . Hence,
⋃

Aα ⊂
⋃

Aα . ♦♦
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14.1* Equality of vector fields

The implication in the direction (⇒) is obvious. For the converse, let p ∈M. To show that

Xp = Yp, it suffices to show that Xp[h] = Yp[h] for any germ [h] of C∞ functions in C∞
p (M).

Suppose h : U → R is a C∞ function that represents the germ [h]. We can extend it to a C∞

function h̃ : M→R by multiplying it by a C∞ bump function supported in U that is identically

1 in a neighborhood of p. By hypothesis, Xh̃ = Y h̃. Hence,

Xph̃ = (Xh̃)p = (Y h̃)p = Yph̃. (14.1.1)

Because h̃ = h in a neighborhood of p, we have Xph = Xph̃ and Yph = Yph̃. It follows from

(14.1.1) that Xph = Yph. Thus, Xp = Yp. Since p is an arbitrary point of M, the two vector

fields X and Y are equal. ♦♦

14.6 Integral curve starting at a zero of a vector field

(a)* Suppose c(t) = p for all t ∈ R. Then

c′(t) = 0 = Xp = Xc(t)

for all t ∈ R. Thus, the constant curve c(t) = p is an integral curve of X with initial point p.

By the uniqueness of an integral curve with a given initial point, this is the maximal integral

curve of X starting at p.

14.8 c(t) = 1/((1/p)− t) on (−∞,1/p).

14.10 Show that both sides applied to a C∞ function h on M are equal. Then use Problem 14.1.

14.11 −∂/∂y.

14.12 ck = ∑i

(
ai ∂bk

∂xi
−bi ∂ak

∂xi

)
.

14.14 Use Example 14.15 and Proposition 14.17.

15.3

(a) Apply Proposition A.43.

(b) Apply Proposition A.43.

(c) Apply Problem A.16.

(d) By (a) and (b), the subset G0 is a subgroup of G. By (c), it is an open submanifold.

15.4* Open subgroup of a connected Lie group

For any g ∈ G, left multiplication ℓg : G→ G by g maps the subgroup H to the left coset gH.

Since H is open and ℓg is a homeomorphism, the coset gH is open. Thus, the set of cosets gH,

g ∈ G, partitions G into a disjoint union of open subsets. Since G is connected, there can be

only one coset. Therefore, H = G. ♦♦

15.5 Let c(t) be a curve in G with c(0) = a, c′(0) = Xa. Then (c(t),b) is a curve through

(a,b) with initial velocity (Xa,0). Compute µ∗,(a,b)(Xa,0) using this curve (Proposition 8.18).

Compute similarly µ∗,(a,b)(0,Yb).

15.7* Differential of the determinant map

Let c(t) = AetX . Then c(0) = A and c′(0) = AX . Using the curve c(t) to calculate the differ-

ential yields
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detA,∗(AX) =
d

dt

∣∣∣∣
t=0

det(c(t)) =
d

dt

∣∣∣∣
t=0

(det A)det etX

= (det A)
d

dt

∣∣∣∣
t=0

et trX = (det A) trX . ♦♦

15.8* Special linear group

If det A = 1, then Exercise 15.7 gives

det∗,A(AX) = trX .

Since trX can assume any real value, det∗,A : TAGL(n,R) → R is surjective for all A ∈
det−1(1). Hence, 1 is a regular value of det. ♦♦

15.10

(a) O(n) is defined by polynomial equations.

(b) If A ∈ O(n), then each column of A has length 1.

15.11 Write out the conditions AT A = I, det A = 1. If a2 + b2 = 1, then (a,b) is a point on

the unit circle, and so a = cosθ , b = sinθ for some θ ∈ [0,2π].

15.14 [
cosh1 sinh1

sinh1 cosh1

]
,

where cosh t = (et + e−t)/2 and cosh t = (et − e−t)/2 are hyperbolic cosine and sine, respec-

tively.

15.16 The correct target space for f is the vector space K2n(C) of 2n× 2n skew-symmetric

complex matrices.

16.4 Let c(t) be a curve in Sp(n) with c(0) = I and c′(0) = X . Differentiate c(t)T Jc(t) = J

with respect to t.

16.5 Mimic Example 16.6. The left-invariant vector fields on Rn are the constant vector fields

∑n
i=1 ai ∂/∂xi , where ai ∈ R.

16.9 A basis X1,e, . . . ,Xn,e for the tangent space Te(G) at the identity gives rise to a frame

consisting of left-invariant vector fields X1, . . . ,Xn.

16.10* The pushforward of left-invariant vector fields

Under the isomorphisms ϕH : TeH
∼→ L(H) and ϕG : TeG

∼→ L(G), the Lie brackets correspond

and the pushforward maps correspond. Thus, this problem follows from Proposition 16.14 by

the correspondence.

A more formal proof goes as follows. Since X and Y are left-invariant vector fields, X = Ã

and Y = B̃ for A = Xe and B = Ye ∈ TeH. Then

F∗[X ,Y ] = F∗[Ã, B̃] = F∗([A,B]̃ ) (Proposition 16.10)

= (F∗[A,B])˜ (definition of F∗ on L(H))

= [F∗A,F∗B]̃ (Proposition 16.14)

= [(F∗A) ,̃(F∗B) ]̃ (Proposition 16.10)

= [F∗Ã,F∗B̃] (definition of F∗ on L(H))

= [F∗X ,F∗Y ]. ♦♦
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16.11 (b) Let (U,x1, . . . ,xn) be a chart about e in G. Relative to this chart, the differential

ca∗ at e is represented by the Jacobian matrix [∂ (xi ◦ ca)/∂x j|e]. Since ca(x) = axa−1 is a C∞

function of x and a, all the partial derivatives ∂ (xi ◦ ca)/∂x j |e are C∞ and therefore Ad(a) is a

C∞ function of a.

17.1 ω = (xdx+ydy)/(x2 +y2).

17.2 a j = ∑i bi ∂yi/∂x j .

17.4 (a) Suppose ωp = ∑ci dxi|p. Then

λωp
= π∗(ωp) =∑ciπ

∗(dxi|p) = ∑ci(π
∗dxi)ωp

= ∑ci(dπ∗xi)ωp
=∑ci (dx̄i)ωp

.

Hence, λ = ∑ci dx̄i.

18.4* Support of a sum or product

(a) If (ω + τ)(p) 6= 0, then ω(p) 6= 0 or τ(p) 6= 0. Hence,

Z(ω + τ)c ⊂ Z(ω)c∪Z(τ)c.

Taking the closure of both sides and using the fact that A∪B = A∪B, we get

supp(ω + τ)⊂ suppω ∪ supp τ.

(b) Suppose (ω ∧ τ)p 6= 0. Then ωp 6= 0 and τp 6= 0. Hence,

Z(ω ∧ τ)c ⊂ Z(ω)c∩Z(τ)c.

Taking the closure of both sides and using the fact that A∩B⊂ A∩B, we get

supp(ω ∧ τ)⊂ Z(ω)c∩Z(τ)c ⊂ suppω ∩ supp τ. ♦♦

18.6* Locally finite supports

Let p ∈ suppω . Since {supp ρα} is locally finite, there is a neighborhood Wp of p in M that

intersects only finitely many of the sets suppρα . The collection {Wp | p ∈ suppω} covers

suppω . By the compactness of supp ω , there is a finite subcover {Wp1
, . . . ,Wpm

}. Since each

Wpi
intersects only finitely many supp ρα , suppω intersects only finitely many suppρα .

By Problem 18.4,

supp(ρα ω)⊂ suppρα ∩ supp ω.

Thus, for all but finitely many α , supp(ρα ω) is empty; i.e., ρα ω ≡ 0. ♦♦

18.8* Pullback by a surjective submersion

The fact that π∗ : Ω∗(M) → Ω∗(M̃) is an algebra homomorphism follows from Proposi-

tions 18.9 and 18.11.

Suppose ω ∈Ωk(M) is a k-form on M for which π∗ω = 0 in Ωk(M̃). To show that ω = 0,

pick an arbitrary point p ∈ M, and arbitrary vectors v1, . . . ,vk ∈ TpM. Since π is surjective,

there is a point p̃∈ M̃ that maps to p. Since π is a submersion at p̃, there exist ṽ1, . . . , ṽk ∈ Tp̃M̃

such that π∗,p̃ ṽi = vi. Then

0 = (π∗ω)p̃(ṽ1, . . . , ṽk) (because π∗ω = 0)

= ωπ( p̃)(π∗ṽ1, . . . ,π∗ṽk) (definition of π∗ω)

= ωp(v1, . . . ,vk).
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Since p∈M and v1, . . . ,vk ∈ TpM are arbitrary, this proves that ω = 0. Therefore, π∗ : Ω∗(M)→
Ω∗(M̃) is injective. ♦♦

18.9 (c) Because f (a) is the pullback by Ad(a−1), we have f (a) = det(Ad(a−1)) by Prob-

lem 10.7. According to Problem 16.11, Ad(a−1) is a C∞ function of a.

19.1 F∗(dx∧dy∧dz) = d(x ◦ F)∧d(y ◦ F)∧d(z ◦ F). Apply Corollary 18.4(ii).

19.2 F∗(udu+vdv) = (2x3 +3xy2)dx+(3x2y+2y3)dy.

19.3 c∗ω = dt.

19.5* Coordinates and differential forms

Let (V,x1, . . . ,xn) be a chart about p. By Corollary 18.4(ii),

df 1∧·· · ∧df n = det

[
∂ f i

∂x j

]
dx1 ∧·· ·∧dxn.

So (df 1∧·· ·∧df n)p 6= 0 if and only if det[∂ f i/∂x j(p)] 6= 0. By the inverse function theorem,

this condition is equivalent to the existence of a neighborhood W on which the map F :=
( f 1, . . . , f n) : W → Rn is a C∞ diffeomorphism onto its image. In other words, (W, f 1, . . . , f n)
is a chart. ♦♦

19.7 Mimic the proof of Proposition 19.3.

19.9* Vertical plane

Since ax+by is the zero function on the vertical plane, its differential is identically zero:

adx+bdy = 0.

Thus, at each point of the plane, dx is a multiple of dy or vice versa. In either case, dx∧dy= 0.

♦♦

19.11

(a) Mimic Example 19.8. Define

Ux = {(x,y) ∈M | fx 6= 0} and Uy = {(x,y) ∈M | fy 6= 0},

where fx, fy are the partial derivatives ∂ f /∂x, ∂ f /∂y respectively. Because 0 is a regular

value of f , every point in M satisfies fx 6= 0 or fy 6= 0. Hence, {Ux,Uy} is an open cover

of M. Define ω = dy/ fx on Ux and −dx/ fy on Uy. Show that ω is globally defined on

M. By the implicit function theorem, in a neighborhood of a point (a,b) ∈Ux, x is a C∞

function of y. It follows that y can be used as a local coordinate and the 1-form dy/ fx is

C∞ at (a,b). Thus, ω is C∞ on Ux. A similar argument shows that ω is C∞ on Uy.

(b) On M, df = fx dx+ fy dy+ fz dz≡ 0.

(c) Define Ui = {p ∈ Rn+1 | ∂ f /∂xi(p) 6= 0} and

ω = (−1)i−1 dx1 ∧·· ·∧ d̂xi∧·· · ∧dxn+1

∂ f/∂xi
on Ui.

19.13 ∇×E =−∂B/∂ t and divB = 0.

20.3* Derivative of a smooth family of vector fields

Let (V,y1, . . . ,yn) be another coordinate neighborhood of p such that
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Xt = ∑
j

b j(t,q)
∂

∂y j
on V.

On U ∩V ,

∂

∂xi
= ∑

j

∂y j

∂xi

∂

∂y j
.

Substituting this into (20.2) in the text and comparing coefficients with the expression for Xt

above, we get

b j(t,q) = ∑
i

ai(t,q)
∂y j

∂xi
.

Since ∂y j/∂xi does not depend on t, differentiating both sides of this equation with respect to

t gives

∂b j

∂ t
= ∑

i

∂ai

∂ t

∂y j

∂xi
.

Hence,

∑
j

∂b j

∂ t

∂

∂y j
=∑

i, j

∂ai

∂ t

∂y j

∂xi

∂

∂y j
= ∑

i

∂ai

∂ t

∂

∂xi
. ♦♦

20.6* Global formula for the exterior derivative

By Theorem 20.12,

(LY0
ω)(Y1, . . . ,Yk) = Y0 (ω(Y1, . . . ,Yk))−

k

∑
j=1

ω(Y1, . . . , [Y0,Yj], . . . ,Yk)

= Y0 (ω(Y1, . . . ,Yk))+
k

∑
j=1

(−1) jω([Y0,Yj],Y1, . . . ,Ŷj, . . . ,Yk). (20.6.1)

By the induction hypothesis, Theorem 20.14 is true for (k−1)-forms. Hence,

−(dιY0
ω)(Y1, . . . ,Yk) =−

k

∑
i=1

(−1)i−1Yi

(
(ιY0

ω)(Y1, . . . ,Ŷi, . . . ,Yk)
)

− ∑
1≤i< j≤k

(−1)i+ j(ιY0
ω)([Yi,Yj],Y1, . . . ,Ŷi, . . . ,Ŷj, . . . ,Yk)

=
k

∑
i=1

(−1)iYi

(
ω(Y0,Y1, . . . ,Ŷi, . . . ,Yk)

)

+ ∑
1≤i< j≤k

(−1)i+ jω([Yi,Yj],Y0,Y1, . . . ,Ŷi, . . . ,Ŷj, . . . ,Yk). (20.6.2)

Adding (20.6.1) and (20.6.2) gives

k

∑
i=0

(−1)iYi

(
ω(Y0, . . . ,Ŷi, . . . ,Yk)

)
+

k

∑
j=1

(−1) jω([Y0,Yj],Ŷ0,Y1, . . . ,Ŷj, . . . ,Yk)

+ ∑
1≤i< j≤k

(−1)i+ jω([Yi,Yj],Y0, . . . ,Ŷi, . . . ,Ŷj, . . . ,Yk),

which simplifies to the right-hand side of Theorem 20.14. ♦♦
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21.1* Locally constant map on a connected space

We first show that for every y∈Y , the inverse f−1(y) is an open set. Suppose p∈ f−1(y). Then

f (p) = y. Since f is locally constant, there is a neighborhood U of p such that f (U) = {y}.
Thus, U ⊂ f−1(y). This proves that f−1(y) is open.

The equality S =
⋃

y∈Y f−1(y) exhibits S as a disjoint union of open sets. Since S is

connected, this is possible only if there is just one such open set S = f−1(y0). Hence, f

assumes the constant value y0 on S. ♦♦

21.5 The map F is orientation-preserving.

21.6 Use Problem 19.11(c) and Theorem 21.5.

21.9 See Problem 12.2.

22.1 The topological boundary bd(M) is {0,1,2}; the manifold boundary ∂M is {0}.

22.3* Inward-pointing vectors at the boundary

(⇐) Suppose (U,φ) = (U,x1, . . . ,xn) is a chart for M centered at p such that Xp =∑ai ∂/∂xi|p
with an > 0. Then the curve c(t) = φ−1(a1t, . . . ,ant) in M satisfies

c(0) = p, c( ]0,ε[ )⊂M◦, and c′(0) = Xp. (22.3.1)

So Xp is inward-pointing.

(⇒) Suppose Xp is inward-pointing. Then Xp /∈ Tp(∂M) and there is a curve c : [0,ε[→ M

such that (22.3.1) holds. Let (U,φ) = (U,x1, . . . ,xn) be a chart centered at p. On U ∩M,

we have xn ≥ 0. If (φ ◦ c)(t) = (c1(t), . . . ,cn(t)), then cn(0) = 0 and cn(t) > 0 for t > 0.

Therefore, the derivative of cn at t = 0 is

ċn(0) = lim
t→0+

cn(t)−cn(0)

t
= lim

t→0+

cn(t)

t
≥ 0.

Since Xp = ∑n
i=1 ċi(0)∂/∂xi|p, the coefficient of ∂/∂xn|p in Xp is ċn(0). In fact, ċn(0) > 0

because if ċn(0) were 0, then Xp would be tangent to ∂M at p. ♦♦

22.4* Smooth outward-pointing vector field along the boundary

Let p ∈ ∂M and let (U,x1, . . . ,xn) be a coordinate neighborhood of p. Write

Xα ,p =
n

∑
i=1

ai(Xα ,p)
∂

∂xi

∣∣∣∣
p

.

Then

Xp = ∑
α

ρα (p)Xα ,p =
n

∑
i=1

∑
α

ρα (p)ai(Xα ,p)
∂

∂xi

∣∣∣∣
p

.

Since Xα ,p is outward-pointing, the coefficient an(Xα ,p) is negative by Problem 22.3. Because

ρα (p)≥ 0 for all α with ρα(p) positive for at least one α , the coefficient ∑α ρα (p)ai(Xα ,p)
of ∂/∂xn|p in Xp is negative. Again by Problem 22.3, this proves that Xp is outward-pointing.

The smoothness of the vector field X follows from the smoothness of the partition of unity

ρα and of the coefficient functions ai(Xα ,p) as functions of p. ♦♦

22.6* Induced atlas on the boundary

Let r1, . . . ,rn be the standard coordinates on the upper half-space Hn. As a shorthand, we

write a = (a1, . . . ,an−1) for the first n−1 coordinates of a point in Hn. Since the transition

function
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ψ ◦ φ−1 : φ(U ∩V )→ ψ(U ∩V )⊂H
n

takes boundary points to boundary points and interior points to interior points,

(i)
(
rn ◦ ψ ◦ φ−1

)
(a,0) = 0, and

(ii)
(
rn ◦ ψ ◦ φ−1

)
(a, t)> 0 for t > 0,

where (a,0) and (a, t) are points in φ(U ∩V )⊂Hn.

Let x j = r j ◦ φ and yi = ri ◦ ψ be the local coordinates on the charts (U,φ) and (V,ψ)
respectively. In particular, yn ◦ φ−1 = rn ◦ ψ ◦ φ−1. Differentiating (i) with respect to r j gives

∂yn

∂x j

∣∣∣∣
φ−1(a,0)

=
∂ (yn ◦ φ−1)

∂ r j

∣∣∣∣
(a,0)

=
∂ (rn ◦ ψ ◦ φ−1)

∂ r j

∣∣∣∣
(a,0)

= 0 for j = 1, . . . ,n−1.

From (i) and (ii),

∂yn

∂xn

∣∣∣∣
φ−1(a,0)

=
∂
(
yn ◦ φ−1

)

∂ rn

∣∣∣∣∣
(a,0)

= lim
t→0+

(
yn ◦ φ−1

)
(a, t)−

(
yn ◦ φ−1

)
(a,0)

t

= lim
t→0+

(
yn ◦ φ−1

)
(a, t)

t
≥ 0,

since both t and
(
yn ◦ φ−1

)
(a, t) are positive.

The Jacobian matrix of J = [∂yi/∂x j] of the overlapping charts U and V at a point p =
φ−1(a,0) in U ∩V ∩∂M therefore has the form

J =




∂y1

∂x1
· · · ∂y1

∂xn−1

∂y1

∂xn

...
. . .

...
...

∂yn−1

∂x1
· · · ∂yn−1

∂xn−1

∂yn−1

∂xn

0 · · · 0
∂yn

∂xn




=




A ∗

0
∂yn

∂xn


 ,

where the upper left (n−1)× (n−1) block A = [∂yi/∂x j ]1≤i, j≤n−1 is the Jacobian matrix of

the induced charts U∩∂M and V ∩∂M on the boundary. Since det J(p)> 0 and ∂yn/∂xn(p)>
0, we have det A(p)> 0. ♦♦

22.7* Boundary orientation of the left half-space

Because a smooth outward-pointing vector field along ∂M is ∂/∂x1, by definition an orienta-

tion form of the boundary orientation on ∂M is the contraction

ι∂/∂ x1(dx1 ∧dx2 ∧·· ·∧dxn) = dx2 ∧·· ·∧dxn. ♦♦

22.8 Viewed from the top, C1 is clockwise and C0 is counterclockwise.

22.9 Compute ιX (dx1 ∧·· ·∧dxn+1).

22.10 (a) An orientation form on the closed unit ball is dx1 ∧ ·· · ∧ dxn+1 and a smooth

outward-pointing vector field on U is ∂/∂xn+1. By definition, an orientation form on U is

the contraction



382 Hints and Solutions to Selected End-of-Section Problems

ι∂/∂ xn+1(dx1 ∧·· ·∧dxn+1) = (−1)ndx1 ∧·· · ∧dxn.

22.11 (a) Let ω be the orientation form on the sphere in Problem 22.9. Show that a∗ω =
(−1)n+1ω .

23.1 Let x = au and y = bv.

23.2 Use the Heine–Borel theorem (Theorem A.40).

23.3* Integral under a diffeomorphism

Let {(Uα ,φα )} be an oriented atlas for M that specifies the orientation of M, and {ρα} a

partition of unity on M subordinate to the open cover {Uα}. Assume that F : N → M is

orientation-preserving. By Problem 21.4, {(F−1(Uα ),φα ◦ F)} is an oriented atlas for N

that specifies the orientation of N. By Problem 13.6, {F∗ρα} is a partition of unity on N

subordinate to the open cover {F−1(Uα )}.
By the definition of the integral,

∫

N
F∗ω = ∑

α

∫

F−1(Uα )
(F∗ρα) (F

∗ω)

= ∑
α

∫

F−1(Uα )
F∗(ρα ω)

= ∑
α

∫

(φα◦F)(F−1(Uα ))
(φα ◦ F)−1∗F∗(ρα ω)

= ∑
α

∫

φα (Uα )
(φ−1

α )∗(ρα ω)

= ∑
α

∫

Uα

ρα ω =

∫

M
ω.

If F : N →M is orientation-reversing, then {(F−1(Uα ),φα ◦ F)} is an oriented atlas for

N that gives the opposite orientation of N. Using this atlas to calculate the integral as above

gives −∫N F∗ω . Hence in this case
∫

M ω =−∫N F∗ω . ♦♦

23.4* Stokes’s theorem for Rn and for H
n

An (n−1)-form ω with compact support on Rn or Hn is a linear combination

ω =
n

∑
i=1

fi dx1 ∧·· ·∧ d̂xi∧·· ·∧dxn. (23.4.1)

Since both sides of Stokes’s theorem are R-linear in ω , it suffices to check the theorem for

just one term of the sum (23.4.1). So we may assume

ω = f dx1 ∧·· ·∧ d̂xi∧·· ·∧dxn,

where f is a C∞ function with compact support in Rn or Hn. Then

dω =
∂ f

∂xi
dxi ∧dx1 ∧·· ·∧dxi−1 ∧ d̂xi∧·· ·∧dxn

= (−1)i−1 ∂ f

∂xi
dx1 ∧·· · ∧dxi∧·· ·∧dxn.

Since f has compact support in Rn or Hn, we may choose a > 0 large enough that supp f lies

in the interior of the cube [−a,a]n.
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Stokes’s theorem for Rn

By Fubini’s theorem, one can first integrate with respect to xi:

∫

Rn
dω =

∫

Rn
(−1)i−1 ∂ f

∂xi
dx1 · · ·dxn

= (−1)i−1
∫

Rn−1

(∫ ∞

−∞

∂ f

∂xi
dxi

)
dx1 · · · d̂xi · · ·dxn

= (−1)i−1
∫

Rn−1

(∫ a

−a

∂ f

∂xi
dxi

)
dx1 · · · d̂xi · · ·dxn.

But

∫ a

−a

∂ f

∂xi
dxi = f (. . . ,xi−1,a,xi+1, . . .)− f (. . . ,xi−1,−a,xi+1, . . .)

= 0−0 = 0,

because the support of f lies in the interior of [−a,a]n. Hence,
∫
Rn dω = 0.

The right-hand side of Stokes’s theorem is
∫

∂Rn ω =
∫
∅ ω = 0, because Rn has empty

boundary. This verifies Stokes’s theorem for Rn.

Stokes’s theorem for Hn

Case 1: i 6= n.

∫

Hn
dω = (−1)i−1

∫

Hn

∂ f

∂xi
dx1 · · ·dxn

= (−1)i−1
∫

Hn−1

(∫ ∞

−∞

∂ f

∂xi
dxi

)
dx1 · · · d̂xi · · ·dxn

= (−1)i−1
∫

Hn−1

(∫ a

−a

∂ f

∂xi
dxi

)
dx1 · · · d̂xi · · ·dxn

= 0 for the same reason as the case of Rn.

As for
∫

∂Hn ω , note that ∂Hn is defined by the equation xn = 0. Hence, on ∂Hn, the 1-

form dxn is identically zero. Since i 6= n, ω = f dx1 ∧ ·· · ∧ d̂xi ∧ ·· · ∧ dxn ≡ 0 on ∂Hn, so∫
∂Hn ω = 0. Thus, Stokes’s theorem holds in this case.

Case 2: i = n.

∫

Hn
dω = (−1)n−1

∫

Hn

∂ f

∂xn
dx1 · · ·dxn

= (−1)n−1
∫

Rn−1

(∫ ∞

0

∂ f

∂xn
dxn

)
dx1 · · ·dxn−1.

In this integral

∫ ∞

0

∂ f

∂xn
dxn =

∫ a

0

∂ f

∂xn
dxn

= f (x1, . . . ,xn−1,a)− f (x1, . . . ,xn−1,0)

=− f (x1, . . . ,xn−1,0).

Hence,
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∫

Hn
dω = (−1)n

∫

Rn−1
f (x1, . . . ,xn−1,0)dx1 · · ·dxn−1 =

∫

∂Hn
ω

because (−1)nRn−1 is precisely ∂Hn with its boundary orientation. So Stokes’s theorem also

holds in this case. ♦♦

23.5 Take the exterior derivative of x2 + y2 + z2 = 1 to obtain a relation among the 1-forms

dx, dy, and dz on S2. Then show for example that for x 6= 0, one has dx∧dy = (z/x)dy∧dz.

24.1 Assume ω = d f . Derive a contradiction using Problem 8.10(b) and Proposition 17.2.

25.4* The snake lemma

If we view each column of the given commutative diagram as a cochain complex, then the

diagram is a short exact sequence of cochain complexes

0→A→B→C→ 0.

By the zig-zag lemma, it gives rise to a long exact sequence in cohomology. In the long exact

sequence, H0(A) = kerα , H1(A) = A1/ imα = cokerα , and similarly for B and C. ♦♦

26.2 Define d−1 = 0. Then the given exact sequence is equivalent to a collection of short

exact sequences

0→ imdk−1→ Ak dk−→ imdk→ 0, k = 0, . . . ,m−1.

By the rank–nullity theorem,

dimAk = dim(imdk−1)+dim(imdk).

When we compute the alternating sum of the left-hand side, the right-hand side will can-

cel to 0. ♦♦

28.1 Let U be the punctured projective plane RP2−{p} and V a small disk containing p.

Because U can be deformation retracted to the boundary circle, which after identification is

in fact RP1, U has the homotopy type of RP1. Since RP1 is homeomorphic to S1, H∗(U) ≃
H∗(S1). Apply the Mayer–Vietoris sequence. The answer is H0(RP2) = R, Hk(RP2) = 0 for

k > 0.

28.2 Hk(Sn) = R for k = 0,n, and Hk(Sn) = 0 otherwise.

28.3 One way is to apply the Mayer–Vietoris sequence to U =R2−{p}, V = R2−{q}.

A.13* The Lindelöf condition

Let {Bi}i∈I be a countable basis and {Uα}α∈A an open cover of the topological space S. For

every p ∈Uα , there exists a Bi such that

p ∈ Bi ⊂Uα .

Since this Bi depends on p and α , we write i = i(p,α). Thus,

p ∈ Bi(p,α) ⊂Uα .

Now let J be the set of all indices j ∈ I such that j = i(p,α) for some p and some α . Then⋃
j∈J B j = S because every p in S is contained in some Bi(p,α) = B j.

For each j ∈ J, choose an α( j) such that B j ⊂Uα( j). Then S =
⋃

j B j ⊂
⋃

j Uα( j). So

{Uα( j)} j∈J is a countable subcover of {Uα}α∈A. ♦♦
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A.15* Disconnected subset in terms of a separation

(⇒) By (iii),

A = (U ∩V )∩A = (U ∩A)∪ (V ∩A).

By (i) and (ii), U ∩A and V ∩A are disjoint nonempty open subsets of A. Hence, A is discon-

nected.

(⇐) Suppose A is disconnected in the subspace topology. Then A = U ′ ∪V ′, where U ′ and

V ′ are two disjoint nonempty open subsets of A. By the definition of the subspace topology,

U ′ =U ∩A and V ′ =V ∩A for some open sets U,V in S.

(i) holds because U ′ and V ′ are nonempty.

(ii) holds because U ′ and V ′ are disjoint.

(iii) holds because A =U ′ ∪V ′ ⊂U ∪V . ♦♦

A.19* Uniqueness of the limit

Suppose p 6= q. Since S is Hausdorff, there exist disjoint open sets Up and Uq such that p∈Up

and q ∈Uq. By the definition of convergence, there are integers Np and Nq such that for all

i ≥ Np, xi ∈ Up and for all i ≥ Nq, xi ∈ Uq. This is a contradiction, since Up ∩Uq is the

empty set. ♦♦

A.20* Closure in a product

(⊂) By Problem A.5, cl(A)×Y is a closed set containing A×Y . By the definition of closure,

cl(A×Y )⊂ cl(A)×Y .

(⊃) Conversely, suppose (p,y)∈ cl(A)×Y . If p∈ A, then (p,y)∈A×Y ⊂ cl(A×Y ). Suppose

p /∈ A. By Proposition A.50, p is an accumulation point of A. Let U ×V be any basis open

set in S×Y containing (p,y). Because p ∈ ac(A), the open set U contains a point a ∈ A with

a 6= p. So U ×V contains the point (a,y) ∈ A×Y with (a,y) 6= (p,y). This proves that (p,y)
is an accumulation point of A×Y . By Proposition A.50 again, (p,y) ∈ ac(A×Y )⊂ cl(A×Y ).
This proves that cl(A)×Y ⊂ cl(A×Y ). ♦♦

B.1* The rank of a matrix

(⇒) Suppose rkA≥ k. Then one can find k linearly independent columns, which we call a1,

. . ., ak. Since the m×k matrix [a1 · · · ak] has rank k, it has k linearly independent rows b1, . . .,
bk. The matrix B whose rows are b1, . . ., bk is a k× k submatrix of A, and rkB = k. In other

words, B is a nonsingular k×k submatrix of A.

(⇐) Suppose A has a nonsingular k×k submatrix B. Let a1, . . ., ak be the columns of A such

that the submatrix [a1 · · · ak] contains B. Since [a1 · · · ak] has k linearly independent rows, it

also has k linearly independent columns. Thus, rkA≥ k. ♦♦

B.2* Matrices of rank at most r

Let A be an m×n matrix. By Problem B.1, rkA≤ r if and only if all (r+1)× (r+1) minors

m1(A), . . . ,ms(A) of A vanish. As the common zero set of a collection of continuous functions,

Dr is closed in Rm×n. ♦♦

B.3* Maximal rank

For definiteness, suppose n ≤ m. Then the maximal rank is n and every matrix A ∈ Rm×n has

rank ≤ n. Thus,

Dmax = {A ∈ Rm×n | rkA = n}= Rm×n−Dn−1.

Since Dn−1 is a closed subset of Rm×n (Problem B.2), Dmax is open in Rm×n. ♦♦

B.4* Degeneracy loci and maximal-rank locus of a map
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(a) Let Dr be the subset of Rm×n consisting of matrices of rank at most r. The degeneracy

locus of rank r of the map F : S→ Rm×n may be described as

Dr(F) = {x ∈ S | F(x) ∈ Dr}= F−1(Dr).

Since Dr is a closed subset of Rm×n (Problem B.2) and F is continuous, F−1(Dr) is a

closed subset of S.

(b) Let Dmax be the subset of Rm×n consisting of all matrices of maximal rank. Then

Dmax(F) = F−1(Dmax). Since Dmax is open in Rm×n (Problem B.3) and F is continu-

ous, F−1(Dmax) is open in S. ♦♦

B.7 Use Example B.5.
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Rn Euclidean space of dimension n (p. 4)

p = (p1, . . . , pn) point in Rn (p. 4)

C∞ smooth or infinitely differentiable (p. 4)

∂ f/∂xi partial derivative with respect to xi (pp. 4, 67)

f (k)(x) the kth derivative of f (x) (p. 5)

B(p,r) open ball in Rn with center p and radius r (pp. 7, 317)

]a,b[ open interval in R1 (p. 8)

Tp(R
n) or TpRn tangent space to Rn at p (p. 10)

v =




v1

v2

v3


= 〈v1, . . . ,vn〉 column vector (p. 11)

{e1, . . . ,en} standard basis for Rn (p. 11)

Dv f directional derivative of f in the direction of v at p (p. 11)

x∼ y equivalence relation (p. 11)

C∞
p algebra of germs of C∞ functions at p in Rn (p. 12)

Dp(R
n) vector space of derivations at p in Rn (p. 13)

X(U) vector space of C∞ vector fields on U (p. 15)

Der(A) vector space of derivations of an algebra A (p. 17)

δ i
j Kronecker delta (p. 13)

Hom(V,W ) vector space of linear maps f : V →W (p. 19)

V∨ = Hom(V,R) dual of a vector space (p. 19)

V k Cartesian product V ×·· ·×V of k copies of V (p. 22)

Lk(V ) vector space of k-linear functions on V (p. 22)
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(a1 a2 · · · ar) cyclic permutation, r-cycle (p. 20)

(ab) transposition (p. 20)

Sk group of permutations of k objects (p. 20)

sgn(σ) or sgnσ sign of a permutation (p. 20)

Ak(V ) vector space of alternating k-linear functions on V (p. 23)

σ f a function f acted on by a permutation σ (p. 23)

e identity element of a group (p. 24)

σ · x left action of σ on x (p. 24)

x ·σ right action of σ on x (p. 24)

S f symmetrizing operator applied to f (p. 24)

A f alternating operator applied to f (p. 24)

f ⊗g tensor product of multilinear functions f and g (p. 25)

f ∧g wedge product of multicovectors f and g (p. 26)

B = [bi
j] or [bi j] matrix whose (i, j)-entry is bi

j or bi j (p. 30)

det [bi
j] or det [bi j] determinant of the matrix [bi

j] or [bi j] (p. 30)
∧
(V ) exterior algebra of a vector space (p. 30)

I = (i1, . . . , ik) multi-index (p. 31)

eI k-tuple (ei1 , . . . ,eik ) (p. 31)

α I k-covector α i1 ∧·· ·∧α ik (p. 31)

T ∗p (R
n) or T ∗p R

n cotangent space to Rn (p. 34)

df differential of a function (pp. 34, 191)

dxI dxi1 ∧·· ·∧dxik (p. 36)

Ωk(U) vector space of C∞ k-forms on U (pp. 36, 203)

Ω∗(U) direct sum
⊕n

k=0 Ωk(U) (p. 37, 206)

ω(X) the function p 7→ ωp(Xp) (p. 37)

F(U) or C∞(U) ring of C∞ functions on U (p. 38)

dω exterior derivative of ω (p. 38)

fx ∂ f/∂x, partial derivative of f with respect to x (p. 38)
⊕∞

k=0 Ak direct sum of A0,A1, . . . (p. 30)

grad f gradient of a function f (p. 41)

curlF curl of a vector field F (p. 41)

divF divergence of a vector field F (p. 41)

Hk(U) kth de Rham cohomology of U (p. 43)
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{Uα}α∈A open cover (p. 48)

(U,φ),(U,φ : U → Rn) chart or coordinate open set (p. 48)

1U identity map on U (p. 49)

Uαβ Uα ∩Uβ (p. 50)

Uαβ γ Uα ∩Uβ ∩Uγ (p. 50)

U= {(Uα ,φα)} atlas (p. 50)

C complex plane (p. 50)
∐

disjoint union (pp. 51, 129)

φα |Uα∩V restriction of φα to Uα ∩V (p. 54)

Γ( f ) graph of f (p. 54)

Km×n vector space of m× n matrices with entries in K (p. 54)

GL(n,K) general linear group over a field K (p. 54)

M×N product manifold (p. 55)

f ×g Cartesian product of two maps (p. 55)

Sn unit sphere in Rn+1 (p. 58)

F∗h pullback of a function h by a map F (p. 60)

J( f ) = [∂Fi/∂x j] Jacobian matrix (p. 68)

det [∂Fi/∂x j] Jacobian determinant (p. 68)

∂ (F1, . . . ,Fn)

∂ (x1, . . . ,xn)
Jacobian determinant (p. 68)

µ : G×G→G multiplication on a Lie group (p. 66)

ι : G→G inverse map of a Lie group (p. 66)

K× nonzero elements of a field K (p. 66)

S1 unit circle in C× (p. 66)

A = [ai j], [a
i
j] matrix whose (i, j)-entry is ai j or ai

j (p. 67)

S/∼ quotient (p. 71)

[x] equivalence class of x (p. 71)

π−1(U) inverse image of U under π (p. 71)

RPn real projective space of dimension n (p. 76)

‖x‖ modulus of x (p. 77)

a1∧·· ·∧ âi∧·· ·∧an the caret ̂means to omit ai (p. 80)

G(k,n) Grassmannian of k-planes in Rn (p. 82)

rkA rank of a matrix A (p. 82 (p. 344)

C∞
p (M) germs of C∞ functions at p in M (p. 87)
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Tp(M) or TpM tangent space to M at p (p. 87)

∂/∂xi|p coordinate tangent vector at p (p. 87)

d/dt|p coordinate tangent vector of a 1-dimensional manifold (p. 87)

F∗,p or F∗ differential of F at p (p. 87)

c(t) curve in a manifold (p. 92)

c′(t) := c∗
( d

dt

∣∣∣∣
t0

)
velocity vector of a curve (p. 92)

ċ(t) derivative of a real-valued function (p. 92)

φS coordinate map on a submanifold S (p. 100)

f−1({c}) or f−1(c) level set (p. 103)

Z( f ) = f−1(0) zero set (p. 103)

SL(n,K) special linear group over a field K (pp. 107, 109)

mi j or mi j(A) (i, j)-minor of a matrix A (p. 107)

Mor(A,B) the set of morphisms from A to B (p. 110)

1A identity map on A (p. 110)

(M,q) pointed manifold (p. 111)

≃ isomorphism (p. 111)

F,G functors (p. 111)

C,D categories (p. 111)

{e1, . . . ,en} basis for a vector space V (p. 113)

{α1, . . . ,αn} dual basis for V∨ (p. 113)

L∨ dual of linear map L (p. 113)

O(n) orthogonal group (p. 117)

AT transpose of a matrix A (p. 117)

ℓg left multiplication by g (p. 117)

rg right multiplication by g (p. 117)

Dmax(F) maximal rank locus of F : S→ Rm×n (pp. 118, 345)

i : N→M inclusion map (p. 123)

T M tangent bundle (p. 129)

φ̃ coordinate map on the tangent bundle (p. 130)

Ep := π−1(p) fiber at p of a vector bundle (p. 133)

X vector field (p. 136)

Xp tangent vector at p (p. 136)

Γ(U,E) vector space of C∞ sections of E over U (p. 137)
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Γ(E) := Γ(M,E) vector space of C∞ sections of E over M (p. 137)

supp f support of a function f (p. 140)

B(p,r) closed ball in Rn with center p and radius r (p. 143)

A, cl(A), or clS(A) closure of a set A in S (pp. 148, 334)

ct(p) integral curve through p (p. 152)

Diff(M) group of diffeomorphisms of M (p. 153)

Ft(q) = F(t,q) local flow (p. 156)

[X ,Y ] Lie bracket of vector fields, bracket in a Lie algebra (pp. 157,

158)

X(M) Lie algebra of C∞ vector fields on M (p. 158)

Sn vector space of n× n real symmetric matrices (p. 166)

R2/Z2 torus (p. 167)

‖X‖ norm of a matrix (p. 169

exp(X) or eX exponential of a matrix X (p. 170)

tr(X) trace (p. 171)

Z(G) center of a group G (p. 176)

SO(n) special orthogonal group (p. 176)

U(n) unitary group (p. 176)

SU(n) special unitary group (p. 177)

Sp(n) compact symplectic group (p. 177)

J the matrix
[

0 In
−In 0

]
(p. 177)

In n×n identity matrix (p. 177)

Sp(2n,C) complex symplectic group (p. 177)

Kn space of n×n real skew-symmetric matrices (p. 179)

Ã left-invariant vector field generated by A ∈ TeG (p. 180)

L(G) Lie algebra of left-invariant vector fields on G (p. 180)

g Lie algebra (p. 182)

h⊂ g Lie subalgebra (p. 182)

gl(n,R) Lie algebra of GL(n,R) (p. 183)

sl(n,R) Lie algebra of SL(n,R) (p. 186)

o(n) Lie algebra of O(n) (p. 186)

u(n) Lie algebra of U(n) (p. 186)

(df )p, df |p value of a 1-form at p (p. 191)
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T ∗p (M) or T ∗p M cotangent space at p (p. 190)

T ∗M cotangent bundle (p. 192)

F∗ : T ∗
F(p)M→ T ∗p N codifferential (p. 196)

F∗ω pullback of a differential form ω by F (pp. 196, 205)
∧k(V∨) = Ak(V ) k-covectors on a vector space V (p. 200)

ωp value of a differential form ω at p (p. 200)

Ik,n the set of strictly ascending multi-indices

1≤ i1 < · · ·< ik ≤ n (p. 201)
∧k(T ∗M) kth exterior power of the cotangent bundle (p. 203)

Ωk(G)G left-invariant k-forms on a Lie group G (p. 208)

suppω support of a k-form (p. 208)

dω exterior derivative of a differential form ω (p. 213)

ω |S restriction of a differential from ω to a submanifold S

(p. 216)

→֒ inclusion map (p. 216)

LXY the Lie derivative of a vector field Y along X (p. 224)

LX ω the Lie derivative of a differential form ω along X (p. 226)

ιvω interior multiplication of ω by v (p. 227)

(v1, . . . ,vn) ordered basis (p. 237)

[v1, . . . ,vn] ordered basis as a matrix (p. 238)

(M, [ω ]) oriented manifold with orientation [ω ] (p. 244)

−M the oriented manifold having the opposite orientation as M

(p. 246)

Hn closed upper half-space (p. 248)

M ◦ interior of a manifold with boundary (pp. 248, 252)

∂M boundary of a manifold with boundary (pp. 248, 251)

L1 left half-line (p. 251)

int(A) topological interior of a subset A (p. 252)

ext(A) exterior of a subset A (p. 252)

bd(A) topological boundary of a subset A (p. 252)

{p0, . . . , pn} partition of a closed interval (p. 260)

P = {P1, . . . ,Pn} partition of a closed rectangle (p. 260)

L( f ,P) lower sum of f with respect to a partition P (p. 260)

U( f ,P) upper sum of f with respect to a partition P (p. 260)
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∫
R f upper integral of f over a closed rectangle R (p. 261)
∫

R
f lower integral of f over a closed rectangle R (p. 261)

∫
R f (x) |dx1 · · ·dxn| Riemann integral of f over a closed rectangle R (p. 261)
∫

U ω Riemann integral of a differential form ω over U (p. 263)

vol(A) volume of a subset A of Rn (p. 262)

Disc( f ) set of discontinuities of a function f (p. 262)

Ωk
c(M) vector space of C∞ k-forms with compact support on M

(p. 265)

Zk(M) vector space of closed k-forms on M (p. 275)

Bk(M) vector space of exact k-forms on M (p. 275)

Hk(M) de Rham cohomology of M in degree k (p. 275)

[ω ] cohomology class of ω (p. 275)

F# or F∗ induced map in cohomology (p. 278)

H∗(M) the cohomology ring⊕n
k=0Hk(M) (p. 279)

C= ({Ck}k∈Z,d) cochain complex (p. 281)

(Ω∗(M),d) de Rham complex (p. 281)

Hk(C) kth cohomology of C (p. 283)

Zk(C) subspace of k-cocycles (p. 283)

Bk(C) subspace of k-coboundaries (p. 283

d∗ : Hk(C)→Hk+1(A) connecting homomorphism (p. 284)

// // injection or maps to under an injection (p. 285)
� // // maps to under a surjection (p. 285)

iU : U →M inclusion map of U in M (p. 288)

jU : U ∩V →U inclusion map of U ∩V in U (p. 288)

// // surjection (p. 291)

χ(M) Euler characteristic of M (p. 295)

f ∼ g f is homotopic to g (p. 296)

Σg compact orientable surface of genus g (p. 310)

d(p,q) distance between p and q (p. 317)

(a,b) open interval (p. 318)

(S,T) a set S with a topology T (p. 318)

Z( f1, . . . , fr) zero set of f1, . . . , fr (p. 319)

Z(I) zero set of all the polynomials in an ideal I (p. 320)
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IJ the product ideal (p. 320)

∑α Iα sum of ideals (p. 320)

TA subspace topology or relative topology of A (p. 320)

Q the set of rational numbers (p. 323)

Q+ the set of positive rational numbers (p. 323)

A×B Cartesian product of two sets A and B (p. 326)

Cx connected component of a point x (p. 333)

ac(A) the set of accumulation points of A (p. 335)

Z+ the set of positive integers (p. 336)

Dr the set of matrices of rank≤ r in Rm×n (p. 345)

Dmax the set of matrices of maximal rank in Rm×n (p. 345)

Dr(F) degeneracy locus of rank r of a map F : S→Rm×n (p. 345)

ker f kernel of a homomorphism f (p. 350)

im f image of a map f (p. 350)

coker f cokernel of a homomorphism f (p. 350)

v+W coset of a subspace W (p. 349)

V/W quotient vector space of V by W (p. 349)

∏α Vα , A×B direct product (p. 351)
⊕

α Vα , A⊕B direct sum (p. 351)

A+B sum of two vector subspaces (p. 351)

A⊕i B internal direct sum (p. 351)

W⊥ W “perp,” orthogonal complement of W (p. 352)

H skew field of quaternions (p. 353)

EndK(V ) algebra of endomorphisms of V over K (p. 354)
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abelian Lie algebra, 158

absolute convergence, 170

accumulation point, 335

action, 24

of the permutation group on k-linear

functions, 23

adapted chart, 100

adjoint representation, 188

A f , 24

algebra, 12

graded, 30

algebra homomorphism, 12

alternating k-linear function, 23

alternating k-tensor, 23

alternating operator, 24

analytic, 4

anticommutative, 30, 279

anticommutativity

of the wedge product, 27

antiderivation, 39, 210

degree of, 39, 210

is a local operator, 212

antihomomorphism, 355

ascending multi-index, 31

associative axiom

in a category, 111

associativity

of the tensor product, 25

of the wedge product, 29

atlas, 50

equivalent oriented atlases, 246

for a regular submanifold, 102

maximal, 52

oriented, 245

automorphism

of a vector space, 354

Banach algebra, 170

Banach space, 170

base coordinates

on a vector bundle, 135

base space

of a vector bundle, 134

basic open set, 326

basis, 321

for Ak(V ), 31

for k-tensors, 32

for the cotangent space, 35, 191

for the dual space, 19

for the product topology, 326

for the tangent space, 89

of neighborhoods at a point, 324

bi-invariant top form

on a compact connected Lie group, 209

bilinear, 22

bilinear form, 358

bilinear map

as a tensor product of covectors, 25

boundary

manifold boundary, 252

of an n-manifold with boundary is an

(n−1)-manifold without boundary,

253

topological boundary, 252

boundary orientation, 255

boundary point, 251, 252
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of Hn, 248

bounded

in Rn, 332

bracket

of a Lie algebra, 158

bump function, 140

bundle map, 135

over a manifold, 135

C∞ extension

of a function, 144

C∞ function

need not be analytic, 5

on Rn, 4

on a manifold, 59

C∞ invariance of domain, 249

C∞ manifold, 53

C∞ manifold with boundary, 251

C∞ map

between manifolds, 61

C∞-compatible charts, 49

Ck function

on Rn, 4

Cartan, Élie, 18, 189

Cartan homotopy formula, 229

Cartesian product, 326

category, 110

center

of a group, 176

chain rule

for maps of manifolds, 88

in calculus notation, 91

change-of-basis matrix, 238

change-of-variables formula, 264

characterization

of smooth sections, 138

chart, 48

about a point, 53

adapted, 100

C∞-compatible, 49

centered at a point, 48

compatible with an atlas, 51

on a manifold with boundary, 250

circle

a nowhere-vanishing 1-form, 216

cohomology of, 292

is a manifold, 55

same homotopy type as the punctured

plane, 297

closed form, 40, 275

closed map, 329

closed set, 319

Zariski closed, 319

closed subgroup, 168

closed subgroup theorem, 169

closure, 334

characterization of a point in, 334

of a finite union or finite intersection, 336

of a locally finite union, 148

coarser topology, 318

coboundary, 283

cochain, 283

of degree k, 283

cochain homotopy, 312

cochain complex, 41, 281

cochain map, 283

cocycle, 283

codifferential, 196

codimension, 100

cohomologous closed forms, 275

cohomology, see de Rham cohomology

in degree zero, 280

cohomology class, 275, 283

cohomology ring, 279

of a torus, 303

cohomology vector space, 283

of a torus, 302

cokernel, 350

commutator

of superderivations, 45

compact, 329

closed subset of a compact space is

compact, 330

compact subset of a Hausdorff space is

closed, 331

continuous bijection from a compact

space to a Hausdorff space is a

homeomorphism, 331

continuous image of a compact set is

compact, 331

finite union of compact sets is compact,

331

product of compact spaces is compact,

331

compatible charts, 49

complementary subspace, 351

complete vector field, 156

complete normed algebra, 170
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complete normed vector space, 170

complex general linear group, 55

complex special linear group, 109

complex symplectic group, 177, 359

Lie algebra of, 187

composite

in a category, 110

of smooth maps is smooth, 62

conjugate

of a matrix, 355

of a quaternion, 355

connected, 332

continuous image of a connected set is

connected, 333

connected component

containing a point, 333

connected space

a locally constant map on a connected

space is constant, 246

connectedness

union of connected sets having a point in

common is connected, 333

connecting homomorphism, 284

constant rank theorem, 115, 343

constant-rank level set theorem, 116

continuity

of a map on a quotient space, 72

continuous

at a point, 327

continuous bijection from a compact

space to a Hausdorff space is a

homeomorphism, 331

continuous image of a compact set is

compact, 331

continuous image of a connected set is

connected, 333

frame, 240

iff the inverse image of any closed set is

closed, 329

iff the inverse image of any open set is

open, 328

on a set, 327

pointwise orientation, 240

the projection is continuous, 328

continuous category, 111

contractible, 298

Euclidean space is, 298

contraction, see interior multiplication

contravariant functor, 112

convention

on subscripts and superscripts, 44

convergence, 336

absolute, 170

coordinate map, 48

coordinate neighborhood, 48

coordinate system, 48

coordinates

base, 135

fiber, 135

on a manifold, 53

coordinates on a projective space

homogeneous, 76

coset, 349

coset representative, 349

cotangent bundle, 192

topology on, 192

cotangent space, 34, 190

basis for, 35, 191

of a manifold with boundary, 253

covariant functor, 111

covector, 19, 23

at a point of a manifold, 190

of degree 0, 23

on a vector space, 23

covector field, 34, 190

cover, 329

critical point

of a map of manifolds, 97

of a smooth map from a compact manifold

to Rn, 127

critical value

of a map of manifolds, 97

cross

is not locally Euclidean, 49

cross product

relation to wedge product, 45

curl, 41

curve, 53

existence with a given initial vector, 94

in a manifold, 92

starting at a point, 92

cuspidal cupic, 120

cycle, 274

of length r, 20

cycles

disjoint, 20

cyclic permutation, 20
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de Rham, Georges, 274

de Rham cohomology, 43, 275

homotopy invariance, 311

in degree greater than the dimension of

the manifold, 276

in degree zero, 275

of a circle, 276, 292

of a Möbius band, 301

of a multiply punctured plane, 310

of a punctured plane, 301

of a punctured torus, 307

of a sphere, 310

of a surface of genus 3, 310

of a surface of genus 2, 308

of the real line, 276

of the real projective plane, 310

ring structure, 279

de Rham complex, 41, 281

deformation retract, 299

implies the same homotopy type, 299

deformation retraction, 299

degeneracy locus, 345

degree

of a cochain, 283

of a differential form, 36, 200

of a tensor, 22

of an antiderivation, 39, 210

deleted neighborhood, 335

dense, 338

derivation

at a point, 13, 87

of a constant function is zero, 13

of C∞ functions is a local operator, 219

of a Lie algebra, 158

of an algebra, 16

derivative

of a matrix exponential, 171

determinant

differential of, 175

diagram-chasing, 286

diffeomorphism, 63

local, 68

of an open ball with Rn, 8

of an open cube with Rn, 8

of an open interval with R, 8

of open subsets of Rn, 8

orientation-preserving, 244

orientation-reversing, 244

difference map

in the Mayer–Vietoris sequence, 288

differentiable structure, 53

differential, 281

agrees with exterior derivative on 0-forms,

210

compute using curves, 95

matrix of, 88

of a function, 34, 191

in terms of coordinates, 35

relation with differential of a map, 191

of a map, 87

local expression, 91

of left multiplication, 95

of the inverse of a diffeomorphism, 114

of the determinant, 174, 175

of the inverse map in a Lie group, 99, 175

of the multiplication map in a Lie group,

99, 175

differential complex, 41

differential form, 36, 200

as a multilinear function on vector fields,

37

closed, 275

degree of, 36

exact, 275

local expression, 202

on M×R, 312

on a manifold with boundary, 253

pullback, 204

smooth 1-form, 193

smoothness characterizations, 203

support of, 208

type-I, 313

type-II, 313

wedge product of differential forms, 205

with compact support, 209

differential forms

one-parameter family of, 221

differential 1-form, 190

local expression, 191

dimension

invariance of, 48, 89

of Ak(V ), 32

of the orthogonal group, 167

direct product, 351

direct sum, 351

external, 351

internal, 351

directional derivative, 11



Index 401

disconnected, 332

discrete space, 319

discrete topology, 319

disjoint cycles, 20

disjoint union, 129

distance

in Rn, 317

div, 41

divergence, 41

division algebra, 353

division ring, 353

domain of integration, 263

dot product, 23

dual

functorial properties, 113

of a linear map, 113

dual basis, 19

dual map

matrix of, 114

dual space, 19, 113

basis, 19

has the same dimension as the vector

space, 19

embedded submanifold, 124

embedding, 121

image is a regular submanifold, 123

endomorphism, 354

invertible, 354

matrix of, 354

equivalence class, 71

equivalence of functions, 12

equivalence relation, 11

open, 74

equivalent ordered bases, 238

equivalent oriented atlas, 246

Euclidean space

is contractible, 298

is Hausdorff, 325

is second countable, 324

Euler characteristic, 295

Euler’s formula, 108

even permutation, 20

even superderivation, 45

exact form, 40, 275

exact sequence, 281

long, 285

short, 281, 284

exponential

of a matrix, 169

extension by zero

of a form, 316

of a function, 261, 290

exterior algebra, 306

of multicovectors, 30

exterior derivative, 38, 210

characterization, 40

existence, 212

global formula, 233

on a coordinate chart, 211

uniqueness, 213

exterior differentiation, see exterior

derivative

exterior point, 251

exterior power, 200

of the cotangent bundle, 203

exterior product, 26

external direct sum, 351

fiber

of a map, 133

of a vector bundle, 133

fiber coordinates

on a vector bundle, 135

fiber-preserving, 133

finer topology, 318

finite-complement topology, 319

first countable, 324

first isomorphism theorem, 351

flow

global, 156

local, 156

flow line, 156

form, see differential form

1-form on an open set, 34

a basis for the space of k-covectors, 31

bilinear or sesquilinear, 358

closed, 40

dimension of the space of k-forms, 32

exact, 40

frame, 137, 240

global, 240

local, 240

of a trivialization, 138

functor

contravariant, 112

covariant, 111

functorial properties
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of the pullback map in cohomology, 278

fundamental theorem

for line integrals, 271

Gauss, Carl Friedrich, 47

general linear group, 54, 354

bracket on the Lie algebra of, 183

is a Lie group, 66

tangent space at the identity, 178

generate

a topology, 321

germ, 12

of a function on a manifold, 86

global flow, 156

global frame, 240

global section

of a vector bundle, 137

grad, 41

graded algebra, 30

homomorphism, 30

graded commutative, 30

graded ring, 279

gradient, 41

graph

of a function, 54

of a smooth function, 108

of a smooth function is a manifold, 54

of an equivalence relation, 74

Grassmann, Hermann, 18

Grassmann algebra

of multicovectors, 30

Grassmannian, 82

Green’s theorem in the plane, 271

half-space, 248

Hausdorff, 324

compact subset of a Hausdorff space is

closed, 331

continuous bijection from a compact

space to a Hausdorff space is a

homeomorphism, 331

product of two Hausdorff spaces is

Hausdorff, 327

singleton subset of a Hausdorff space is

closed, 325

subspace of a Hausdorff space is

Hausdorff, 326

Hausdorff quotient

necessary and sufficient condition, 75

necessary condition, 73

Hom, 19

homeomorphism, 331

homogeneous coordinates, 76

homogeneous element, 210

homological algebra, 281

homologous, 274

homology class, 274

homomorphism

of R-modules, 16

of algebras, 12

of graded algebras, 30

of Lie groups, 164

homotopic maps, 296

induce the same map in cohomology, 300,

311

homotopy

from one map to another, 296

straight-line homotopy, 297

homotopy axiom

for de Rham cohomology, 300

homotopy equivalence, 297

homotopy invariance

of de Rham cohomology, 311

homotopy inverse, 297

homotopy type, 297

hypersurface, 106, 109, 216

nowhere-vanishing form on a smooth

hypersurface, 219

orientability, 247

ideals

product of, 320

sum of, 320

identification, 71

of a subspace to a point, 73

identity axiom

in a category, 110

identity component

of a Lie group is a Lie group, 175

image

of a linear map, 350

of a smooth map, 120

immersed submanifold, 122

immersion, 96, 115

at a point, 96

immersion theorem, 119

implicit function theorem, 340

indiscrete topology, 319
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induced topology, 168

initial point, 152

integrable, 261

integral

of a form on a manifold, 265

invariant under orientation-preserving

diffeomorphisms, 264

of an n form on Rn, 263

over a zero-dimensional manifold, 269

under a diffeomorphism, 272

under reversal of orientation, 266

integral curve, 152

maximal, 152

of a left-invariant vector field, 187

starting at a point, 152

interior

manifold interior, 252

topological interior, 252

interior multiplication, 227

is an antiderivation of degree −1, 227

bracket with Lie derivative, 234

contraction, 227

is F-linear, 228

interior point, 251

of Hn, 248

internal direct sum, 351

invariance of domain, 249

invariance of dimension, 48, 89

invariant under translation, 304

inverse function theorem, 342

for manifolds, 68

for Rn, 68, 339

inversion, 21

invertible endomorphism, 354

inward-pointing vector, 254

isomorphism

of objects in a category, 111

Jacobi identity, 157

Jacobian determinant, 68, 339

Jacobian matrix, 68, 339

k-covector field, 200

k-form

on an open set, 36

k-linear function, 22

alternating, 23

symmetric, 23

k-tensors

a basis for, 32

kernel

of a linear map, 350

Kronecker delta, 13

Lebesgue’s theorem, 262

left action, 24

left half-line, 250

left multiplication, 164

differential of, 95

left translation, 164

left-invariant form

on a compact connected Lie group is

right-invariant, 209

on a Lie group, 207

is C∞, 207

left-invariant vector field, 180

bracket of left-invariant vector fields is

left-invariant, 182

integral curves, 187

is C∞, 181

on R, 181

on a circle, 187

on GL(n,R), 181

on Rn, 187

Leibniz rule

for a vector field, 16

length

of a cycle, 20

level, 103

level set, 103

regular, 103

Lie, Sophus, 66, 163

Lie algebra, 182

abelian, 158

of a symplectic group, 187

of a complex symplectic group, 187

of a Lie group, 183

of a unitary group, 187

over a field, 158

Lie algebra homomorphism, 185

Lie bracket, 157

Jacobi identity, 157

on gl(n,R), 183

on the tangent space at the identiy of a Lie

group, 183

Lie derivative

bracket with interior multiplication, 234

Cartan homotopy formula, 229
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commutes with exterior differentiation,

229

global formula, 232

is a derivation on forms, 229

not F-linear, 231, 234

of a differential form, 226

of a vector field, 224

product formula, 229

Lie group, 66, 164

adjoint representation, 188

differential of the inverse map, 175

differential of the multiplication map, 175

is orientable, 247

parallelizability, 187

Lie group homomorphism, 164

differential is a Lie algebra homomor-

phism, 185

Lie subalgebra, 182

Lie subgroup, 167

limit

of a 1-parameter of family of vector fields,

221

of a sequence, 336

unique in a Hausdorff space, 336

Lindelöf condition, 338

line integrals

fundamental theorem, 271

linear algebra, 349

linear functional, 113

linear map, 12, 350

over a skew field, 354

linear operator, 12, 350

linear transformation, 350, 354

lines

with irrational slope in a torus, 167

Liouville form, 193, 199

local coordinate, 53

local diffeomorphism, 68, 339

local expression

for a 1-form, 191

for a k-form, 202

for a differential, 91

local flow, 156, 223

generated by a vector field, 156

local frame, 240

local maximum, 99

local operator, 211, 218

is support-decreasing, 218

on C∞(M), 219

local trivialization, 134

locally connected, 338

at a point, 338

locally constant map

on a connected space, 246

locally Euclidean, 48

locally finite, 145

collection of supports, 209

sum, 146, 209, 312

union

closure of, 148

locally Hn, 250

locally invertible, 68, 339

locally trivial, 133

long exact sequence in cohomology, 285

lower integral, 261

lower sum, 260

manifold

has a countable basis consisting of

coordinate open sets, 131

n-manifold, 53

open subset is a manifold, 54

open subset is a regular submanifold, 101

pointed, 111

smooth, 53

topological, 48

manifold boundary, 252

manifold interior, 252

manifold with boundary

cotangent space of, 253

differential forms, 253

orientation, 254

smooth, 251

smoothness of a function on, 251

tangent space, 253

topological, 250

map

closed, 329

open, 329

matrix

of a differential, 88

of an endomorphism, 354

matrix exponential, 169

derivative of, 171

maximal atlas, 52

maximal integral curve, 152, 162

maximal rank

open condition, 118
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maximal-rank locus, 345

maximum

local, 99

Maxwell’s equations, 220

Mayer–Vietoris sequence, 288

measure zero, 262

minor

(i, j)-minor of a matrix, 66, 107

k×k minor of a matrix, 344

Möbius band, 243

has the homotopy type of a circle, 301

not orientable, 240

module, 15

module homomorphism, 16

modulus

of a point in Rn, 77

morphism

in a category, 110

multi-index, 201

strictly ascending, 31

multicovector, 23

multilinear function, 22

alternating, 23

symmetric, 23

near a point, 123

neighborhood, 4, 48, 318

neighborhood basis

at a point, 324

neighborhood of a set, 116

nondegenerate 2-covector, 219

nondegenerate 2-form, 219

norm, 169

of a quaternionic vector, 357

normal, 324

normed algebra, 169

complete, 170

normed vector space, 169

complete, 170

object

in a category, 110

odd permutation, 20

odd superderivation, 45

1-form

a nowhere-vanishing 1-form on the circle,

216

linearity over functions, 194

smooth, 193

smoothness characterization, 194

transition formula, 199

one-parameter family, 221

of differential forms, 221

of vector fields, 221

one-parameter group

of diffeomorphisms, 153

open ball, 317

open condition, 118

open cover, 48, 329

of a subset in a topological space, 329

open equivalence relation, 74

open map, 74, 329

open set, 318

in quotient topology, 71

in Rn, 318

in the subspace topology, 321

relative to a subspace, 321

Zariski open, 320

open subgroup

of a connected Lie group is the Lie group,

175

open subset

of a manifold is a manifold, 54

of a manifold is a regular submanifold,

101

operator, 211

is local iff support-decreasing, 218

linear, 12

local, 211

opposite orientation, 238

orbit, 24

orbit space, 81

ordered bases

equivalent, 238

orientable manifold, 240

orientation

boundary orientation, 255

determined by a top form, 239

on a manifold, 240

on a manifold with boundary, 253, 254

on a vector space, 238

opposite, 238

oriented atlases, 245

pointwise, 240

orientation-preserving diffeomorphism, 244

iff Jacobian determinant always positive,

244

orientation-reversing diffeomorphism, 244
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oriented atlas, 245

and orientability of a manifold, 245

equivalent oriented atlases, 246

oriented manifold, 240

orthogonal complement, 352

orthogonal group, 117, 165, 358

dimension, 167

tangent space at the identity, 179

outward-pointing vector, 254

parallelizable manifold, 187

is orientable, 247

parametrization, 267

parametrized set, 267

partial derivative

on a manifold, 67

partition, 260

partition of unity, 140, 145, 265, 289

existence in general, 147–348

existence on a compact manifold, 146

pullback of, 148

subordinate to an open cover, 145

under a pullback, 148

period, 207

periodic, 207

permutation, 20

cyclic, 20

even, 20

is even iff it has an even number of

inversions, 22

odd, 20

product of permutations, 20

sign of, 20

permutation action

on k-linear functions, 23

Poincaré, Henri, 190, 273

Poincaré conjecture

smooth, 57

Poincaré form, 193

Poincaré lemma, 43, 300

point operator, 228

point-derivation

of C∞
p , 13

of C∞
p (M), 87

pointed manifold, 111

pointwise orientation, 240

continuous, 240

preserving a form, 358

product

of compact spaces is compact, 331

of permutations, 20

of two Hausdorff spaces is Hausdorff, 327

of two second-countable spaces is second

countable, 327

product bundle, 134

product ideal, 320

product manifold, 55

atlas, 56

product map, 337

product rule

for matrix-valued functions, 175

product topology, 326

basis, 326

projection map, 71

is continuous, 328

projective line

real, 77

projective plane

real, 77

projective space

as a quotient of a sphere, 77

real, 76

projective variety, 108

pullback

by a surjective submersion, 209

by a projection

support of, 148

commutes with the exterior derivative,

214

in cohomology, 278

linearity, 205

of k-covectors, 113

of a 1-form, 196

of a covector, 196

of a differential form, 204, 205, 278

of a function, 60

support of, 147

of a multicovector, 204

of a partition of unity, 148

of a wedge product, 206

punctured plane

same homotopy type as the circle, 297

punctured torus

cohomology of, 307

pushforward

of a left-invariant vector field, 185

of a vector, 159
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quaternion, 353

quaternionic inner product, 356

quaternionic vector space, 353

quotient construction, 71

quotient space, 72

basis, 76

necessary and sufficient condition to be

Hausdorff, 75

second countable, 76

quotient topology, 72

open set, 71

quotient vector space, 349

rank

of a composition of linear maps, 345

of a linear transformation, 96

of a matrix, 82, 96, 344

of a smooth map, 96, 115, 343

rational point, 323

real Lie algebra, 158

real line

with two origins is locally Euclidean,

second countable, but not Hausdorff,

57

real projective line, 77

real projective plane, 77

cohomology of, 310

real projective space, 76

as a quotient of a sphere, 77

Hausdorff, 79

is compact, 83

locally Euclidean, 80

second countable, 79

standard atlas, 81

real-analytic, 4

rectangle, 260

refinement, 261

reflexive relation, 11

regular zero set, 103

regular level set, 103

regular level set theorem

for a map between manifolds, 105

regular point

of a map of manifolds, 97

regular submanifold, 100, 122

atlas, 102

is itself a manifold, 102

regular value

of a map of manifolds, 97

related vector fields, 160

relation, 11

equivalence, 11

relative topology, 321

relatively open set, 321

restriction

of a 1-form to a submanifold, 197

of a form to a submanifold, 216

of a vector bundle to a submanifold, 134

restriction map

in the Mayer–Vietoris sequence, 288

retract, 299

retraction, 299

Riemann, Bernhard, 47

Riemann integrable, 261

right action, 24

right half-line, 250

right multiplication, 164

right translation, 164

right-invariant form

on a Lie group, 208

second countability, 48, 324

a subspace of a second-countable space is

second countable, 324

of a quotient space, 76

product of two second-countable spaces is

second countable, 327

section

global, 137

of a vector bundle, 136

smooth, 136

separation, 332

separation axioms, 324

sequence, 336

sequence lemma, 336

sesquilinear, 356

sesquilinear form, 358

S f , 24

short exact sequence

of cochain complexes, 284

of vector spaces, 281

shuffle, 27

sign of a permutation, 20

singleton set, 298, 319

in a Hausdorff space is closed, 325

singular chain, 235

skew field, 353

smooth, 4



408 Index

smooth homotopy, 296

smooth hypersurface, 216

smooth category, 111

smooth dependence

of vector fields on a parameter, 221

smooth differential form, 203

smooth family

of vector fields, 222

smooth function

on a manifold, 59

on a manifold with boundary, 251

on an arbitrary subset of Rn, 248

on Rn, 4

smooth invariance of domain, 249

smooth manifold, 53

smooth map

between manifolds, 61

from a compact manifold to Rn has a

critical point, 127

into a submanifold, 124

rank of, 96

smooth 1-form, 193

smooth Poincaré conjecture, 57

smooth section, 136

characterization of, 138

smooth vector field, 136

on an open set in Rn, 14

smooth vector-valued function, 4

smoothness of a vector field

as a smooth section of the tangent bundle,

149

in terms of coefficients, 150

in terms of smooth functions, 151

solution set

of two equations, 108

solving an equation

implicitly, 339

special linear group, 107, 165, 360

is a Lie group, 165

is a manifold, 107

over C, 109

tangent space at the identity, 178

special orthogonal group, 176

special unitary group, 177, 360

sphere

charts on, 58

cohomology of, 310

standard sphere, 56

tangent plane, 126

standard n-sphere, 56

standard basis

for the vector space Kn, 354

standard topology of Rn, 318

star-shaped, 5

stereographic projection, 8

Stokes’s theorem, 269

specializes to Green’s theorem in the

plane, 272

specializes to the fundamental theorem for

line integrals, 271

Stokes, George, 235

straight-line homotopy, 297

strictly ascending multi-index, 31

subalgebra, 182

subcover, 329

submanifold

embedded, 124

immersed, 122

regular, 100, 122

submersion, 96, 115, 209

at a point, 96

is an open map, 119

submersion theorem, 119

subordinate to an open cover, 145

subscripts

convention on, 44

subspace, 321

of a Hausdorff space is Hausdorff, 326

of a second-countable space is second

countable, 324

subspace topology, 320

sum of ideals, 320

sum of two subspaces, 351

superderivation, 45

even, 45

odd, 45

superscripts

convention on, 44

support

of a differential form, 208

of a function, 140

of a product, 208

of a sum, 208

of the pullback by a projection, 148

of the pullback of a function, 147

support-decreasing, 218

surface, 53

surface of genus 3
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cohomology of, 310

surface of genus 2

as the quotient of an octagon, 308

cohomology of, 308

symmetric k-linear function, 23

symmetric relation, 11

symmetrizing operator, 24

symplectic group, 177, 358

complex, 177

Lie algebra of, 187

tangent bundle, 129

manifold structure, 132

topology of, 129

total space is orientable, 247

tangent plane to a sphere, 126

tangent space, 253

at a point of a manifold, 87

basis, 89

of a manifold with boundary, 253

to Rn, 10

to a general linear group, 178

to a special linear group, 178

to a unitary group, 187

to an open subset, 87

to an orthogonal group, 179

tangent vector

at a boundary point, 253, 254

in Rn, 11

on a manifold, 87

on a manifold with boundary, 253

Taylor’s theorem

with remainder, 5

with remainder to order two, 9

tensor, 22

degree of, 22

on a vector space, 200

tensor product

is associative, 25

of multilinear functions, 25

top form, 200

topological interior, 252

topological boundary, 252

topological group, 66

topological manifold, 48

with boundary, 250

topological space, 318

topologist’s sine curve, 102

topology, 318

coarser, 318

discrete, 319

finer, 318

finite-complement, 319

generated by a basis, 321

indiscrete, 319

relative, 321

standard topology of Rn, 318

subspace, 320

trivial, 319

Zariski, 319

torus

cohomology ring, 303

cohomology vector space, 302

lines with irrational slope, 167

total space

of a vector bundle, 134

trace

of a matrix, 171

transition formula

for a 2-form, 203

transition function, 50

transition matrix

for coordinate vectors, 90

transitive relation, 12

transpose, 355

transposition, 20

transversal map

to a submanifold, 109

transversality theorem, 109

trilinear, 22

trivial bundle, 135

trivial topology, 319

trivialization

of a vector bundle over an open set, 134

trivializing open set

for a vector bundle, 134

trivializing open cover, 134

2-form

transition formula, 203

Tychonoff theorem, 331

type-I form, 313

type-II form, 313

unbounded

subset of Rn, 332

uniqueness of the limit in a Hausdorff space,

336

unitary group, 176, 358
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tangent space at the identity, 187

upper half-space, 248

upper integral, 261

upper sum, 260

Urysohn lemma, 147

vector bundle, 133, 134

locally trivial, 133

product bundle, 134

trivial bundle, 135

vector field

F-related vector fields, 160

as a derivation of the algebra of C∞

functions, 16, 219

complete, 156

integral curve, 152

left-invariant, 180

Leibniz rule, 16

on a manifold, 136

on an open subset of Rn, 14

smoothness condition in Rn, 14

smoothness condition on a manifold, 136

smoothness in terms of coefficients, 150

smoothness in terms of functions, 151

vector fields

one-parameter family of, 221

vector space

orientation, 238

vector space homomorphism, 350

vector-valued function, 41

smoothness of, 4

velocity of a curve

in local coordinates, 93

velocity vector, 92

vertical, 219

volume

of a closed rectangle, 260

of a subset of Rn, 262

wedge product

is anticommutative, 27

is associative, 28, 29

of differential forms, 36, 205

of forms on a vector space, 26

relation to cross product, 45

under a pullback, 206

Zariski topology, 319

Zariski closed, 319

Zariski open, 320

zero set, 103

intersection and union of zero sets, 320

of two equations, 106

regular, 103

0-covector, 23

zig-zag diagram, 286

zig-zag lemma, 285
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