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Preface to the Second Edition

This is a completely revised edition, with more than fifty pages of new material
scattered throughout. In keeping with the conventional meaning of chapters and
sections, I have reorganized the book into twenty-nine sections in seven chapters.
The main additions are Section 20 on the Lie derivative and interior multiplication,
two intrinsic operations on a manifold too important to leave out, new criteria in
Section 21 for the boundary orientation, and a new appendix on quaternions and the
symplectic group.

Apart from correcting errors and misprints, I have thought through every proof
again, clarified many passages, and added new examples, exercises, hints, and solu-
tions. In the process, every section has been rewritten, sometimes quite drastically.
The revisions are so extensive that it is not possible to enumerate them all here. Each
chapter now comes with an introductory essay giving an overview of what is to come.
To provide a timeline for the development of ideas, I have indicated whenever possi-
ble the historical origin of the concepts, and have augmented the bibliography with
historical references.

Every author needs an audience. In preparing the second edition, I was partic-
ularly fortunate to have a loyal and devoted audience of two, George F. Leger and
Jeffrey D. Carlson, who accompanied me every step of the way. Section by section,
they combed through the revision and gave me detailed comments, corrections, and
suggestions. In fact, the two hundred pages of feedback that Jeff wrote was in itself a
masterpiece of criticism. Whatever clarity this book finally achieves results in a large
measure from their effort. To both George and Jeff, I extend my sincere gratitude. I
have also benefited from the comments and feedback of many other readers, includ-
ing those of the copyeditor, David Kramer. Finally, it is a pleasure to thank Philippe
Courrege, Mauricio Gutierrez, and Pierre Vogel for helpful discussions, and the In-
stitut de Mathématiques de Jussieu and the Université Paris Diderot for hosting me
during the revision. As always, I welcome readers’ feedback.

Paris, France Loring W. Tu
June 2010






Preface to the First Edition

It has been more than two decades since Raoul Bott and I published Differential
Forms in Algebraic Topology. While this book has enjoyed a certain success, it does
assume some familiarity with manifolds and so is not so readily accessible to the av-
erage first-year graduate student in mathematics. It has been my goal for quite some
time to bridge this gap by writing an elementary introduction to manifolds assuming
only one semester of abstract algebra and a year of real analysis. Moreover, given
the tremendous interaction in the last twenty years between geometry and topology
on the one hand and physics on the other, my intended audience includes not only
budding mathematicians and advanced undergraduates, but also physicists who want
a solid foundation in geometry and topology.

With so many excellent books on manifolds on the market, any author who un-
dertakes to write another owes to the public, if not to himself, a good rationale. First
and foremost is my desire to write a readable but rigorous introduction that gets the
reader quickly up to speed, to the point where for example he or she can compute
de Rham cohomology of simple spaces.

A second consideration stems from the self-imposed absence of point-set topol-
ogy in the prerequisites. Most books laboring under the same constraint define a
manifold as a subset of a Euclidean space. This has the disadvantage of making
quotient manifolds such as projective spaces difficult to understand. My solution
is to make the first four sections of the book independent of point-set topology and
to place the necessary point-set topology in an appendix. While reading the first
four sections, the student should at the same time study Appendix A to acquire the
point-set topology that will be assumed starting in Section 5.

The book is meant to be read and studied by a novice. It is not meant to be
encyclopedic. Therefore, I discuss only the irreducible minimum of manifold theory
that I think every mathematician should know. I hope that the modesty of the scope
allows the central ideas to emerge more clearly.

In order not to interrupt the flow of the exposition, certain proofs of a more
routine or computational nature are left as exercises. Other exercises are scattered
throughout the exposition, in their natural context. In addition to the exercises em-
bedded in the text, there are problems at the end of each section. Hints and solutions



X Preface

to selected exercises and problems are gathered at the end of the book. I have starred
the problems for which complete solutions are provided.

This book has been conceived as the first volume of a tetralogy on geometry
and topology. The second volume is Differential Forms in Algebraic Topology cited
above. I hope that Volume 3, Differential Geometry: Connections, Curvature, and
Characteristic Classes, will soon see the light of day. Volume 4, Elements of Equiv-
ariant Cohomology, a long-running joint project with Raoul Bott before his passing
away in 2005, is still under revision.

This project has been ten years in gestation. During this time I have bene-
fited from the support and hospitality of many institutions in addition to my own;
more specifically, I thank the French Ministere de I’Enseignement Supérieur et de
la Recherche for a senior fellowship (bourse de haut niveau), the Institut Henri
Poincaré, the Institut de Mathématiques de Jussieu, and the Departments of Mathe-
matics at the Ecole Normale Supérieure (rue d’Ulm), the Université Paris 7, and the
Université de Lille, for stays of various length. All of them have contributed in some
essential way to the finished product.

I owe a debt of gratitude to my colleagues Fulton Gonzalez, Zbigniew Nitecki,
and Montserrat Teixidor i Bigas, who tested the manuscript and provided many use-
ful comments and corrections, to my students Cristian Gonzalez-Martinez, Christo-
pher Watson, and especially Aaron W. Brown and Jeffrey D. Carlson for their de-
tailed errata and suggestions for improvement, to Ann Kostant of Springer and her
team John Spiegelman and Elizabeth Loew for editing advice, typesetting, and man-
ufacturing, respectively, and to Steve Schnably and Paul Gérardin for years of un-
wavering moral support. I thank Aaron W. Brown also for preparing the List of
Notations and the TgX files for many of the solutions. Special thanks go to George
Leger for his devotion to all of my book projects and for his careful reading of many
versions of the manuscripts. His encouragement, feedback, and suggestions have
been invaluable to me in this book as well as in several others. Finally, I want to
mention Raoul Bott, whose courses on geometry and topology helped to shape my
mathematical thinking and whose exemplary life is an inspiration to us all.

Medford, Massachusetts Loring W. Tu
June 2007
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A Brief Introduction

Undergraduate calculus progresses from differentiation and integration of functions
on the real line to functions in the plane and in 3-space. Then one encounters vector-
valued functions and learns about integrals on curves and surfaces. Real analysis
extends differential and integral calculus from R? to R”. This book is about the
extension of calculus from curves and surfaces to higher dimensions.

The higher-dimensional analogues of smooth curves and surfaces are called man-
ifolds. The constructions and theorems of vector calculus become simpler in the
more general setting of manifolds; gradient, curl, and divergence are all special cases
of the exterior derivative, and the fundamental theorem for line integrals, Green’s
theorem, Stokes’s theorem, and the divergence theorem are different manifestations
of a single general Stokes’s theorem for manifolds.

Higher-dimensional manifolds arise even if one is interested only in the three-
dimensional space that we inhabit. For example, if we call a rotation followed
by a translation an affine motion, then the set of all affine motions in R3 is a six-
dimensional manifold. Moreover, this six-dimensional manifold is not R®.

We consider two manifolds to be topologically the same if there is a homeomor-
phism between them, that is, a bijection that is continuous in both directions. A
topological invariant of a manifold is a property such as compactness that remains
unchanged under a homeomorphism. Another example is the number of connected
components of a manifold. Interestingly, we can use differential and integral calculus
on manifolds to study the topology of manifolds. We obtain a more refined invariant
called the de Rham cohomology of the manifold.

Our plan is as follows. First, we recast calculus on R” in a way suitable for
generalization to manifolds. We do this by giving meaning to the symbols dx, dy,
and dz, so that they assume a life of their own, as differential forms, instead of being
mere notations as in undergraduate calculus.

While it is not logically necessary to develop differential forms on R" before
the theory of manifolds—after all, the theory of differential forms on a manifold in
Chapter 5 subsumes that on R”, from a pedagogical point of view it is advantageous
to treat R” separately first, since it is on R” that the essential simplicity of differential
forms and exterior differentiation becomes most apparent.

L.W. Tu, 4n Introduction to Manifolds, Universitext, DOI 10.1007/978-1-4419-7400-6 1, 1
© Springer Science+Business Media, LLC 2011



2 A Brief Introduction

Another reason that we do not delve into manifolds right away is so that in a
course setting the students without a background in point-set topology can read Ap-
pendix A on their own while studying the calculus of differential forms on R”.

Armed with the rudiments of point-set topology, we define a manifold and derive
various conditions for a set to be a manifold. A central idea of calculus is the approx-
imation of a nonlinear object by a linear object. With this in mind, we investigate
the relation between a manifold and its tangent spaces. Key examples are Lie groups
and their Lie algebras.

Finally, we do calculus on manifolds, exploiting the interplay of analysis and
topology to show on the one hand how the theorems of vector calculus generalize,
and on the other hand, how the results on manifolds define new C* invariants of a
manifold, the de Rham cohomology groups.

The de Rham cohomology groups are in fact not merely C” invariants, but also
topological invariants, a consequence of the celebrated de Rham theorem that es-
tablishes an isomorphism between de Rham cohomology and singular cohomology
with real coefficients. To prove this theorem would take us too far afield. Interested
readers may find a proof in the sequel [4] to this book.



Chapter 1

Euclidean Spaces

The Euclidean space R”" is the prototype of all manifolds. Not only is it the simplest,
but locally every manifold looks like R". A good understanding of R" is essential in
generalizing differential and integral calculus to a manifold.

Euclidean space is special in having a set of standard global coordinates. This
is both a blessing and a handicap. It is a blessing because all constructions on R”
can be defined in terms of the standard coordinates and all computations carried out
explicitly. It is a handicap because, defined in terms of coordinates, it is often not ob-
vious which concepts are intrinsic, i.e., independent of coordinates. Since a manifold
in general does not have standard coordinates, only coordinate-independent concepts
will make sense on a manifold. For example, it turns out that on a manifold of di-
mension 7, it is not possible to integrate functions, because the integral of a function
depends on a set of coordinates. The objects that can be integrated are differential
forms. It is only because the existence of global coordinates permits an identification
of functions with differential n-forms on R” that integration of functions becomes
possible on R”.

Our goal in this chapter is to recast calculus on R” in a coordinate-free way suit-
able for generalization to manifolds. To this end, we view a tangent vector not as an
arrow or as a column of numbers, but as a derivation on functions. This is followed
by an exposition of Hermann Grassmann’s formalism of alternating multilinear func-
tions on a vector space, which lays the foundation for the theory of differential forms.
Finally, we introduce differential forms on R”, together with two of their basic oper-
ations, the wedge product and the exterior derivative, and show how they generalize
and simplify vector calculus in R3.

61 Smooth Functions on a Euclidean Space

The calculus of C* functions will be our primary tool for studying higher-dimensional
manifolds. For this reason, we begin with a review of C functions on R".

L.W. Tu, 4n Introduction to Manifolds, Universitext, DOI 10.1007/978-1-4419-7400-6 2, 3
© Springer Science+Business Media, LLC 2011



4 §1 Smooth Functions on a Euclidean Space

1.1 C* Versus Analytic Functions

Write the coordinates on R” as x!,...,x" and let p = (p',...,p") be a point in an

open set U in R”. In keeping with the conventions of differential geometry, the
indices on coordinates are superscripts, not subscripts. An explanation of the rules
for superscripts and subscripts is given in Subsection 4.7.

Definition 1.1. Let k be a nonnegative integer. A real-valued function f: U — R is
said to be C* at p € U if its partial derivatives

' f
dxi1 .- Jxli
of all orders j < k exist and are continuous at p. The function f: U — R is C*
at p if it is C* for all k > 0; in other words, its partial derivatives 9/ f/dx'! - - - dx'i
of all orders exist and are continuous at p. A vector-valued function f: U — R”
is said to be C¥ ar p if all of its component functions f',..., f™ are C* at p. We
say that f: U — R™ is C* on U if it is C* at every point in U. A similar definition
holds for a C* function on an open set U. We treat the terms “C™” and “smooth” as
synonymous.

Example 1.2.
(i) A C° function on U is a continuous function on U.
(i) Let f: R — R be f(x) = x'/3. Then

Fx) = { %x‘2/3 forx # 0,

undefined forx=0.

Thus the function f is C° but not C! at x = 0.
(i) Let g: R — R be defined by

g(x)z/xf(t)dt:/xtl/3dt= 3403,
0 0 4

Then g’ (x) = f(x) = x'/3, s0 g(x) is C" but not C? at x = 0. In the same way one
can construct a function that is C* but not C**! at a given point.

(iv) The polynomial, sine, cosine, and exponential functions on the real line are all
c>.

A neighborhood of a point in R” is an open set containing the point. The function
f is real-analytic at p if in some neighborhood of p it is equal to its Taylor series
at p:

2°f

xidx/

10 =)+ X O ) )4 E
L

i

(p) (' = p") () — p7)

ot ! Y o (P) (&1 = p1)--- (k= pi) -
k! - Jxil .. dxk ’

RSN /%
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in which the general term is summed over all 1 <iy,... i, <n.

A real-analytic function is necessarily C*, because as one learns in real anal-
ysis, a convergent power series can be differentiated term by term in its region of
convergence. For example, if

1 1
f(x) =sinx=x— 3!x3+ 5!x5—--- ,
then term-by-term differentiation gives
f'(x)=cosx=1— 1x2+ 1x4—---
B o2 4 '

The following example shows that a C* function need not be real-analytic. The
idea is to construct a C* function f(x) on R whose graph, though not horizontal, is
“very flat” near O in the sense that all of its derivatives vanish at 0.

Fig. 1.1. A C* function all of whose derivatives vanish at 0.

Example 1.3 (A C* function very flat at 0). Define f(x) on R by

e ¥ forx>0,
flx) = {0 for x <0.

(See Figure 1.1.) By induction, one can show that f is C* on R and that the deriva-
tives ) (0) are equal to O for all k > 0 (Problem 1.2).

The Taylor series of this function at the origin is identically zero in any neigh-
borhood of the origin, since all derivatives f¥)(0) equal 0. Therefore, f(x) cannot
be equal to its Taylor series and f(x) is not real-analytic at 0.

1.2 Taylor’s Theorem with Remainder

Although a C* function need not be equal to its Taylor series, there is a Taylor’s
theorem with remainder for C* functions that is often good enough for our purposes.
In the lemma below, we prove the very first case, in which the Taylor series consists
of only the constant term f(p).

We say that a subset S of R” is star-shaped with respect to a point p in S if for
every x in S, the line segment from p to x lies in S (Figure 1.2).
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Fig. 1.2. Star-shaped with respect to p, but not with respect to g.

Lemma 1.4 (Taylor’s theorem with remainder). Let f be a C* function on an open
subset U of R" star-shaped with respect to a point p = (p',...,p") in U. Then there
are functions g1(x),...,gn(x) € C*(U) such that

J0) = 1)+ Y pai). ailp) = 0L ip)

i=1

Proof. Since U is star-shaped with respect to p, for any x in U the line segment
p+t(x—p), 0<t <1, lies in U (Figure 1.3). So f(p+t(x— p)) is defined for
0<r<I.

Fig. 1.3. The line segment from p to x.

By the chain rule,
d —
g T PF1E=p) =Y (' =p") 5 (p+1lx—p)).
If we integrate both sides with respect to ¢ from O to 1, we get
1 i [tOf
fprtte=p)ly= X6 =) [ S orrte—ppar. @

Let s
gi(x) = A &)];(P—H(X—p))dt.
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Then g;(x) is C* and (1.1) becomes

Moreover,

af

= [0 =L ). .

gl(p) - 0 oxi

Incase n =1 and p = 0, this lemma says that
f(x) = f(0) +xg1(x)
for some C* function g (x). Applying the lemma repeatedly gives
8i(x) = 8i(0) +xgiv1(x),

where g;, g;+1 are C” functions. Hence,

f(x) = f(0)+x(g1(0) +xg2(x))
= £(0) +x81(0) +x*(g2(0) +xg3(x))

= f(0) +81(0)x+g2(0)a® + -+ + gi(O)x' + g (™. (12)
Differentiating (1.2) repeatedly and evaluating at 0, we get

1

= k'f<k)(0), k=1,2,...,i.

8x(0)

So (1.2) is a polynomial expansion of f(x) whose terms up to the last term agree
with the Taylor series of f(x) at 0.

Remark. Being star-shaped is not such a restrictive condition, since any open ball
B(p,e) = {x e R"| |lx—pll <&}

is star-shaped with respect to p. If f is a C* function defined on an open set U
containing p, then there is an € > 0 such that

pE€B(p,e)CU.

When its domain is restricted to B(p,€), the function f is defined on a star-shaped
neighborhood of p and Taylor’s theorem with remainder applies.

NOTATION. It is customary to write the standard coordinates on R? as x, y, and the
standard coordinates on R as x, Y, 2.
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Problems

1.1. A function that is C? but not C3
Let g: R — R be the function in Example 1.2(iii). Show that the function i(x) = [ g(¢)dt is
C? but not C3 at x = 0.

1.2.%# A C* function very flat at 0
Let f(x) be the function on R defined in Example 1.3.

(a) Show by induction that for x > 0 and k > 0, the kth derivative f*)(x) is of the form
par(1/x) e~ V/* for some polynomial py(y) of degree 2k in y.
(b) Prove that f is C* on R and that £(*)(0) = 0 for all k > 0.

1.3. A diffeomorphism of an open interval with R
Let U C R" and V C R" be open subsets. A C* map F: U — V is called a diffeomorphism if
it is bijective and has a C* inverse F~!:V — U.

(a) Show that the function f: |— /2, 7/2[ — R, f(x) = tanx, is a diffeomorphism.
(b) Let a, b be real numbers with a < b. Find a linear function &: ]a,b[ — ]—1, 1], thus proving
that any two finite open intervals are diffeomorphic.

The composite f o h: |a,b] — R is then a diffeomorphism of an open interval with R.

(c) The exponential function exp: R — ]0, o[ is a diffeomorphism. Use it to show that for any
real numbers a and b, the intervals R, ]a, o[, and | — e, b[ are diffeomorphic.

1.4. A diffeomorphism of an open cube with R”
Show that the map

-

is a diffeomorphism.

T o "
2,2[ —R" f(x1,...,x,) = (tanxy,. .., tanxy),

1.5. A diffeomorphism of an open ball with R”
Let 0 = (0,0) be the origin and B(0,1) the open unit disk in RZ. To find a diffeomorphism
between B(0,1) and R2, we identify R? with the xy-plane in R? and introduce the lower open
hemisphere

S: 4y +(z—-1)7% =1, z<1,

in R3 as an intermediate space (Figure 1.4). First note that the map
fiBO,1) =S, (a,b)— (a,b,1—\1—a?—
is a bijection.

(a) The stereographic projection g: S — R? from (0,0,1) is the map that sends a point
(a,b,c) € S to the intersection of the line through (0,0, 1) and (a,b,c) with the xy-plane.
Show that it is given by

(a,b,c)l—>(u,v):( a b ) cm1-V1-a—

l—-c' 1—c

with inverse

1
(u,V)H< IS )
VIFu? 42 V14+u2 42 V14u? 42
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N (0,0,1) S

(a,b,c)

¢ - —) B(0.1)
0 (a,b,0)

RZCR3

Fig. 1.4. A diffeomorphism of an open disk with R2.

(b) Composing the two maps f and g gives the map

b
h=gof:B(0,1)>R*  h(a,b) = (\/1_32_;,2’ \/1—a2—b2>.

Find a formula for 2~ (1,v) = (f~! o g7 1)(u,v) and conclude that / is a diffeomorphism
of the open disk B(0, 1) with R2.
(c) Generalize part (b) to R".

1.6.* Taylor’s theorem with remainder to order 2
Prove that if f: R? — R is C*, then there exist C* functions 211, &12, & on R2 such that

B af of
S22 = £(0,0)+ 70,00+ 7 (0,0)y

+ 22811 (%) +aygia (x,y) +y7 g2 (x,y).

1.7.* A function with a removable singularity
Let f: R? — R be a C* function with £(0,0) = df/9x(0,0) = df/dy(0,0) = 0. Define

f(t;tu) fort #0,
0 fort = 0.

g(l7u):

Prove that g(z,u) is C* for (r,u) € R%. (Hint: Apply Problem 1.6.)

1.8. Bijective C* maps

Define f: R — R by f(x) = x>. Show that f is a bijective C** map, but that f~! is not
C*. (This example shows that a bijective C* map need not have a C* inverse. In complex
analysis, the situation is quite different: a bijective holomorphic map f: C — C necessarily
has a holomorphic inverse.)
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62 Tangent Vectors in R” as Derivations

In elementary calculus we normally represent a vector at a point p in R3 algebraically

as a column of numbers |

2

<

Il
< < <
[95]

or geometrically as an arrow emanating from p (Figure 2.1).

p
Fig. 2.1. A vector v at p.

Recall that a secant plane to a surface in R3 is a plane determined by three points
of the surface. As the three points approach a point p on the surface, if the corre-
sponding secant planes approach a limiting position, then the plane that is the lim-
iting position of the secant planes is called the tangent plane to the surface at p.
Intuitively, the tangent plane to a surface at p is the plane in R? that just “touches”
the surface at p. A vector at p is tangent to a surface in R if it lies in the tangent
plane at p (Figure 2.2).

Fig. 2.2. A tangent vector v to a surface at p.

Such a definition of a tangent vector to a surface presupposes that the surface is
embedded in a Euclidean space, and so would not apply to the projective plane, for
example, which does not sit inside an R” in any natural way.

Our goal in this section is to find a characterization of tangent vectors in R” that
will generalize to manifolds.

2.1 The Directional Derivative

In calculus we visualize the tangent space 7,(R") at p in R” as the vector space of
all arrows emanating from p. By the correspondence between arrows and column
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vectors, the vector space R" can be identified with this column space. To distinguish
between points and vectors, we write a point in R” as p = (p',...,p") and a vector
in the tangent space 7,(R") as

We usually denote the standard basis for R” or 7,,(R") by ey,...,e,. Thenv = Y vie
for some v' € R. Elements of 7,(R") are called tangent vectors (or simply vectors)
at p in R”. We sometimes drop the parentheses and write 7,R" for 7,,(R").
The line through a point p = (p!, ..., p") with direction v = (v!,...,v") in R" has
parametrization
c(t) = (p' +ov!,... p" V).

Its ith component ¢/(¢) is p' +tv'. If f is C* in a neighborhood of p in R" and v is a
tangent vector at p, the directional derivative of f in the direction v at p is defined to

be
fle@)—fp) _ d
Do =tim "I L),
By the chain rule,
- l9f
D,f = Z ax, ;v Sup 2.1)

In the notation D, f, it is understood that the partial derivatives are to be evaluated
at p, since v is a vector at p. So D, f is a number, not a function. We write

;0
DVZZV ox! »

for the map that sends a function f to the number D, f. To simplify the notation we
often omit the subscript p if it is clear from the context.

The association v — D,, of the directional derivative D, to a tangent vector v offers
a way to characterize tangent vectors as certain operators on functions. To make
this precise, in the next two subsections we study in greater detail the directional
derivative D, as an operator on functions.

2.2 Germs of Functions

A relation on a set S is a subset R of S x S. Given x,y in S, we write x ~ y if and only
if (x,y) € R. The relation R is an equivalence relation if it satisfies the following
three properties for all x,y,z € S:

(1) (reflexivity) x ~ x,
(i1) (symmetry)if x ~y, theny ~ x,
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(iii) (transitivity) if x ~y and y ~ z, then x ~ z.

As long as two functions agree on some neighborhood of a point p, they will have
the same directional derivatives at p. This suggests that we introduce an equivalence
relation on the C* functions defined in some neighborhood of p. Consider the set of
all pairs (f,U), where U is a neighborhood of p and f: U — R is a C* function. We
say that (f,U) is equivalent to (g,V) if there is an open set W C U NV containing p
such that f = g when restricted to W. This is clearly an equivalence relation because
it is reflexive, symmetric, and transitive. The equivalence class of (f,U) is called the
germof f at p. We write C;;(R"), or simply C if there is no possibility of confusion,
for the set of all germs of C* functions on R" at p.

Example. The functions

with domain R — {1} and
gX) =14+x+x2+x0+--

with domain the open interval |— 1, 1] have the same germ at any point p in the open
interval |—1,1].

An algebra over a field K is a vector space A over K with a multiplication map
U:AXA—A,

usually written tt(a,b) = a- b, such that for all a,b,c € A and r € K,

(i) (associativity) (a-b)-c=a-(b-c),
(ii) (distributivity) (a+b)-c=a-c+b-canda-(b+c)=a-b+a-c,
(iii) (homogeneity) r(a-b) = (ra)-b=a- (rb).

Equivalently, an algebra over a field K is a ring A (with or without multiplicative
identity) that is also a vector space over K such that the ring multiplication satisfies
the homogeneity condition (iii). Thus, an algebra has three operations: the addition
and multiplication of a ring and the scalar multiplication of a vector space. Usually
we omit the multiplication sign and write ab instead of a - b.

A map L: V — W between vector spaces over a field K is called a linear map or
a linear operator if forany r € K and u,v €V,

(1) L(u+v)=L(u)+L(v);
(ii) L(rv) =rL(v).

To emphasize the fact that the scalars are in the field K, such a map is also said to be
K-linear.

If A and A’ are algebras over a field K, then an algebra homomorphism is a linear
map L: A — A’ that preserves the algebra multiplication: L(ab) = L(a)L(b) for all
a,beA.

The addition and multiplication of functions induce corresponding operations on
C,;, making it into an algebra over R (Problem 2.2).



2.3 Derivations at a Point 13
2.3 Derivations at a Point

For each tangent vector v at a point p in R”, the directional derivative at p gives a
map of real vector spaces

D,: C;° — R.
By (2.1), Dy, is R-linear and satisfies the Leibniz rule
Dy(fg) = (Dyf)g(p)+ f(p)Dysg, (22)

precisely because the partial derivatives d/dx'|, have these properties.
In general, any linear map D: C;7 — R satisfying the Leibniz rule (2.2) is called
a derivation at p or a point-derivation of C;;. Denote the set of all derivations at p
by D,(R"). This set is in fact a real vector space, since the sum of two derivations at
p and a scalar multiple of a derivation at p are again derivations at p (Problem 2.3).
Thus far, we know that directional derivatives at p are all derivations at p, so
there is a map

¢: Tp(R") = Dp(R"), (2.3)
;d

vi—= D, :Zv Oxi p.
Since D, is clearly linear in v, the map ¢ is a linear map of vector spaces.

Lemma 2.1. If D is a point-derivation of C5;, then D(c) = 0 for any constant function
C.

Proof. Since we do not know whether every derivation at p is a directional derivative,
we need to prove this lemma using only the defining properties of a derivation at p.

By R-linearity, D(c) = ¢D(1). So it suffices to prove that D(1) = 0. By the
Leibniz rule (2.2),

D(1)=D(1-1)=D(1)-1+1-D(1)=2D(1).
Subtracting D(1) from both sides gives 0 = D(1). O

The Kronecker delta 6 is a useful notation that we frequently call upon:

s J1 =i
770 i
Theorem 2.2. The linear map ¢ : T,(R") — D,(R") defined in (2.3) is an isomor-

phism of vector spaces.

Proof. To prove injectivity, suppose D, = 0 for v € T,(R"). Applying D, to the
coordinate function x/ gives

. 1.3 . . .
0=D,(x') :zi:v oy px/ :zi:v &/ =v/.
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Hence, v =0 and ¢ is injective.

To prove surjectivity, let D be a derivation at p and let (f,V) be a representative
of a germ in C;;. Making V' smaller if necessary, we may assume that V' is an open
ball, hence star-shaped. By Taylor’s theorem with remainder (Lemma 1.4) there are
C* functions g;(x) in a neighborhood of p such that

10 = F)+ 0~ o), 2i) = 0% (o).

Applying D to both sides and noting that D(f(p)) = 0 and D(p’) = 0 by Lemma 2.1,
we get by the Leibniz rule (2.2)

DF(x) = E0¥sip) + L (o'~ p)Ds() = L0 2 (p).

This proves that D = D, for v = (Dx!, ..., Dx"). O

This theorem shows that one may identify the tangent vectors at p with the deriva-
tions at p. Under the vector space isomorphism 7, (R") ~ D, (R"), the standard basis
el,...,e, for T,(R") corresponds to the set d/dx!|,,...,d/dx"|, of partial deriva-
tives. From now on, we will make this identification and write a tangent vector

v=l ... V) =Y Ve as

v=Yv axi| (2.4)

The vector space D, (R") of derivations at p, although not as geometric as ar-
rows, turns out to be more suitable for generalization to manifolds.

2.4 Vector Fields

A vector field X on an open subset U of R” is a function that assigns to each point p

in U a tangent vector X, in 7,,(R"). Since 7,,(R") has basis {d/dx/|,}, the vector X,,
is a linear combination

. 0 .

XP:ZaI(p) axi pa pEUv al(p)GR.

Omitting p, we may write X = Y a’' d/dx’, where the a' are now functions on U. We
say that the vector field X is C* on U if the coefficient functions a' are all C* on U.

Example 2.3. On R? — {0}, let p = (x,y). Then

o d L * J -y X
\/xz +y2 Ox \/xz +y2 dy \/xz +y2 \/xz +y2
is the vector field in Figure 2.3(a). As is customary, we draw a vector at p as an

arrow emanating from p. The vector field Y =xd/dx—yd/dy = (x,—y), suitably
rescaled, is sketched in Figure 2.3(b).
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(a) The vector field X on R? — {0} (b) The vector field (x, —y) on R?

Fig. 2.3. Vector fields on open subsets of RZ.

One can identify vector fields on U with column vectors of C* functions on U:

al

0
_ 1l

X = Za Oxi — :
a
This is the same identification as (2.4), but now we are allowing the point p to move
inU.

The ring of C* functions on an open set U is commonly denoted by C*(U) or
F(U). Multiplication of vector fields by functions on U is defined pointwise:

(fX)p=f(p)Xp, pPEU.

Clearly, if X = Y.a'd/dx’ is a C* vector field and f is a C* function on U, then
fX =Y.(fa')d/dx' is a C* vector field on U. Thus, the set of all C* vector fields on
U, denoted by X(U), is not only a vector space over R, but also a module over the
ring C*(U). We recall the definition of a module.

Definition 2.4. If R is a commutative ring with identity, then a (left) R-module is an
abelian group A with a scalar multiplication map

U:RxXA—A,

usually written U (r,a) = ra, such that for all r,s € R and a,b € A,

(i) (associativity) (rs)a = r(sa),
(i1) (identity) if 1 is the multiplicative identity in R, then la = a,
(iii) (distributivity) (r+s)a = ra+ sa, r(a+b) = ra+rb.
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If R is a field, then an R-module is precisely a vector space over R. In this sense,
a module generalizes a vector space by allowing scalars in a ring rather than a field.

Definition 2.5. Let A and A’ be R-modules. An R-module homomorphism from A
to A’ is amap f: A — A’ that preserves both addition and scalar multiplication: for
alla,bceAand r € R,

(i) fla+b)=fla)+f(b),
(i) f(ra) =rf(a).

2.5 Vector Fields as Derivations

If X is a C* vector field on an open subset U of R" and f is a C* function on U, we
define a new function X f on U by

(Xf)(p)=Xpf foranypeU.

Writing X = Y.a'd/dx!, we get

XN = Le0) 3, ().
or &
Xf=)d a)]:i’

which shows that X f is a C* function on U. Thus, a C* vector field X gives rise to
an R-linear map

C*(U)—C™(U),
f—=Xf.

Proposition 2.6 (Leibniz rule for a vector field). If X is a C™ vector field and f
and g are C* functions on an open subset U of R", then X (fg) satisfies the product
rule (Leibniz rule):

X(fg) = (X[f)g+fXg.
Proof. At each point p € U, the vector X, satisfies the Leibniz rule:
Xp(f8) = (Xpf)g(p) + f(P)Xpg.
As p varies over U, this becomes an equality of functions:
X(f8)=(Xf)g+fXg. ]

If A is an algebra over a field K, a derivation of A is a K-linear map D: A — A
such that
D(ab) = (Da)b+aDb forall a,b € A.
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The set of all derivations of A is closed under addition and scalar multiplication and
forms a vector space, denoted by Der(A). As noted above, a C* vector field on an
open set U gives rise to a derivation of the algebra C*°(U). We therefore have a map

¢©: X(U) — Der(C*(U)),
X = (f—X)).

Just as the tangent vectors at a point p can be identified with the point-derivations of
C;°, so the vector fields on an open set U can be identified with the derivations of the
algebra C*(U); i.e., the map ¢ is an isomorphism of vector spaces. The injectivity of
¢ is easy to establish, but the surjectivity of ¢ takes some work (see Problem 19.12).

Note that a derivation at p is not a derivation of the algebra C;. A derivation at p
is a map from Cy; to R, while a derivation of the algebra C is a map from Cy; to C.

Problems

2.1. Vector fields
Let X be the vector field xd/dx+yd/dy and f(x,y,z) the function x> +y? +z> on R3. Com-
pute X f.

2.2. Algebra structure on C;
Define carefully addition, multiplication, and scalar multiplication in C};. Prove that addition
in C;° is commutative.

2.3. Vector space structure on derivations at a point
Let D and D’ be derivations at p in R”, and ¢ € R. Prove that

(a) the sum D+ D' is a derivation at p.
(b) the scalar multiple ¢D is a derivation at p.

2.4. Product of derivations

Let A be an algebra over a field K. If Dy and D, are derivations of A, show that D o D; is not
necessarily a derivation (it is if D or D, = 0), but Dy o Dy — D5 o Dy is always a derivation of
A.
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§3 The Exterior Algebra of Multicovectors

As noted in the introduction, manifolds are higher-dimensional analogues of curves
and surfaces. As such, they are usually not linear spaces. Nonetheless, a basic
principle in manifold theory is the linearization principle, according to which every
manifold can be locally approximated by its tangent space at a point, a linear object.
In this way linear algebra enters into manifold theory.

Instead of working with tangent vectors, it turns out to be more fruitful to adopt
the dual point of view and work with linear functions on a tangent space. After all,
there is only so much that one can do with tangent vectors, which are essentially
arrows, but functions, far more flexible, can be added, multiplied, scalar-multiplied,
and composed with other maps. Once one admits linear functions on a tangent space,
it is but a small step to consider functions of several arguments linear in each argu-
ment. These are the multilinear functions on a vector space. The determinant of a
matrix, viewed as a function of the column vectors of the matrix, is an example of
a multilinear function. Among the multilinear functions, certain ones such as the
determinant and the cross product have an antisymmetric or alternating property:
they change sign if two arguments are switched. The alternating multilinear func-
tions with k& arguments on a vector space are called multicovectors of degree k, or
k-covectors for short.

It took the genius of Hermann Grassmann, a
nineteenth-century German mathematician, linguist,
and high-school teacher, to recognize the impor-
tance of multicovectors. He constructed a vast ed-
ifice based on multicovectors, now called the exte-
rior algebra, that generalizes parts of vector calcu-
lus from R3 to R”. For example, the wedge prod-
uct of two multicovectors on an n-dimensional vec-
tor space is a generalization of the cross product in
R3 (see Problem 4.6). Grassmann’s work was little
appreciated in his lifetime. In fact, he was turned
down for a university position and his Ph.D. thesis
rejected, because the leading mathematicians of his
day such as Mobius and Kummer failed to under-
stand his work. It was only at the turn of the twenti- Hermann Grassmann
eth century, in the hands of the great differential ge-
ometer Elie Cartan (1869-1951), that Grassmann’s (1809-1877)
exterior algebra found its just recognition as the algebraic basis of the theory of dif-
ferential forms. This section is an exposition, using modern terminology, of some of
Grassmann’s ideas.
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3.1 Dual Space

If V and W are real vector spaces, we denote by Hom(V, W) the vector space of all
linear maps f: V — W. Define the dual space V" of V to be the vector space of all
real-valued linear functions on V:

VY = Hom(V,R).

The elements of V'V are called covectors or 1-covectors on V.

In the rest of this section, assume V to be a finite-dimensional vector space. Let
er,...,e, be a basis for V. Then every v in V is uniquely a linear combination
v = Y vie; with vV € R. Let a’: V — R be the linear function that picks out the
ith coordinate, a(v) = /. Note that &' is characterized by

; ; 1 fori=j,
ol(ef) = 6} = -
0 forij.
Proposition 3.1. The functions &', ...,o" form a basis for V".

Proof. We first prove that a',...,a" span VY. If f € V¥ and v = Y vie; € V, then

fO) =YV fle) =) fle)o(v).

Hence, '
f=Y fleya',
which shows that a', ..., a" span VV.

To show linear independence, suppose Y c;o = 0 for some ¢; € R. Applying
both sides to the vector e; gives

OZZCi(Xi((?j)ZZCi(S;::Cj, j=1,...,n.

Hence, o!,... o are linearly independent. O
This basis ! ,..., " for V" is said to be dual to the basis ey,... e, for V.

Corollary 3.2. The dual space V" of a finite-dimensional vector space V has the
same dimension as V.

Example 3.3 (Coordinate functions). With respect to a basis ey, ...,e, for a vector
space V, every v € V can be written uniquely as a linear combination v = Y b'(v)e;,
where b'(v) € R. Let ', ..., " be the basis of V¥ dual to ey,...,e,. Then

a(v)=a <ij(v)ej> = ij(v)ai(ej) = Zb’(v)5; =b'(v).

Thus, the dual basis to ey, ... , e, is precisely the set of coordinate functions b',. .., b"
with respect to the basis ey,...,e,.
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3.2 Permutations

Fix a positive integer k. A permutation of the set A= {1,...,k}isabijectionoc: A —
A. More concretely, o may be thought of as a reordering of the list 1,2, ...k from its

natural increasing order to a new order 6(1),6(2),...,0(k). The cyclic permutation,
(a1 ap -+ a,) where the a; are distinct, is the permutation ¢ such that 6(a;) = ay,
o(ay) =as, ..., ola,—1) = (ar), 6(a,) = aj, and o fixes all the other elements of

A. A cyclic permutation (aj ap -+ a,) is also called a cycle of length r or an r-cycle.
A transposition is a 2-cycle, that is, a cycle of the form (a b) that interchanges a and
b, leaving all other elements of A fixed. Two cycles (a; ---a,) and (b; - - - bs) are said
to be disjoint if the sets {ay,...,a,} and {by,...,bs} have no elements in common.
The product 7o of two permutations 7 and ¢ of A is the composition To 0: A — A,
in that order; first apply o, then 7.

A simple way to describe a permutation : A — A is by its matrix

1 2 .k
o(1)a(2)--- a(k)|’
Example 3.4. Suppose the permutation o: {1,2,3,4,5} — {1,2,3,4,5} maps 1,2,
3,4,5t02,4,5,1,3 in that order. As a matrix,
12345

_{24513} G-
To write ¢ as a product of disjoint cycles, start with any element in {1,2,3,4,5},
say 1, and apply o to it repeatedly until we return to the initial element; this gives
acycle: 1 +— 2+~ 4 — 1. Next, repeat the procedure beginning with any of the
remaining elements, say 3, to get a second cycle: 3 — 5 +— 3. Since all elements of
{1,2,3,4,5} are now accounted for, ¢ equals (12 4)(3 5):

/\<>

From this example, it is easy to see that any permutation can be written as a product
of disjoint cycles (aj --- a,)(by -+ bs)---

Let Sy be the group of all permutations of the set {1,...,k}. A permutation is
even or odd depending on whether it is the product of an even or an odd number of
transpositions. From the theory of permutations we know that this is a well-defined
concept: an even permutation can never be written as the product of an odd number
of transpositions and vice versa. The sign of a permutation ¢, denoted by sgn(o) or
sgno, is defined to be +1 or —1 depending on whether the permutation is even or
odd. Clearly, the sign of a permutation satisfies

sgn(ot) = sgn(o)sgn(T) (3.2)
foro,t € Sy.



3.2 Permutations 21
Example 3.5. The decomposition
(12345)=(15)(14)(13)(12)
shows that the 5-cycle (1 2 3 4 5) is an even permutation.

More generally, the decomposition

(ayap --- ar) = (a1 a,;)(ar a,—1)--- (a1 az)(a; az)

shows that an r-cycle is an even permutation if and only if r is odd, and an odd per-
mutation if and only if r is even. Thus one way to compute the sign of a permutation
is to decompose it into a product of cycles and to count the number of cycles of even
length. For example, the permutation ¢ = (1 24)(3 5) in Example 3.4 is odd because
(124)isevenand (35)is odd.

An inversion in a permutation ¢ is an ordered pair (¢ (i), o(j)) such that i < j
but o (i) > o(j). To find all the inversions in a permutation o, it suffices to scan the
second row of the matrix of ¢ from left to right; the inversions are the pairs (a,b)
with a > b and a to the left of b. For the permutation ¢ in Example 3.4, from its
matrix (3.1) we can read off its five inversions: (2,1), (4,1), (5,1), (4,3), and (5,3).

Exercise 3.6 (Inversions).* Find the inversions in the permutation 7 = (1 2 3 4 5) of Exam-
ple 3.5.

A second way to compute the sign of a permutation is to count the number of
inversions, as we illustrate in the following example.

Example 3.7. Let ¢ be the permutation of Example 3.4. Our goal is to turn ¢ into
the identity permutation 1 by multiplying it on the left by transpositions.

(i) To move 1 to its natural position at the beginning of the second row of the matrix
of o, we need to move it across the three elements 2,4,5. This can be accom-
plished by multiplying ¢ on the left by three transpositions: first (5 1), then
(4 1), and finally (2 1):

o_[12345] 6y @ 21
245137 " |24153] 7 T |21453 12453

The three transpositions (5 1), (4 1), and (2 1) correspond precisely to the three
inversions of o ending in 1.
(i1) The element 2 is already in its natural position in the second row of the matrix.
(ii1) To move 3 to its natural position in the second row, we need to move it across
two elements 4, 5. This can be accomplished by

12345]| (53) (43) 1
12453 12435 12345

43)(53)(21)(@41)(5 1)o = 1. (3.3)

Thus,
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Note that the two transpositions (5 3) and (4 3) correspond to the two inversions
ending in 3. Multiplying both sides of (3.3) on the left by the transpositions
(4 3), then (5 3), then (2 1), and so on eventually yields

o=(51)41)(21)(53)43).

This shows that o can be written as a product of as many transpositions as the number
of inversions in it.

With this example in mind, we prove the following proposition.

Proposition 3.8. A permutation is even if and only if it has an even number of inver-
sions.

Proof. We will obtain the identity permutation 1 by multiplying & on the left by a
number of transpositions. This can be achieved in k steps.

(i) First, look for the number 1 among 6(1),06(2),...,0(k). Every number preced-
ing 1 in this list gives rise to an inversion, for if 1 = (i), then (o(1),1),...,
(o(i—1),1) are inversions of 6. Now move 1 to the beginning of the list across
the i — 1 elements o(1),...,6(i — 1). This requires multiplying ¢ on the left by
i — 1 transpositions:

o= 1) (eli=DDo= | 51y gi=1) oli+1) - o(k)|"
Note that the number of transpositions is the number of inversions ending in 1.

(ii) Next look for the number 2 in the list: 1,6(1),...,6(i—1),6(i+1),...,0(k).
Every number other than 1 preceding 2 in this list gives rise to an inversion
(o(m),2). Suppose there are iy such numbers. Then there are ip inversions
ending in 2. In moving 2 to its natural position 1,2,6(1),0(2),..., we need to
move it across ip numbers. This can be accomplished by multiplying ¢ on the
left by i transpositions.

Repeating this procedure, we see that for each j = 1,...,k, the number of trans-
positions required to move j to its natural position is the same as the number of in-
versions ending in j. In the end we achieve the identity permutation, i.e, the ordered
list 1,2,...,k, from o(1),0(2),...,0(k) by multiplying ¢ by as many transpositions
as the total number of inversions in . Therefore, sgn(c) = (—1)#inversionsino

3.3 Multilinear Functions

Denote by VA =V x --- x V the Cartesian product of k copies of a real vector space
V. A function f: V¥ — R is k-linear if it is linear in each of its k arguments:

Sl.,av+bw,..)=af(....v,...)+bf(...,w,...)

for all a,b € R and v,w € V. Instead of 2-linear and 3-linear, it is customary to say
“bilinear” and “trilinear.” A k-linear function on V is also called a k-tensor on V. We
will denote the vector space of all k-tensors on V by L (V). If f is a k-tensor on V,
we also call k the degree of f.
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Example 3.9 (Dot product on R"). With respect to the standard basis e, ...,e, for
R", the dot product, defined by

Slvyw)=vew= Zviwi, where v = Zv’éh w= Zwie,-,
i
is bilinear.

Example. The determinant f(vy,...,v,) = det[v; --- v,], viewed as a function of the
n column vectors vy,...,v, in R", is n-linear.

Definition 3.10. A k-linear function f: V¥ — R is symmetric if
f(v(,<1)7...,v(,<k)) =f(viy..eyvi)
for all permutations ¢ € Si; it is alternating if
S (Vo) Vo) = (sgno)f(vi,...,v)
for all o € S;.

Examples.
(1) The dot product f(v,w) =v «w on R" is symmetric.
(ii) The determinant f(vy,...,v,) =det[v; --- v,] on R" is alternating.

(iii) The cross product v x w on R is alternating.
(iv) For any two linear functions f, g: V — R on a vector space V, the function
fAg:VxV — R defined by

(fAg)(u,v) = fu)g(v) = f(v)g(u)

is alternating. This is a special case of the wedge product, which we will soon
define.

We are especially interested in the space Ay (V) of all alternating k-linear func-
tions on a vector space V for k > 0. These are also called alternating k-tensors,
k-covectors, or multicovectors of degree k on V. For k = 0, we define a 0-covector to
be a constant, so that Aog(V) is the vector space R. A 1-covector is simply a covector.

3.4 The Permutation Action on Multilinear Functions

If f is a k-linear function on a vector space V and o is a permutation in S, we define
a new k-linear function o f by

(Gf)(vl,...,vk) =f (V()'(l)?"'7v()'(k)) .
Thus, f is symmetric if and only if o f = f for all ¢ € S; and f is alternating if and
only if of = (sgno)f for all o € ;.
When there is only one argument, the permutation group S is the identity group
and a 1-linear function is both symmetric and alternating. In particular,

A (V)=L(V)=V".
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Lemma 3.11. If 0,7 € Sy and f is a k-linear function on'V, then 1(c f) = (t0)f.

Proof. Forvy,...,vy €V,

T(0) (i, 5vk) = (0F) (Ve(1)s -5 Vew))
=(o )(w17 W) (letting w; = vy(;))
=f (e Wolk))
=/ (veo Vi(o) = F (Veo)(1)s- - Vizo) )
=(to)f (vl,...,vk). O

In general, if G is a group and X is a set, a map
GxX—X,
(o,x) > 0-x
is called a left action of G on X if

(i) e-x=x, where e is the identity element in G and x is any element in X, and
(ii) 7-(0-x) =(70)-xforall 7,0 € Gand x € X.

The orbit of an element x € X is defined to be the set Gx:= {c-x€ X | 0 € G}. In
this terminology, we have defined a left action of the permutation group S; on the
space Ly (V) of k-linear functions on V. Note that each permutation acts as a linear
function on the vector space L (V) since 6 f is R-linear in f.

A right action of G on X is defined similarly; it is a map X X G — X such that

(i) x-e=x,and
(i) (x-0)-1=x-(07)
forallo,7€ Gandx € X.

Remark. In some books the notation for 6 f is f°. In that notation, (f°)* = f%°, not
fGT .
3.5 The Symmetrizing and Alternating Operators

Given any k-linear function f on a vector space V, there is a way to make a symmetric
k-linear function S f from it:

(Sf) Vi -V Z f VO’ ))
oES)
or, in our new shorthand,
Sf=Y of.
oES

Similarly, there is a way to make an alternating k-linear function from f. Define

Af=Y (sgno)of.

oES)
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Proposition 3.12. If f is a k-linear function on a vector space V, then

(i) the k-linear function Sf is symmetric, and
(ii) the k-linear function Af is alternating.

Proof. We prove (ii) only, leaving (i) as an exercise. For 7 € S,

©(Af)= ). (sgno)t(of)

oES,
=) (sgno)(t0)f (by Lemma 3.11)
oES
= (sgn7) ), (sgnto)(zo)f (by (3.2))
oS,
= (sgn7)Af,
since as o runs through all permutations in S, so does 70o. a

Exercise 3.13 (Symmetrizing operator).* Show that the k-linear function Sf is symmetric.

Lemma 3.14. If f is an alternating k-linear function on a vector space 'V, then Af =
(K1),

Proof. Since for alternating f we have of = (sgno)f, and sgno is £1, we must
have

Af= Y (seno)of = Y (sgno)(sgno)f = (k)y. 0

oES oES

Exercise 3.15 (Alternating operator).* If f is a 3-linear function on a vector space V and
vi,v2,v3 €V, what is (Af)(vi,v2,v3)?

3.6 The Tensor Product

Let f be a k-linear function and g an ¢-linear function on a vector space V. Their
tensor product is the (k 4 ¢)-linear function f ® g defined by
(@)W1, Vi) = f15- - V)8 Wit 1, -+, Vi)

Example 3.16 (Bilinear maps). Let ey ..., e, be a basis for a vector space V, o',

a" the dual basisin V', and (, ): V xV — Rabilinearmap onV. Set g;; = (e;, ;) €
R. If v =Y vie; and w = ¥ w'e;, then as we observed in Example 3.3, v/ = &/ (v) and
wl = a/ (w) By bilinearity, we can express ( , ) in terms of the tensor product:

ZVW e;,e Za gl]—Zgl] ®aj )

Hence, (, ) =Y g jai ® o/, This notation is often used in differential geometry to
describe an inner product on a vector space.

Exercise 3.17 (Associativity of the tensor product). Check that the tensor product of multi-
linear functions is associative: if f, g, and & are multilinear functions on V, then

(fegeh=fo(gh).
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3.7 The Wedge Product

If two multilinear functions f and g on a vector space V are alternating, then we
would like to have a product that is alternating as well. This motivates the definition
of the wedge product, also called the exterior product: for f € A;(V) and g € Ay(V),

1
frg= AU ®8):; 34
or explicitly,
(f/\g)(V17~~~,Vk+[)
1
= Z (sgn0)f (Vo(1)--- Vo) & (Voks1)s- - Vo(kre)) - (3.5)
T o€k

By Proposition 3.12, f A g is alternating.
When k = 0, the element f € Ag(V) is simply a constant c¢. In this case, the
wedge product ¢ A g is scalar multiplication, since the right-hand side of (3.5) is

1
0 Y (sgno)eg (vo(ry,-svo(r) =8 Vi, sve).

[S\Y)

ThuscAg=cgforccRand g€ Ay(V).

The coefficient 1/k!¢! in the definition of the wedge product compensates for
repetitions in the sum: for every permutation ¢ € Sy, there are k! permutations T
in Sy that permute the first k arguments vg(y), . .., V() and leave the arguments of g
alone; for all 7 in Sy, the resulting permutations 67 in Sy, contribute the same term
to the sum, since

(Sgl’lGT)f (VGT(I)v"'qur(k)) = (sgncm’)(sgn’c)f (V()'(l)a"‘vvo'(k))
= (sgno)f (Vc(l)wnvvc(k))v

where the first equality follows from the fact that (7(1),...,7(k)) is a permutation of
(1,...,k). So we divide by k! to get rid of the k! repeating terms in the sum coming
from permutations of the k arguments of f; similarly, we divide by ¢! on account of
the ¢ arguments of g.

Example 3.18. For f € Ay(V) and g € A;(V),
A(f®g)(vi,va,v3) = f(vi,v2)g(v3) — f(vi,v3)g(v2) + f(v2,v3)g(v1)
— f(v2,v1)g(va) + f(v3,v1)g(v2) — f(v3,v2)g(v1).

Among these six terms, there are three pairs of equal terms, which we have lined up
vertically in the display above:

J(vi,v2)g(vs) = —f(v2,v1)g(v3), andsoon.
Therefore, after dividing by 2,

(fAg)(vi,v2,v3) = f(vi,v2)g(v3) — f(vi,v3)g(v2) + f(v2,v3)g(v1)-
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One way to avoid redundancies in the definition of f A g is to stipulate that in the
sum (3.5), 6(1),...,0(k) be in ascending order and 6(k+1),...,0(k+£) also be in
ascending order. We call a permutation ¢ € Sy a (k, £)-shuffle if

o(l)y<---<o(k) and ok+1)<---<o(k+¥).
By the paragraph before Example 3.18, one may rewrite (3.5) as

(fAE)WV1s- s Vigr)

= Z (sgno)f (va(l), R vc(k)) g (Vo(k+1)7 e VG(]H_[)) . (3.6)
(k,0)-shuffles
o

Written this way, the definition of (f A g)(vi,...,vii¢) is a sum of (/) terms, in-

stead of (k+¢)! terms.

Example 3.19 (Wedge product of two covectors).* If f and g are covectors on a
vector space V and vy, v, € V, then by (3.6),

(f A1) = f(vi)g(va) = f(v2)g(vi)-
Exercise 3.20 (Wedge product of two 2-covectors). For f,g € A»(V), write out the definition
of f A g using (2,2)-shuffles.

3.8 Anticommutativity of the Wedge Product

It follows directly from the definition of the wedge product (3.5) that f' A g is bilinear
in f andin g.

Proposition 3.21. The wedge product is anticommutative: if f € A(V) and g €
Ay(V), then
frg=(=1)"gnf.

Proof. Define T € Sy to be the permutation

1 oo £ l41 04K
k1 k0 1 o k|

T =
This means that
() =k+1,....,7(0) =k+L,t({+1)=1,...,7({+k) =k.
Then

o(l)y=0t(l+1),...,0(k) =0T({+k),
ok+1)=o01(l),...,0(k+£)=0c1(f).

For any vy,...,vi4r €V,
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A(f®g)(vl7"'avk+f)
= Z (Sgnc)f(Va(l)v“'ava(k))g(Vo(k—&-l)a“'avcr(k—&-é))

OESk i/
= Z (sgno)f (Var(£+l)a--~7var(£+k))g(Var(l)a--~7var(£))
OESkyr
= (sgnt) Z (sgno7t)g (vm<1)7...,v(”(())f(var(f+1)7...,vm<g+k))

OESk4s
= (sgnT)A(g@f)(vh. .. 7vk+[)'

The last equality follows from the fact that as ¢ runs through all permutations in
Sk, 0 does oT.
We have proven

A(f®g) = (sgnT)A(g® f).
Dividing by k!/! gives
fAg=(sgnt)gAf.

Exercise 3.22 (Sign of a permutation).* Show that sgnt = (— 1), O
Corollary 3.23. If f is a multicovector of odd degree on'V, then f N\ f = 0.

Proof. Let k be the degree of f. By anticommutativity,

2
INF= (DS fAf=—F N,
since k is odd. Hence, 2f A f = 0. Dividing by 2 gives f A f = 0. a

3.9 Associativity of the Wedge Product

The wedge product of a k-covector f and an ¢-covector g on a vector space V is by
definition the (k + ¢)-covector

1
fAE= AU ®8).

To prove the associativity of the wedge product, we will follow Godbillon [14] by
first proving a lemma on the alternating operator A.

Lemma 3.24. Suppose f is a k-linear function and g an {-linear function on a vector
space V. Then

() AA(f)®g) =KIA(f®g), and
(i) A(f®A(g)) = LA(f®g).

Proof. (i) By definition,

AA(NH g =) (sgnc)c(Z(sgnr)(Tf)@g).

(SN TES)
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We can view T € Sy also as a permutation in Sy, fixing k+1,...,k+ £. Viewed this
way, T satisfies

(tf)®g=1(f®9).
Hence,

AA(N)@g)= ), ) (sgno)(sgnt)(oT)(f®3). 3.7

GES;H,[; TES)

For each i € Sy, and each T € S, there is a unique element 6 = ut~! € Sy, such
that 4 = o7, so each it € Sy appears once in the double sum (3.7) for each 7 € S,
and hence k! times in total. So the double sum (3.7) can be rewritten as

AA(N)@g) =k Y (sgnu)u(f®g)=kA(f®g).

UESkys
The equality in (ii) is proved in the same way. O

Proposition 3.25 (Associativity of the wedge product). Let V be a real vector
space and f,g,h alternating multilinear functions on 'V of degrees k,{,m, respec-
tively. Then

(fAg)Nh=[NA(gAh).

Proof. By the definition of the wedge product,

FADAR= AN D)

- (k—&—;)!m! k!lezA(A(f@g)W)
( f};,i),'k, A ©g)@h) (by Lemma 3.24()

|
= oA ©g) ®h).

Similarly,
boa(re ! agen
(C+m)! om ™8

A(f @ (g@h)).

fA(gAh)=k!

1

Ck'm!
Since the tensor product is associative, we conclude that

(fAg)Ah=FA(gAh). 0

By associativity, we can omit the parentheses in a multiple wedge product such
as (f A g) Ah and write simply f A g Ah.

Corollary 3.26. Under the hypotheses of the proposition,

fAgANh= A(f@g®h).

1
k!0'm!
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This corollary easily generalizes to an arbitrary number of factors: if f; €
Az (V), then

Jin-NAfr= fi®® fr). (3.8)

1
A
(@)t (@™
In particular, we have the following proposition. We use the notation [b’]] to denote

the matrix whose (i, j)-entry is b’;.

Proposition 3.27 (Wedge product of 1-covectors). If !,..., o

tions on a vector space V and vy,..., vy €V, then

are linear func-

(Oc1 A /\Ock)(vl,...,vk) = det[ai(vj)].
Proof. By (3.8),

(@' A Ao, =A@ @ k) (v, )
=Y (seno)a' (vor)) -+ & (voru)
oES

= det[a’ (v})]. |

An algebra A over a field K is said to be graded if it can be written as a direct
sum A = GBZ":OA’c of vector spaces over K such that the multiplication map sends
A¥ % A® to A, The notation A = @y, A means that each nonzero element of A is
uniquely a finite sum

a=aj + -+ aj,,

where a;; # 0 € A'i. A graded algebra A = &} (A is said to be anticommutative or
graded commutative if for all a € A* and b € A’

ab = (—1)¥ba.
A homomorphism of graded algebras is an algebra homomorphism that preserves
the degree.

Example. The polynomial algebra A = R]x, ] is graded by degree; A* consists of all
homogeneous polynomials of total degree k in the variables x and y.

For a finite-dimensional vector space V, say of dimension 7, define

oo n

AV) =PAV) = PAwV).
k=0

k=0

With the wedge product of multicovectors as multiplication, A,(V) becomes an an-
ticommutative graded algebra, called the exterior algebra or the Grassmann algebra
of multicovectors on the vector space V.
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3.10 A Basis for k-Covectors

Letey,...,e, be a basis for a real vector space V, and let &', ..., & be the dual basis
for VV. Introduce the multi-index notation
I=(i1,...,ix)
and write ¢; for (e;,,...,e; ) and of for o't A -+ A o'k
A k-linear function f on V is completely determined by its values on all k-tuples
(eiy,-.-,ei,). If fis alternating, then it is completely determined by its values on
(€iy,...,e;) with 1 <ij < --- < i < n; that is, it suffices to consider e; with [ in

strictly ascending order.

Lemma 3.28. Let ey,... e, be a basis for a vector space V and let o' ,..., a" be its
dual basis in VY. If = (1 <ij <---<iy<n)andJ = (1 < ji <--- < jy <n)are
strictly ascending multi-indices of length k, then

1 forl=J
1 :512 )
o les) = {0 for 141,

Proof. By Proposition 3.27,
o (eg) = det[a (e;)]ier jes-

If I = J, then [o’(e;)] is the identity matrix and its determinant is 1.
If I # J, we compare them term by term until the terms differ:

=1y oeey 1= Jo1, b0 F Jo, -on -

Without loss of generality, we may assume iy < j;. Then iy will be different from
J1,---,je—1 (because these are the same as iy,...,i, and [ is strictly ascending), and
iy will also be different from jy, jo11,..., jx (because J is strictly ascending). Thus,
iy will be different from ji, ..., ji, and the (th row of the matrix [a'(e;)] will be all
zero. Hence, det[d’(e;)] = 0. O

Proposition 3.29. The alternating k-linear functions o, I = (iy < --- < i), form a
basis for the space Ay(V) of alternating k-linear functions on'V.

Proof. First, we show linear independence. Suppose ¥ c;of =0, ¢; € R, and I runs
over all strictly ascending multi-indices of length k. Applying both sides to e;, J =
(j1 < -+- < jx), we get by Lemma 3.28,

0= ZC]OCI(EJ) = 26‘15]] =cCy,
1 1

since among all strictly ascending multi-indices / of length k, there is only one equal
to J. This proves that the ! are linearly independent.
To show that the & span A;(V), let f € Ax(V). We claim that
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1
f=Y flend,

where I runs over all strictly ascending multi-indices of length k. Let g = ¥ f(e7)a’.
By k-linearity and the alternating property, if two k-covectors agree on all e, where
J=(j1 <--- < ji), then they are equal. But

gle)) =Y flen)a!(er) =Y fler)8] = fley).
Therefore, f =g =Y f(er)a’. O

Corollary 3.30. If the vector space V has dimension n, then the vector space Ay (V')
of k-covectors on'V has dimension (Z)

Proof. A strictly ascending multi-index I = (i} < --- < i) is obtained by choosing a
subset of k numbers from 1,...,n. This can be done in (}) ways. O

Corollary 3.31. If k > dimV, then A (V) = 0.
Proof. In o' A--- A a'*, at least two of the factors must be the same, say q/ =al=
o.. Because « is a 1-covector, @ A @ = 0 by Corollary 3.23,so o't A--- Ak =0. O

Problems

3.1. Tensor product of covectors
Letey,...,e, be abasis for a vector space V and let o', . .., o be its dual basis in VY. Suppose

[gij] € R"™"is an n x n matrix. Define a bilinear function f: V xV — R by

fow) =Y gp'w

1<ij<n

forv =Y vie; and w = ):wjej in V. Describe f in terms of the tensor products of o' and o/,
1<i,j<n.

3.2. Hyperplanes

(a) Let V be a vector space of dimension n and f: V — R a nonzero linear functional. Show
that dimker f = n— 1. A linear subspace of V of dimension n — 1 is called a hyperplane
inV.

(b) Show that a nonzero linear functional on a vector space V is determined up to a multi-
plicative constant by its kernel, a hyperplane in V. In other words, if f and g: V — R are
nonzero linear functionals and ker f = ker g, then g = c¢f for some constant ¢ € R.

3.3. A basis for k-tensors

Let V be a vector space of dimension n with basis e, ...,e,. Let a', ..., o be the dual basis
for V. Show that a basis for the space Ly (V) of k-linear functions on V is {o! @ --- @ o}
for all multi-indices (i1, ...,i) (not just the strictly ascending multi-indices as for A;(L)). In
particular, this shows that dim Ly (V) = n¥. (This problem generalizes Problem 3.1.)
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3.4. A characterization of alternating k-tensors
Let f be a k-tensor on a vector space V. Prove that f is alternating if and only if f changes
sign whenever two successive arguments are interchanged:

f("'?vi+lvvi7"') = _f("'7vi7vi+17"')
fori=1,...;k—1.
3.5. Another characterization of alternating k-tensors

Let f be a k-tensor on a vector space V. Prove that f is alternating if and only if f(vy,...,v;) =
0 whenever two of the vectors vy, ...,V are equal.

3.6. Wedge product and scalars
Let V be a vector space. Fora,b € R, f € A;(V),and g € A¢(V), show thataf Abg = (ab) f N\g.

3.7. Transformation rule for a wedge product of covectors
Suppose two sets of covectors on a vector space V, B1,..., B¥and y', ... 7*, are related by

B'=Y dvy, i=1,. .k
j=1
for a k x k matrix A = [a’J] Show that

BYA--ABK = (detA) Yy A--- AP

3.8. Transformation rule for k-covectors
Let f be a k-covector on a vector space V. Suppose two sets of vectors uy,...,u; and vy, ..., vy
in V are related by

k
uj = Za’jvi, j=1,...k,
i=1
for a k X k matrix A = [a’J] Show that

Flur,.o ) = (det A)f(vr, .., ve):

3.9. Vanishing of a covector of top degree
Let V be a vector space of dimension n. Prove that if an n-covector @ vanishes on a basis
ey,...,ey for V, then @ is the zero covector on V.

3.10.* Linear independence of covectors
Let at!,..., o be I-covectors on a vector space V. Show that a! A--- A of = 0 if and only if
a',...,ak are linearly independent in the dual space V.

3.11.* Exterior multiplication
Let o be a nonzero 1-covector and Y a k-covector on a finite-dimensional vector space V.
Show that o Ay = 0 if and only if y = o A B for some (k — 1)-covector f on V.
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64 Differential Forms on R”

Just as a vector field assigns a tangent vector to each point of an open subset U of R”,
so dually a differential k-form assigns a k-covector on the tangent space to each point
of U. The wedge product of differential forms is defined pointwise as the wedge
product of multicovectors. Since differential forms exist on an open set, not just
at a single point, there is a notion of differentiation for differential forms. In fact,
there is a unique one, called the exterior derivative, characterized by three natural
properties. Although we define it using the standard coordinates of R”, the exterior
derivative turns out to be independent of coordinates, as we shall see later, and is
therefore intrinsic to a manifold. It is the ultimate abstract extension to a manifold
of the gradient, curl, and divergence of vector calculus in R3. Differential forms
extend Grassmann’s exterior algebra from the tangent space at a point globally to an
entire manifold. Since its creation around the turn of the twentieth century, generally
credited to E. Cartan [5] and H. Poincaré [34], the calculus of differential forms has
had far-reaching consequences in geometry, topology, and physics. In fact, certain
physical concepts such as electricity and magnetism are best formulated in terms of
differential forms.

In this section we will study the simplest case, that of differential forms on an
open subset of R”. Even in this setting, differential forms already provide a way to
unify the main theorems of vector calculus in R3.

4.1 Differential 1-Forms and the Differential of a Function

The cotangent space to R" at p, denoted by 7, (R") or T,;R", is defined to be the
dual space (T,R")" of the tangent space T),(R"). Thus, an element of the cotangent
space T, (R") is a covector or a linear functional on the tangent space 7,(R"). In
parallel with the definition of a vector field, a covector field or a differential 1-form
on an open subset U of R” is a function w that assigns to each point p in U a covector
wp € T;(R"),

w:U— J TR,
peU
p— @, € T;(R").
Note that in the union U,ey T, (R"), the sets T;(R") are all disjoint. We call a
differential 1-form a 1-form for short.

From any C* function f: U — R, we can construct a 1-form df, called the dif-
ferential of f, as follows. For p € U and X, € T,,U, define

(df)p(Xp) =Xpf.

A few words may be in order about the definition of the differential. The directional
derivative of a function in the direction of a tangent vector at a point p sets up a
bilinear pairing
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T,(R") x C3(R") - R,
(thf) = <Xpaf> :Xllf

One may think of a tangent vector as a function on the second argument of this
pairing: (X, - ). The differential (df), at p is a function on the first argument of the
pairing:

(df)p=(-f)-
The value of the differential df at p is also written df|,.
Let x',...,x" be the standard coordinates on R”. We saw in Subsection 2.3 that

the set {d/9x!|,,...,d/9x"|,} is a basis for the tangent space T,(R").

Proposition 4.1. If x',... X" are the standard coordinates on R", then at each point
p R {(dx"),,...,(dx"),} is the basis for the cotangent space T, (R") dual to the

basis {9/0x!|p,...,0/9x"|,} for the tangent space T,(R").

Proof. By definition,
w(a ) a
(dx)p <3x/ p> = o,

If w is a 1-form on an open subset U of R”, then by Proposition 4.1, at each point
pin U, @ can be written as a linear combination

W, = Za, ) (dx'),,
for some a;(p) € R. As p varies over U, the coefficients a; become functions on U,
and we may write ® = Y a;dx’. The covector field ® is said to be C* on U if the
coefficient functions a; are all C* on U.
If x,y, and z are the coordinates on R3, then dx, dy, and dz are 1-forms on R3. In
this way, we give meaning to what was merely a notation in elementary calculus.

X = 51’ O

Proposition 4.2 (The differential in terms of coordinates). If f: U — R is a C*
function on an open set U in R", then

af
df =Y, 5 dx. (4.1)
Proof. By Proposition 4.1, at each point p in U,
(df)p = Y ai(p) (dx'), 4.2)

for some real numbers ¢;(p) depending on p. Thus, df = Ya;dx' for some real
functions a; on U. To find a;, apply both sides of (4.2) to the coordinate vector

field 9 /dx/:
df(&ﬂ) = Ei a;dx <8x/> = Ei ai5j =aj.

On the other hand, by the definition of the differential,

2\ af
df(ax/')_&xf' b
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Equation (4.1) shows that if f is a C* function, then the 1-form df is also C*.

Example. Differential 1-forms arise naturally even if one is interested only in tangent
vectors. Every tangent vector X, € T,(R") is a linear combination of the standard
basis vectors:

: d
XP:Zbl(XP) oxi| -
i p

In Example 3.3 we saw that at each point p € R", we have b'(X,) = (dx'),(X,).
Hence, the coefficient &' of a vector at p with respect to the standard basis 8'/ ox!| P>
..., d/dx"|, is none other than the dual covector dx'|, on R". As p varies, b’ = dx'.

4.2 Differential k-Forms

More generally, a differential form @ of degree k or a k-form on an open subset U
of R" is a function that assigns to each point p in U an alternating k-linear function
on the tangent space T,(R"), i.e., @, € Ax(T,R"). Since A{(T,R") = T, (R"), the
definition of a k-form generalizes that of a 1-form in Subsection 4.1.

By Proposition 3.29, a basis for Ax(7,R") is

dxi,:dxi,‘ /\---/\dxif, 1< < <ip<n.
Therefore, at each point p in U, @), is a linear combination
wp:Zal(p)dxf,, 1<ip<--<ig<n,
and a k-form @ on U is a linear combination
= Zaldx17

with function coefficients a;: U — R. We say that a k-form @ is C* on U if all the
coefficients ay are C* functions on U.

Denote by Q¥(U) the vector space of C* k-forms on U. A O-form on U assigns
to each point p in U an element of Ay(7,R") = R. Thus, a 0-form on U is simply a
function on U, and Q°(U) = C*(U).

There are no nonzero differential forms of degree > n on an open subset of R”".
This is because if deg dx! > n, then in the expression dx! at least two of the 1-forms
dx'* must be the same, forcing dx/ = 0.

The wedge product of a k-form @ and an ¢-form T on an open set U is defined
pointwise:

(oNT)p =0y Ty, peU.

In terms of coordinates, if @ =¥, a;dx! and T =Y, b;dx’, then

0AT=Y (asby)dx" Ndx’.

]

In this sum, if 7 and J are not disjoint on the right-hand side, then dx/ Adx’ = 0.
Hence, the sum is actually over disjoint multi-indices:



4.3 Differential Forms as Multilinear Functions on Vector Fields 37

oAt= Y (ajby)dx' Ndx',

1.J disjoint

which shows that the wedge product of two C* forms is C”. So the wedge product
is a bilinear map
A QRU) x Q(U) — Q).

By Propositions 3.21 and 3.25, the wedge product of differential forms is anticom-
mutative and associative.
In case one of the factors has degree 0, say k = 0, the wedge product

A QOU) x QYUY — QY U)
is the pointwise multiplication of a C* ¢-form by a C* function:
(fA@),=f(p) Ao, = f(p)wp,

since as we noted in Subsection 3.7, the wedge product with a 0-covector is scalar
multiplication. Thus, if f € C*(U) and ® € Q‘(U), then f A ® = fa.

Example. Let x, y, z be the coordinates on R3. The C* 1-forms on R3 are
fdx+gdy+hdz,
where f, g, h range over all C* functions on R?. The C* 2-forms are
fdyndz+gdxNdz+hdxNdy

and the C* 3-forms are
fdxNdyNdz.

Exercise 4.3 (A basis for 3-covectors).* Let X, x2, x3, x* be the coordinates on R* and pa

point in R*. Write down a basis for the vector space A3(T),(R*)).

With the wedge product as multiplication and the degree of a form as the grading,
the direct sum Q*(U) = @}_, Q*(U) becomes an anticommutative graded algebra
over R. Since one can multiply C* k-forms by C* functions, the set Q¥(U) of C* k-
forms on U is both a vector space over R and a module over C* (U ), and so the direct
sum Q*(U) = @}_, Q*(U) is also a module over the ring C*(U) of C* functions.

4.3 Differential Forms as Multilinear Functions on Vector Fields

If ® is a C* 1-form and X is a C* vector field on an open set U in R", we define a
function @(X) on U by the formula

oX),=0w,(X,), peU.

Written out in coordinates,
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0=)Y ajdx, X :ij8 ; for some a;, b’ € C*(U),
x.

so
. ) .
— . 1 J _ WA
oX)= (Za,dx) (Zb 8xf> = Zalb ,
which shows that @(X) is C* on U. Thus, a C* 1-form on U gives rise to a map
from X(U) to C*(U).
This function is actually linear over the ring C*(U); i.e., if f € C*(U), then

o(fX) = fo(X). To show this, it suffices to evaluate @(fX) at an arbitrary point
peU:

(0(fX))p = @p(f(p)Xp) (definition of @ (/X))
= f(p)w,(X,) (wpisR-linear)
=(fo(X)),  (definition of fo(X)).
Let F(U) = C*(U). In this notation, a 1-form @ on U gives rise to an F(U)-

linear map X(U) — F(U), X — o(X). Similarly, a k-form @ on U gives rise to a
k-linear map over F(U),

(X], ‘e 7Xk) — a)(Xl, ‘e ,Xk).
Exercise 4.4 (Wedge product of a 2-form with a 1-form).* Let w be a 2-form and 7 a 1-

form on R3. If X, Y, Z are vector fields on M, find an explicit formula for (o A 7)(X,Y,Z) in
terms of the values of @ and 7 on the vector fields X,Y,Z.

4.4 The Exterior Derivative
To define the exterior derivative of a C* k-form on an open subset U of R”", we first

define it on O-forms: the exterior derivative of a C** function f € C*(U) is defined to
be its differential df € Q! (U); in terms of coordinates, Proposition 4.2 gives

P .
df =Y 3; dx'.

Definition 4.5. For k > 1, if ® = Y;a;dx’ € QX(U), then

do = ;damdx’ = ; (Z gzj dxj> Adx' € QFNU).
J

Example. Let @ be the 1-form fdx+ gdy on R?, where f and g are C* functions on
R2. To simplify the notation, write f, = df/dx, f, = d.f/dy. Then
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dw = df Ndx+dg Ndy
= (fedx+ fydy) Ndx+ (gcdx+ gydy) Ndy
= (g« — fy)dxAdy.

In this computation dy A dx = —dx Ady and dx \dx = dy Ady = 0 by the anticom-
mutative property of the wedge product (Proposition 3.21 and Corollary 3.23).

Definition 4.6. Let A = @;"zoAk be a graded algebra over a field K. An antideriva-
tion of the graded algebra A is a K-linear map D: A — A such that for a € A* and
be A,

D(ab) = (Da)b + (—1)*aDb. (4.3)

If there is an integer m such that the antiderivation D sends Ak to A¥T™ for all k, then
we say that it is an antiderivation of degree m. By defining Ay = 0 for k < 0, we can
extend the grading of a graded algebra A to negative integers. With this extension,
the degree m of an antiderivation can be negative. (An example of an antiderivation
of degree —1 is interior multiplication, to be discussed in Subsection 20.4.)

Proposition 4.7.
(i) The exterior differentiationd : Q*(U) — Q*(U) is an antiderivation of degree 1:

d(wAT)=(do) AT+ (—1)E°p AdT.

(i) d* =
(i) If f € C*(U) and X € X(U), then (df)(X) = X f.

Proof.
(i) Since both sides of (4.3) are linear in  and in 7, it suffices to check the equality
for = fdx' and T = gdx’. Then

d(oAT) = (fgdx’ Adx')
_Z 8) 4 ndid N’

_ i dg i
_Z(M.gdx nax Ndx! 4 Y f % dod N na

In the second sum, moving the 1-form (dg/dx")dx’ across the k-form dx' results in
the sign (—1)¥ by anticommutativity. Hence,

d(wAT) Za dx' Ndx! A gdx! 4 (— "):fdx’/\ gdx Adx!

=dort+(—Dfordr.

(ii) Again by the R-linearity of d, it suffices to show that d>@ = 0 for @ = fdx'. We
compute:
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af ’2f
2 Iy _ i _ J g
d*(fdx')=d (Z i X /\dx’) =) o0 P nax A
In this sum if i = j, then dx/ Adx’ = 0; if i # j, then 2 f/dx'dx/ is symmetric in i

and j, but dx/ Adx' is alternating in i and j, so the terms with i # j pair up and cancel
each other. For example,

2°f °f
Ol ox2 dx' A dx? + 9201 dx* A dx!
2°f °f
= a3 dx' Ndx® + Selo (—dx' Ndx*) =0.

Therefore, d?(fdx') = 0.
(iii) This is simply the definition of the exterior derivative of a function as the differ-
ential of the function. O

Proposition 4.8 (Characterization of the exterior derivative). The three proper-
ties of Proposition 4.7 uniquely characterize exterior differentiation on an open set
U inR"; thatis, if D: Q*(U) — Q*(U) is (i) an antiderivation of degree 1 such that
(i) D* = 0 and (iii) (Df)(X) = X f for f € C*(U) and X € X(U), then D = d.

Proof. Since every k-form on U is a sum of terms such as fdx'! A--- Adx', by
linearity it suffices to show that D = d on a k-form of this type. By (iii), Df = df
on C* functions. It follows that Ddx' = DDx' = 0 by (ii). A simple induction on k,
using the antiderivation property of D, proves that for all k£ and all multi-indices / of
length k,

D(dx") = D(dx"" A --- Adx'*) = 0. (4.4)

Finally, for every k-form f dx/,

D(fdx') = (Df)ndx' + fD(dx")  (by (i)
= (df) Ndx! (by (ii) and (4.4))
=d(fdx") (definition of d).
Hence, D =d on Q*(U). O

4.5 Closed Forms and Exact Forms

A k-form @ on U is closed if dw = 05 it is exact if there is a (k — 1)-form 7 such that
® =dtonU. Since d(dt) = 0, every exact form is closed. In the next section we
will discuss the meaning of closed and exact forms in the context of vector calculus
on R3.

Exercise 4.9 (A closed 1-form on the punctured plane). Define a 1-form @ on R — {0} by

1

0=, 2 (—ydx+xdy).

Show that w is closed.
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A collection of vector spaces {Vk},"::O with linear maps dj : V¥ — V&1 such that
diy1 o dy = 0 is called a differential complex or a cochain complex. For any open
subset U of R", the exterior derivative d makes the vector space Q*(U) of C* forms
on U into a cochain complex, called the de Rham complex of U:

0 Q)4 Q' (U) S QAU — -

The closed forms are precisely the elements of the kernel of d, and the exact forms
are the elements of the image of d.

4.6 Applications to Vector Calculus

The theory of differential forms unifies many theorems in vector calculus on R3. We
summarize here some results from vector calculus and then show how they fit into
the framework of differential forms.

By a vector-valued function on an open subset U of R3, we mean a function
F = (P,Q,R): U — R3. Such a function assigns to each point p € U a vector F,c
R3 ~ T,(R3). Hence, a vector-valued function on U is precisely a vector field on U.
Recall the three operators gradient, curl, and divergence on scalar- and vector-valued
functions on U:

grad 1 di
{scalar func.} == {vector func.} <= {vector func.} > {scalar func.},

[9/0x] fe

gradf = d/dy| f=|f|,

10/dz] 1

[9/0x] [P Ry— Q.
=1|d/dy| x |Q| = | —(R:—P.) |,
10/dz] R O —P,
[0/ox] [P

= (d/dy|- |0 =P+ 0y +R;.
10/dz| |R

curl

QT X v

div

Since every 1-form on U is a linear combination with function coefficients of dx,
dy, and dz, we can identify 1-forms with vector fields on U via

P
Pdx+Qdy+Rdz +— |Q
R

Similarly, 2-forms on U can also be identified with vector fields on U:

P
Pdyndz+QdzNdx+RdxNdy «+— | Q] ,
R
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and 3-forms on U can be identified with functions on U':
fdxNdyNdz «— f.

In terms of these identifications, the exterior derivative of a O-form f is

af/ox
df:afdx+afdy+afdz +— |df/dy| = gradf;
8x &y 3Z af/ax

the exterior derivative of a 1-form is

d(Pdx+ Qdy+Rdz)
=(Ry—Q;)dyNdz— (R, —P;)dzNdx+ (Qx— P,)dx Ndy,  (4.5)

which corresponds to

p Ry —0Q:
curl [Q| = |—(Ry—P) | ;
R O:—P,

the exterior derivative of a 2-form is

d(PdyNdz+ QdzNdx+RdxAdy)

= (Pc+ Oy +R;)dxNdyNdz, (4.6)
which corresponds to
P
div Q :Px"_Qy“FRZ.
R

Thus, after appropriate identifications, the exterior derivatives d on 0-forms, 1-
forms, and 2-forms are simply the three operators grad, curl, and div. In summary,
on an open subset U of R3, there are identifications

QU) —4— o) —4— Q) —4— ()

:l :l :l :l
C(U) —— X(U) —— X(U) — C(U).
grad curl div

Under these identifications, a vector field (P,Q,R) on R? is the gradient of a C*
function f if and only if the corresponding 1-form Pdx+ Qdy+ Rdzis df.
Next we recall three basic facts from calculus concerning grad, curl, and div.

0
Proposition A. curl(grad f) = [0].
0
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P
Proposition B. div | curl |Q =0.
R

Proposition C. On R3, a vector field F is the gradient of some scalar function f if
and only if curl F = 0.

Propositions A and B express the property d> = 0 of the exterior derivative on
open subsets of R?; these are easy computations. Proposition C expresses the fact
that a 1-form on R? is exact if and only if it is closed. Proposition C need not be
true on a region other than R3, as the following well-known example from calcu-
lus shows.

Example. If U = R® — {z-axis}, and F is the vector field

—y X
F= 0
<x2+y2’x2+y2’ >

on R3, then curl F = 0, but F is not the gradient of any C™ function on U. The reason
is that if F were the gradient of a C™ function f on U, then by the fundamental
theorem for line integrals, the line integral

y X
- dx+ d
/c 2T

over any closed curve C would be zero. However, on the unit circle C in the (x,y)-
plane, with x = cost and y = sin¢ for 0 <t < 27, this integral is

2
/—ydx+xdy:/ —(sinz)d cost + (cosr)dsint = 27.
Je Jo

In terms of differential forms, the 1-form

-y

= d d
242 x+x2+y2 Yy

is closed but not exact on U. (This 1-form is defined by the same formula as the
I-form @ in Exercise 4.9, but is defined on a different space.)

It turns out that whether Proposition C is true for a region U depends only on
the topology of U. One measure of the failure of a closed k-form to be exact is the
quotient vector space

_{closed k-forms on U }

HNU) =
) {exact k-formson U} ’

called the kth de Rham cohomology of U.
The generalization of Proposition C to any differential form on R” is called the
Poincaré lemma: for k > 1, every closed k-form on R" is exact. This is of course
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equivalent to the vanishing of the kth de Rham cohomology H¥(R") for k > 1. We
will prove it in Section 27.

The theory of differential forms allows us to generalize vector calculus from R?
to R" and indeed to a manifold of any dimension. The general Stokes theorem for a
manifold that we will prove in Subsection 23.5 subsumes and unifies the fundamental
theorem for line integrals, Green’s theorem in the plane, the classical Stokes theorem
for a surface in R?, and the divergence theorem. As a first step in this program, we
begin the next chapter with the definition of a manifold.

4.7 Convention on Subscripts and Superscripts

In differential geometry it is customary to index vector fields with subscripts e, ...,

en, and differential forms with superscripts ! ,...,@" Being 0-forms, coordinate
functions take superscripts: x',....x". Their differentials, being 1-forms, should
also have superscripts, and indeed they do: dx',...,dx". Coordinate vector fields

d/dx!', ..., d/dx" are considered to have subscripts because the i in d /dx’, although
a superscript for x', is in the lower half of the fraction.

Coefficient functions can have superscripts or subscripts depending on whether
they are the coefficient functions of a vector field or of a differential form. For a
vector field X = Y a'e;, the coefficient functions @' have superscripts; the idea is
that the superscript in a’ “cancels out” the subscript in e;. For the same reason, the
coefficient functions b; in a differential form @ = Y. b, dx’/ have subscripts.

The beauty of this convention is that there is a “conservation of indices” on the
two sides of an equality sign. For example, if X = Y a'd/dx!, then

a' = (dx')(X).

Here both sides have a net superscript i. As another example, if @ =) b; dx/, then

o(X) = (Y bjdx’) (Z 5) =) bid"

after cancellation of superscripts and subscripts, both sides of the equality sign have
zero net index. This convention is a useful mnemonic aid in some of the transforma-
tion formulas of differential geometry.

Problems

4.1. A 1-form on R?
Let o be the 1-form zdx — dz and let X be the vector field yd/dx+x3d/dy on R3. Compute
o(X) and do.

4.2. A 2-form on R
At each point p € R, define a bilinear function @, on 7,(R?) by
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al bl

3 al bl
wp(ab) =, [ [d®|, |b*| | =p det Lzz bz}’
a3 b3

for tangent vectors a,b € T),(R?), where p? is the third component of p = (p', p?, p*). Since
@) is an alternating bilinear function on TP(R3), o is a 2-form on R3, Write @ in terms of the
standard basis dx’ A dx/ at each point.

4.3. Exterior calculus
Suppose the standard coordinates on R? are called r and @ (this R? is the (r, 8)-plane, not the
(x,y)-plane). If x = rcos 0 and y = rsin 0, calculate dx, dy, and dx Ady in terms of dr and d6.

4.4. Exterior calculus
Suppose the standard coordinates on R> are called p, ¢, and 6. If x = psingcos8, y =
psin¢sin @, and z = p cos ¢, calculate dx, dy, dz, and dx Ndy \dz in terms of dp, d¢, and d6.

4.5. Wedge product
Let o be a 1-form and B a 2-form on R3. Then

a :aldxl +a2dx2+a3dx3,
B = by dx* Ndx® +bydx® Ndx' +bydx' Ndx*.

Simplify the expression o A B as much as possible.

4.6. Wedge product and cross product

The correspondence between differential forms and vector fields on an open subset of R3 in
Subsection 4.6 also makes sense pointwise. Let V be a vector space of dimension 3 with basis
e1,er,e3, and dual basis oo}, a2, 0. To a l-covector & = aj &t +aya® +az3 0 on V, we
associate the vector vo = (a1,az,a3) € R3. To the 2-covector

y=c o’ o+ nal +esal Aa?

on V, we associate the vector vy = (c1,c2,¢3) € R3. Show that under this correspondence,
the wedge product of I1-covectors corresponds to the cross product of vectors in R3: if o =
ap al +ap 062+a3 o’ and 3 = by ol + by (X2+b3 OC3, then Varp = Yo X VB.

4.7. Commutator of derivations and antiderivations

Let A= EB,;"’:ﬂQAk be a graded algebra over a field K with A = 0 for k < 0. Let m be an
integer. A superderivation of A of degree m is a K-linear map D: A — A such that for all k,
D(AF) © A% and for all a € AF and b € A”,

D(ab) = (Da)b+ (—1)""a(Db).

If Dy and D, are two superderivations of A of respective degrees m and my, define their
commutator to be
[Dl.,Dz] =DjoDy—(—1)""D; 0o Dy.

Show that [Dy,D;] is a superderivation of degree m; +my. (A superderivation is said to be
even or odd depending on the parity of its degree. An even superderivation is a derivation; an
odd superderivation is an antiderivation.)



Chapter 2

Manifolds

Intuitively, a manifold is a generalization of curves and surfaces to higher dimen-
sions. It is locally Euclidean in that every point has a neighborhood, called a chart,
homeomorphic to an open subset of R”. The coordinates on a chart allow one to
carry out computations as though in a Euclidean space, so that many concepts from
R", such as differentiability, point-derivations, tangent spaces, and differential forms,
carry over to a manifold.

Like most fundamental mathematical concepts,
the idea of a manifold did not originate with a sin-
gle person, but is rather the distillation of years of
collective activity. In his masterpiece Disquisitiones
generales circa superficies curvas (“General Inves-
tigations of Curved Surfaces”) published in 1827,
Carl Friedrich Gauss freely used local coordinates
on a surface, and so he already had the idea of
charts. Moreover, he appeared to be the first to con-
sider a surface as an abstract space existing in its
own right, independent of a particular embedding in
a Euclidean space. Bernhard Riemann’s inaugural
lecture Uber die Hypothesen, welche der Geometrie
zu Grunde liegen (“On the hypotheses that under-

Bernhard Riemann lie geometry”) in Gottingen in 1854 laid the foun-

(1826-1866) dations of higher-dimensional differential geometry.

Indeed, the word “manifold” is a direct translation of

the German word “Mannigfaltigkeit,” which Riemann used to describe the objects of

his inquiry. This was followed by the work of Henri Poincaré in the late nineteenth

century on homology, in which locally Euclidean spaces figured prominently. The

late nineteenth and early twentieth centuries were also a period of feverish develop-

ment in point-set topology. It was not until 1931 that one finds the modern definition
of a manifold based on point-set topology and a group of transition functions [37].

L.W. Tu, 4n Introduction to Manifolds, Universitext, DOI 10.1007/978-1-4419-7400-6 3, 47
© Springer Science+Business Media, LLC 2011
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In this chapter we give the basic definitions and properties of a smooth manifold
and of smooth maps between manifolds. Initially, the only way we have to verify
that a space is a manifold is to exhibit a collection of C* compatible charts covering
the space. In Section 7 we describe a set of sufficient conditions under which a
quotient topological space becomes a manifold, giving us a second way to construct
manifolds.

65 Manifolds

While there are many kinds of manifolds—for example, topological manifolds, C*-
manifolds, analytic manifolds, and complex manifolds—in this book we are con-
cerned mainly with smooth manifolds. Starting with topological manifolds, which
are Hausdorff, second countable, locally Euclidean spaces, we introduce the concept
of a maximal C* atlas, which makes a topological manifold into a smooth manifold.
This is illustrated with a few simple examples.

5.1 Topological Manifolds

We first recall a few definitions from point-set topology. For more details, see Ap-
pendix A. A topological space is second countable if it has a countable basis. A
neighborhood of a point p in a topological space M is any open set containing p. An
open cover of M is a collection {Ugy}gea of open sets in M whose union Uy Un
is M.

Definition 5.1. A topological space M is locally Euclidean of dimension n if every
point p in M has a neighborhood U such that there is a homeomorphism ¢ from U
onto an open subset of R". We call the pair (U,¢: U — R") a chart, U a coordinate
neighborhood or a coordinate open set, and ¢ a coordinate map or a coordinate
system on U. We say that a chart (U, ¢) is centered at p € U if ¢(p) = 0.

Definition 5.2. A topological manifold is a Hausdorff, second countable, locally
Euclidean space. It is said to be of dimension n if it is locally Euclidean of dimen-
sion n.

For the dimension of a topological manifold to be well defined, we need to know
that for n # m an open subset of R” is not homeomorphic to an open subset of R”.
This fact, called invariance of dimension, is indeed true, but is not easy to prove
directly. We will not pursue this point, since we are mainly interested in smooth
manifolds, for which the analogous result is easy to prove (Corollary 8.7). Of course,
if a topological manifold has several connected components, it is possible for each
component to have a different dimension.
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Example. The Euclidean space R” is covered by a single chart (R”, 1), where
Tgn: R" — R” is the identity map. It is the prime example of a topological manifold.
Every open subset of R” is also a topological manifold, with chart (U, 1y).

Recall that the Hausdorff condition and second countability are “hereditary prop-
erties”; that is, they are inherited by subspaces: a subspace of a Hausdorff space is
Hausdorff (Proposition A.19) and a subspace of a second-countable space is second
countable (Proposition A.14). So any subspace of R” is automatically Hausdorff and
second countable.

Example 5.3 (A cusp). The graph of y = ¥ inR?isa topological manifold (Fig-
ure 5.1(a)). By virtue of being a subspace of R?, it is Hausdorff and second count-
able. It is locally Euclidean, because it is homeomorphic to R via (x,x%/3) — x.

(a) Cusp (b) Cross
Fig. 5.1.

Example 5.4 (A cross). Show that the cross in R? in Figure 5.1 with the subspace
topology is not locally Euclidean at the intersection p, and so cannot be a topological
manifold.

Solution. Suppose the cross is locally Euclidean of dimension 7 at the point p. Then
p has a neighborhood U homeomorphic to an open ball B := B(0,&) C R"” with
p mapping to 0. The homeomorphism U — B restricts to a homeomorphism U —
{p} = B—{0}. Now B— {0} is either connected if n > 2 or has two connected
components if n = 1. Since U — {p} has four connected components, there can be
no homeomorphism from U — {p} to B— {0}. This contradiction proves that the
cross is not locally Euclidean at p. O

5.2 Compatible Charts

Suppose (U,¢: U — R") and (V,y: V — R") are two charts of a topological man-
ifold. Since UNYV is openin U and ¢: U — R" is a homeomorphism onto an open
subset of R”, the image ¢(U NV) will also be an open subset of R”. Similarly,
y(UNV) is an open subset of R”.

Definition 5.5. Two charts (U,¢: U — R"), (V,y: V — R") of a topological
manifold are C*-compatible if the two maps
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poy Liy(UNV)=o(UNV), wod l:op(UNV)=y(UNV)

are C~ (Figure 5.2). These two maps are called the transition functions between
the charts. If U NV is empty, then the two charts are automatically C*-compatible.
To simplify the notation, we will sometimes write Uy for Ug NUp and Ugyg,, for
Uoa NUg NUy.

o(unv) U 14

Fig. 5.2. The transition function y o ¢ ! is defined on ¢ (U NV).

Since we are interested only in C*-compatible charts, we often omit mention of
“C*=” and speak simply of compatible charts.

Definition 5.6. A C* atlas or simply an atlas on a locally Euclidean space M is a
collection U = {(Uq, 9o ) } of pairwise C*-compatible charts that cover M, i.e., such
that M == U(X Ua.

- 0 T 2r U, U
1

¢!1(U1)C + 0
= 91(A) =t ¢1(B) —

o ; o0 (V)
= ¢2(B) =t ¢2(A) —

Fig. 5.3. A C* atlas on a circle.

Example 5.7 (A C” atlas on a circle). The unit circle S !'in the complex plane C may
be described as the set of points {¢” € C |0 < <2rm}. Let U; and U, be the two
open subsets of S! (see Figure 5.3)

U={"eC|-rn<t<n},
Uy={e"cC|0<t<2n},
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and define ¢y : Uy — R for a = 1,2 by
o1(e"=t, —m<t<m,
92(e")

Both ¢; and ¢, are branches of the complex log function (1/i)logz and are home-
omorphisms onto their respective images. Thus, (U;,¢;) and (U, ¢,) are charts on
SL. The intersection U; N U, consists of two connected components,

t, 0<t<2m.

A={e"|-m<t<0},
B={"|0<1t<m},

with

01(UiNU2) = 1 (A Ll B) = ¢1(4) LI 4(B) = ]—m,0[ Ll 10,7,
02(UiNU2) = 2(A L B) = 4o(A) 11 o(B) = |, 2z 11 10, 71.

Here we use the notation A 1I B to indicate a union in which the two subsets A and
B are disjoint. The transition function ¢ o ¢, ': ¢1(A LI B) — ¢»(A LI B) is given
by
_ t+2n forte]—m0,
(9200, )(1) = {

t forr €10, n].

Similarly,
t—2m forr e |m2m|,
t fort €10, 7]

(01 o¢2‘)(t>={

Therefore, (U1, ¢;) and (Uy, ¢,) are C*-compatible charts and form a C* atlas on S'.

Although the C* compatibility of charts is clearly reflexive and symmetric, it is
not transitive. The reason is as follows. Suppose (U, ¢;) is C*-compatible with
(Uz,¢2), and (U, ¢ ) is C-compatible with (Us, ¢3). Note that the three coordinate
functions are simultaneously defined only on the triple intersection Uj,3. Thus, the
composite

93007 = (9300, 0 (d200")

is C*, but only on ¢ (Uj»3), not necessarily on ¢ (U;3) (Figure 5.4). A priori we
know nothing about ¢3 o ¢, " on ¢1(U1s — Upz3) and so we cannot conclude that
(U1, ¢1) and (Us, ¢3) are C*-compatible.

We say that a chart (V, y) is compatible with an atlas {(Uq, §¢ ) } if it is compat-
ible with all the charts (U, ¢ ) of the atlas.

Lemma 5.8. Let {(Ug, 9o )} be an atlas on a locally Euclidean space. If two charts
(V,w) and (W,0) are both compatible with the atlas {(Uy, ¢o)}, then they are
compatible with each other.
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¢1(Ur23)

RN
N

(7

Fig. 5.4. The transition function ¢3 o ¢, Vis C on ¢ (U123).

v(p) do oy ! $a(p) Coog! a(p)

Fig. 5.5. Two charts (V, y), (W, 0) compatible with an atlas.

Proof. (See Figure 5.5.) Let p € VNW. We need to show that 6 o ! is C at
y(p). Since {(Uq, 9o )} is an atlas for M, p € Uy for some o. Then p is in the triple
intersection VYW NUy.

By the remark above, 6o W' = (6005 ") o (Po o W) is C* on w(VNWNUy),
hence at y(p). Since p was an arbitrary point of V \W, this proves that 6 o y~! is
C> on y(VNW). Similarly, ¥ o 6~ is C* on 6(V NW). O

Note that in an equality such as 6 o ™! = (60 95 ') o (¢¢ o Y~ !) in the proof

above, the maps on the two sides of the equality sign have different domains. What
the equality means is that the two maps are equal on their common domain.

5.3 Smooth Manifolds

An atlas 901 on a locally Euclidean space is said to be maximal if it is not contained
in a larger atlas; in other words, if 4{ is any other atlas containing 91, then 4l = 9.
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Definition 5.9. A smooth or C* manifold is a topological manifold M together
with a maximal atlas. The maximal atlas is also called a differentiable structure
on M. A manifold is said to have dimension 7 if all of its connected components
have dimension n. A 1-dimensional manifold is also called a curve, a 2-dimensional
manifold a surface, and an n-dimensional manifold an n-manifold.

In Corollary 8.7 we will prove that if an open set U C R” is diffeomorphic to an
open set V. C R™, then n = m. As a consequence, the dimension of a manifold at a
point is well defined.

In practice, to check that a topological manifold M is a smooth manifold, it is
not necessary to exhibit a maximal atlas. The existence of any atlas on M will do,
because of the following proposition.

Proposition 5.10. Any atlas 4 = {(Ug,9¢)} on a locally Euclidean space is con-
tained in a unique maximal atlas.

Proof. Adjoin to the atlas [ all charts (V;, y;) that are compatible with 1. By Propo-
sition 5.8 the charts (V;, y;) are compatible with one another. So the enlarged collec-
tion of charts is an atlas. Any chart compatible with the new atlas must be compatible
with the original atlas 4( and so by construction belongs to the new atlas. This proves
that the new atlas is maximal.

Let 90 be the maximal atlas containing 4 that we have just constructed. If 9V is
another maximal atlas containing &{, then all the charts in 9 are compatible with [
and so by construction must belong to 91. This proves that D' C 9. Since both are
maximal, 9 = 9. Therefore, the maximal atlas containing ${ is unique. O

In summary, to show that a topological space M is a C* manifold, it suffices to
check that

(i) M is Hausdorff and second countable,
(i) M has a C* atlas (not necessarily maximal).

From now on, a “manifold” will mean a C** manifold. We use the terms “smooth”
and “C*” interchangeably. In the context of manifolds, we denote the standard coor-
dinates on R” by r!,...,7". If (U,¢: U — R") is a chart of a manifold, we let x' =
r' o ¢ be the ith component of ¢ and write ¢ = (x',...,x") and (U, ) = (U,x',...,x").
Thus, for p € U, (x'(p),...,x"(p)) is a point in R”. The functions x',...,x" are
called coordinates or local coordinates on U. By abuse of notation, we sometimes
omit the p. So the notation (x!,. .., x") stands alternately for local coordinates on the
open set U and for a point in R”. By a chart (U, ¢) about p in a manifold M, we will
mean a chart in the differentiable structure of M such that p € U.

5.4 Examples of Smooth Manifolds

Example 5.11 (Euclidean space). The Euclidean space R” is a smooth manifold with
a single chart (R”, r!, ..., "), where 7!, ..., 7" are the standard coordinates on R".
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Example 5.12 (Open subset of a manifold). Any open subset V of a manifold M is
also a manifold. If {(Ug,@q)} is an atlas for M, then {(Uy NV, ¢a|u, v} is an
atlas for V, where ¢q |y, nv: Ua NV — R" denotes the restriction of @, to the subset
UyNV.

Example 5.13 (Manifolds of dimension zero). In a manifold of dimension zero, every
singleton subset is homeomorphic to R? and so is open. Thus, a zero-dimensional
manifold is a discrete set. By second countability, this discrete set must be countable.

Example 5.14 (Graph of a smooth function). For a subset of A C R” and a function
f: A—R™, the graph of f is defined to be the subset (Figure 5.6)

L(f) ={(x,f(x)) e AxR"}.
If U is an open subset of R” and f: U — R" is C”, then the two maps
Rm
(x,f(x))

A~
[ ]
-

R}’l

f U |

Fig. 5.6. The graph of a smooth function f: R" DU — R".

¢:T(f)=U,  (xfx)—=x

and
(LA:U=T(), xe(xf(x),

are continuous and inverse to each other, and so are homeomorphisms. The graph
I'(f) of a C* function f: U — R™ has an atlas with a single chart (I'(f),¢), and is
therefore a C* manifold. This shows that many of the familiar surfaces of calculus,
for example an elliptic paraboloid or a hyperbolic paraboloid, are manifolds.

Example 5.15 (General linear groups). For any two positive integers m and n let
R™ 7 be the vector space of all m x n matrices. Since R"*" is isomorphic to R™",
we give it the topology of R™". The general linear group GL(n,RR) is by definition

GL(n,R) := {A € R™" | detA # 0} = det”' (R —{0}).

Since the determinant function
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det: R™" - R

is continuous, GL(n,R) is an open subset of R"*" ~ R" and is therefore a manifold.

The complex general linear group GL(n,C) is defined to be the group of non-
singular n X n complex matrices. Since an n X n matrix A is nonsingular if and only
if detA £ 0, GL(n,C) is an open subset of C"*" ~ Rz”z, the vector space of n x n
complex matrices. By the same reasoning as in the real case, GL(n,C) is a manifold
of dimension 2n?.

U,

W o | 03

%)

Fig. 5.7. Charts on the unit circle.

Example 5.16 (Unit circle in the (x,y)-plane). In Example 5.7 we found a C* atlas
with two charts on the unit circle S' in the complex plane C. It follows that S is
a manifold. We now view S! as the unit circle in the real plane R? with defining
equation X2+ y2 =1, and describe a C* atlas with four charts on it.

We can cover S! with four open sets: the upper and lower semicircles Uy, Us,
and the right and left semicircles U3, Uy (Figure 5.7). On U; and U,, the coordinate
function x is a homeomorphism onto the open interval |— 1, 1] on the x-axis. Thus,
¢i(x,y) = x for i = 1,2. Similarly, on Uz and Uy, y is a homeomorphism onto the
open interval |— 1, 1] on the y-axis, and so ¢;(x,y) =y fori =3,4.

Itis easy to check that on every nonempty pairwise intersection Uq NUg, @ o 0!
is C*. For example, on U; N U3,

(03297 1)(0) = 93 (xV1-22) = V12,
which is C*. On U, NUy,
(0295 1)0) = 94 (x,—V1-2) = —V1 -2,
which is also C*. Thus, {(U;, (]),-)}?:1 is a C= atlas on S'.

Example 5.17 (Product manifold). If M and N are C* manifolds, then M x N with
its product topology is Hausdorff and second countable (Corollary A.21 and Propo-
sition A.22). To show that M x N is a manifold, it remains to exhibit an atlas on it.
Recall that the product of two set maps f: X — X' andg: ¥ — Y’ is

[xg: X xY = X', (fxg)xy)=(f(x).8(r))-
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Proposition 5.18 (An atlas for a product manifold). If {(Uq,¢a)} and {(Vi,y;)}
are C* atlases for the manifolds M and N of dimensions m and n, respectively, then
the collection

{(Ug X Vi, 00 X Wi: Uy x Vi = R™ x R")}

of charts is a C™ atlas on M x N. Therefore, M X N is a C™ manifold of dimension
m-+n.

Proof. Problem 5.5. a

Example. Tt follows from Proposition 5.18 that the infinite cylinder S' x R and the
torus S x S! are manifolds (Figure 5.8).

— ~

~ -

Infinite cylinder. Torus.

Fig. 5.8.

Since M x N x P = (M x N) x P is the successive product of pairs of spaces, if
M, N, and P are manifolds, then so is M x N x P. Thus, the n-dimensional torus
St x - x S! (n times) is a manifold.

Remark. Let S be the unit sphere
(X1)2 + (X2)2 N (xn+1)2 -1

in R"*!. Using Problem 5.3 as a guide, it is easy to write down a C* atlas on S",
showing that §" has a differentiable structure. The manifold $” with this differen-
tiable structure is called the standard n-sphere.

One of the most surprising achievements in topology was John Milnor’s dis-
covery [27] in 1956 of exotic 7-spheres, smooth manifolds homeomorphic but not
diffeomorphic to the standard 7-sphere. In 1963, Michel Kervaire and John Milnor
[24] determined that there are exactly 28 nondiffeomorphic differentiable structures
onS’.

It is known that in dimensions < 4 every topological manifold has a unique dif-
ferentiable structure and in dimensions > 4 every compact topological manifold has
a finite number of differentiable structures. Dimension 4 is a mystery. It is not known
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whether $* has a finite or infinite number of differentiable structures. The statement
that $* has a unique differentiable structure is called the smooth Poincaré conjecture.
As of this writing in 2010, the conjecture is still open.

There are topological manifolds with no differentiable structure. Michel Kervaire
was the first to construct an example [23].

Problems

5.1. The real line with two origins
Let A and B be two points not on the real line R. Consider the set S = (R — {0}) U{A, B} (see
Figure 5.9).

A

B

Fig. 5.9. Real line with two origins.

For any two positive real numbers ¢, d, define
IA(_Cvd) = ]—C,O[ U {A} U ]O/d[

and similarly for Iz(—c,d), with B instead of A. Define a topology on S as follows: On
(R —{0}), use the subspace topology inherited from R, with open intervals as a basis. A basis
of neighborhoods at A is the set {I4(—c,d) | ¢,d > 0}; similarly, a basis of neighborhoods at
Bis {Ig(—c,d) | c,d > 0}.

(a) Prove that the map h: Iy(—c,d) — ]— ¢,d| defined by

h(x)=x forxe]|—c,0[U]0,d],
h(A)=0

is a homeomorphism.

(b) Show that S is locally Euclidean and second countable, but not Hausdorff.

5.2. A sphere with a hair

A fundamental theorem of topology, the theorem on invariance of dimension, states that if two
nonempty open sets U C R" and V C R are homeomorphic, then n = m (for a proof, see [18,
p. 126]). Use the idea of Example 5.4 as well as the theorem on invariance of dimension to
prove that the sphere with a hair in R? (Figure 5.10) is not locally Euclidean at g. Hence it
cannot be a topological manifold.
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N

Fig. 5.10. A sphere with a hair.

5.3. Charts on a sphere
Let % be the unit sphere

Py 42 =1

in R3. Define in $? the six charts corresponding to the six hemispheres—the front, rear, right,

left, upper, and lower hemispheres (Figure 5.11):

Up ={(x,,2) € $* | x>0},

={(xy2) €S |x <0},

{(xy2) € 8%y >0},

{(y.2) €% |y <0},
(
(

U
Us
Uy
Us
Us

{(x,y.2) € $*| 2> 0},
{(x,y.2) € $* |2 <0},

¢1(x,3,2) = (v,2),
$2(x,y,2) = (,2),
$3(x,5,2) = (x,2),
P4 (x,y,2) = (x,2),
5 (x,,2) = (x,y),
P6(x,3,2) = (x,).

Describe the domain ¢4(Uy4) of ¢ o ¢4’1 and show that ¢ o ¢;1 is C* on ¢4(Uy4). Do the

same for ¢ o ¢;1.

Y Q0

Fig. 5.11. Charts on the unit sphere.

5.4.*% Existence of a coordinate neighborhood

Let {(Ux,9c)} be the maximal atlas on a manifold M. For any open set U in M and a point
p € U, prove the existence of a coordinate open set Uqy such that p € Uy C U.

5.5. An atlas for a product manifold
Prove Proposition 5.18.
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§6 Smooth Maps on a Manifold

Now that we have defined smooth manifolds, it is time to consider maps between
them. Using coordinate charts, one can transfer the notion of smooth maps from
Euclidean spaces to manifolds. By the C* compatibility of charts in an atlas, the
smoothness of a map turns out to be independent of the choice of charts and is there-
fore well defined. We give various criteria for the smoothness of a map as well as
examples of smooth maps.

Next we transfer the notion of partial derivatives from Euclidean space to a co-
ordinate chart on a manifold. Partial derivatives relative to coordinate charts allow
us to generalize the inverse function theorem to manifolds. Using the inverse func-
tion theorem, we formulate a criterion for a set of smooth functions to serve as local
coordinates near a point.

6.1 Smooth Functions on a Manifold

)

Fig. 6.1. Checking that a function f is C* at p by pulling back to R”.

Definition 6.1. Let M be a smooth manifold of dimension . A function f: M — R
is said to be C* or smooth at a point p in M if there is a chart (U, ¢) about p in M
such that f o ¢!, a function defined on the open subset ¢ (U) of R”, is C* at ¢(p)
(see Figure 6.1). The function f is said to be C* on M if it is C™ at every point of M.

Remark 6.2. The definition of the smoothness of a function f at a point is indepen-

dent of the chart (U, ¢), for if fo ¢! is C* at ¢(p) and (V,y) is any other chart
about p in M, then on w(UNV),

fow '=(fodp No(poy™),

which is C* at y(p) (see Figure 6.2).
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poy!

Fig. 6.2. Checking that a function f is C™ at p via two charts.

In Definition 6.1, f: M — R is not assumed to be continuous. However, if f is
C*atpeM,then fod~': ¢(U) — R, being a C* function at the point ¢(p) in an
open subset of R”, is continuous at ¢(p). As a composite of continuous functions,
f=(fo0"1) 0 ¢ is continuous at p. Since we are interested only in functions that
are smooth on an open set, there is no loss of generality in assuming at the outset that
f is continuous.

Proposition 6.3 (Smoothness of a real-valued function). Let M be a manifold of
dimension n, and f: M — R a real-valued function on M. The following are equiv-
alent:

(1) The function f: M — R is C~.
(ii) The manifold M has an atlas such that for every chart (U,9) in the atlas,
fop lR'"D9(U) = RisC™.
(iii) For every chart (V, ) on M, the function f o w1 : R" D y(V) — R is C*.

Proof. We will prove the proposition as a cyclic chain of implications.
(il) = (i): This follows directly from the definition of a C* function, since by (ii)
every point p € M has a coordinate neighborhood (U, ¢) such that f o ¢! is C* at
¢(p).
(i) = (iii): Let (V,y) be an arbitrary chart on M and let p € V. By Remark 6.2,
fow lisC*at w(p). Since p was an arbitrary point of V, f o y~!is C** on y(V).
(iii) = (ii): Obvious. O
The smoothness conditions of Proposition 6.3 will be a recurrent motif through-
out the book: to prove the smoothness of an object, it is sufficient that a smoothness
criterion hold on the charts of some atlas. Once the object is shown to be smooth, it
then follows that the same smoothness criterion holds on every chart on the manifold.

Definition 6.4. Let F: N — M be a map and 4 a function on M. The pullback of h
by F, denoted by F*h, is the composite function /2 o F'.

In this terminology, a function f on M is C* on a chart (U, ¢) if and only if its
pullback (¢~1)* f by ¢! is C* on the subset ¢ (U) of Euclidean space.
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6.2 Smooth Maps Between Manifolds

We emphasize again that unless otherwise specified, by a manifold we always mean
a C* manifold. We use the terms “C™” and “smooth” interchangeably. An atlas or a
chart on a smooth manifold means an atlas or a chart contained in the differentiable
structure of the smooth manifold. We generally denote a manifold by M and its
dimension by n. However, when speaking of two manifolds simultaneously, as in a
map f: N — M, we will let the dimension of N be n and that of M be m.

Definition 6.5. Let N and M be manifolds of dimension n and m, respectively. A
continuous map F: N — M is C* at a point p in N if there are charts (V, ) about
F(p) in M and (U,¢) about p in N such that the composition ¥ o F o ¢!, a map
from the open subset ¢(F~!(V)NU) of R" to R™, is C* at ¢(p) (see Figure 6.3).
The continuous map F': N — M is said to be C™ if it is C™ at every point of N.

Fig. 6.3. Checking that amap F: N — M is C* at p.

In Definition 6.5, we assume F : N — M continuous to ensure that F (V') is an
open set in N. Thus, C* maps between manifolds are by definition continuous.

Remark 6.6 (Smooth maps into R™). In case M = R™, we can take (R™, 1gm) as a
chart about F(p) in R™. According to Definition 6.5, F: N — R is C* at p € N if
and only if there is a chart (U, ¢) about p in N such that F o ¢ ' : ¢(U) — R™ is C*
at ¢(p). Letting m = 1, we recover the definition of a function being C* at a point.

We show now that the definition of the smoothness of a map F: N — M at a point
is independent of the choice of charts. This is analogous to how the smoothness of a
function N — R at p € N is independent of the choice of a chart on N about p.

Proposition 6.7. Suppose F: N — M is C* at p € N. If (U, ¢) is any chart about p
in N and (V,y) is any chart about F (p) in M, then W o F o ¢! is C* at ¢(p).

Proof. Since F is C* at p € N, there are charts (Ug, ¢o) about p in N and (Vg, yp)
about F(p) in M such that g o F o g Uis C* at ¢ (p). By the C* compatibility
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of charts in a differentiable structure, both ¢y o ¢! and v o Vs !"are C* on open
subsets of Euclidean spaces. Hence, the composite

YoF o ' =(yowy!)o(WpoFody')o(9aod)
isC*at¢(p). O

The next proposition gives a way to check smoothness of a map without specify-
ing a point in the domain.

Proposition 6.8 (Smoothness of a map in terms of charts). Let N and M be smooth
manifolds, and F : N — M a continuous map. The following are equivalent:

(i) The map F: N — M is C™.
(ii) There are atlases A for N and G for M such that for every chart (U, ¢) in i\ and
(V,v) in*G, the map

VoFod L g(UNFL(V)) = R™

is C*.
(iii) For every chart (U,9) on N and (V,y) on M, the map

VoFod L g(UNFL(V)) = R™
is C*.

Proof. (ii) = (i): Let p € N. Suppose (U, ¢) is a chart about p in $ and (V,y) is a
chart about F(p) in 0. By (ii), W o F o ¢! is C* at ¢(p). By the definition of a C*
map, F: N — M is C™ at p. Since p was an arbitrary point of N, the map F': N - M
is C”.

(i) = (iii): Suppose (U, ¢) and (V, y) are charts on N and M respectively such that
UNF~Y(V)#@.Let pe UNF~(V). Then (U, 9) is a chart about p and (V, y) is
a chart about F(p). By Proposition 6.7, w o F o ¢! is C* at ¢(p). Since ¢(p) was
an arbitrary point of ¢(UNF~1(V)), themap wo Fo ¢~ ': ¢(UNF~1(V)) = R™
is C”.

(iii) = (ii): Clear. 0

Proposition 6.9 (Composition of C* maps). If F: N — M and G: M — P are C*
maps of manifolds, then the composite Go F: N — P is C™.

Proof. Let (U,¢), (V,y), and (W, o) be charts on N, M, and P respectively. Then
Go(GoF)og ™' =(0oGoy o(yoFop™").
Since F and G are C*, by Proposition 6.8(i)=>(iii), 6 0o Go w ! and y o F o ¢! are

C™. As a composite of C* maps of open subsets of Euclidean spaces, 6 o (Go F) o
¢! is C*. By Proposition 6.8(iii)=(i), G o F is C*. a
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6.3 Diffeomorphisms

A diffeomorphism of manifolds is a bijective C** map F : N — M whose inverse F~!
is also C*. According to the next two propositions, coordinate maps are diffeomor-
phisms, and conversely, every diffeomorphism of an open subset of a manifold with
an open subset of a Euclidean space can serve as a coordinate map.

Proposition 6.10. If (U, ) is a chart on a manifold M of dimension n, then the
coordinate map ¢ : U — ¢(U) C R" is a diffeomorphism.

Proof. By definition, ¢ is a homeomorphism, so it suffices to check that both ¢
and ¢! are smooth. To test the smoothness of ¢: U — ¢(U), we use the atlas
{(U,9)} with a single chart on U and the atlas {(¢(U),14))} with a single chart
on ¢(U). Since Lypyo ¢ o 0~ 9(U) — o(U) is the 1dent1ty map, it is C*.
Proposition 6. 8(11):>(1) ¢ is C™.

To test the smoothness of ¢~!: ¢(U) — U, we use the same atlases as above.
Since ¢ 0 ¢! o Ly () = Lg(p): 9(U) = ¢(U), the map ¢~ is also C*. O

Proposition 6.11. Let U be an open subset of a manifold M of dimension n. If
F:U — F(U) C R" is a diffeomorphism onto an open subset of R", then (U,F)
is a chart in the differentiable structure of M.

Proof. For any chart (Uy, ¢¢) in the maximal atlas of M, both ¢q and ¢! are C*
by Proposition 6.10. As composites of C* maps, both F o ¢, ' and ¢¢ o F~! are C*.
Hence, (U, F) is compatible with the maximal atlas. By the maximality of the atlas,
the chart (U, F) is in the atlas. O

6.4 Smoothness in Terms of Components

In this subsection we derive a criterion that reduces the smoothness of a map to the
smoothness of real-valued functions on open sets.

Proposition 6.12 (Smoothness of a vector-valued function). Let N be a manifold
and F: N — R"™ a continuous map. The following are equivalent:

(i) The map F: N — R™ is C™.
(ii) The manifold N has an atlas such that for every chart (U, @) in the atlas, the
map F o ¢~ ': ¢(U) — R™ is C.
(iii) For every chart (U,¢) on N, themap F o ¢ '+ ¢(U) — R™ is C*.

Proof. (i1) = (i): In Proposition 6.8(ii), take *U to be the atlas with the single chart
(Rm, ]lRm) on M =R™,

(i) = (iii): In Proposition 6.8(iii), let (V, y) be the chart (R™, 1gn) on M = R™.
(iii) = (ii): Obvious. a

Proposition 6.13 (Smoothness in terms of components). Let N be a manifold. A
vector-valued function F: N — R is C* if and only if its component functions
F'....,F": N =R are all C*.
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Proof.
The map F: N - R"is C”

<= for every chart (U,¢) on N, the map F o ¢—': ¢(U) — R™ is C* (by Proposi-
tion 6.12)

<= for every chart (U,¢) on N, the functions F' o ¢~ ': ¢(U) — R are all C
(definition of smoothness for maps of Euclidean spaces)

<= the functions F': N — R are all C* (by Proposition 6.3). a

Exercise 6.14 (Smoothness of a map to a circle).* Prove that the map F: R — S!, F(r) =
(cost,sint) is C*.

Proposition 6.15 (Smoothness of a map in terms of vector-valued functions). Let
F: N — M be a continuous map between two manifolds of dimensions n and m
respectively. The following are equivalent:

(i) The map F: N — M is C™.
(ii) The manifold M has an atlas such that for every chart (V,w) = (V,y',...,y") in
the atlas, the vector-valued function W o F: F~1(V) — R™ is C*.
(iii) For every chart (V,w) = (V,y',...,y"™) on M, the vector-valued function y o F :
F7Y V) = R™is C*.

Proof. (ii) = (i): Let ¥ be the atlas for M in (ii), and let & = {(U,9)} be
an arbitrary atlas for N. For each chart (V,y) in the atlas U, the collection
{(UNF'(V),9lyrr-1(v))} is an atlas for F~'(V). Since y o F: F~'(V) — R”
is C, by Proposition 6.12(i)=>(iii),

VoFo¢ i p(UNFHV)) = R™

is C*. It then follows from Proposition 6.8(ii)=-(i) that F: N — M is C™.

(i) = (iii): Being a coordinate map, Y is C* (Proposition 6.10). As the composite of
two C* maps, Yo F is C”.

(iii) = (ii): Obvious. a

By Proposition 6.13, this smoothness criterion for a map translates into a smooth-
ness criterion in terms of the components of the map.

Proposition 6.16 (Smoothness of a map in terms of components). Let F: N — M
be a continuous map between two manifolds of dimensions n and m respectively. The
following are equivalent:

(i) The map F: N — M is C™.

(ii) The manifold M has an atlas such that for every chart (V,w) = (V,y!,....y") in
the atlas, the components y' o F: F~1(V) — R of F relative to the chart are all
c=.

(iii) For every chart (V,y) = (V,y',...,y") on M, the componentsy' o F: F~1(V) —
R of F relative to the chart are all C*™.
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6.5 Examples of Smooth Maps

We have seen that coordinate maps are smooth. In this subsection we look at a few
more examples of smooth maps.

Example 6.17 (Smoothness of a projection map). Let M and N be manifolds and
w: M xN— M, n(p,q) = p the projection to the first factor. Prove that 7 is a C*
map.

Solution. Let (p,q) be an arbitrary point of M x N. Suppose (U,¢) = (U,x',...,x")
and (V,y) = (V,y',...,y") are coordinate neighborhoods of p and ¢ in M and N
respectively. By Proposition 5.18, (U x V,¢ x w) = (U x V,x', ... ¥,y ... ,y") is
a coordinate neighborhood of (p,q). Then

(pomo (P x l[l)_l) (@',....a"b',....b") = (a',...,a"™),

which is a C* map from (¢ x y)(U x V) in R"*" to ¢(U) in R™, so w is C™ at (p, q).
Since (p,q) was an arbitrary point in M x N, 7 is C* on M X N.

Exercise 6.18 (Smoothness of a map to a Cartesian product).* Let M|, M;, and N be
manifolds of dimensions my, my, and n respectively. Prove that a map (f1, f2): N — M X M,
is C” if and only if f;: N — M;, i = 1,2, are both C*.

Example 6.19. In Examples 5.7 and 5.16 we showed that the unit circle S! defined by
x?+y? =1in R? is a C* manifold. Prove that a C** function f(x,y) on R? restricts
to a C* function on S'.

Solution. To avoid confusing functions with points, we will denote a point on §'
as p = (a,b) and use x, y to mean the standard coordinate functions on R2. Thus,
x(a,b) =aand y(a,b) = b. Suppose we can show that x and y restrict to C** functions
on S'. By Exercise 6.18, the inclusion map i: S' — R2, i(p) = (x(p),y(p)) is then
C=on S'. As the composition of C* maps, flgt = foiwillbe C* on S! (Proposition
6.9).

Consider first the function x. We use the atlas (U;, ¢;) from Example 5.16. Since
x is a coordinate function on U; and on U,, by Proposition 6.10 it is C* on U UU, =
S' —{(£1,0)}. To show that x is C* on Us, it suffices to check the smoothness of
Xo(]);li 03 (U3) — R:

(vo05") (0) =x(V1-2b) =1 -12
On Ui, we have b # +1, so that V1 — b2 is a C* function of b. Hence, x is C* on Us.

OnU4,
(xo 0,1 (b) :x(—\/l —b2,b) — 1=,

which is C* because b is not equal to +1. Since x is C* on the four open sets Uy, U,,
Us, and Uy, which cover S', x is C* on S'.
The proof that y is C* on S! is similar.
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Armed with the definition of a smooth map between manifolds, we can define a
Lie group.

Definition 6.20. A Lie group' is a C* manifold G having a group structure such
that the multiplication map
U:GxG—G

and the inverse map
1:G—=G, 1(x)=x",

are both C*.

Similarly, a topological group is a topological space having a group structure
such that the multiplication and inverse maps are both continuous. Note that a topo-
logical group is required to be a topological space, but not a topological manifold.

Examples.
(1) The Euclidean space R” is a Lie group under addition.
(i1) The set C* of nonzero complex numbers is a Lie group under multiplication.
(iii) The unit circle S' in C* is a Lie group under multiplication.
(iv) The Cartesian product G1 X G, of two Lie groups (G1, ) and (G3, L) is a Lie
group under coordinatewise multiplication t; X L.

Example 6.21 (General linear group). In Example 5.15 we defined the general linear
group

GL(n,R) = {A = [a;;] € R"*" | det A # 0}.
As an open subset of R"*”, it is a manifold. Since the (i, j)-entry of the product of
two matrices A and B in GL(n,R),

n

(AB)ij =Y auby;,
k=1

is a polynomial in the coordinates of A and B, matrix multiplication
u: GL(n,R) x GL(n,R) — GL(n,R)

is a C* map.

Recall that the (i, j)-minor of a matrix A is the determinant of the submatrix of
A obtained by deleting the ith row and the jth column of A. By Cramer’s rule from
linear algebra, the (i, j)-entry of A~! is

1

~ detA (_1)i+j((j7i)-minor of A),

(AN

which is a C* function of the a;;’s provided det A # 0. Therefore, the inverse map
1: GL(n,R) — GL(n,R) is also C*. This proves that GL(n,R) is a Lie group.

ILie groups and Lie algebras are named after the Norwegian mathematician Sophus Lie
(1842-1899). In this context, “Lie” is pronounced “lee,” not “lye.”
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In Section 15 we will study less obvious examples of Lie groups.

NOTATION. The notation for matrices presents a special challenge. An n X n matrix
A can represent a linear transformation y = Ax, with x,y € R”. In this case, y' =
Y, aix/, 50 A= [d}]. Annx n matrix can also represent a bilinear form (x,y) = x" Ay
with x,y € R”. In this case, (x,y) = ¥; jx'a;jy/, 50 A = [a;j]. In the absence of any
context, we will write a matrix as A = [q; j], using a lowercase letter a to denote an
entry of a matrix A and using a double subscript ( );; to denote the (i, j)-entry.

6.6 Partial Derivatives

On a manifold M of dimension n, let (U, ) be a chart and f a C* function As a
function into R”, ¢ has n components x',...,x". This means that if ' ..., 7" are
the standard coordinates on R”, then x' = 7’ o ¢. For p € U, we define the partial
derivative d f /dx' of f with respect to x' at p to be

8 o -1
O] = =2V 0 oy = 2,

) "o (p)

(foo ).

Since p = ¢~ (¢(p)), this equation may be rewritten in the form

8 o -1
3)]:,- (07 (0(p)) = (fgr? )(¢(p))-

Thus, as functions on ¢(U),
af oqu _ a(f°¢_1)
ox ort

The partial derivative d f/dx’ is C on U because its pullback (9 f/dx') o« ¢! is C
on ¢(U).

In the next proposition we see that partial derivatives on a manifold satisfy the
same duality property dr'/dr/ = §; as the coordinate functions r' on R”.

Proposition 6.22. Suppose (U,x',...,x") is a chart on a manifold. Then dx' | dx/ = 5;
Proof. Ata point p € U, by the definition of 9 /dx/|,,
ox! d(xop!) d(rrogoo) or ;

Definition 6.23. Let F: N — M be a smooth map, and let (U,¢) = (U,x!,...,x")
and (V,y) = (V,y',...,y™) be charts on N and M respectively such that F (U) C V.
Denote by

Fii=y oF=royoF:U—R



68 §6 Smooth Maps on a Manifold

the ith component of F in the chart (V,y). Then the matrix [dF/dx/] is called
the Jacobian matrix of F relative to the charts (U,¢) and (V,y). In case N and
M have the same dimension, the determinant det[dF'/dx’] is called the Jacobian

determinant of F relative to the two charts. The Jacobian determinant is also written
as A(F',... ,F")/d(x!,... .x").

When M and N are open subsets of Euclidean spaces and the charts are w,r!,
., P) and (V,r! ..., /"), the Jacobian matrix [0F'/dr/], where F' = r' o F, is the
usual Jacobian matrix from calculus.

Example 6.24 (Jacobian matrix of a transition map). Let (U, ¢) = (U,x',...,x") and
(V,w) = (V,y',...,y") be overlapping charts on a manifold M. The transition map
vod ' ¢(UNV) — w(UNV) is a diffeomorphism of open subsets of R”. Show
that its Jacobian matrix J(y o ¢ ~!) at ¢(p) is the matrix [dy'/dx/] of partial deriva-
tives at p.

Solution. By definition, J(y o ¢ ') = [d(y o ¢~)'/dr/], where

d o ~1)i 0 rio o -1 d U -1 i
W0 o =" ¥ oo = 2O (g = 2.

6.7 The Inverse Function Theorem

By Proposition 6.11, any diffeomorphism F: U — F(U) C R" of an open subset U
of a manifold may be thought of as a coordinate system on U. We say that a C*
map F': N — M is locally invertible or a local diffeomorphism at p € N if p has a
neighborhood U on which F|y: U — F(U) is a diffeomorphism.

Given n smooth functions F',...,F" in a neighborhood of a point p in a man-
ifold N of dimension n, one would like to know whether they form a coordinate
system, possibly on a smaller neighborhood of p. This is equivalent to whether
F = (F',...,F"): N — R" is a local diffeomorphism at p. The inverse function
theorem provides an answer.

Theorem 6.25 (Inverse function theorem for R"). Let F: W — R" be a C* map
defined on an open subset W of R". For any point p in W, the map F is locally
invertible at p if and only if the Jacobian determinant det[dF" /dr’ (p)] is not zero.

This theorem is usually proved in an undergraduate course on real analysis. See
Appendix B for a discussion of this and related theorems. Because the inverse func-
tion theorem for R” is a local result, it easily translates to manifolds.

Theorem 6.26 (Inverse function theorem for manifolds). Let F: N — M be a C*
map between two manifolds of the same dimension, and p € N. Suppose for some
charts (U,¢) = (U,x',...,x") about p in N and (V,y) = (V,y',...,y") about F(p)
inM, F(U)CV. Set F' =y o F. Then F is locally invertible at p if and only if its
Jacobian determinant det[dF'/dx'(p)] is nonzero.
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Fig. 6.4. The map F is locally invertible at p because W o F o ¢! is locally invertible at d(p).

Proof. Since F! =y' o F = rl o y o F, the Jacobian matrix of F relative to the charts
(U,9) and (V,y) is

)] =[P D] < [P D ).

which is precisely the Jacobian matrix at ¢ (p) of the map
VoFod LR"D9(U) — w(V) CR"
between two open subsets of R”. By the inverse function theorem for R”,

i rio o ) -1
det{gii(p)}:det{& ("’a: ¢ )(¢(p)) #0

if and only if ¥ o F o ¢! is locally invertible at ¢(p). Since y and ¢ are diffeomor-
phisms (Proposition 6.10), this last statement is equivalent to the local invertibility
of F at p (see Figure 6.4). a

We usually apply the inverse function theorem in the following form.

Corollary 6.27. Let N be a manifold of dimension n. A set of n smooth func-
tions F',... F" defined on a coordinate neighborhood (U,xl,...,x”) of a point
p € N forms a coordinate system about p if and only if the Jacobian determinant
det[dF"/dx/(p)] is nonzero.

Proof. LetF = (F',...,F"): U — R". Then

det[dF'/dx/ (p)] #0

<= F: U — R"is locally invertible at p (by the inverse function theorem)

<= there is a neighborhood W of p in N such that F: W — F(W) is a diffeomor-
phism (by the definition of local invertibility)



70 §6 Smooth Maps on a Manifold

<~ (W,F ' ... F ") is a coordinate chart about p in the differentiable structure of
N (by Proposition 6.11). O

Example. Find all points in R? in a neighborhood of which the functions x> +y> — 1,y
can serve as a local coordinate system.

Solution. Define F: R? — R? by
F(x7y) = (x2+y2_ 10’) .

The map F can serve as a coordinate map in a neighborhood of p if and only if it is
a local diffeomorphism at p. The Jacobian determinant of F is

J (F17F2) 2x 2y
s 93] =2

By the inverse function theorem, F is a local diffeomorphism at p = (x,y) if and only
if x #£ 0. Thus, F can serve as a coordinate system at any point p not on the y-axis.

Problems

6.1. Differentiable structures on R

Let R be the real line with the differentiable structure given by the maximal atlas of the chart
(R, =1: R — R), and let R’ be the real line with the differentiable structure given by the
maximal atlas of the chart (R, y: R — R), where w(x) = x!/3.

(a) Show that these two differentiable structures are distinct.
(b) Show that there is a diffeomorphism between R and R’. (Hint: The identity map R — R
is not the desired diffeomorphism; in fact, this map is not smooth.)

6.2. The smoothness of an inclusion map
Let M and N be manifolds and let go be a point in N. Prove that the inclusion map iy, : M —

M x N, ig(p) = (p,q0),1s C~.

6.3.* Group of automorphisms of a vector space

Let V be a finite-dimensional vector space over R, and GL(V) the group of all linear auto-
morphisms of V. Relative to an ordered basis e = (ey,...,e,) for V, a linear automorphism
L € GL(V) is represented by a matrix [aj-] defined by

L(ej) = Zaﬂ-ei.
1
The map
¢.: GL(V) — GL(n,R),
L+ [a;}.,
is a bijection with an open subset of R"*" that makes GL(V) into a C* manifold, which we

denote temporarily by GL(V),. If GL(V), is the manifold structure induced from another
ordered basis u = (uy,...,uy) for V, show that GL(V), is the same as GL(V),,.

6.4. Local coordinate systems
Find all points in R3ina neighborhood of which the functions x, 2+ y2 +72— 1, z can serve
as a local coordinate system.
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87 Quotients

Gluing the edges of a malleable square is one way to create new surfaces. For ex-
ample, gluing together the top and bottom edges of a square gives a cylinder; gluing
together the boundaries of the cylinder with matching orientations gives a torus (Fig-
ure 7.1). This gluing process is called an identification or a quotient construction.

WW®W@

Fig. 7.1. Gluing the edges of a malleable square.

The quotient construction is a process of simplification. Starting with an equiv-
alence relation on a set, we identify each equivalence class to a point. Mathematics
abounds in quotient constructions, for example, the quotient group, quotient ring,
or quotient vector space in algebra. If the original set is a topological space, it is
always possible to give the quotient set a topology so that the natural projection map
becomes continuous. However, even if the original space is a manifold, a quotient
space is often not a manifold. The main results of this section give conditions under
which a quotient space remains second countable and Hausdorff. We then study real
projective space as an example of a quotient manifold.

Real projective space can be interpreted as a quotient of a sphere with antipodal
points identified, or as the set of lines through the origin in a vector space. These
two interpretations give rise to two distinct generalizations—covering maps on the
one hand and Grassmannians of k-dimensional subspaces of a vector space on the
other. In one of the exercises, we carry out an extensive investigation of G(2,4), the
Grassmannian of 2-dimensional subspaces of R*.

7.1 The Quotient Topology

Recall that an equivalence relation on a set S is a reflexive, symmetric, and transitive
relation. The equivalence class [x] of x € S is the set of all elements in S equivalent
to x. An equivalence relation on S partitions S into disjoint equivalence classes. We
denote the set of equivalence classes by S/~ and call this set the quotient of S by
the equivalence relation ~. There is a natural projection map m: S — S/~ that sends
x € S to its equivalence class [x].

Assume now that S is a topological space. We define a topology on S/~ by
declaring a set U in S/~ to be open if and only if 7~!(U) is open in S. Clearly, both
the empty set & and the entire quotient S/~ are open. Further, since



72 §7 Quotients
n! (UUoc> = U”_I(Ua)
a a
and
77.771 <ﬂU,> = (]77]71(U,’)7

the collection of open sets in S/~ is closed under arbitrary unions and finite inter-
sections, and is therefore a topology. It is called the quotient topology on S/~. With
this topology, S/~ is called the quotient space of S by the equivalence relation ~.
With the quotient topology on S/~, the projection map : S — S/~ is automatically
continuous, because the inverse image of an open set in S/~ is by definition open
inS.

7.2 Continuity of a Map on a Quotient

Let ~ be an equivalence relation on the topological space S and give S/~ the quotient
topology. Suppose a function f: § — Y from S to another topological space Y is
constant on each equivalence class. Then it induces amap f: S/~ — Y by

F(p)=f(p) forpes.

In other words, there is a commutative diagram

S / >Y.

T /
v S

S/~

Proposition 7.1. The induced map f: S/~ — Y is continuous if and only if the map
f: S —Y is continuous.

Proof.
(=) If f is continuous, then as the composite f o 7 of continuous functions, f is also
continuous.

(<=) Suppose f is continuous. Let V be openin Y. Then f~1(V) = =1 (f~1(V)) is
open in S. By the definition of quotient topology, f~Y(V) is open in §/~. Since V
was arbitrary, f: S/~ — Y is continuous. O

This proposition gives a useful criterion for checking whether a function f on a
quotient space S/~ is continuous: simply lift the function f to f := f o 7 on S and
check the continuity of the lifted map f on S. For examples of this, see Example 7.2
and Proposition 7.3.
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7.3 Identification of a Subset to a Point

If A is a subspace of a topological space S, we can define a relation ~ on S by
declaring
x~x forallxeS$

(so the relation is reflexive) and
x~y forallx,yecA.

This is an equivalence relation on S. We say that the quotient space S/~ is obtained
from S by identifying A to a point.

Example 7.2. Let I be the unit interval [0, 1] and / /~ the quotient space obtained from
I by identifying the two points {0, 1} to a point. Denote by S' the unit circle in the
complex plane. The function f: I — S', f(x) = exp(27ix), assumes the same value
at 0 and 1 (Figure 7.2), and so induces a function f: I/~ — S'.

Fig. 7.2. The unit circle as a quotient space of the unit interval.

Proposition 7.3. The function f: I/~ — S' is a homeomorphism.

Proof. Since f is continuous, f is also continuous by Proposition 7.1. Clearly, f is a
bijection. As the continuous image of the compact set /, the quotient / /~ is compact.
Thus, f is a continuous bijection from the compact space I /~ to the Hausdorff space
S'. By Corollary A.36, f is a homeomorphism. |

7.4 A Necessary Condition for a Hausdorff Quotient

The quotient construction does not in general preserve the Hausdorff property or
second countability. Indeed, since every singleton set in a Hausdorff space is closed,
if #: S — S/~ is the projection and the quotient S/~ is Hausdorff, then for any
p €8, its image {7 (p)} is closed in §/~. By the continuity of 7, the inverse image
7~ '({n(p)}) = [p] is closed in S. This gives a necessary condition for a quotient
space to be Hausdorff.

Proposition 7.4. If the quotient space S/~ is Hausdorff, then the equivalence class
[p] of any point p in S is closed in S.
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Example. Define an equivalence relation ~ on R by identifying the open interval
]0,9[ to a point. Then the quotient space R /~ is not Hausdorff because the equiva-
lence class ]0,o0[ of ~ in R corresponding to the point ]0, e[ in R/~ is not a closed
subset of R.

7.5 Open Equivalence Relations

In this section we follow the treatment of Boothby [3] and derive conditions under
which a quotient space is Hausdorff or second countable. Recall thatamap f: X =Y
of topological spaces is open if the image of any open set under f is open.

Definition 7.5. An equivalence relation ~ on a topological space S is said to be
open if the projection map : S — S/~ is open.
In other words, the equivalence relation ~ on § is open if and only if for every
open set U in S, the set
n ! (m(U) = U
xeU

of all points equivalent to some point of U is open.

Example 7.6. The projection map to a quotient space is in general not open. For
example, let ~ be the equivalence relation on the real line R that identifies the two
points 1 and —1, and w: R — R/~ the projection map.

:
L ° ) ° 5 5
T ® 7 ®
-2 -1 0 1

Fig. 7.3. A projection map that is not open.

The map 7 is open if and only if for every open set V in R, its image 7(V) is open
in R/~, which by the definition of the quotient topology means that 7~ !(7(V)) is
open in R. Now let V be the open interval |—2,0[ in R. Then

7\ (@(V)) =1-2,0[ U {1},

which is not open in R (Figure 7.3). Therefore, the projection map 7: R — R/~ is
not an open map.

Given an equivalence relation ~ on S, let R be the subset of S x S that defines the
relation
R={(x,y) €SxS|x~y}.

We call R the graph of the equivalence relation ~.
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Fig. 7.4. The graph R of an equivalence relation and an open set U x V disjoint from R.

Theorem 7.7. Suppose ~ is an open equivalence relation on a topological space S.
Then the quotient space S/~ is Hausdorf{f if and only if the graph R of ~ is closed in
S xS.

Proof. There is a sequence of equivalent statements:

Risclosedin S x §

<= (§xS)—RisopeninS xS

<= for every (x,y) € S x §— R, there is a basic open set U X V containing (x,y)
such that (U x V) NR = & (Figure 7.4)

<= for every pair x ~ y in S, there exist neighborhoods U of x and V of y in S such
that no element of U is equivalent to an element of V

<= for any two points [x] # [y] in S/~, there exist neighborhoods U of x and V' of
yin Ssuchthat 7(U)N7(V) = inS/~. (%)

We now show that this last statement () is equivalent to S/~ being Hausdorff.
First assume (). Since ~ is an open equivalence relation, £(U) and 7t(V) are disjoint
open sets in S/~ containing [x] and [y] respectively. Therefore, S/~ is Hausdorff.

Conversely, suppose S/~ is Hausdorff. Let [x] # [y] in S/~. Then there exist
disjoint open sets A and B in S/~ such that [x] € A and [y] € B. By the surjectivity of
m, we have A = m(n~'A) and B = n(7~'B) (see Problem 7.1). Let U = 7~ 'A and
V=n"'B. ThenxcU,y€V,and A= n(U) and B = nt(V) are disjoint open sets in
S/~. O

If the equivalence relation ~ is equality, then the quotient space S/~ is § itself
and the graph R of ~ is simply the diagonal

A={(x,x) € SxS}.

In this case, Theorem 7.7 becomes the following well-known characterization of a
Hausdorff space by its diagonal (cf. Problem A.6).

Corollary 7.8. A topological space S is Hausdorff if and only if the diagonal A in
S x S is closed.
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Theorem 7.9. Let ~ be an open equivalence relation on a topological space S with
projection w: S — S/~. If B = {Bq} is a basis for S, then its image {n(By)} under
Tt is a basis for S/~.

Proof. Since 7 is an open map, {7 (Bg)} is a collection of open sets in S/~. Let W
be an open set in S/~ and [x] € W, x € S. Then x € 7~ (W). Since 7~ (W) is open,
there is a basic open set B € B such that

xeBCa \(W).
Then
[x] =n(x) € m(B) C W,
which proves that {m(Bg)} is a basis for §/~. O

Corollary 7.10. If ~ is an open equivalence relation on a second-countable space
S, then the quotient space S/~ is second countable.

7.6 Real Projective Space
Define an equivalence relation on R**! — {0} by
x~y <= y=txfor some nonzero real number 7,

where x, y € R**! — {0}. The real projective space RP" is the quotient space of
R"*! — {0} by this equivalence relation. We denote the equivalence class of a point
(@,...,a") e R"*1 — {0} by [a°,...,a"] and let w: R"! — {0} — RP" be the pro-
jection. We call [a°,...,a"] homogeneous coordinates on RP".

Geometrically, two nonzero points in R"*! are equivalent if and only if they lie
on the same line through the origin, so RP" can be interpreted as the set of all lines
through the origin in R"*!. Each line through the origin in R"*! meets the unit

Fig. 7.5. A line through 0 in R3 corresponds to a pair of antipodal points on S2.

sphere S” in a pair of antipodal points, and conversely, a pair of antipodal points on
S" determines a unique line through the origin (Figure 7.5). This suggests that we
define an equivalence relation ~ on S” by identifying antipodal points:
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X~y < x==4y, x,yeS".

We then have a bijection RP" < §" /~.

Exercise 7.11 (Real projective space as a quotient of a sphere).* Forx= (x',..., X eR",

let ||x|| = /¥;(x')2 be the modulus of x. Prove that the map f: R"+! — {0} — §" given by

X

()

I

induces a homeomorphism f: RP" — S" /~. (Hint: Find an inverse map
g: 5"~ —=RP"

and show that both f and g are continuous.)

Example 7.12 (The real projective line RP").

Fig. 7.6. The real projective line RP! as the set of lines through 0 in R2.

Each line through the origin in R? meets the unit circle in a pair of antipodal
points. By Exercise 7.11, RP! is homeomorphic to the quotient S' /~, which is in
turn homeomorphic to the closed upper semicircle with the two endpoints identified
(Figure 7.6). Thus, RP' is homeomorphic to S'.

Example 7.13 (The real projective plane RP%). By Exercise 7.11, there is a homeo-
morphism
RP? ~ §?/{antipodal points} = 5% /~ .

For points not on the equator, each pair of antipodal points contains a unique point
in the upper hemisphere. Thus, there is a bijection between S? /~ and the quotient of
the closed upper hemisphere in which each pair of antipodal points on the equator
is identified. It is not difficult to show that this bijection is a homeomorphism (see
Problem 7.2).

Let H? be the closed upper hemisphere

H? ={(x,52) eR [P +y*+7=1,2>0}

and let D? be the closed unit disk
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D? ={(x,y) e R? |2 +y* < 1}.
These two spaces are homeomorphic to each other via the continuous map
¢: H> = D,
¢(x,3,2) = (x,3),

and its inverse

v: D* — H?,

y(x,y) = (x,y, V-2 —yz) :
On H?, define an equivalence relation ~ by identifying the antipodal points on the

equator:
(.X,y,O) ~ (—X, _y70)7 x2+y2 =1

On D?, define an equivalence relation ~ by identifying the antipodal points on the
boundary circle:

(X)) ~ (=x,=y), P4y =1.
Then ¢ and y induce homeomorphisms
¢: H?j~ = D*/~, :D*/~—H*/~.
In summary, there is a sequence of homeomorphisms

RP* 5% 82/~ 3 H? )~ 5 D? )
that identifies the real projective plane as the quotient of the closed disk D* with the
antipodal points on its boundary identified. This may be the best way to picture RP>
(Figure 7.7).

Fig. 7.7. The real projective plane as the quotient of a disk.

The real projective plane RP? cannot be embedded as a submanifold of R3. How-
ever, if we allow self-intersection, then we can map RP? into R? as a cross-cap (Fig-
ure 7.8). This map is not one-to-one.
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D B B=D
D B
A v 4 5
D B ’ !
\ e
N_— N_— N_—
Fig. 7.8. The real projective plane immersed as a cross-cap in R>.

Proposition 7.14. The equivalence relation ~ on R" 1 — {0} in the definition of RP"
is an open equivalence relation.

Proof. For an open set U C R"*! — {0}, the image (U) is open in RP" if and only
if z=!(z(U)) is open in R**! — {0}. But 7! (7(U)) consists of all nonzero scalar
multiples of points of U; that is,

rl(nU)=Jtw=J{tr|peU}.

teR* teR*

Since multiplication by € R* is a homeomorphism of R"*! — {0}, the set tU is
open for any t. Therefore, their union |J,cg~ tU = = (x(U)) is also open. O

Corollary 7.15. The real projective space RP" is second countable.
Proof. Apply Corollary 7.10. O
Proposition 7.16. The real projective space RP" is Hausdorff.
Proof. Let S = R""! — {0} and consider the set
R={(x,y) €SxS|y=txforsomerecR*}.

If we write x and y as column vectors, then [x y] is an (n+ 1) X 2 matrix, and R may
be characterized as the set of matrices [x y] in S x S of rank < 1. By a standard fact
from linear algebra, rk[x y] < 1 is equivalent to the vanishing of all 2 x 2 minors of
[x y] (see Problem B.1). As the zero set of finitely many polynomials, R is a closed
subset of § x S. Since ~ is an open equivalence relation on S, and R is closed in
S x S, by Theorem 7.7 the quotient S/~ ~ RP" is Hausdorff. a

7.7 The Standard C~ Atlas on a Real Projective Space

Let [ao, ...,a"] be homogeneous coordinates on the projective space RP". Although
a’ is not a well-defined function on RP", the condition a® # 0 is independent of the
choice of a representative for [@°,...,a"]. Hence, the condition a’ # 0 makes sense

on RP", and we may define
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Up:={[d’,...,d" e RP" | a° # 0}.
Similarly, foreachi=1,...,n, let

Ui :={[d...,a"]| €RP" | a' # 0}.

Define
(P(): Uy — R"

1 n
a a
[d,...,d"] — (a07“"a0>'

This map has a continuous inverse

by

(b',...,b") = [1,b',...,b"]

and is therefore a homeomorphism. Similarly, there are homeomorphisms for each
i=1,....n

(1),': U,'—>Rn7

where the caret sign ~ over a’/a’ means that that entry is to be omitted. This proves
that RP" is locally Euclidean with the (U;, ¢;) as charts.

On the intersection Uy N U, we have a’ = 0 and al # 0, and there are two coor-
dinate systems

Cl(l(l

/\

0 a'
ao’ao7 aO al al’m’al '

We will refer to the coordinate functions on Uy as x',...,x", and the coordinate
functions on U as y',...,y". On U,
ai
x L0 = L,...,n,
and on U,

1 a® 2 a? , a

y = 1 y = 17 , Y = 1

a a a

Then on UyNUj,
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2 3
11 2_ X 3_ X n_ X
y_ 1 y_ 1° )’— 1° ] y_xlv

) .
1 x° x x"

1 o
(¢1 °¢O )(x) - (x17x17x17"'ax1> .
This is a C* function because x' # 0 on ¢y(Up N U;). On any other U; NU; an
analogous formula holds. Therefore, the collection {(U;, ¢;) }i—o.... » is a C* atlas for
RP", called the standard atlas. This concludes the proof that RP" is a C* manifold.

Problems

7.1. Image of the inverse image of a map
Let f: X — Y be a map of sets, and let B C Y. Prove that f(f~!(B)) = BN f(X). Therefore,
if f is surjective, then f(f~'(B)) = B.

7.2. Real projective plane

Let H? be the closed upper hemisphere in the unit sphere $2, and let i: H> — S be the
inclusion map. In the notation of Example 7.13, prove that the induced map f: H 2 J~— 52 J~
is a homeomorphism. (Hint: Imitate Proposition 7.3.)

7.3. Closedness of the diagonal of a Hausdorff space

Deduce Theorem 7.7 from Corollary 7.8. (Hint: To prove that if S/~ is Hausdorff, then the
graph R of ~ is closed in S x S, use the continuity of the projection map 7w: § — S/~. To
prove the reverse implication, use the openness of 7.)

7.4.% Quotient of a sphere with antipodal points identified
Let 8" be the unit sphere centered at the origin in R"*!. Define an equivalence relation ~ on
S" by identifying antipodal points:

X~y < x==4y, x,yeS.

(a) Show that ~ is an open equivalence relation.
(b) Apply Theorem 7.7 and Corollary 7.8 to prove that the quotient space S” /~ is Hausdorff,
without making use of the homeomorphism RP" ~ §" /~.

7.5.% Orbit space of a continuous group action

Suppose a right action of a topological group G on a topological space S is continuous; this
simply means that the map S X G — S describing the action is continuous. Define two points
x,y of S to be equivalent if they are in the same orbit; i.e., there is an element g € G such that
y =xg. Let S/G be the quotient space; it is called the orbit space of the action. Prove that the
projection map 7: S — S/G is an open map. (This problem generalizes Proposition 7.14, in
which G =R* =R —{0} and § = R"*! — {0}. Because R* is commutative, a left R*-action
becomes a right R*-action if scalar multiplication is written on the right.)

7.6. Quotient of R by 277
Let the additive group 277 act on R on the right by x-27n = x+ 27n, where n is an integer.
Show that the orbit space R/277Z is a smooth manifold.



82 §7 Quotients

7.7. The circle as a quotient space

(a) Let {(Ug, ¢a) (21:1 be the atlas of the circle S! in Example 5.7, and let ¢ be the map ¢y
followed by the projection R — R /277Z. On Uy NU, = A 11 B, since ¢ and ¢, differ by an
integer multiple of 27, ¢; = ¢,. Therefore, ¢; and ¢, piece together to give a well-defined
map ¢: S' — R/2xZ. Prove that ¢ is C*.

(b) The complex exponential R — § 1t e is constant on each orbit of the action of 277
on R. Therefore, there is an induced map F: R/27Z — S', F([t]) = e. Prove that F
is C~.

(c) Prove that F: R/217Z — S lisa diffeomorphism.

7.8. The Grassmannian G(k,n)
The Grassmannian G(k,n) is the set of all k-planes through the origin in R”. Such a k-plane
is a linear subspace of dimension k of R” and has a basis consisting of & linearly independent
vectors aj,...,a; in R, It is therefore completely specified by an n x k matrix A = [a; --- ay]
of rank k, where the rank of a matrix A, denoted by rk A, is defined to be the number of linearly
independent columns of A. This matrix is called a matrix representative of the k-plane. (For
properties of the rank, see the problems in Appendix B.)

Two bases ay,...,a; and by,...,b; determine the same k-plane if there is a change-of-
basis matrix g = [g;;] € GL(k,RR) such that

bj=Y aigij, 1<ij<k.
i

In matrix notation, B = Ag.
Let F(k,n) be the set of all n x k matrices of rank k, topologized as a subspace of R™*¥,
and ~ the equivalence relation

A~ B iff thereisamatrix g € GL(k,R) such that B = Ag.

In the notation of Problem B.3, F(k,n) is the set Dmax in R"*k and is therefore an open
subset. There is a bijection between G(k,n) and the quotient space F(k,n)/~. We give the
Grassmannian G(k,n) the quotient topology on F (k,n)/~.

(a) Show that ~ is an open equivalence relation. (Hint: Either mimic the proof of Proposi-
tion 7.14 or apply Problem 7.5.)

(b) Prove that the Grassmannian G(k,n) is second countable. (Hinz: Apply Corollary 7.10.)

(c) Let S = F(k,n). Prove that the graph R in S x S of the equivalence relation ~ is closed.
(Hint: Two matrices A = [a] --- ai| and B= [by --- D] in F (k,n) are equivalent if and only
if every column of B is a linear combination of the columns of A if and only if rk[A B] <k
if and only if all (k+ 1) x (k+ 1) minors of [A B] are zero.)

(d) Prove that the Grassmannian G(k,n) is Hausdorff. (Hint: Mimic the proof of Proposi-
tion 7.16.)

Next we want to find a C* atlas on the Grassmannian G(k,n). For simplicity, we specialize to
G(2,4). For any 4 x 2 matrix A, let A;; be the 2 X 2 submatrix consisting of its ith row and jth
row. Define

Vij={A € F(2,4) | A;; is nonsingular}.

Because the complement of V;; in F(2,4) is defined by the vanishing of det A;;, we conclude
that V;; is an open subset of F(2,4).

(e) Prove that if A € Vj;, then Ag € V;; for any nonsingular matrix g € GL(2,R).
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Define U;; = V;j/~. Since ~ is an open equivalence relation, U;; = V;;/~ is an open subset

of G(2,4).
For A € Vi,
10
ot [ 1
At =1, 7{A34Ale}'
* %

This shows that the matrix representatives of a 2-plane in U, have a canonical form B in
which By, is the identity matrix.

(f) Show that the map @12 : Vi» — R2*2,
P12(4) = AzAy),

induces a homeomorphism ¢;5: Ujy — R2*2,

(g) Define similarly homeomorphisms ¢;;: U;; — R2%2, Compute @3 o ¢231, and show that it
is C~.

(h) Show that {U;; | 1 <i < j <4} is an open cover of G(2,4) and that G(2,4) is a smooth
manifold.

Similar consideration shows that F(k,n) has an open cover {V;}, where I is a strictly
ascending multi-index 1 < iy < --- < i <n. For A € F(k,n), let A; be the k x k submatrix of
A consisting of ijth, ..., iyth rows of A. Define

Vi ={A € G(k,n) | det A; # 0}.
Next define ¢y : V; — R(—K)xk by
d1(A) = (AA] )y,

where ( )y denotes the (n — k) x k submatrix obtained from the complement I’ of the multi-
index I. Let Uy = V;/~. Then ¢ induces a homeomorphism ¢: Uy — R(=K)>k It is not
difficult to show that {(Ur, ¢r)} is a C* atlas for G(k,n). Therefore the Grassmannian G(k,n)
is a C* manifold of dimension k(n — k).

7.9.% Compactness of real projective space
Show that the real projective space RP" is compact. (Hint: Use Exercise 7.11.)



Chapter 3

The Tangent Space

By definition, the tangent space to a manifold at a point is the vector space of deriva-
tions at the point. A smooth map of manifolds induces a linear map, called its differ-
ential, of tangent spaces at corresponding points. In local coordinates, the differential
is represented by the Jacobian matrix of partial derivatives of the map. In this sense,
the differential of a map between manifolds is a generalization of the derivative of a
map between Euclidean spaces.

A basic principle in manifold theory is the linearization principle, according to
which a manifold can be approximated near a point by its tangent space at the point,
and a smooth map can be approximated by the differential of the map. In this way,
one turns a topological problem into a linear problem. A good example of the lin-
earization principle is the inverse function theorem, which reduces the local invert-
ibility of a smooth map to the invertibility of its differential at a point.

Using the differential, we classify maps having maximal rank at a point into
immersions and submersions at the point, depending on whether the differential is
injective or surjective there. A point where the differential is surjective is a regular
point of the map. The regular level set theorem states that a level set all of whose
points are regular is a regular submanifold, i.e., a subset that locally looks like a
coordinate k-plane in R”. This theorem gives a powerful tool for proving that a
topological space is a manifold.

We then introduce categories and functors, a framework for comparing structural
similarities. After this interlude, we return to the study of maps via their differentials.
From the rank of the differential, one obtains three local normal forms for smooth
maps—the constant rank theorem, the immersion theorem, and the submersion theo-
rem, corresponding to constant-rank differentials, injective differentials, and surjec-
tive differentials respectively. We give three proofs of the regular level set theorem, a
first proof (Theorem 9.9), using the inverse function theorem, that actually produces
explicit local coordinates, and two more proofs (p. 119) that are corollaries of the
constant rank theorem and the submersion theorem.

The collection of tangent spaces to a manifold can be given the structure of a
vector bundle; it is then called the rangent bundle of the manifold. Intuitively, a
vector bundle over a manifold is a locally trivial family of vector spaces parametrized
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by points of the manifold. A smooth map of manifolds induces, via its differential
at each point, a bundle map of the corresponding tangent bundles. In this way we
obtain a covariant functor from the category of smooth manifolds and smooth maps
to the category of vector bundles and bundle maps. Vector fields, which manifest
themselves in the physical world as velocity, force, electricity, magnetism, and so
on, may be viewed as sections of the tangent bundle over a manifold.

Smooth C* bump functions and partitions of unity are an indispensable technical
tool in the theory of smooth manifolds. Using C* bump functions, we give several
criteria for a vector field to be smooth. The chapter ends with integral curves, flows,
and the Lie bracket of smooth vector fields.

68 The Tangent Space

In Section 2 we saw that for any point p in an open set U in R” there are two equiv-
alent ways to define a tangent vector at p:

(i) as an arrow (Figure 8.1), represented by a column vector;

Fig. 8.1. A tangent vector in R” as an arrow and as a column vector.

(ii) as a point-derivation of C?;, the algebra of germs of C* functions at p.

Both definitions generalize to a manifold. In the arrow approach, one defines a
tangent vector at p in a manifold M by first choosing a chart (U,¢) at p and then
decreeing a tangent vector at p to be an arrow at ¢(p) in ¢ (U ). This approach, while
more visual, is complicated to work with, since a different chart (V, y) at p would
give rise to a different set of tangent vectors at p and one would have to decide how
to identify the arrows at ¢(p) in U with the arrows at y(p) in y(V).

The cleanest and most intrinsic definition of a tangent vector at p in M is as a
point-derivation, and this is the approach we adopt.

8.1 The Tangent Space at a Point

Just as for R”, we define a germ of a C™ function at p in M to be an equivalence
class of C* functions defined in a neighborhood of p in M, two such functions being
equivalent if they agree on some, possibly smaller, neighborhood of p. The set of
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germs of C* real-valued functions at p in M is denoted by C; (M). The addition and
multiplication of functions make C;;(M) into a ring; with scalar multiplication by
real numbers, C; (M) becomes an algebra over R.

Generalizing a derivation at a point in R", we define a derivation at a point in
a manifold M, or a point-derivation of C;; (M), to be a linear map D: C;(M) — R
such that

D(fg) = (Df)g(p)+ f(p)Dg.

Definition 8.1. A rangent vector at a point p in a manifold M is a derivation at p.

Just as for R”, the tangent vectors at p form a vector space T),(M), called the
tangent space of M at p. We also write 7,M instead of T,,(M).

Remark 8.2 (Tangent space to an open subset). If U is an open set containing p in
M, then the algebra C;; (U) of germs of C* functions in U at p is the same as C};(M).
Hence, T,U =T, M.

Given a coordinate neighborhood (U,¢) = (U,x!,... x") about a point p in a
manifold M, we recall the definition of the partial derivatives d /dx' first introduced
in Section 6. Let r!,...., " be the standard coordinates on R”. Then

X¥=ro¢:U—R.
If f is a smooth function in a neighborhood of p, we set

d d
ox| I = an], Vo0 ER
o(p)

It is easily checked that d/dx'|, satisfies the derivation property and so is a tangent
vector at p.

When M is one-dimensional and ¢ is a local coordinate, it is customary to write
d/dt|, instead of d/dt|, for the coordinate vector at the point p. To simplify the
notation, we will sometimes write d/dx’ instead of d/dx|, if it is understood at

which point the tangent vector is located.

f=

p

8.2 The Differential of a Map

Let F: N — M be a C* map between two manifolds. At each point p € N, the map
F induces a linear map of tangent spaces, called its differential at p,

F.: TpN — TF(p)M
as follows. If X, € T,,N, then F,(X},) is the tangent vector in T ()M defined by
(FX ) f=Xp(foF)eR forfeC}c'<p)(M). 8.1

Here f is a germ at F(p), represented by a C* function in a neighborhood of F(p).
Since (8.1) is independent of the representative of the germ, in practice we can be
cavalier about the distinction between a germ and a representative function for the
germ.



88 §8 The Tangent Space

Exercise 8.3 (The differential of a map). Check that F (X)) is a derivation at F(p) and that
F.: TN — TF(p)M is a linear map.

To make the dependence on p explicit we sometimes write F, , instead of F;.

Example 8.4 (Differential of a map between Euclidean spaces). Suppose F: R" —
R™ is smooth and p is a point in R”. Let x',...,x" be the coordinates on R" and
y!,...,y" the coordinates on R™. Then the tangent vectors d/dx!|,,...,d/dx"|,
form a basis for the tangent space T,(R") and 9/dy|r(,)....,9/9y"|f() form a
basis for the tangent space Tr(,)(R™). The linear map Fi: T,(R") — Tp(,) (R™) is
described by a matrix [a’]] relative to these two bases:

(3] )2,

Let F' =y’ o F be the ith component of F. We can find a? by evaluating the right-
hand side (RHS) and left-hand side (LHS) of (8.2) on y':

/aka Zak5k—a

21\, @
LHS:F*(&ﬂ‘p)y = x|,

So the matrix of F relative to the bases {9 /dx/|,} and {9 /dy'|r(,) } is [0F'/dx/ (p)].
This is precisely the Jacobian matrix of the derivative of F at p. Thus, the differential
of a map between manifolds generalizes the derivative of a map between Euclidean
spaces.

a eR. (8.2)

)

RHS = Za

o) = )

8.3 The Chain Rule

Let F: N — M and G: M — P be smooth maps of manifolds, and p € N. The
differentials of F at p and G at F(p) are linear maps

Fi G*.F
N (p)

T N —— TF( )M TG(F(p))P'

Theorem 8.5 (The chain rule). IfF: N — M and G: M — P are smooth maps of
manifolds and p € N, then

(GoF)ep=Gopip) o Frp
Proof. Let X, € T,N and let f be a smooth function at G(F(p)) in P. Then
(GoF).Xp) f = Xp(f « G o F)

and

(G o F)Xp) f = (Gu(F.Xp) f = (FX)(f e G) = Xp(f e G F). D
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Example 8.13 shows that when written out in terms of matrices, the chain rule of
Theorem 8.5 assumes a more familiar form as a sum of products of partial deriva-
tives.

Remark. The differential of the identity map 1,,: M — M at any point p in M is the
identity map
]lTpM: TpM—> TI,M7
because
(Ly)+Xp)f = Xp(f o L) =X, f,

for any X, € T,M and f € C;(M).

Corollary 8.6. If F': N — M is a diffeomorphism of manifolds and p € N, then
F.: TN = Tp(,)\M is an isomorphism of vector spaces.

Proof. To say that F is a diffeomorphism means that it has a differentiable inverse
G: M — N suchthat Go F =1y and F o« G = 1. By the chain rule,

(GoF).=GyoF, = (1y). =1,
(F o G)* = F* o G* = (]IM)* = ]lTF(p)M'

Hence, F. and G, are isomorphisms. O

Corollary 8.7 (Invariance of dimension). If an open set U C R" is diffeomorphic
to an open set V. C R™, then n =m.

Proof. Let F: U — V be a diffeomorphism and let p € U. By Corollary 8.6,
Fip: T)U — Tp(,)V is an isomorphism of vector spaces. Since there are vector
space isomorphisms 7,U ~ R" and Tf(,) ~ R"™, we must have that n = m. O

8.4 Bases for the Tangent Space at a Point

As usual, we denote by rl, ...,/ the standard coordinates on R”,_ and_if (U,9) is
a chart about a point p in a manifold M of dimension n, we set x' = ' o ¢. Since
¢: U — R"is a diffeomorphism onto its image (Proposition 6.10), by Corollary 8.6
the differential

¢ T,M — Ty(,)R"

is a vector space isomorphism. In particular, the tangent space 7,M has the same
dimension n as the manifold M.

Proposition 8.8. Let (U,¢) = (U,x',...,x") be a chart about a point p in a manifold
M. Then
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Proof. Forany f € C5,, (R™),

) ) N
2 <axi p) f= oxi p(f°¢) (definition of ¢.)
-7 ; (fopoo ') (definition of 3/dx|,)
or o(p)
0
T 94 I 0
or o(p)

Proposition 8.9. If (U,¢) = (U,x',...,x") is a chart containing p, then the tangent
space T,M has basis
d
dx!

d

o
» ox

p

Proof. An isomorphism of vector spaces carries a basis to a basis. By Propo-
sition 8.8 the isomorphism ¢.: T,M — Ty, (R") maps 9/dx!|,,...,d/dx"|, to
3/9rg(p)s---+9/9r"|4(p), Which is a basis for the tangent space Ty, (R"). There-
fore, d/dx!|,,...,0/9x"|, is a basis for T,M. |

Proposition 8.10 (Transition matrix for coordinate vectors). Suppose (U,x', ...,

x") and (V,y',....y") are two coordinate charts on a manifold M. Then

Jd  wdyo
oxi zl" dx7 dyt

onUNV.

Proof. At each point p € UNV, the sets {9 /dx’|,} and {d/dy'|,} are both bases
for the tangent space 7),M, so there is a matrix [a';(p)] of real numbers such that on
unv,

d w0
gu ~ L gy

Applying both sides of the equation to y’, we get

a9y’ x 0y'
oxi Zk: “ oy
= Zalj‘- 8/ (by Proposition 6.22)
3

1
=a;. O
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8.5 A Local Expression for the Differential

Given a smooth map F : N — M of manifolds and p € N, let (U,x',...,x") be a chart
about p in N and let (V,y',...,y™) be a chart about F(p) in M. We will find a local
expression for the differential F ,,: T,N — Tp(,)M relative to the two charts.

By Proposition 8.9, {d/dx/|,}1_, is a basis for T,N and {9/dY'|p(,) }1-, is a
basis for Tr(,) M. Therefore, the differential Fi. = F. , is completely determined by
the numbers a’; such that

F*<

Applying both sides to y', we find that

(Z“fay )>y _F*<3xf )

1
We state this result as a proposition.

j=1,...,n.

)543

=1 )

Proposition 8.11. Given a smooth map F : N — M of manifolds and a point p € N,
let (U,x',....x")and (V,y',...,y") be coordinate charts about p in N and F (p) in M
respectively. Relative to the bases {d/dx'|,} for T,N and {9 /9y'|p ()} for Tp(,)M,
the differential F.,: T,N — Tp(zM is represented by the matrix [OF'/dx!(p)),
where F' =y' o F is the ith component of F.

This proposition is in the spirit of the “arrow” approach to tangent vectors. Here
each tangent vector in T,N is represented by a column vector relative to the basis
{d/0x'|,}, and the differential F, , is represented by a matrix.

Remark 8.12 (Inverse function theorem). In terms of the differential, the inverse func-
tion theorem for manifolds (Theorem 6.26) has a coordinate-free description: a C™
map F: N — M between two manifolds of the same dimension is locally invertible
at a point p € N if and only if its differential F; ,,: T,N — Ty(,)M at p is an isomor-
phism.

Example 8.13 (The chain rule in calculus notation). Suppose w = G(x,y,z) is a C*
function: R* — R and (x,y,z) = F(t) is a C* function: R — R3. Under composition,

w=(GoF)(r)=G(x(t),y(r),z(t))

becomes a C* function of 7 € R. The differentials F;, G, and (G o F), are repre-
sented by the matrices

dy/dt| ,

dx/dt
dz/dt [

ow dw dw and dw
dx dy 9z dt’
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respectively. Since composition of linear maps is represented by matrix multiplica-
tion, in terms of matrices the chain rule (G o F), = G, o F, is equivalent to

dw [dw dw dw Zx%; _ade+8wdy+3wdz
dt | dx dy 9z di/dt dxdt dydr  dzdt

This is the usual form of the chain rule taught in calculus.

8.6 Curves in a Manifold

A smooth curve in a manifold M is by definition a smooth map c¢: |a,b[ — M from
some open interval |a,b[ into M. Usually we assume O € |a,b[ and say that ¢ is a
curve starting at p if ¢(0) = p. The velocity vector c'(ty) of the curve c at time
fo € |a, b is defined to be

d
d(ty) = cu <dt

We also say that ¢(zp) is the velocity of ¢ at the point ¢(fo). Alternative notations for
/
' (1y) are

) € Te(i)M.
fo

dc d
/1 d
dt (lo) an dt

C.
fo

NOTATION. When c: Ja,b[ — R is a curve with target space R, the notation ¢/(r)
can be a source of confusion. Here ¢ is the standard coordinate on the domain |a, b|.
Let x be the standard coordinate on the target space R. By our definition, ¢/(z) is a
tangent vector at c(t), hence a multiple of d/dx|.;). On the other hand, in calculus
notation ¢’(z) is the derivative of a real-valued function and is therefore a scalar. If it
is necessary to distinguish between these two meanings of ¢/(r) when ¢ maps into R,
we will write ¢(¢) for the calculus derivative.

Exercise 8.14 (Velocity vector versus the calculus derivative)* Letc: |a,b[ — R be a curve
with target space R. Verify that ¢'(r) = ¢(r) d /dx ().

Example. Define ¢: R — R? by

c(r) = (1.

(See Figure 8.2.)
Then ¢/ (¢) is a linear combination of d/dx and d/dy at c(¢):
d 0
/ —
(1) —aax+bay.

To compute a, we evaluate both sides on x:
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9,9
o T oy

In terms of the basis 0 /9x| (), /Y| for T, (R?),
2t
‘=35

More generally, as in this example, to compute the velocity vector of a smooth
curve ¢ in R”, one can simply differentiate the components of c¢. This shows that our
definition of the velocity vector of a curve agrees with the usual definition in vector
calculus.

d(t)y=2t

Proposition 8.15 (Velocity of a curve in local coordinates). Ler ¢: Ja,b[— M
be a smooth curve, and let (U,x',...,x") be a coordinate chart about c(t). Write
c' =x' o ¢ for the ith component of ¢ in the chart. Then c(t) is given by

d

)= y (2 I
i=Zl x| (1

Thus, relative to the basis {3 /9x'|,} for T, \M, the velocity ¢ (t) is represented by
the column vector

Proof. Problem 8.5. O
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Every smooth curve c at p in a manifold M gives rise to a tangent vector ¢/(0) in
T,M. Conversely, one can show that every tangent vector X,, € T,M is the velocity
vector of some curve at p, as follows.

Proposition 8.16 (Existence of a curve with a given initial vector). For any point
p in a manifold M and any tangent vector X, € T,M, there are € > 0 and a smooth
curve c: |— &,€[ — M such that ¢(0) = p and ¢/ (0) = X,,.

Fig. 8.3. Existence of a curve through a point with a given initial vector.

Proof. Let (U,¢) = (U,x',...,x") be a chart centered at p; i.e., ¢(p) =0 € R".
Suppose X, = Y.a'd/dx!|, at p. Let r',...,r" be the standard coordinates on R".
Then x' = ' o ¢. To find a curve ¢ at p with ¢/(0) = X,,, start with a curve & in R”
with (0) = 0 and o’ (0) = Y.a’ 9 /dr'|y. We then map o to M via ¢! (Figure 8.3).
By Proposition 8.15, the simplest such o is

aft) = (a't,...,d"), te]—eeg|,

where ¢ is sufficiently small that c(¢) lies in ¢(U). Definec = ¢ ' o oz |—€,e[ —
M. Then

c(0) =9~ (a(0)) = ¢7'(0) = p,
and by Proposition 8.8,

0=

)= (25 ) =29 5,

In Definition 8.1 we defined a tangent vector at a point p of a manifold abstractly
as a derivation at p. Using curves, we can now interpret a tangent vector geometri-
cally as a directional derivative.

=X, O

t=0 p

Proposition 8.17. Suppose X, is a tangent vector at a point p of a manifold M and
fECH(M). If c: | —&,€[ = M is a smooth curve starting at p with ¢'(0) = X,,, then

d
Xpf = dt O(foc)-
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Proof. By the definitions of ¢’(0) and c,

d

X r=cor=e.

d
o)f: dr |,

8.7 Computing the Differential Using Curves

(foC). O

We have introduced two ways of computing the differential of a smooth map, in
terms of derivations at a point (equation (8.1)) and in terms of local coordinates
(Proposition 8.11). The next proposition gives still another way of computing the
differential F ,, this time using curves.

Proposition 8.18. Let F: N — M be a smooth map of manifolds, p € N, and X, €
T,N. If ¢ is a smooth curve starting at p in N with velocity X, at p, then

d
F*ap(Xp) =

| Feo).

0

In other words, F ,(Xp) is the velocity vector of the image curve F o c at F(p).
Proof. By hypothesis, ¢(0) = p and ¢/(0) = X,,. Then

Fp(Xp) = F*,p(c'(O))
d

e (4])

d
=(Foc)p (dt ) (by the chain rule, Theorem 8.5)
0

d
dt

(F oc)(t). 0

0

Example 8.19 (Differential of left multiplication). If g is a matrix in the general
linear group GL(n,R), let £, : GL(n,R) — GL(n,R) be left multiplication by g; thus,
Ly(B) = gB for any B € GL(n,R). Since GL(n,IR) is an open subset of the vector
space R"*" the tangent space T,(GL(n,R)) can be identified with R"*". Show that
with this identification the differential (¢,).;: T;(GL(n,R)) — T,(GL(n,R)) is also
left multiplication by g.

Solution. Let X € T;(GL(n,R)) =R™". To compute ({4). (X), choose a curve ¢(t)
in GL(n,R) with ¢(0) =7 and ¢/(0) = X. Then £,(c(t)) = gc() is simply matrix
multiplication. By Proposition 8.18,

d

= ge(t) = gc'(0) = gX.

t=0

tele(t) =

(a)= 3| tetet) =5

In this computation, d /dt|,—o gc(t) = g¢’(0) by R-linearity and Proposition 8.15. O
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8.8 Immersions and Submersions

Just as the derivative of a map between Euclidean spaces is a linear map that best
approximates the given map at a point, so the differential at a point serves the
same purpose for a C* map between manifolds. Two cases are especially impor-
tant. A C” map F: N — M is said to be an immersion at p € N if its differential
Fip: TyN — Tp(,)M is injective, and a submersion at p if F, p is surjective. We
call F an immersion if it is an immersion at every p € N and a submersion if it is a
submersion at every p € N.

Remark 8.20. Suppose N and M are manifolds of dimensions n and m respec-
tively. Then dim7,N = n and dim7r,yM = m. The injectivity of the differential
Fip: TyN — Tp(,yM implies immediately that n < m. Similarly, the surjectivity of
the differential F; , implies that n > m. Thus, if F: N — M is an immersion at a
point of N, then n < m and if F is a submersion a point of N, then n > m.

Example 8.21. The prototype of an immersion is the inclusion of R” in a higher-
dimensional R™:
i(xl,...7x”) = (x17...7x”,0,...,0).

The prototype of a submersion is the projection of R” onto a lower-dimensional R™:

m(xt L  = (.

Example. If U is an open subset of a manifold M, then the inclusion i : U — M is both
an immersion and a submersion. This example shows in particular that a submersion
need not be onto.

In Section 11, we will undertake a more in-depth analysis of immersions and
submersions. According to the immersion and submersion theorems to be proven
there, every immersion is locally an inclusion and every submersion is locally a
projection.

8.9 Rank, and Critical and Regular Points

The rank of a linear transformation L: V — W between finite-dimensional vector
spaces is the dimension of the image L(V') as a subspace of W, while the rank of
a matrix A is the dimension of its column space. If L is represented by a matrix A
relative to a basis for V and a basis for W, then the rank of L is the same as the rank
of A, because the image L(V) is simply the column space of A.

Now consider a smooth map F: N — M of manifolds. Its rank at a point p in
N, denoted by rk F'(p), is defined as the rank of the differential F, ,: T,N — Tr(pM.
Relative to the coordinate neighborhoods (U,x',....x") at p and (V,y',...,y™) at
F(p), the differential is represented by the Jacobian matrix [dF'/dx/(p)] (Proposi-
tion 8.11), so
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Since the differential of a map is independent of coordinate charts, so is the rank of
a Jacobian matrix.

tkF(p) =1k [

Definition 8.22. A point p in N is a critical point of F if the differential
F*)pi TPN — Tp(p)M

fails to be surjective. It is a regular point of F if the differential F; , is surjective. In
other words, p is a regular point of the map F' if and only if F is a submersion at p.
A point in M is a critical value if it is the image of a critical point; otherwise it is a
regular value (Figure 8.4).

A e = critical points

S
—_—
X = critical values

N = torus M=R

Fig. 8.4. Critical points and critical values of the function f(x,y,z) = z.

Two aspects of this definition merit elaboration:

(1) We do not define a regular value to be the image of a regular point. In fact,
a regular value need not be in the image of F at all. Any point of M not in
the image of F is automatically a regular value because it is not the image of a
critical point.

(i) A point ¢ in M is a critical value if and only if some point in the preimage
F~'({c}) is a critical point. A point c in the image of F is a regular value if and
only if every point in the preimage F~!({c}) is a regular point.

Proposition 8.23. For a real-valued function f: M — R, a point p in M is a critical
point if and only if relative to some chart (U,x',...,x") containing p, all the partial
derivatives satisfy

af

8xf(p):07 j=1,...,n.

Proof. By Proposition 8.11 the differential f. ,: T,M — Ty, R ~ R is represented
by the matrix
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d d
ACREAT

Since the image of f; , is a linear subspace of R, it is either zero-dimensional or
one-dimensional. In other words, f. , is either the zero map or a surjective map.
Therefore, f , fails to be surjective if and only if all the partial derivatives d f /dx' (p)
are zero. O

Problems

8.1.* Differential of a map
Let F: R?2 — R3 be the map

(”’V’W) = F(x’y) = (xay’x)’)'

Let p = (x,y) € R%. Compute F,(d/dx],) as a linear combination of d/du, d/dv, and 9 /dw
at F(p).

8.2. Differential of a linear map

Let L: R" — R™ be a linear map. For any p € R”, there is a canonical identification T}, (R") =
R” given by
e,
Za’ | —a=(d',...d".
ox! »

Show that the differential Ly, : T)(R") — Ty (,)(R™) is the map L: R" — R™ itself, with the
identification of the tangent spaces as above.

8.3. Differential of a map
Fix a real number o and define F : RZ — R? by

{ﬂ — (uv) = F(x,y) = {cosa —sina} {x} ‘

sinot  cosa| |y

LetX = —yd/dx+xd/dy be a vector field on R2. If p = (x,y) € R? and Fi(X,,) = (ad/du+
bd/9V)|(p), find a and b in terms of x, y, and .

8.4. Transition matrix for coordinate vectors
Let x, y be the standard coordinates on R2, and let U be the open set

U =R>—{(x,0) | x>0}.
On U the polar coordinates r, 0 are uniquely defined by

x=rcosf,

y=rsinf, r>0,0< 0 <27.

Find d/dr and 9/98 in terms of d/dx and 9 /dy.

8.5.% Velocity of a curve in local coordinates
Prove Proposition 8.15.
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8.6. Velocity vector
Let p = (x,y) be a point in R?. Then
cos2t —sin2¢ | |x
eplt) = Lin2z C0521:| {y} » 1€R,

is a curve with initial point p in R2. Compute the velocity vector ,(0).

8.7.*% Tangent space to a product
If M and N are manifolds, let 7;: M X N — M and m: M x N — N be the two projections.
Prove that for (p,q) € M X N,

(15, M2) : T gy (M X N) = TpM x TyN
is an isomorphism.

8.8. Differentials of multiplication and inverse
Let G be a Lie group with multiplication map p: G X G — G, inverse map 1: G — G, and
identity element e.

(a) Show that the differential at the identity of the multiplication map u is addition:

Hy (ee): I.GXT.G = T.G,
’J'*,(e,e) (Xe:Ye) =X, +Ye.

(Hint: First, compute (L, (o .)(Xe,0) and f, (. . (0,Ye) using Proposition 8.18.)
(b) Show that the differential at the identity of 1 is the negative:

Lie: 1.G — TG,
Lie(Xe) = —Xe.

(Hint: Take the differential of p(c(¢),(10¢)(t)) =e.)
8.9.* Transforming vectors to coordinate vectors
Let X1,...,X, be n vector fields on an open subset U of a manifold of dimension n. Suppose
that at p € U, the vectors (Xi)p,...,(X,), are linearly independent. Show that there is a chart
(V.x!,...,x") about p such that (X;), = (9/dx), fori=1,...,n.

8.10. Local maxima
A real-valued function f: M — R on a manifold is said to have a local maximum at p € M if
there is a neighborhood U of p such that f(p) > f(gq) forallg € U.

(a)* Prove that if a differentiable function f: I — R defined on an open interval / has a local
maximum at p € I, then f(p) = 0.
(b) Prove that a local maximum of a C* function f: M — R is a critical point of f. (Hint:
Let X, be a tangent vector in 7, M and let c(¢) be a curve in M starting at p with initial
vector Xp. Then f o ¢ is a real-valued function with a local maximum at 0. Apply (a).)
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§9 Submanifolds

We now have two ways of showing that a given topological space is a manifold:

(a) by checking directly that the space is Hausdorff, second countable, and has a C*
atlas;

(b) by exhibiting it as an appropriate quotient space. Section 7 lists some conditions
under which a quotient space is a manifold.

In this section we introduce the concept of a regular submanifold of a manifold,
a subset that is locally defined by the vanishing of some of the coordinate functions.
Using the inverse function theorem, we derive a criterion, called the regular level set
theorem, that can often be used to show that a level set of a C™ map of manifolds is
a regular submanifold and therefore a manifold.

Although the regular level set theorem is a simple consequence of the constant
rank theorem and the submersion theorem to be discussed in Section 11, deducing
it directly from the inverse function theorem has the advantage of producing explicit
coordinate functions on the submanifold.

9.1 Submanifolds

The xy-plane in R is the prototype of a regular submanifold of a manifold. It is
defined by the vanishing of the coordinate function z.

Definition 9.1. A subset S of a manifold N of dimension n is a regular sub-
manifold of dimension k if for every p € § there is a coordinate neighborhood
(U,¢) = (U,x",...,x") of p in the maximal atlas of N such that U NS is defined
by the vanishing of n — k of the coordinate functions. By renumbering the coordi-
nates, we may assume that these n — k coordinate functions are x**1 ... x".

We call such a chart (U, ¢) in N an adapted chart relative to S. On UNS, ¢ =
(x',...,x%,0,...,0). Let

¢s: UNS — R

be the restriction of the first k components of ¢ to U NS, that is, ¢s = (x!,...,x%).
Note that (U NS, @) is a chart for S in the subspace topology.

Definition 9.2. If S is a regular submanifold of dimension & in a manifold N of
dimension n, then n — k is said to be the codimension of S in N.

Remark. As a topological space, a regular submanifold of N is required to have the
subspace topology.

Example. In the definition of a regular submanifold, the dimension k of the subman-
ifold may be equal to n, the dimension of the manifold. In this case, U NS is defined



9.1 Submanifolds 101

by the vanishing of none of the coordinate functions and so U NS = U. Therefore,
an open subset of a manifold is a regular submanifold of the same dimension.

Remark. There are other types of submanifolds, but unless otherwise specified, by a
“submanifold” we will always mean a “regular submanifold.”

Example. The interval S := |—1,1] on the x-axis is a regular submanifold of the
xy-plane (Figure 9.1). As an adapted chart, we can take the open square U = |—1,1]
x |— 1, 1] with coordinates x,y. Then U NS is precisely the zero set of y on U.

U@===-==== | V m==——=- |

1 1 1 1

1 1 1 1

) S - T

1 11 S 1

1 ! 1 !

[ —— | [ —— |

U is an adapted chart. V is not an adapted chart.
Fig. 9.1.

Note that if V.= ]—2,0[ x |- 1,1], then (V,x,y) is not an adapted chart relative

to S, since V NS is the open interval | — 1,0[ on the x-axis, while the zero set of y on
V is the open interval | — 2,0[ on the x-axis.

y
| /\ /
: : :
V W 0.4 0.6 x
R |

Fig. 9.2. The topologist’s sine curve.

Example 9.3. Let I be the graph of the function f(x) = sin(1/x) on the interval |0, 1],
and let S be the union of I' and the open interval

I={(0,y) eR*| -1 <y<1}.

The subset S of R? is not a regular submanifold for the following reason: if p is
in the interval /, then there is no adapted chart containing p, since any sufficiently
small neighborhood U of p in R? intersects S in infinitely many components. (The
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closure of " in R? is called the topologist’s sine curve (Figure 9.2). It differs from S
in including the endpoints (1,sin1), (0,1), and (0,—1).)

Proposition 9.4. Let S be a regular submanifold of N and $\ = {(U, @)} a collection
of compatible adapted charts of N that covers S. Then {(UNS,¢s)} is an atlas for
S. Therefore, a regular submanifold is itself a manifold. If N has dimension n and S
is locally defined by the vanishing of n — k coordinates, then dim S = k.

% X

Fig. 9.3. Overlapping adapted charts relative to a regular submanifold S.

Proof. Let (U,¢) = (U,x',....x") and (V,y) = (V,y',...,y") be two adapted charts
in the given collection (Figure 9.3). Assume that they intersect. As we remarked
in Definition 9.1, in any adapted chart relative to a submanifold S it is possible to
renumber the coordinates so that the last n — k coordinates vanish on points of S.
Thenforp e UNV NS,

d(p) = (xl,...,xk,O,...,O) and y(p)= (yl,...,yk,O,...,O),

SO
¢s(p) = (x',....7%) and ws(p) =", ).

Therefore,
(WS © ¢S_1) (x17~~~axk) = (ylv'“uyk)‘

Since y', ...,y are C* functions of x',...,x* (because w o ¢~ (x!,...,x5,0,...,0)
is C*), the transition function Ys o ¢g U'is €. Similarly, since x!,...,x* are C*
functions of y',...,)%, ¢s o yg ' is also C*. Hence, any two charts in {(U NS, ¢s)}
are C* compatible. Since {U NS}yey covers S, the collection { (U NS, ¢s)} is a C
atlas on S. O
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9.2 Level Sets of a Function

A level set of amap F: N — M is a subset

F'({c})={peN|F(p)=c}

for some ¢ € M. The usual notation for a level set is F~!(c), rather than the more
correct F~!({c}). The value ¢ € M is called the level of the level set F~!(c). If
F: N —TR" then Z(F) := F~'(0) is the zero set of F. Recall that ¢ is a regular value
of F if and only if either c is not in the image of F or at every point p € F~!(c), the
differential F, ,: T,N — Tp(,)M is surjective. The inverse image F ' (c) of a regular
value c is called a regular level set. If the zero set F~1(0) is a regular level set of
F: N— R™ itis called a regular zero set.

Remark 9.5. If a regular level set F~!(c) is nonempty, say p € F~!(c), then the map
F: N — M is a submersion at p. By Remark 8.20, dimN > dimM.

Example 9.6 (The 2-sphere in R?). The unit 2-sphere
2 ={(x,yz) eR | +y* +2 =1}

is the level set g~ !(1) of level 1 of the function g(x,y,z) = x> 4+ y* +z2. We will use
the inverse function theorem to find adapted charts of R3 that cover S2. As the proof
will show, the process is easier for a zero set, mainly because a regular submanifold
is defined locally as the zero set of coordinate functions. To express S as a zero set,
we rewrite its defining equation as

fleyz) =x>+y*+22—1=0.

Then S? = £~1(0).
Since
af _s af _5 af
ox P dy % dz

the only critical point of f is (0,0,0), which does not lie on the sphere S2. Thus, all
points on the sphere are regular points of f and 0 is a regular value of f.

Let p be a point of S? at which (df/dx)(p) = 2x(p) # 0. Then the Jacobian
matrix of the map (f,y,z): R? — R3is

= 2Z,

[of of af] [9f df 9f7
dx dy 9z dx dy dz
dy dy dy

ox dy dz| 0 1.0
dz dz 9z

L dx dy dz] L0 0 1 |

and the Jacobian determinant d f /dx(p) is nonzero. By Corollary 6.27 of the inverse
function theorem (Theorem 6.26), there is a neighborhood U, of p in R3 such that
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(Up, f,¥,2) is a chart in the atlas of R3. In this chart, the set U, N S? is defined by the
vanishing of the first coordinate f. Thus, (Up, f,y,z) is an adapted chart relative to
82, and (U, N S%,y,z) is a chart for S2.

Similarly, if (df/dy)(p) # 0, then there is an adapted chart (V,,x, f,z) con-
taining p in which the set V, N S? is the zero set of the second coordinate f. If
(df/dz)(p) # 0, then there is an adapted chart (W), x,y, f) containing p. Since for
every p € S, at least one of the partial derivatives d f/dx(p), df/dy(p), df/dz(p)
is nonzero, as p varies over all points of the sphere we obtain a collection of adapted
charts of R? covering S2. Therefore, S? is a regular submanifold of R3. By Proposi-
tion 9.4, S? is a manifold of dimension 2.

This is an important example because one can generalize its proof almost ver-
batim to prove that if the zero set of a function f: N — R is a regular level set,
then it is a regular submanifold of N. The idea is that in a coordinate neighborhood
(U,x',...,x") if a partial derivative d f/dx’(p) is nonzero, then we can replace the
coordinate x' by f.

First we show that any regular level set g~!(c) of a C* real function g on a
manifold can be expressed as a regular zero set.

Lemma 9.7. Let g: N — R be a C* function. A regular level set g~'(c) of level ¢ of
the function g is the regular zero set f~! (0) of the function f = g —c.

Proof. Forany p € N,

g(p)=c <= f(p)=g(p)—c=0.

Hence, g~ !(c) = £71(0). Call this set S. Because the differential f. , equals g , at
every point p € N, the functions f and g have exactly the same critical points. Since
g has no critical points in S, neither does f. a

Theorem 9.8. Let g: N — R be a C™ function on the manifold N. Then a nonempty
regular level set S = g~'(c) is a regular submanifold of N of codimension 1.

Proof. Let f = g —c. By the preceding lemma, S equals f~!(0) and is a regular level
setof f. Let p € S. Since p is a regular point of f, relative to any chart (U,x',....x")
about p, (0f/dx')(p) # 0 for some i. By renumbering x!,...,x", we may assume

that (9f/dx")(p) # 0.
The Jacobian matrix of the C* map (f,x%,...,x"): U — R" is

fof of of] [ ]
ox! ox? ox" ax!

0x% Ix* 0x2 0 1 0
ox! dx2 oxn | = B
o ae o

Lox! dx2 ox" | | 0 0--- 1]
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So the Jacobian determinant d(f,x2,...,x")/d(x!,x?,...,x") at pis df/dx' (p) #0.
By the inverse function theorem (Corollary 6.27), there is a neighborhood U, of p on
which £,x?,...,x" form a coordinate system. Relative to the chart (Up. f X2 X"
the level set U, NS is defined by setting the first coordinate f equal to 0, so
(U,, f,x%,...,x") is an adapted chart relative to S. Since p was arbitrary, S is a
regular submanifold of dimensionn — 1 in N. O

9.3 The Regular Level Set Theorem

The next step is to extend Theorem 9.8 to a regular level set of a map between smooth
manifolds. This very useful theorem does not seem to have an agreed-upon name in
the literature. It is known variously as the implicit function theorem, the preimage
theorem [17], and the regular level set theorem [25], among other nomenclatures.
We will follow [25] and call it the regular level set theorem.

Theorem 9.9 (Regular level set theorem). Ler F: N — M be a C* map of man-
ifolds, with dimN = n and dimM = m. Then a nonempty regular level set F~(c),
where ¢ € M, is a regular submanifold of N of dimension equal to n —m.

Proof. Choose a chart (V,y) = (V,y',...,y") of M centered at c, i.e., such that
w(c) =0in R™. Then F~!(V) is an open set in N that contains F~!(c). Moreover,
in F~1(V), F~1(c) = (y o F)~1(0). So the level set F~!(c) is the zero set of W o F.
IfFi=y oF =ro(yoF),then F~!(c) is also the common zero set of the functions
F'.. . F"onF~ (V).

Fig. 9.4. The level set F ! (c) of F is the zero set of o F.

Because the regular level set is assumed nonempty, n > m (Remark 9.5). Fix a
point p € F~!(c) and let (U,¢) = (U,x!,...,x") be a coordinate neighborhood of
p in N contained in F~'(V) (Figure 9.4). Since F~!(c) is a regular level set, p €
F~!(c) is a regular point of F. Therefore, the m x n Jacobian matrix [0F'/dx/(p)]
has rank m. By renumbering the F! and x/’s, we may assume that the first m x m
block [0F'/dx/(p)]1<i,j<m is nonsingular.

Replace the first m coordinates x', ..., x™ of the chart (U,¢) by F',... F™. We
claim that there is a neighborhood U, of p such that (U,,F!,...,F™ x"t1 .. x")is
a chart in the atlas of NV. It suffices to compute its Jacobian matrix at p:
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OF" JF! JF! .

oxi oxB | | dx/

ox% Jdx* ’

dxi oxB U

where 1 <i,j <mandm—+1 < a,B < n. Since this matrix has determinant

JoF!

w50 2o
0x) ] 1<ijem

the inverse function theorem in the form of Corollary 6.27 implies the claim.

In the chart (U,,F',...,F™, x"1 .. x"), the set S := f~!(c) is obtained by
setting the first m coordinate functions F',...,F™ equal to 0. So (U,,F!,...,F™,
o x") is an adapted chart for N relative to S. Since this is true about every
point p € S, S is a regular submanifold of N of dimension n — m. o

The proof of the regular level set theorem gives the following useful lemma.

Lemma 9.10. Let F: N — R" be a C* map on a manifold N of dimension n and let
S be the level set F~1(0). If relative to some coordinate chart (U,x',...,x") about
p €S, the Jacobian determinant d(F',...,F™)/d(x/1,...,x/n)(p) is nonzero, then
in some neighborhood of p one may replace x/' ... ,x/m by F',... F™ to obtain an
adapted chart for N relative to S.

Remark. The regular level set theorem gives a sufficient but not necessary condition
for a level set to be a regular submanifold. For example, if f: R> — R is the map
f(x,y) = y?, then the zero set Z(f) = Z(y?) is the x-axis, a regular submanifold of
R?. However, since df/dx =0 and df/dy = 2y = 0 on the x-axis, every point in
Z(f) is a critical point of f. Thus, although Z(f) is a regular submanifold of R?, it
is not a regular level set of f.

9.4 Examples of Regular Submanifolds

Example 9.11 (Hypersurface). Show that the solution set S of x> +y> + 73 = 1 in R3
is a manifold of dimension 2.

Solution. Let f(x,y,z) = x> +y>+2>. Then S = f~!(1). Since df/dx = 3x?,
df/dy = 3y?, and df/dz = 3z%, the only critical point of f is (0,0,0), which is
not in S. Thus, 1 is a regular value of f: R® — R. By the regular level set theorem
(Theorem 9.9), S is a regular submanifold of R? of dimension 2. So S is a manifold
(Proposition 9.4). O

Example 9.12 (Solution set of two polynomial equations). Decide whether the subset
S of R3 defined by the two equations

Py =1,
x+y+z=0

is a regular submanifold of R3.
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Solution. Define F: R> — R? by
(u,v) = F(x,y,2) = (@ +3* + 22 +y+2).
Then S is the level set F~!(1,0). The Jacobian matrix of F is
2 2.2 2.2
J(F) = Uy Uy uz| _ |3x7 3y" 3z ’
Vy Vy Vg 1 1 1

where u, = du/dx and so forth. The critical points of F are the points (x,y,z) where
the matrix J(F) has rank < 2. That is precisely where all 2 x 2 minors of J(F)
are zero:

3% 3y 3x% 32|
1 1179 1 =0. 9.1
(The third condition
3y* 322
1 1 =0

is a consequence of these two.) Solving (9.1), we get y = +x, z = +x. Since x+y+
z =0 on S, this implies that (x,y,z) = (0,0,0). Since (0,0,0) does not satisfy the
first equation 2+ y3 + 7% = 1, there are no critical points of F' on S. Therefore, S is
a regular level set. By the regular level set theorem, S is a regular submanifold of R?
of dimension 1. O

Example 9.13 (Special linear group). As a set, the special linear group SL(n,R) is
the subset of GL(n,R) consisting of matrices of determinant 1. Since

1

 detA’

SL(n,R) is a subgroup of GL(n,R). To show that it is a regular submanifold, we let

f+ GL(n,R) — R be the determinant map f(A) = det A, and apply the regular level

set theorem to f~!(1) = SL(n,R). We need to check that 1 is a regular value of f.
Let a;j,1 <i<n, 1< j<n,be the standard coordinates on R"*", and let S;;

denote the submatrix of A = [a;;] € R"*" obtained by deleting its ith row and jth

column. Then m;; := det S;; is the (i, j)-minor of A. From linear algebra we have a

formula for computing the determinant by expanding along any row or any column:

if we expand along the ith row, we obtain

f(A) =detA = (=) aymy + (=) Papmp + -+ (=) apm,. — (9.2)

det(AB) = (detA)(detB) and det(A™')

Therefore of
= (=1)"m;.

gaij ( ) mij
Hence, a matrix A € GL(n,R) is a critical point of f if and only if all the (n —

1) x (n—1) minors m;; of A are 0. By (9.2) such a matrix A has determinant 0. Since
every matrix in SL(n,R) has determinant 1, all the matrices in SL(n,R) are regular
points of the determinant function. By the regular level set theorem (Theorem 9.9),

SL(n,R) is a regular submanifold of GL(n,R) of codimension 1; i.e.,

dimSL(n,R) = dimGL(n,R) — 1 = n* — 1.
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Problems

9.1. Regular values
Define f: R?> — R by
Fley) =2 —6xy+y7.
Find all values ¢ € R for which the level set f~!(c) is a regular submanifold of R?.

9.2. Solution set of one equation

Let x, y, z, w be the standard coordinates on R*. Is the solution set of x> +y> 42> +w> = 1
in R* a smooth manifold? Explain why or why not. (Assume that the subset is given the
subspace topology.)

9.3. Solution set of two equations
Is the solution set of the system of equations

x +y3 +73= 1, z=uxy,
in R3 a smooth manifold? Prove your answer.

9.4.* Regular submanifolds

Suppose that a subset S of R? has the property that locally on S one of the coordinates is a
C> function of the other coordinate. Show that S is a regular submanifold of R2. (Note that
the unit circle defined by x> +y? = 1 has this property. At every point of the circle, there is a
neighborhood in which y is a C* function of x or x is a C* function of y.)

9.5. Graph of a smooth function
Show that the graph I'(f) of a smooth function f: R> — R,

T(f) = {0,y f(x,y) €R?},
is a regular submanifold of R3.

9.6. Euler’s formula

A polynomial F(xg,...,x,;) € R[xo,...,x,] is homogeneous of degree k if it is a linear com-
bination of monomials x{ ---x; of degree Y oij =k Let F(xo,...,x,) be a homogeneous
polynomial of degree k. Clearly, for any r € R,

F(txo, ... txy) :th(xo,...,x”). 9.3)
Show that

n
F
Yuoh i
i=0 X

9.7. Smooth projective hypersurface

On the projective space RP" a homogeneous polynomial F(x,...,x,) of degree k is not a
function, since its value at a point [ag, ..., ay] is not unique. However, the zero set in RP" of a
homogeneous polynomial F(xo,...,x,) is well defined, since F(ay,...,a,) =0 if and only if

F(tap, ... tay) = t*F(ay,...,a,) =0 forallr € R* :=R—{0}.

The zero set of finitely many homogeneous polynomials in RP" is called a real projective
variety. A projective variety defined by a single homogeneous polynomial of degree k is called
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a hypersurface of degree k. Show that the hypersurface Z(F) defined by F(xo,x1,x2) =0 is
smooth if dF /dxg, IF /dxi, and dF /dx; are not simultaneously zero on Z(F). (Hint: The
standard coordinates on Uy, which is homeomorphic to R2, are x = x; /X0, ¥ = x2/x0 (see
Subsection 7.7). In Uy, F(xo,x1,X%) = xﬁF(l.,xl/xo,xz/xo) :x](jF(l.,x.,y). Define f(x,y) =
F(1,x,y). Then f and F have the same zero set in U.)

9.8. Product of regular submanifolds
It S; is a regular submanifold of the manifold M; for i = 1,2, prove that S| x S, is a regular
submanifold of M| x M,.

9.9. Complex special linear group

The complex special linear group SL(n,C) is the subgroup of GL(n,C) consisting of n x n
complex matrices of determinant 1. Show that SL(n,C) is a regular submanifold of GL(n,C)
and determine its dimension. (This problem requires a rudimentary knowledge of complex

analysis.)
N
\fw) \ / fW)
\\ S S
f transversal to S in R? f not transversal to S in R?

Fig. 9.5. Transversality.

9.10. The transversality theorem
A C”map f: N — M is said to be transversal to a submanifold § C M (Figure 9.5) if for every
pef(s),

(If A and B are subspaces of a vector space, their sum A + B is the subspace consisting of all
a+b witha € A and b € B. The sum need not be a direct sum.) The goal of this exercise
is to prove the transversality theorem: if a C* map f: N — M is transversal to a regular
submanifold S of codimension k in M, then f~!(S) is a regular submanifold of codimension k
inN.

When S consists of a single point ¢, transversality of f to S simply means that f~!(c)
is a regular level set. Thus the transversality theorem is a generalization of the regular level
set theorem. It is especially useful in giving conditions under which the intersection of two
submanifolds is a submanifold.

Let p € £71(S) and (U,x!,...,x™) be an adapted chart centered at f(p) for M relative to
S such that U NS = Z(x" %1 . x™), the zero set of the functions ¥ %1 . ¥ Define
g: U — RF to be the map

g= ("KL Y.

() Show that f~1(U)Nf~1(S) = (g0 £)~'(0).
(b) Show that £~ 1(U)N f~1(S) is a regular level set of the function g o f: f~1(U) — RK.
(c) Prove the transversality theorem.
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610 Categories and Functors

Many of the problems in mathematics share common features. For example, in topol-
ogy one is interested in knowing whether two topological spaces are homeomorphic
and in group theory one is interested in knowing whether two groups are isomorphic.
This has given rise to the theory of categories and functors, which tries to clarify the
structural similarities among different areas of mathematics.

A category is essentially a collection of objects and arrows between objects.
These arrows, called morphisms, satisfy the abstract properties of maps and are of-
ten structure-preserving maps. Smooth manifolds and smooth maps form a category,
and so do vector spaces and linear maps. A functor from one category to another
preserves the identity morphism and the composition of morphisms. It provides a
way to simplify problems in the first category, for the target category of a functor
is usually simpler than the original category. The tangent space construction with
the differential of a smooth map is a functor from the category of smooth manifolds
with a distinguished point to the category of vector spaces. The existence of the
tangent space functor shows that if two manifolds are diffeomorphic, then their tan-
gent spaces at corresponding points must be isomorphic, thereby proving the smooth
invariance of dimension. Invariance of dimension in the continuous category of topo-
logical spaces and continuous maps is more difficult to prove, precisely because there
is no tangent space functor in the continuous category.

Much of algebraic topology is the study of functors, for example, the homology,
cohomology, and homotopy functors. For a functor to be truly useful, it should be
simple enough to be computable, yet complex enough to preserve essential features
of the original category. For smooth manifolds, this delicate balance is achieved in
the de Rham cohomology functor. In the rest of the book, we will be introducing
various functors of smooth manifolds, such as the tangent bundle and differential
forms, culminating in de Rham cohomology.

In this section, after defining categories and functors, we study the dual construc-
tion on vector spaces as a nontrivial example of a functor.

10.1 Categories

A category consists of a collection of elements, called objects, and for any two ob-
jects A and B, a set Mor(A, B) of elements, called morphisms from A to B, such that
given any morphism f € Mor(A, B) and any morphism g € Mor(B,C), the composite
go f €Mor(A,C) is defined. Furthermore, the composition of morphisms is required
to satisfy two properties:

(i) the identity axiom: for each object A, there is an identity morphism 14 €
Mor(A,A) such that for any f € Mor(A, B) and g € Mor(B,A),

folpy=f and Tgog=g;
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(ii) the associative axiom: for f € Mor(A,B), g € Mor(B,C), and h € Mor(C,D),
ho(gof)=(hog)of.

If f € Mor(A, B), we often write f: A — B.

Example. The collection of groups and group homomorphisms forms a category in
which the objects are groups and for any two groups A and B, Mor(A, B) is the set of
group homomorphisms from A to B.

Example. The collection of all vector spaces over R and R-linear maps forms a
category in which the objects are real vector spaces and for any two real vector
spaces V and W, Mor(V, W) is the set Hom(V, W) of linear maps from V to W.

Example. The collection of all topological spaces together with continuous maps
between them is called the continuous category.

Example. The collection of smooth manifolds together with smooth maps between
them is called the smooth category.

Example. We call a pair (M, q), where M is a manifold and g a point in M, a pointed
manifold. Given any two such pairs (N, p) and (M, g), let Mor((N, p),(M,q)) be the
set of all smooth maps F: N — M such that F(p) = g. This gives rise to the caregory
of pointed manifolds.

Definition 10.1. Two objects A and B in a category are said to be isomorphic if
there are morphisms f: A — B and g: B — A such that

gof:]lA and fog:]lB.
In this case both f and g are called isomorphisms.

The usual notation for an isomorphism is “~”. Thus, A ~ B can mean, for ex-
ample, a group isomorphism, a vector space isomorphism, a homeomorphism, or a
diffeomorphism, depending on the category and the context.

10.2 Functors

Definition 10.2. A (covariant) functor F from one category C to another category
D is a map that associates to each object A in C an object F(A) in D and to each
morphism f: A — B a morphism F(f): F(A) — F(B) such that

(i) F(La) = L),
(i) F(fog)=T(f)-TF(g)
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Example. The tangent space construction is a functor from the category of pointed
manifolds to the category of vector spaces. To each pointed manifold (N, p) we
associate the tangent space T, N and to each smooth map f: (N, p) — (M, f(p)) we
associate the differential f : TN — Tp(,) M.

The functorial property (i) holds because if 1: N — N is the identity map, then
its differential 1, ,: T,N — T,N is also the identity map.

The functorial property (ii) holds because in this context it is the chain rule

(g Of)*m = 8x,f(p) o fep-

Proposition 10.3. Let F: C — D be a functor from a category C to a category D.
If f: A — B is an isomorphism in C, then F(f): F(A) — F(B) is an isomorphism
in D.

Proof. Problem 10.2. a

Note that we can recast Corollaries 8.6 and 8.7 in a more functorial form. Sup-
pose f: N — M is a diffeomorphism. Then (N, p) and (M, f(p)) are isomorphic
objects in the category of pointed manifolds. By Proposition 10.3, the tangent spaces
TpN and Ty, M must be isomorphic as vector spaces and therefore have the same
dimension. It follows that the dimension of a manifold is invariant under a diffeo-
morphism.

If in the definition of a covariant functor we reverse the direction of the arrow
for the morphism JF(f), then we obtain a contravariant functor. More precisely, the
definition is as follows.

Definition 10.4. A contravariant functor § from one category C to another category
D is a map that associates to each object A in C an object F(A) in D and to each
morphism f: A — B a morphism F(f): F(B) — F(A) such that

(i) F(La) =Ly
(i) F(fog)=F(g) o F(f). (Note the reversal of order.)

Example. Smooth functions on a manifold give rise to a contravariant functor that as-
sociates to each manifold M the algebra F(M) = C*(M) of C* functions on M and to
each smooth map F: N — M of manifolds the pullback map F(F) = F*: C*(M) —
C*(N), F*(h) =ho F for h € C*(M). It is easy to verify that the pullback satisfies
the two functorial properties:

(i) (L))" = L=y
(ii) if F: N— M and G: M — P are C* maps, then (Go F)* =F* o G*: C*(P) —
C=(N).

Another example of a contravariant functor is the dual of a vector space, which
we review in the next section.
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10.3 The Dual Functor and the Multicovector Functor

Let V be a real vector space. Recall that its dual space V" is the vector space of all
linear functionals on V, i.e., linear functions ¢¢: V — R. We also write

VY = Hom(V,R).

If V is a finite-dimensional vector space with basis {ey,...,e,}, then by Propo-
sition 3.1 its dual space V" has as a basis the collection of linear functionals
{a!,...,a"} defined by

o'(ej) =8, 1<ij<n.

Since a linear function on V' is determined by what it does on a basis of V', this set of
equations defines &' uniquely.

A linear map L: V — W of vector spaces induces a linear map L, called the dual
of L, as follows. To every linear functional a: W — R, the dual map LV associates
the linear functional ;

Vaw SR
Thus, the dual map LY : WY — V'V is given by
LY(0)=aoL foraecW'.
Note that the dual of L reverses the direction of the arrow.

Proposition 10.5 (Functorial properties of the dual). Suppose V, W, and S are
real vector spaces.

(1) If]lvv: V — V is the identity map on'V, then 1y,: V¥ — V" is the identity map
onV".
() If f: V—Wandg: W — S are linear maps, then (go f)V = f" o g".

Proof. Problem 10.3. g

According to this proposition, the dual construction F: ()~ ()" is a contravari-
ant functor from the category of vector spaces to itself: for V a real vector space,
F(vV) =V and for f € Hom(V,W), F(f) = f¥ € Hom(W",V"). Consequently,
if f: V — W is an isomorphism, then so is its dual fV: WY — V" (cf. Proposi-
tion 10.3).

Fix a positive integer k. For any linear map L: V — W of vector spaces, define
the pullback map L*: Ay (W) — Ai(V) to be

(L* )iy oyvi) = f(L(v1),. .. . L(vg))

for f € A(W) and vy,...,v; € V. From the definition, it is easy to see that L* is a
linear map: L*(af +bg) =aL*f+bL*g fora,b € Rand f,g € A (W).

Proposition 10.6. The pullback of covectors by a linear map satisfies the two func-
torial properties:



114 §10 Categories and Functors

(@) If Ly: V =V is the identity map on 'V, then 1y, = 1y, y), the identity map on
Ar(V).
(1) IfK: U —V and L: V — W are linear maps of vector spaces, then

(LoK)" =K*oL": At(W) = Ar(U).
Proof. Problem 10.6. a

To each vector space V, we associate the vector space Ax(V) of all k-covectors
on V, and to each linear map L: V — W of vector spaces, we associate the pullback
Ap(L)=L*: Ag(W) — Ag(V). Then Ay () is a contravariant functor from the category
of vector spaces and linear maps to itself.

When k = 1, for any vector space V, the space A; (V) is the dual space, and for any
linear map L: V — W, the pullback map A (L) = L* is the dual map LY : WY — V",
Thus, the multicovector functor Ay ( ) generalizes the dual functor ().

Problems
10.1. Differential of the inverse map
If F: N — M is a diffeomorphism of manifolds and p € N, prove that (£~ ) F(p) = (F.p)~ L.

10.2. Isomorphism under a functor
Prove Proposition 10.3.

10.3. Functorial properties of the dual
Prove Proposition 10.5.

10.4. Matrix of the dual map
Suppose a linear transformation L: V — V is represented by the matrix A = [a’j] relative to

bases ej,...,e, for Vand éy,...,é,, for V:
L(Ej) = Zaj-e',-.
1
Let a!,...,a" and @&',...,&™ be the dual bases for V" and V", respectively. Prove that if

Vimi i A
LY(a') = ¥;bja’, then b, = a.
10.5. Injectivity of the dual map

(a) Suppose V and W are vector spaces of possibly infinite dimension over a field K. Show
that if a linear map L: V — W is surjective, then its dual LY : WY — V" is injective.

(b) Suppose V and W are finite-dimensional vector spaces over a field K. Prove the converse
of the implication in (a).

10.6. Functorial properties of the pullback
Prove Proposition 10.6.

10.7. Pullback in the top dimension
Show that if L: V — V is a linear operator on a vector space V of dimension n, then the
pullback L*: A, (V) — A,(V) is multiplication by the determinant of L.
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611 The Rank of a Smooth Map

In this section we analyze the local structure of a smooth map through its rank. Recall
that the rank of a smooth map f: N — M ata point p € N is the rank of its differential
at p. Two cases are of special interest: that in which the map f has maximal rank at
a point and that in which it has constant rank in a neighborhood. Let n = dim N and
m =dimM. In case f: N — M has maximal rank at p, there are three not mutually
exclusive possibilities:

(i) If n=m, then by the inverse function theorem, f is a local diffeomorphism at p.
(1) If n < m, then the maximal rank is n and f is an immersion at p.
(iii) If n > m, then the maximal rank is m and f is a submersion at p.

Because manifolds are locally Euclidean, theorems on the rank of a smooth map
between Euclidean spaces (Appendix B) translate easily to theorems about mani-
folds. This leads to the constant rank theorem for manifolds, which gives a simple
normal form for a smooth map having constant rank on an open set (Theorem 11.1).
As an immediate consequence, we obtain a criterion for a level set to be a regu-
lar submanifold, which, following [25], we call the constant-rank level set theorem.
As we explain in Subsection 11.2, maximal rank at a point implies constant rank
in a neighborhood, so immersions and submersions are maps of constant rank. The
constant rank theorem specializes to the immersion theorem and the submersion the-
orem, giving simple normal forms for an immersion and a submersion. The regular
level set theorem, which we encountered in Subsection 9.3, is now seen to be a con-
sequence of the submersion theorem and a special case of the constant-rank level set
theorem.

By the regular level set theorem, the preimage of a regular value of a smooth map
is a manifold. The image of a smooth map, on the other hand, does not generally have
a nice structure. Using the immersion theorem we derive conditions under which the
image of a smooth map is a manifold.

11.1 Constant Rank Theorem

Suppose f: N — M is a C* map of manifolds and we want to show that the level
set f~!(c) is a manifold for some ¢ in M. In order to apply the regular level set
theorem, we need the differential f. to have maximal rank at every point of f~!(c).
Sometimes this is not true; even if true, it may be difficult to show. In such cases, the
constant-rank level set theorem can be helpful. It has one cardinal virtue: it is not
necessary to know precisely the rank of f; it suffices that the rank be constant.

The constant rank theorem for Euclidean spaces (Theorem B.4) has an immediate
analogue for manifolds.

Theorem 11.1 (Constant rank theorem). Let N and M be manifolds of dimensions
n and m respectively. Suppose f: N — M has constant rank k in a neighborhood of
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a point p in N. Then there are charts (U, ) centered at p in N and (V,y) centered
at f(p) in M such that for (r',....7") in ¢(U),

(Wofod H(r,...."")=(",...,/%0,...,0). (11.1)

Proof. Choose a chart (U, ¢) about p in N and (V, W) about f(p) in M. Then ¥ o
f o ¢! is a map between open subsets of Euclidean spaces. Because ¢ and  are
diffeomorphisms, ¥ o f o ¢ ~! has the same constant rank k as f in a neighborhood of
¢(p) in R". By the constant rank theorem for Euclidean spaces (Theorem B.4) there
are a diffeomorphism G of a neighborhood of ¢(p) in R” and a diffeomorphism F

of a neighborhood of (¥ o f)(p) in R™ such that
(Folpofo(ﬁ_l oG_l)(r17...,r”) :(rl,...mk,O,...,O).
Setd):Gquandl//:Folfl. O

In the constant rank theorem, it is possible that the normal form (11.1) for the
function f has no zeros at all: if the rank k equals m, then

(Wofo¢_1)(r1,...,rn):(717...,7]").

From this theorem, the constant-rank level set theorem follows easily. By a neigh-
borhood of a subset A of a manifold M we mean an open set containing A.

Theorem 11.2 (Constant-rank level set theorem). Let f: N — M be a C* map
of manifolds and ¢ € M. If f has constant rank k in a neighborhood of the level set
f~Yc) in N, then f~'(c) is a regular submanifold of N of codimension k.

Proof. Let p be an arbitrary point in f~!(c). By the constant rank theorem there are
a coordinate chart (U,¢) = (U, x',...,x") centered at p € N and a coordinate chart
(V,w) = (V,y',...,y™) centered at f(p) = ¢ € M such that

(Wofod D, ...r=(",..../%0,...,0) e R

This shows that the level set (W o f o ¢~1)~1(0) is defined by the vanishing of the

coordinates r!,..., r*.

- —_— —_—
W U 14
Fig. 11.1. Constant-rank level set.

The image of the level set f~!(c) under ¢ is the level set (W o f o ¢~1)~1(0)
(Figure 11.1), since
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O @) =0 (W) =(yeofop)71(0).

Thus, the level set £ ! (c) in U is defined by the vanishing of the coordinate functions
x!,... %k, where x' = 1’ o ¢. This proves that f~!(c) is a regular submanifold of N

of codimension k. O

Example 11.3 (Orthogonal group). The orthogonal group O(n) is defined to be the
subgroup of GL(n,R) consisting of matrices A such that A”A = I, the n x n identity
matrix. Using the constant rank theorem, prove that O(n) is a regular submanifold
of GL(n,R).

Solution. Define f: GL(n,R) — GL(n,R) by f(A) = ATA. Then O(n) is the level
set f~1(I). For any two matrices A,B € GL(n,R), there is a unique matrix C €
GL(n,R) such that B=AC. Denote by /¢ and r¢ : GL(n,R) — GL(n,R) the left and
right multiplication by C, respectively. Since

f(AC) = (AC)TAC =cTATAC =CT f(A)C,
we have
(fore)(A) = (ler orco f)(A).
Since this is true for all A € GL(n,R),

forczgcTorcof.

By the chain rule,

feaco (rc)sa = (ber ) aac o (rc)iata © fen- (11.2)

Since left and right multiplications are diffeomorphisms, their differentials are iso-
morphisms. Composition with an isomorphism does not change the rank of a linear
map. Hence, in (11.2),

I‘kf*,Ac = I'kf*,A.

Since AC and A are two arbitrary points of GL(n,R), this proves that the differential
of f has constant rank on GL(n,R). By the constant-rank level set theorem, the
orthogonal group O(n) = f~!(I) is a regular submanifold of GL(n,R).

NOTATION. If f: N — M is a map with constant rank k in a neighborhood of a point
p € N, its local normal form (11.1) relative to the charts (U,¢) = (U,x!,... x")
and (V,y) = (V,y',...,y") in the constant rank theorem (Theorem 11.1) can be
expressed in terms of the local coordinates x!,...,x" and y!,...,y" as follows.

First note that for any g € U,

¢(q) = (x'(q),....x"(q)) and W(£(q)) = (' (£(q))...-.¥"(f(q))-

Thus,
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O @), " (f(@) = w(f(9) = (e fo0)(9(q))

=(Wofo9 ) (9), ¥ (q))
= (x'(g),...,%(¢)),0,...,0) (by (11.1)).
As functions on U,
Glof, .. y"ef) =@, x50,...,0). (11.3)
We can rewrite (11.3) in the following form: relative to the charts (U,x',...,x") and

(V,y',...,y™), the map f is given by

(xl,...7x”) — (x17...,xk,0,...70).

11.2 The Immersion and Submersion Theorems

In this subsection we explain why immersions and submersions have constant rank.
The constant rank theorem gives local normal forms for immersions and submer-
sions, called the immersion theorem and the submersion theorem respectively. From
the submersion theorem and the constant-rank level set theorem, we get two more
proofs of the regular level set theorem.

Consider a C® map f: N — M. Let (U,¢) = (U,x',...,x") be a chart about p in
N and (V,y) = (V,y',...,y™) a chart about f(p) in M. Write f' =y’ o f for the ith
component of f in the chart (V,y!,...,y"). Relative to the charts (U, ¢) and (V, @),
the linear map f. , is represented by the matrix [0 f/dx/(p)] (Proposition 8.11).
Hence,

fepisinjective <= n<mand tk[df'/dx/(p)] =n, (11.4)
fep i8S surjective <= n>mand tk[df'/0x/ (p)] = m. .

The rank of a matrix is the number of linearly independent rows of the matrix;
it is also the number of linearly independent columns. Thus, the maximum possible
rank of an m x n matrix is the minimum of m and n. It follows from (11.4) that being
an immersion or a submersion at p is equivalent to the maximality of rk[d f' /dx/ (p)].

Having maximal rank at a point is an open condition in the sense that the set

Dmax(f) ={p € U| fi p has maximal rank at p}
is an open subset of U. To see this, suppose k is the maximal rank of f. Then
tkfo, =k <= 1k[df'/ox/(p) =k
< 1k[df'/dx/ (p)] >k (since k is maximal).
So the complement U — D« (f) is defined by
K[Df /9] (p)] < k,

which is equivalent to the vanishing of all k x k minors of the matrix [ f/dx/ (p)].
As the zero set of finitely many continuous functions, U — Dax (f) is closed and so
Dmax(f) is open. In particular, if f has maximal rank at p, then it has maximal rank
at all points in some neighborhood of p. We have proven the following proposition.
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Proposition 11.4. Let N and M be manifolds of dimensions n and m respectively. If
a C”map f: N — M is an immersion at a point p € N, then it has constant rank n
in a neighborhood of p. If a C* map f: N — M is a submersion at a point p € N,
then it has constant rank m in a neighborhood of p.

Example. While maximal rank at a point implies constant rank in a neighborhood,
the converse is not true. The map f: R* — R3, f(x,y) = (x,0,0), has constant rank
1, but it does not have maximal rank at any point.

By Proposition 11.4, the following theorems are simply special cases of the con-
stant rank theorem.

Theorem 11.5. Let N and M be manifolds of dimensions n and m respectively.

(i) (Immersion theorem) Suppose f: N — M is an immersion at p € N. Then
there are charts (U, @) centered at p in N and (V, ) centered at f(p) in M such
that in a neighborhood of ¢ (p),

(Wofo¢7l)(717...,7ﬂ) :(rl,...7r”,0,...70).

(i1) (Submersion theorem) Suppose f: N — M is a submersion at p in N. Then
there are charts (U, @) centered at p in N and (V,y) centered at f(p) in M such
that in a neighborhood of ¢ (p),

(Wofod D, .../t ) =0t 0.
Corollary 11.6. A submersion f: N — M of manifolds is an open map.

Proof. Let W be an open subset of N. We need to show that its image f(W) is open
in M. Choose a point f(p) in f(W), with p € W. By the submersion theorem, f is
locally a projection. Since a projection is an open map (Problem A.7), there is an
open neighborhood U of p in W such that f(U) is open in M. Clearly,

f(p) € fU) CF(W).
Since f(p) € f(W) was arbitrary, f(W) is open in M. O

The regular level set theorem (Theorem 9.9) is an easy corollary of the submer-
sion theorem. Indeed, for a C** map f: N — M of manifolds, a level set f~! (c) is
regular if and only if f is a submersion at every point p € f~!(c). Fix one such
point p € £~!(c) and let (U, ) and (V, y) be the charts in the submersion theorem.
Then yo fo¢~ ' =m: R" D ¢(U) — R™ is the projection to the first m coordinates,
x(r',...,”"") = (r',...,”). It follows that on U,

Vof=mod=(r",....r"M o= x".

Therefore,

)= 0)=(wo ) (0)=Z(yo f) =2Z(x",... .x"),
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showing that in the chart (U,x',...,x"), the level set f~!(c) is defined by the vanish-
ing of the m coordinate functions x!,...,x™. Therefore, (U,x!,...,x") is an adapted
chart for N relative to f~'(c). This gives a second proof that the regular level set
f~Y(c) is a regular submanifold of N.

Since the submersion theorem is a special case of the constant rank theorem,
it is not surprising that the regular level set theorem is also a special case of the
constant-rank level set theorem. On a regular level set f~!(c), the map f: N — M
has maximal rank m at every point. Since the maximality of the rank of f is an open
condition, a regular level set f~!(c) has a neighborhood on which f has constant
rank m. By the constant-rank level set theorem (Theorem 11.2), f~!(c) is a regular
submanifold of N, giving us a third proof of the regular level set theorem.

11.3 Images of Smooth Maps
The following are all examples of C** maps f: N — M, with N = R and M = R?.

Example 11.7. f(t) = (¢2,°).

This f is one-to-one, because ¢ + ¢ is one-to-one. Since f'(0) = (0,0), the
differential f; o: ToR — 7"(070)]1%2 is the zero map and hence not injective; so f is not
an immersion at 0. Its image is the cuspidal cubic y> = x° (Figure 11.2).

1 +

Fig. 11.2. A cuspidal cubic, not an immersion.

Example 11.8. f(t) = (1> — 1,3 —1).

Since the equation f'(¢) = (2¢,3t> — 1) = (0,0) has no solution in ¢, this map f
is an immersion. It is not one-to-one, because it maps both = 1 and t = —1 to the
origin. To find an equation for the image f(N), let x =¢> — 1 and y = > —¢. Then
y=t(t>—1)=tx;s0

V=12 = (x+ 1)x%
Thus the image of f is the nodal cubic y* = x*(x + 1) (Figure 11.3).

Example 11.9. The map f in Figure 11.4 is a one-to-one immersion but its image,
with the subspace topology induced from R?, is not homeomorphic to the domain
R, because there are points near f(p) in the image that correspond to points in R far
away from p. More precisely, if U is an interval about p as shown, there is no neigh-
borhood V of f(p) in f(N) such that f~'(V) C U; hence, £~ is not continuous.
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-1 +

Fig. 11.3. A nodal cubic, an immersion but not one-to-one.

U [~
, f_ED
\

\
U ' ]
p \\f(p)/,

Fig. 11.4. A one-to-one immersion that is not an embedding.

Example 11.10. The manifold M in Figure 11.5 is the union of the graph of y =
sin(1/x) on the interval ]0, 1], the open line segment from y =0 to y = 1 on the
y-axis, and a smooth curve joining (0,0) and (1,sin1). The map f is a one-to-one
immersion whose image with the subspace topology is not homeomorphic to R.

Fig. 11.5. A one-to-one immersion that is not an embedding.

Notice that in these examples the image f(N) is not a regular submanifold of
M = R?. We would like conditions on the map f so that its image f(N) would be a
regular submanifold of M.

Definition 11.11. A C* map f: N — M is called an embedding if

(i) it is a one-to-one immersion and
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(i) the image f(N) with the subspace topology is homeomorphic to N under f.
(The phrase “one-to-one” in this definition is redundant, since a homeomor-
phism is necessarily one-to-one.)

Remark. Unfortunately, there is quite a bit of terminological confusion in the liter-
ature concerning the use of the word “submanifold.” Many authors give the image
S(N) of a one-to-one immersion f: N — M not the subspace topology, but the topol-
ogy inherited from f; i.e., a subset f(U) of f(N) is said to be open if and only if U
is open in N. With this topology, f(N) is by definition homeomorphic to N. These
authors define a submanifold to be the image of any one-to-one immersion with the
topology and differentiable structure inherited from f. Such a set is sometimes called
an immersed submanifold of M. Figures 11.4 and 11.5 show two examples of im-
mersed submanifolds. If the underlying set of an immersed submanifold is given the
subspace topology, then the resulting space need not be a manifold at all!

For us, a submanifold without any qualifying adjective is always a regular sub-
manifold. To recapitulate, a regular submanifold of a manifold M is a subset S of
M with the subspace topology such that every point of S has a neighborhood U NS
defined by the vanishing of coordinate functions on U, where U is a chart in M.

!
AY L
7 <
_T 3 3n X
2 2 2
1
8
L Ay
13 7
n bid 3 —1 1 x
2 2 2

-1 B

Fig. 11.6. The figure-eight as two distinct immersed submanifolds of R2.

Example 11.12 (The figure-eight). The figure-eight is the image of a one-to-one im-
mersion
f(t) = (cost,sin2t), —m/2<t<3m/2

(Figure 11.6). As such, it is an immersed submanifold of R?, with a topology and
manifold structure induced from the open interval |— /2,37 /2[ by f. Because of
the presence of a cross at the origin, it cannot be a regular submanifold of R?. In
fact, with the subspace topology of R?, the figure-eight is not even a manifold.
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The figure-eight is also the image of the one-to-one immersion
g(t) = (cost,—sin2t), —mw/2<t<3m/2

(Figure 11.6). The maps f and g induce distinct immersed submanifold structures on
the figure-eight. For example, the open interval from A to B in Figure 11.6 is an open
set in the topology induced from g, but it is not an open set in the topology induced
from f, since its inverse image under f contains an isolated point 7 /2.

We will use the phrase “near p” to mean “in a neighborhood of p.”

Theorem 11.13. If f: N — M is an embedding, then its image f(N) is a regular
submanifold of M.

Proof. Let p € N. By the immersion theorem (Theorem 11.5), there are local coor-
dinates (U,x!,...,x") near p and (V,y',...,y") near f(p) such that f: U — V has
the form

(') e (L x0,...,0).

U f -

W% f(N)

Fig. 11.7. The image of an embedding is a regular submanifold.

(N 53

Thus, f(U) is defined in V by the vanishing of the coordinates y"*!,... y". This
alone does not prove that f(N) is a regular submanifold, since V N f(N) may be
larger than f(U). (Think about Examples 11.9 and 11.10.) We need to show that in
some neighborhood of f(p) in V, the set f(N) is defined by the vanishing of m —n
coordinates.

Since f(N) with the subspace topology is homeomorphic to N, the image f(U)
is open in f(N). By the definition of the subspace topology, there is an open set V’
in M such that V' N f(N) = f(U) (Figure 11.7). In vV NV’,

VOVINf(N) =VNfU) = f(U),

and f(U) is defined by the vanishing of y"*! ... y". Thus, (VNV’,y',...,y") is an
adapted chart containing f(p) for f(N). Since f(p) is an arbitrary point of f(N),
this proves that f(N) is a regular submanifold of M. O

Theorem 11.14. If N is a regular submanifold of M, then the inclusion i: N — M,
i(p) = p, is an embedding.
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Proof. Since a regular submanifold has the subspace topology and i(N) also has
the subspace topology, i: N — i(N) is a homeomorphism. It remains to show that
i: N — M is an immersion.

Let p € N. Choose an adapted chart (V,y',...,y" y**1 ... y) for M about p
such that V NN is the zero set of y"*! ... y". Relative to the charts (V N, y', ..., y")
for N and (V,y',...,y") for M, the inclusion i is given by

(yl,...,y”)»—> (yl,...,y”,O,...,O)7

which shows that 7 is an immersion. O

In the literature the image of an embedding is often called an embedded subman-
ifold. Theorems 11.13 and 11.14 show that an embedded submanifold and a regular
submanifold are one and the same thing.

11.4 Smooth Maps into a Submanifold

Suppose f: N — M is a C* map whose image f(N) lies in a subset S C M. If Sis a
manifold, is the induced map f : N — S also C? This question is more subtle than
it looks, because the answer depends on whether S is a regular submanifold or an
immersed submanifold of M.

Example. Consider the one-to-one immersions f and g: I — R? in Example 11.12,
where [ is the open interval | — 7£/2,37/2[in R. Let S be the figure-eight in R? with
the immersed submanifold structure induced from g. Because the image of f: I —
R? lies in S, the C* map f induces a map f: I — S.

The open interval from A to B in Figure 11.6 is an open neighborhood of the
origin 0 in S. Its inverse image under f contains the point 7z/2 as an isolated point
and is therefore not open. This shows that although f: I — R? is C*, the induced
map f: I — S is not continuous and therefore not C*°.

Theorem 11.15. Suppose f: N — M is C* and the image of f lies in a subset S of
M. If S is a regular submanifold of M, then the induced map f: N — S is C*.

Proof. Let p € N. Denote the dimensions of N, M, and S by n, m, and s, respectively.
By hypothesis, f(p) € S C M. Since S is a regular submanifold of M, there is an
adapted coordinate chart (V, y) = (V,y',...,y™) for M about f(p) such that SNV is
the zero set of y**1, ...y, with coordinate map ws = (y',...,y*). By the continuity
of f, itis possible to choose a neighborhood of p with f(U) C V. Then f(U) C VNS,
so that forg € U,

(o £)g)=0" (@)Y (f(9).0,...,0).
It follows that on U, }
lIISof: (yl of,...,yx of).

Since y' o f,...,y* o f are C on U, by Proposition 6.16, f is C** on U and hence at
p. Since p was an arbitrary point of N, the map f: N — Sis C”. a
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Example 11.16 (Multiplication map of SL(n,R)). The multiplication map

u: GL(n,R) x GL(n,R) — GL(n,R),
(A,B) — AB,

is clearly C* because

n
(AB)U = Z a,-kbkj
k=1
is a polynomial and hence a C* function of the coordinates a; and by;. However,
one cannot conclude in the same way that the multiplication map

i: SL(n,R) x SL(n,R) — SL(n,R)

is C*. This is because {a;;}1<; j<x is not a coordinate system on SL(n,R); there is
one coordinate too many (See Problem 11.6).

Since SL(n,R) x SL(n,R) is a regular submanifold of GL(n,R) x GL(n,R), the
inclusion map

i: SL(n,R) x SL(n,R) — GL(n,R) x GL(n,R)
is C” by Theorem 11.14; therefore, the composition
Woi: SL(n,R) x SL(n,R) — GL(n,R)

is also C*. Because the image of u o i lies in SL(n,R), and SL(n,R) is a regular
submanifold of GL(n,R) (see Example 9.13), by Theorem 11.15 the induced map

fi: SL(n,R) x SL(n,R) — SL(n,R)

is C*=.

11.5 The Tangent Plane to a Surface in R3

Suppose f(x!',x?,x3) is a real-valued function on R* with no critical points on its
zero set N = f~1(0). By the regular level set theorem, N is a regular submanifold
of R3. By Theorem 11.14 the inclusion i: N — R3 is an embedding, so at any point
pinN, i p: T,N — T,R? is injective. We may therefore think of the tangent plane
T,N as a plane in T,,R3 ~ R3 (Figure 11.8). We would like to find the equation of
this plane.

Suppose v = Y v/ d/dx'|, is a vector in T,N. Under the linear isomorphism
T,R3 ~ R, we identify v with the vector (v',v2,13) in R?. Let c(t) be a curve
lying in N with ¢(0) = p and ¢/(0) = (v!,v?,v3). Since ¢(¢) lies in N, f(c(t)) = 0 for
all z. By the chain rule,
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Fig. 11.8. Tangent plane to a surface N at p.

Atr =0,
0= 3 hconero-x J
ax’ & oox PV
Since the vector v = (v!,v?,»3) represents the arrow from the point p = ( _p1 , p_z, p3_)

tox = (x!,x2, %) in the tangent plane, one usually makes the substitution v = x — p',

This amounts to translating the tangent plane from the origin to p. Thus the tangent
plane to N at p is defined by the equation

Zaxl (P = pf)=0. (11.5)

One interpretation of this equation is that the gradient vector (3 f/dx! (p),d f/dx*(p),
df/dx*(p)) of f at p is normal to any vector in the tangent plane.

Example 11.17 (Tangent plane to a sphere). Let f(x,y,z) = x> +y*>+z> — 1. To get
the equation of the tangent plane to the unit sphere S*> = f~1(0) in R? at (a, b, c) € 52,
we compute

af af _ af
ox 2, dy 2 dz 2%
Atp=(a,b,c),
af , | af aof
=2 =2 iy

By (11.5) the equation of the tangent plane to the sphere at (a,b,¢) is
2a(x—a) +2b(y —b) +2c(z—c)=0,

or
ax+by+cz=1,

since a> +b*+c2 = 1.



11.5 The Tangent Plane to a Surface in R3 127

Problems

11.1. Tangent vectors to a sphere
The unit sphere S in R"*! is defined by the equation ):?:*11 (x)?=1.Forp=(p',....p""H e
S, show that a necessary and sufficient condition for

X, = Zaia/8xi|p IS T,,(]R”H)
to be tangent to §" at pis Y.a'p' = 0.
11.2. Tangent vectors to a plane curve

(a) Let i: S' < R? be the inclusion map of the unit circle. In this problem, we denote by
x,y the standard coordinates on R? and by %, their restrictions to S!. Thus, ¥ = i*x and
7 = i*y. On the upper semicircle U = {(a,b) € S' | b > 0}, % is a local coordinate, so that
d/dx is defined. Prove that for p € U,

[0 o djad
"ozl ) = \oxTazay )|
p Y/ p
Thus, although i,: T,S' — T,R? is injective, d/d%|, cannot be identified with d/dx|,
(Figure 11.9).

Fig. 11.9. Tangent vector d /dX], to a circle.

(b) Generalize (a) to a smooth curve C in R2, letting U be a chart in C on which %, the restric-
tion of x to C, is a local coordinate.

11.3.* Critical points of a smooth map on a compact manifold

Show that a smooth map f from a compact manifold N to R” has a critical point. (Hint: Let
: R™ — R be the projection to the first factor. Consider the composite map o f: N — R.
A second proof uses Corollary 11.6 and the connectedness of R™.)

11.4. Differential of an inclusion map
On the upper hemisphere of the unit sphere $2, we have the coordinate map ¢ = (u,v), where

u(a,b,c)=a and v(a,b,c)=0b.

So the derivations d/dul,,d/dv|, are tangent vectors of S? at any point p = (a,b,c) on the
upper hemisphere. Let i: $2 — R3 be the inclusion and x, y, z the standard coordinates on R>.
The differential i, : 7,5? — T,R® maps 9 /dul,,d/dv|, into T,R>. Thus,
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[0 L 0 L 0 10

L = +B +Y ’
<8u p> dx|, |, dz|,

[0 ) 0 ) 0 5 0

Ly = +ﬁ +'}’ )
(81} p> ox » dy » dz »

for some constants o, B¢, y. Find (o, B, 7") fori = 1,2.

11.5. One-to-one immersion of a compact manifold
Prove that if N is a compact manifold, then a one-to-one immersion f: N — M is an embed-
ding.

11.6. Multiplication map in SL(n,R)

Let f: GL(n,R) — R be the determinant map f(A) = det A = det[g;]. For A € SL(n,R), there
is at least one (k, £) such that the partial derivative d f/days(A) is nonzero (Example 9.13). Use
Lemma 9.10 and the implicit function theorem to prove that

(a) there is a neighborhood of A in SL(n,R) in which a;;, (i, /) # (k,£), form a coordinate
. )

#
system, and ay is a C* function of the other entries a;, (i, j) # (k,?);
(b) the multiplication map

i: SL(n,R) x SL(n,R) — SL(n,R)

is C*.
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612 The Tangent Bundle

A smooth vector bundle over a smooth manifold M is a smoothly varying family of
vector spaces, parametrized by M, that locally looks like a product. Vector bundles
and bundle maps form a category, and have played a fundamental role in geometry
and topology since their appearance in the 1930s [39].

The collection of tangent spaces to a manifold has the structure of a vector bundle
over the manifold, called the tangent bundle. A smooth map between two manifolds
induces, via its differential at each point, a bundle map of the corresponding tangent
bundles. Thus, the tangent bundle construction is a functor from the category of
smooth manifolds to the category of vector bundles.

At first glance it might appear that the tangent bundle functor is not a simplifi-
cation, since a vector bundle is a manifold plus an additional structure. However,
because the tangent bundle is canonically associated to a manifold, invariants of
the tangent bundle will give rise to invariants for the manifold. For example, the
Chern—Weil theory of characteristic classes, which we treat in another volume, uses
differential geometry to construct invariants for vector bundles. Applied to the tan-
gent bundle, characteristic classes lead to numerical diffeomorphism invariants for
a manifold called characteristic numbers. Characteristic numbers generalize, for
instance, the classical Euler characteristic.

For us in this book the importance of the vector bundle point of view comes from
its role in unifying concepts. A section of a vector bundle w: E — M is a map from
M to E that maps each point of M into the fiber of the bundle over the point. As
we shall see, both vector fields and differential forms on a manifold are sections of
vector bundles over the manifold.

In the following pages we construct the tangent bundle of a manifold and show
that it is a smooth vector bundle. We then discuss criteria for a section of a smooth
vector bundle to be smooth.

12.1 The Topology of the Tangent Bundle

Let M be a smooth manifold. Recall that at each point p € M, the tangent space T,M
is the vector space of all point-derivations of C;J(M), the algebra of germs of C*
functions at p. The tangent bundle of M is the union of all the tangent spaces of M:

™ = | T,M.
pPEM

In general, if {A;};¢; is a collection of subsets of a set S, then their disjoint union

is defined to be the set
[ Ja=U ({i} x4).

icl icl
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The subsets A; may overlap, but in the disjoint union they are replaced by nonover-
lapping copies.

In the definition of the tangent bundle, the union | pem TpyM is (up to notation)
the same as the disjoint union [ ,¢p T,M, since for distinct points p and g in M, the
tangent spaces 7,M and T, M are already disjoint.

T,M

M )
M

Fig. 12.1. Tangent spaces to a circle.

In a pictorial representation of tangent spaces such as Figure 12.1, where M is the
unit circle, it may look as though the two tangent spaces T,M and T;M intersect. In
fact, the intersection point of the two lines in Figure 12.1 represents distinct tangent
vectors in T,M and T;M, so that T,M and T;M are disjoint even in the figure.

There is a natural map 7: TM — M given by w(v) = p if v € T,M. (We use the
word “natural” to mean that the map does not depend on any choice, for example,
the choice of an atlas or of local coordinates for M.) As a matter of notation, we
sometimes write a tangent vector v € T,M as a pair (p,v), to make explicit the point
p € M at which v is a tangent vector.

As defined, TM is a set, with no topology or manifold structure. We will make it
into a smooth manifold and show that it is a C* vector bundle over M. The first step
is to give it a topology.

If (U,¢) = (U,x',...,x") is a coordinate chart on M, let

TU=J1,U=]TM.
peU peU

(We saw in Remark 8.2 that 7,U = T,M.) Atapoint p € U, a basis for T,M is the set
of coordinate vectors d/dx'|,,...,d/dx"|,, so a tangent vector v € T,M is uniquely
a linear combination 3
n
V= Zc’ .
= ox'|,

In this expression, the coefficients ¢ = c!(v) depend on v and so are functions on
TU. Let &' = x' o 7 and define the map ¢: TU — ¢(U) x R" by

vies (xH(p),.. . XM (p).ct(v),....c"v) = (&,.... 7%, ). (12.1)

Then ¢ has inverse
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; 0
1
(¢(p)7c a--~7cn) HZCJ Oxt
p

and is therefore a bijection. This means we can use ¢ to transfer the topology of
o(U) x R" to TU: a set A in TU is open if and only if ¢(A) is open in ¢(U) x
R”, where ¢(U) x R”" is given its standard topology as an open subset of R*". By
definition, TU, with the topology induced by @, is homeomorphic to ¢ (U) x R, If
V is an open subset of U, then ¢ (V) x R" is an open subset of ¢ (U) x R". Hence,
the relative topology on 7'V as a subset of TU is the same as the topology induced
from the bijection ¢|7y: TV — ¢(V) x R™.

Let ¢..: T,U — Ty, (R") be the differential of the coordinate map ¢ at p. Since
¢ (v) =X 9/9r |y () € Ty (R") ~ R" by Proposition 8.8, we may identify ¢.(v)
with the column vector {(c!,...,¢") in R". So another way to describe ¢ is ¢ = (¢ o
T, 0s).

Let B be the collection of all open subsets of T (Uy) as Uy runs over all coordi-
nate open sets in M:

B =|_J{A | A openin T (Uy),Uq a coordinate open set in M}.
o

Lemma 12.1. (i) For any manifold M, the set TM is the union of all A € B.
(ii) Let U and V be coordinate open sets in a manifold M. If A is open in TU and B
isopenin TV, then ANB is openin T(UNV).

Proof. (i) Let {(Uq, 9o )} be the maximal atlas for M. Then

™ =|JT(Us) C |JACTM,
a AeB

so equality holds everywhere.
(ii) Since T(U NV) is a subspace of TU, by the definition of relative topology,
ANT{UNV)isopenin T(UNV). Similarly, BNT(UNV) is open in T(UNV).
But

ANBCTUNTV =T(UNV).

Hence,
ANB=ANBNT({UNV)=ANTUNV))N(BNTUNV))
isopenin T(UNV). O

It follows from this lemma that the collection B satisfies the conditions (i) and
(ii) of Proposition A.8 for a collection of subsets to be a basis for some topology on
TM. We give the tangent bundle 7M the topology generated by the basis B.

Lemma 12.2. A manifold M has a countable basis consisting of coordinate open
sets.
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Proof. Let {(Uq, ¢o)} be the maximal atlas on M and B = {B;} a countable basis
for M. For each coordinate open set Uy and point p € Uy, choose a basic open set
B, o € B such that

pEBpo CUg.

The collection {B), o}, without duplicate elements, is a subcollection of B and is
therefore countable.

For any open set U in M and a point p € U, there is a coordinate open set Uy
such that

VAS Ua CcU.
Hence,
pEB,q CU,
which shows that {B), o } is a basis for M. |

Proposition 12.3. The tangent bundle TM of a manifold M is second countable.

Proof. Let {U;}7, be a countable basis for M consisting of coordinate open sets.
Let ¢; be the coordinate map on U;. Since TU; is homeomorphic to the open subset
0;(U;) x R" of R?" and any subset of a Euclidean space is second countable (Ex-
ample A.13 and Proposition A.14), TU; is second countable. For each i, choose a
countable basis {B;;}7_; for TU;. Then {B;;};";_; is a countable basis for the tan-
gent bundle. o

Proposition 12.4. The tangent bundle TM of a manifold M is Hausdorff.

Proof. Problem 12.1. a

12.2 The Manifold Structure on the Tangent Bundle

Next we show that if {(Ug, ¢q)} is a C* atlas for M, then {(TUg, dy)} is a C* atlas
for the tangent bundle TM, where @y, is the map on TU,, induced by ¢, as in (12.1).
It is clear that TM = Uy TUq. It remains to check that on (TUgy) N (TUg), 9o and

¢p are C™ compatible.
Recall that if (U,x!,...,x"), (V,y!,...,y") are two charts on M, then for any

p € UNYV there are two bases singled out for the tangent space T,M: {9 /dx/| pYiz1
and {9/9y'|,}'_,. So any tangent vector v € T,M has two descriptions:

. 0 0
v = Zj:a-’ Py

:Zbl dyi

4 i

(12.2)

P

It is easy to compare them. By applying both sides to x*, we find that

P ;0 ;0xk
ak = (;a-’axj)f: <leb ayi>xkzzi:b dyi°
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Similarly, applying both sides of (12.2) to y* gives

k
-y oY (12.3)

a
- ox/

Returning to the atlas {(Ug, o)}, we write Upg = Uy NUg, ¢g = (x',...,x")
and ¢g = (y',...,y"). Then

Pp o Py Do (Ugp) X R" — 9 (Uqp) x R
is given by

(Galp).a'..coa”) <pz ‘.

where by (12.3) and Example 6.24,

) = ((9p 00 ) (9a(p))b",....b"),
14

¢ﬁ ¢oc )

;9

=Yl 50 =X (6a(p).

By the definition of an atlas, ¢g o (j)ojl is C”. Therefore, (]SB ° (]5071 is C=. This
completes the proof that the tangent bundle 7M is a C* manifold, with {(TUq, ¢¢)}
as a C” atlas.

12.3 Vector Bundles

On the tangent bundle TM of a smooth manifold M, the natural projection map
w: TM — M, nt(p,v) = p makes TM into a C* vector bundle over M, which we now
define.

Given any map 7: E — M, we call the inverse image 7! (p) := 7' ({p}) of
a point p € M the fiber at p. The fiber at p is often written E,. For any two maps
w: E— M and n': E' — M with the same target space M, amap ¢ : E — E' is said
to be fiber-preserving if ¢ (E,) C E}, for all p € M.

Exercise 12.5 (Fiber-preserving maps). Given two maps 7: £ — M and ' : E' — M, check
that amap ¢ : E — E' is fiber-preserving if and only if the diagram

> '

\/

A surjective smooth map 7: E — M of manifolds is said to be locally trivial of
rank r if

commutes.
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(i) each fiber 7! (p) has the structure of a vector space of dimension r;
(ii) for each p € M, there are an open neighborhood U of p and a fiber-preserving
diffeomorphism ¢ : 7' (U) — U x R” such that for every ¢ € U the restriction

Ol T () = {g} xR’

is a vector space isomorphism. Such an open set U is called a trivializing open
set for E, and ¢ is called a trivialization of E over U.

The collection { (U, )}, with {U } an open cover of M, is called a local trivialization
for E, and {U } is called a trivializing open cover of M for E.

A C* vector bundle of rank r is a triple (E, M, ) consisting of manifolds E and M
and a surjective smooth map 7w: E — M that is locally trivial of rank r. The manifold
E is called the rotal space of the vector bundle and M the base space. By abuse of
language, we say that E is a vector bundle over M. For any regular submanifold
S C M, the triple (1S, S, 7| ;1) is a C* vector bundle over S, called the restriction
of E to S. We will often write the restriction as E|g instead of 7£71S.

Properly speaking, the tangent bundle of a manifold M is a triple (TM,M, r), and
TM is the total space of the tangent bundle. In common usage, TM is often referred
to as the tangent bundle.

| =
Fig. 12.2. A circular cylinder is a product bundle over a circle.

Example 12.6 (Product bundle). Given a manifold M, let 7: M x R" — M be the
projection to the first factor. Then M x R" — M is a vector bundle of rank 7, called the
product bundle of rank r over M. The vector space structure on the fiber 77! (p) =
{(p,v) | v € R’} is the obvious one:

(p,u)+(p,v)=(p,u+v), b-(p,v)=(p,bv)forbecR.

A local trivialization on M X R is given by the identity map 1y;xr: M xR — M x R.
The infinite cylinder S' x R is the product bundle of rank 1 over the circle (Fig-
ure 12.2).
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Let t: E — M be a C* vector bundle. Suppose (U, y) = (U,x',...,x") is a chart
on M and
¢:Ely SUXR", ¢(e) = (n(e),c'(e),...,c" (),

is a trivialization of E over U. Then
(yx1)op=(x'... . c,....c"): Ely SUXR" 3 y(U) xR CR" x R"

is a diffeomorphism of E|y onto its image and so is a chart on E. We call x', ... x"
the base coordinates and ¢!, ... c" the fiber coordinates of the chart (E|y, (y x 1) o
¢) on E. Note that the fiber coordinates ¢’ depend only on the trivialization ¢ of the
bundle E|y and not on the trivialization y of the base U.

Let mg: E — M, np: F — N be two vector bundles, possibly of different ranks.
A bundle map from E to F is a pair of maps (f,f), f: M — N and f: E — F,
such that

(i) the diagram

E >F
g I3
\ \
M >N
f

is commutative, meaning g o f = fomg;
(i) f is linear on each fiber; i.e., for each p € M, f: E, — Fy(p) is a linear map of
vector spaces.

The collection of all vector bundles together with bundle maps between them
forms a category.

Example. A smoothmap f: N — M of manifolds induces a bundle map (f, f), where
f:TN — TM is given by

F(pv) = (F(p). £u(v)) € (S (p)} % Ty < TM

for all v € T,N. This gives rise to a covariant functor 7" from the category of
smooth manifolds and smooth maps to the category of vector bundles and bun-
dle maps: to each manifold M, we associate its tangent bundle 7'(M), and to
each C* map f: N — M of manifolds, we associate the bundle map T(f) =
(f: N=M,f: T(N)—T(M)).

If £ and F are two vector bundles over the same manifold M, then a bundle
map from E to F' over M is a bundle map in which the base map is the identity 1.
For a fixed manifold M, we can also consider the category of all C* vector bundles
over M and C* bundle maps over M. In this category it makes sense to speak of an
isomorphism of vector bundles over M. Any vector bundle over M isomorphic over
M to the product bundle M x R” is called a trivial bundle.
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12.4 Smooth Sections

A section of a vectorbundle 7: E — M isamap s: M — E such that 7 o s = 1, the
identity map on M. This condition means precisely that for each p in M, s maps p
into the fiber £, above p. Pictorially we visualize a section as a cross-section of the
bundle (Figure 12.3). We say that a section is smooth if it is smooth as a map from
MtoE.

M ®
p

Fig. 12.3. A section of a vector bundle.

Definition 12.7. A vector field X on a manifold M is a function that assigns a tangent
vector X, € T,M to each point p € M. In terms of the tangent bundle, a vector field
on M is simply a section of the tangent bundle w: TM — M and the vector field is
smooth if it is smooth as a map from M to TM.

Example 12.8. The formula
o a [y
X()ny) = _y ax +xay = |: x:|

defines a smooth vector field on R? (Figure 12.4, cf. Example 2.3).

Fig. 12.4. The vector field (—y,x) in R2.
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Proposition 12.9. Let s and t be C* sections of a C* vector bundle w: E — M and
let f be a C~ real-valued function on M. Then

(i) the sum s+t: M — E defined by

(s+1)(p) =s(p)+1(p) €Ep, pEM,

is a C* section of E.
(ii) the product fs: M — E defined by

(fs)(p) = f(p)s(p) €Ep, pEM,

is a C* section of E.

Proof.
(1) It is clear that s +¢ is a section of E. To show that it is C*, fix a point p € M and
let V be a trivializing open set for E containing p, with C* trivialization

¢: ' (V)= VxR

Suppose
(9 05)(q) = (q,a'(q),---,d"(q))

and
(9o1)(q)=(q.0"(q)....,b'(q))

for ¢ € V. Because s and ¢ are C* maps, ' and b’ are C* functions on V (Proposi-
tion 6.16). Since ¢ is linear on each fiber,

(9o (s+1)(q) = (q.a'(q)+b"(q),...,d" (9) +b(q)), q€V.

This proves that s +¢ is a C™ map on V and hence at p. Since p is an arbitrary point
of M, the section s +1¢ is C* on M.

(i1) We omit the proof, since it is similar to that of (i). O

Denote the set of all C* sections of E by I'(E). The proposition shows that I'(E)
is not only a vector space over R, but also a module over the ring C*(M) of C*
functions on M. For any open subset U C M, one can also consider the vector space
I'(U,E) of C* sections of E over U. Then I'(U, E) is both a vector space over R and
a C*(U)-module. Note that I'(M,E) =I'(E). To contrast with sections over a proper
subset U, a section over the entire manifold M is called a global section.

12.5 Smooth Frames

A frame for a vector bundle 7: E — M over an open set U is a collection of sections
$1,...,8 of E over U such that at each point p € U, the elements s1(p),...,s-(p)
form a basis for the fiber E,, := 77! (p). A frame s1,...,s, is said to be smooth or C*
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if s1,...,s, are C™ as sections of E over U. A frame for the tangent bundle TM — M
over an open set U is simply called a frame on U.

Example. The collection of vector fields d /dx,d /dy,d /dz is a smooth frame on R3.

Example. Let M be a manifold and ey,...,e, the standard basis for R”. Define
ei: M — M xR" by é(p) = (p,ei). Then éy,...,e, is a C* frame for the product
bundle M x R" — M.

Example 12.10 (The frame of a trivialization). Let &: E — M be a smooth vector
bundle of rank r. If ¢: E|y = U x R” is a trivialization of E over an open set U,
then ¢! carries the C* frame &, ... ,é, of the product bundle U x R” to a C* frame
t,...,t, for E over U:

t(p)=¢""(@(p)) =9~ (p,ei), peU.
We call #1,. .. ,t, the C” frame over U of the trivialization ¢.

Lemma 12.11. Ler ¢ : E|y — U x R” be a trivialization over an open set U of a C*
vector bundle E — M, and ty, ... ,t, the C frame over U of the trivialization. Then
a section s = Y b't; of E over U is C* if and only if its coefficients b’ relative to the
framety,... t, are C™.

Proof.
(<=) This direction is an immediate consequence of Proposition 12.9.

(=) Suppose the section s = ¥ b't; of E over U is C*. Then ¢ o s is C*. Note that
(9 25)(p) = Y6 (P)0(1i(p)) = Y0 (p)(p.ei) = (P, )b (p)ei)

Thus, the bi(p) are simply the fiber coordinates of s(p) relative to the trivialization
¢. Since ¢ o s is C*, all the b' are C*. a

Proposition 12.12 (Characterization of C* sections). Let n: E — M be a C*
vector bundle and U an open subset of M. Suppose si,...,s, is a C” frame for E
over U. Then a section s = chsj of E over U is C* if and only if the coefficients ¢/
are C* functions on U.

Proof. If sq,...,s, is the frame of a trivialization of E over U, then the proposition is
Lemma 12.11. We prove the proposition in general by reducing it to this case. One
direction is quite easy. If the ¢/’s are C* functions on U, then s = Zcf sjisaC”
section on U by Proposition 12.9.

Conversely, suppose s = Y.¢/s; is a C section of E over U. Fix a point p € U
and choose a trivializing open set V C U for E containing p, with C* trivialization
¢: m (V) = VxR’ Letty,...,t, be the C* frame of the trivialization ¢ (Example
12.10). If we write s and s; in terms of the frame #1,...,t,, say s = Y bit; and sj=
Zaj-t,-, the coefficients &', a; will all be C* functions on V by Lemma 12.11. Next,

express s = Y ¢/s; in terms of the #;’s:
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Zbiti =5= chsj = Zc-iaz-ti.
i,j
Comparing the coefficients of 7; gives b' = ¥ ; ¢/a’;. In matrix notation,

b! c!
b=|:|=A|:|=Ac
b" "

At each point of V, being the transition matrix between two bases, the matrix A is in-
vertible. By Cramer’s rule, A~!is a matrix of C* functions on V (see Example 6.21).

Hence, c = A~ 'b is a column vector of C* functions on V. This proves that ¢!, ..., ¢"
are C* functions at p € U. Since p is an arbitrary point of U, the coefficients ¢/ are
C* functions on U. a

Remark 12.13. If one replaces “smooth” by “continuous” throughout, the discussion
in this subsection remains valid in the continuous category.

Problems

12.1.* Hausdorff condition on the tangent bundle
Prove Proposition 12.4.

12.2. Transition functions for the total space of the tangent bundle
Let (U,¢) = (U,x',....x") and (V,y) = (V,y',...,y") be overlapping coordinate charts on a
manifold M. They induce coordinate charts (TU,$) and (TV, ) on the total space TM of the
tangent bundle (see equation (12.1)), with transition function o ¢!

(xl,...,x",al,...,a”) — (yl,...,y”,bl,...,b").
(a) Compute the Jacobian matrix of the transition function Jo ¢! at ¢(p). .

(b) Show that the Jacobian determinant of the transition function ¥ o ¢! at ¢(p) is
(det[dy' /dx7])?.

12.3. Smoothness of scalar multiplication
Prove Proposition 12.9(ii).

12.4. Coefficients relative to a smooth frame
Let #: E — M be a C™ vector bundle and s1,...,s, a C* frame for E over an open set U in
M. Thenevery e € ! (U) can be written uniquely as a linear combination

e= ilcj(e)sj(p), p=m(e)eU.
=

Prove that ¢/: 771U — R is C* for j = 1,...,r. (Hint: First show that the coefficients of e
relative to the frame 71, ..., of a trivialization are C*.)
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613 Bump Functions and Partitions of Unity

A partition of unity on a manifold is a collection of nonnegative functions that sum
to 1. Usually one demands in addition that the partition of unity be subordinate to
an open cover {Uy }gea. What this means is that the partition of unity {pg }gea is
indexed by the same set as the open over {Uq}gea and for each  in the index A,
the support of py is contained in Uy. In particular, py vanishes outside Uy,.

The existence of a C* partition of unity is one of the most important technical
tools in the theory of C* manifolds. It is the single feature that makes the behavior
of C* manifolds so different from that of real-analytic or complex manifolds. In this
section we construct C* bump functions on any manifold and prove the existence
of a C™ partition of unity on a compact manifold. The proof of the existence of a
C* partition of unity on a general manifold is more technical and is postponed to
Appendix C.

A partition of unity is used in two ways: (1) to decompose a global object on a
manifold into a locally finite sum of local objects on the open sets Uy of an open
cover, and (2) to patch together local objects on the open sets Uy, into a global object
on the manifold. Thus, a partition of unity serves as a bridge between global and
local analysis on a manifold. This is useful because while there are always local co-
ordinates on a manifold, there may be no global coordinates. In subsequent sections
we will see examples of both uses of a C* partition of unity.

13.1 C” Bump Functions

Recall that R* denotes the set of nonzero real numbers. The support of a real-valued
function f on a manifold M is defined to be the closure in M of the subset on which

f#0:
supp f = cly (f 7' (R*)) = closure of {g € M | f(q) # 0} in M.!

Let g be a point in M, and U a neighborhood of ¢q. By a bump function at g
supported in U we mean any continuous nonnegative function p on M thatis 1 in a
neighborhood of ¢ with suppp C U.

For example, Figure 13.1 is the graph of a bump function at O supported in the
open interval |—2,2[. The function is nonzero on the open interval |— 1,1[ and is
zero otherwise. Its support is the closed interval [—1,1].

Example. The support of the function f: |—1,1[ = R, f(x) = tan(zx/2), is the
open interval |— 1, 1], not the closed interval [—1, 1], because the closure of £~ (R*)
is taken in the domain ] —1,1[, not in R.

'In this section a general point is often denoted by g, instead of p, because p resembles
too much p, the notation for a bump function.
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Fig. 13.1. A bump function at 0 on R.

The only bump functions of interest to us are C* bump functions. While the
continuity of a function can often be seen by inspection, the smoothness of a function
always requires a formula. Our goal in this subsection is to find a formula for a C*
bump function as in Figure 13.1.

Example. The graph of y = x°/3 looks perfectly smooth (Figure 13.2), but it is in
fact not smooth at x = 0, since its second derivative y” = (10/9)x~'/3 is not defined
there.

Fig. 13.2. The graph of y = x°/3.

In Example 1.3 we introduced the C* function

f(t) =

e V' forr >0,
0 fort <0,

with graph as in Figure 13.3.

Fig. 13.3. The graph of f (7).
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The main challenge in building a smooth bump function from f is to construct a
smooth version of a step function, that is, a C* function g: R — R with graph as in
Figure 13.4. Once we have such a C* step function g, it is then simply a matter of

g(t) (1) = 0 forr <0,
BN fore> 1

Fig. 13.4. The graph of g(r).

translating, reflecting, and scaling the function in order to make its graph look like
Figure 13.1.

We seek g(7) by dividing f(r) by a positive function #(¢), for the quotient
Sf(2)/€(r) will then be zero for + < 0. The denominator ¢(r) should be a positive
function that agrees with f(r) for z > 1, for then f(r)/¢(¢) will be identically 1 for
t > 1. The simplest way to construct such an £(¢) is to add to f(¢) a nonnegative
function that vanishes for # > 1. One such nonnegative function is f(1 —¢). This
suggests that we take £(r) = f(¢) + f(1 —t) and consider

f()
= . 13.1
8(t) f&)+f(1—1) (13.1
Let us verify that the denominator f(¢) + f(1 —¢) is never zero. Forr > 0, f(r) >

0 and therefore
F@)+f(1—=1)> f(t) > 0.

Fort <0, 1—1t > 1 and therefore
F@O)+ 1 =1)> f(1-1) >0,

In either case, f(r) + f(1 —¢) # 0. This proves that g(7) is defined for all 7. As the
quotient of two C* functions with denominator never zero, g(z) is C* for all 7.

As noted above, for 7 < 0, the numerator f(¢) equals 0, so g(¢) is identically zero
fort <0. Fort > 1, we have 1 —¢ <0 and f(1 —¢) =0, so g(t) = f(¢)/f(¢) is
identically 1 for ¢ > 1. Thus, g is a C* step function with the desired properties.

Given two positive real numbers a < b, we make a linear change of variables to
map [a?,b?] to [0, 1]:

x—a*

Xy o

i =s(7%,).

Then h: R — [0, 1] is a C* step function such that

Let
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0 forx< az7
h(x) = 2
1 forx>b-.

(See Figure 13.5.)

Fig. 13.5. The graph of A(x).

Replace x by x” to make the function symmetric in x: k(x) = h(x?) (Figure 13.6).

T
X

b

a
Fig. 13.6. The graph of k(x).

Finally, set
x2 — a2
P =1k =15 (1, % ).

This p(x) is a C* bump function at 0 in R that is identically 1 on [—a,a] and has
support in [—b,b] (Figure 13.7). For any g € R, p(x —g) is a C* bump function at g.

Fig. 13.7. A bump function at 0 on R.

It is easy to extend the construction of a bump function from R to R". To get a
C* bump function at 0 in R” that is 1 on the closed ball B(0,a) and has support in
the closed ball B(0,b), set

X r2—a2
o@vzpmﬂwzl—g(”” ). 132)

b2_a2
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As a composition of C” functions, o is C*. To get a C™ bump function at g in R”,
take 6(x —q).

Exercise 13.1 (Bump function supported in an open set).* Let ¢ be a point and U any
neighborhood of ¢ in a manifold. Construct a C* bump function at g supported in U.

In general, a C* function on an open subset U of a manifold M cannot be ex-
tended to a C* function on M; an example is the function sec(x) on the open interval
|—m/2,m/2] in R. However, if we require that the global function on M agree with
the given function only on some neighborhood of a point in U, then a C* extension
is possible.

Proposition 13.2 (C* extension of a function). Suppose f is a C* function defined
on a neighborhood U of a point p in a manifold M. Then there is a C™ function f on
M that agrees with f in some possibly smaller neighborhood of p.

e

Fig. 13.8. Extending the domain of a function by multiplying by a bump function.

Proof. Choose a C* bump function p: M — R supported in U that is identically 1
in a neighborhood V of p (Figure 13.8). Define

~ p(q)f(q) forginU,
0 for g notin U.
As the product of two C* functions on U, fis C* on U. If g ¢ U, then g ¢ suppp,
and so there is an open set containing ¢ on which f is 0, since suppp is closed.
Therefore, f is also C* at every point ¢ ¢ U.
Finally, since p = 1 on V, the function f agrees with f on V. O
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13.2 Partitions of Unity

If {Ui}ier is a finite open cover of M, a C* partition of unity subordinate to {U;}ict
is a collection of nonnegative C* functions {p;: M — R};c; such that suppp; C U;
and

Y pi=1. (13.3)

When [ is an infinite set, for the sum in (13.3) to make sense, we will impose
a local finiteness condition. A collection {A} of subsets of a topological space S
is said to be locally finite if every point g in S has a neighborhood that meets only
finitely many of the sets Ay. In particular, every ¢ in S is contained in only finitely
many of the Ay’s.

Example 13.3 (An open cover that is not locally finite). Let U, be the open interval
Jr— !, r+ [ on the real line R. The open cover {U,., | r € Q,n € Z*} of R is not
locally finite.

Definition 13.4. A C* partition of unity on a manifold is a collection of nonnegative
C* functions {pg: M — R} gea such that

(i) the collection of supports, {supp pa } aca. is locally finite,
(i) ¥pa = 1.

Given an open cover {Uy }gea Of M, we say that a partition of unity {pg }aca is
subordinate to the open cover {Uy} if supppy C Ugy forevery a € A.

Since the collection of supports, {Supp pq }aca. is locally finite (condition (i),
every point g lies in only finitely many of the sets supp po. Hence py(g) # 0 for only
finitely many o. It follows that the sum in (ii) is a finite sum at every point.

Example. Let U and V be the open intervals | — oo, 2[ and |— 1,00[ in R respectively,
and let py be a C* function with graph as in Figure 13.9, for example the function
g(r) in (13.1). Define py = 1 — py. Then supppy C V and supppy C U. Thus,
{pu,pv} is a partition of unity subordinate to the open cover {U,V }.

} R!
S | | 1 2
U )
¢ 1%

Fig. 13.9. A partition of unity {py,py } subordinate to an open cover {U,V }.
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Remark. Suppose { fu } aea is a collection of C* functions on a manifold M such that
the collection of its supports, {supp fo } aca, is locally finite. Then every point ¢ in
M has a neighborhood W;, that intersects supp fo for only finitely many «. Thus, on
W, the sum Y o4 fo is actually a finite sum. This shows that the function f =} fo
is well defined and C* on the manifold M. We call such a sum a locally finite sum.

13.3 Existence of a Partition of Unity

In this subsection we begin a proof of the existence of a C* partition of unity on a
manifold. Because the case of a compact manifold is somewhat easier and already
has some of the features of the general case, for pedagogical reasons we give a sep-
arate proof for the compact case.

Lemma 13.5. If py, ..., pm are real-valued functions on a manifold M, then

supp (Y pi) | Jsuppp:.
Proof. Problem 13.1. a

Proposition 13.6. Let M be a compact manifold and {Uy } qep an open cover of M.
There exists a C* partition of unity {pg }aca subordinate to {Uq } gen.

Proof. For each g € M, find an open set U, containing g from the given cover and
let y;, be a C* bump function at g supported in Uy, (Exercise 13.1, p. 144). Because
y,(gq) > 0, there is a neighborhood W, of ¢ on which y;, > 0. By the compactness
of M, the open cover {W, | ¢ € M} has a finite subcover, say {W,,,...,W,, }. Let
Yy, s---» Wy, be the corresponding bump functions. Then y := } y,, is positive at
every point ¢ in M because g € W, for some i. Define

Clearly, Y ¢; = 1. Moreover, since ¥ > 0, ¢;(¢) # 0 if and only if y,(¢) # 0, so

supp ¢; = supp ¥y, C Uq

for some a € A. This shows that {@;} is a partition of unity such that for every i,
supp ¢; C Uy for some o € A.

The next step is to make the index set of the partition of unity the same as that of
the open cover. For each i = 1,...,m, choose 7(i) € A to be an index such that

supp @i C Uy;)-

We group the collection of functions {¢;} into subcollections according to 7(i) and
define for each o € A,
Pa = Z i

T(i)=a
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if there is no i for which 7(i) = o, the sum above is empty and we define py = 0.

Then
Lre=) Y oi=) o=l
i=1

acA acAt(i)=a

Moreover, by Lemma 13.5,

supppa C | supp@; C Us.

T(i)=a
So {pq} is a partition of unity subordinate to {Ug }. |

To generalize the proof of Proposition 13.6 to an arbitrary manifold, it will be
necessary to find an appropriate substitute for compactness. Since the proof is rather
technical and is not necessary for the rest of the book, we put it in Appendix C. The
statement is as follows.

Theorem 13.7 (Existence of a C* partition of unity). Let {Ug}qca be an open
cover of a manifold M.

(i) There is a C* partition of unity { @}y, with every @ having compact support
such that for each k, supp ¢y C Ug, for some o € A.

(ii) If we do not require compact support, then there is a C* partition of unity {pq}
subordinate to {Uy }.

Problems

13.1.* Support of a finite sum
Prove Lemma 13.5.

13.2.* Locally finite family and compact set
Let {Aq} be a locally finite family of subsets of a topological space S. Show that every
compact set K in S has a neighborhood W that intersects only finitely many of the Aq.

13.3. Smooth Urysohn lemma

(a) Let A and B be two disjoint closed sets in a manifold M. Find a C* function f on M such
that f is identically 1 on A and identically 0 on B. (Hint: Consider a C* partition of unity
{pr—a,Pm—p} subordinate to the open cover {M — A, M — B}. This lemma is needed in
Subsection 29.3.)

(b) Let A be a closed subset and U an open subset of a manifold M. Show that there is a C*
function f on M such that f is identically 1 on A and supp f C U.

13.4. Support of the pullback of a function
Let F: N — M be a C* map of manifolds and 2: M — R a C* real-valued function. Prove
that supp F*h C F~!(supph). (Hint: First show that (F*h)~'(R*) ¢ F~!(supph).)
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13.5.* Support of the pullback by a projection
Let f: M — R be a C* function on a manifold M. If N is another manifoldand 7: M xN — M
is the projection onto the first factor, prove that

supp(7*f) = (supp f) x N.

13.6. Pullback of a partition of unity
Suppose {p¢} is a partition of unity on a manifold M subordinate to an open cover {Ugy } of
M and F: N — M is a C” map. Prove that

(a) the collection of supports {supp F*pg } is locally finite;
(b) the collection of functions {F*p¢} is a partition of unity on N subordinate to the open
cover {F ' (Ugy)} of N.

13.7.% Closure of a locally finite union
If {Aq} is a locally finite collection of subsets in a topological space, then

UAa =JAa. (13.4)
where A denotes the closure of the subset A.

Remark. For any collection of subsets A, one always has

U4 cJAa.

However, the reverse inclusion is in general not true. For example, suppose A, is the closed
interval [0,1— (1/n)] in R. Then

GAn:[O,l):[O,IL

n=1
but
oo oo 1
Ua.=U {O,l—n} =10,1).
n=1 n=1

If {Aq} is a finite collection, the equality (13.4) is easily shown to be true.
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614 Vector Fields

A vector field X on a manifold M is the assignment of a tangent vector X, € T,M
to each point p € M. More formally, a vector field on M is a section of the tangent
bundle 7M of M. It is natural to define a vector field as smooth if it is smooth as a
section of the tangent bundle. In the first subsection we give two other characteriza-
tions of smooth vector fields, in terms of the coefficients relative to coordinate vector
fields and in terms of smooth functions on the manifold.

Vector fields abound in nature, for example the velocity vector field of a fluid
flow, the electric field of a charge, the gravitational field of a mass, and so on. The
fluid flow model is in fact quite general, for as we will see shortly, every smooth
vector field may be viewed locally as the velocity vector field of a fluid flow. The
path traced out by a point under this flow is called an integral curve of the vector
field. Integral curves are curves whose velocity vector field is the restriction of the
given vector field to the curve. Finding the equation of an integral curve is equivalent
to solving a system of first-order ordinary differential equations (ODE). Thus, the
theory of ODE guarantees the existence of integral curves.

The set X(M) of all C* vector fields on a manifold M clearly has the structure of
a vector space. We introduce a bracket operation |, | that makes it into a Lie algebra.
Because vector fields do not push forward under smooth maps, the Lie algebra X (M)
does not give rise to a functor on the category of smooth manifolds. Nonetheless,
there is a notion of related vector fields that allows us to compare vector fields on
two manifolds under a smooth map.

14.1 Smoothness of a Vector Field

In Definition 12.7 we defined a vector field X on a manifold M to be smooth if the
map X: M — TM is smooth as a section of the tangent bundle 7: TM — M. In
a coordinate chart (U,¢) = (U,x',...,x") on M, the value of the vector field X at
p € U is a linear combination

. d
XP:ZaI(p) axi .
p

As p varies in U, the coefficients a’ become functions on U.
As we learned in Subsections 12.1 and 12.2, the chart (U, ¢) = (U,x',...,x") on
the manifold M induces a chart

(TU,$) = (TU,&,..., 7 c',....c"

on the tangent bundle 7M, where ¥ = 7*x' = x' o & and the ¢’ are defined by

v:Zci(v) gxi , veT,M.
P
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Comparing coefficients in

, d . 0
XPZZ“'(P) Oxi :ZCI(XP) oxi| peU,
p

p

we get a' = ¢! o X as functions on U. Being coordinates, the ¢ are smooth func-
tions on TU. Thus, if X is smooth and (U,x',...,x") is any chart on M, then the
coefficients @’ of X = Y a'd /dx' relative to the frame d /dx' are smooth on U.

The converse is also true, as indicated in the following lemma.

Lemma 14.1 (Smoothness of a vector field on a chart). Let (U,¢)=(U,x",....x"
be a chart on a manifold M. A vector field X = Y.a' d /dx" on U is smooth if and only
if the coefficient functions a* are all smooth on U.

Proof. This lemma is a special case of Proposition 12.12, with E the tangent bundle
of M and s; the coordinate vector field 9 /dx'.

Because we have an explicit description of the manifold structure on the tangent
bundle TM, a direct proof of the lemma is also possible. Since ¢: TU = U x R”"
is a diffeomorphism, X: U — TU is smooth if and only if § o X: U — U x R" is
smooth. For p € U,

As coordinate functions, x',...,x" are C* on U. Therefore, by Proposition 6.13,

o X is smooth if and only if all the a’ are smooth on U. O

This lemma leads to a characterization of the smoothness of a vector field on a
manifold in terms of the coefficients of the vector field relative to coordinate frames.

Proposition 14.2 (Smoothness of a vector field in terms of coefficients). Let X be
a vector field on a manifold M. The following are equivalent:

(1) The vector field X is smooth on M.

(ii) The manifold M has an atlas such that on any chart (U,¢) = (U,x',....x") of
the atlas, the coefficients a' of X = Y.a' d/9x' relative to the frame d /dx' are all
smooth.

(iii) On any chart (U,9) = (U,x',...,x") on the manifold M, the coefficients d' of
X =Y .a'd/dx! relative to the frame 0 /dx' are all smooth.

Proof. (ii) = (i): Assume (ii). By the preceding lemma, X is smooth on every chart
(U, 9) of an atlas of M. Thus, X is smooth on M.

(i) = (iii): A smooth vector field on M is smooth on every chart (U, ¢) on M. The
preceding lemma then implies (iii).

(iii) = (ii): Obvious. O
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Just as in Subsection 2.5, a vector field X on a manifold M induces a linear map
on the algebra C*(M) of C* functions on M: for f € C*(M), define X f to be the
function

Xf)(p)=Xpf, peEM.

In terms of its action as an operator on C™ functions, there is still another character-
ization of a smooth vector field.

Proposition 14.3 (Smoothness of a vector field in terms of functions). A vector
field X on M is smooth if and only if for every smooth function f on M, the function
X f is smooth on M.

Proof.

(=) Suppose X is smooth and f € C*(M). By Proposition 14.2, on any chart
(U,x',...,x") on M, the coefficients a' of the vector field X = Ya'd/dx' are C*.
It follows that X f = Y. a' d f/dx' is C* on U. Since M can be covered by charts, X f
is C” on M.

(«=) Let (U,x',...,x") be any chart on M. Suppose X =Y a'd/dx' onU and p € U.
By Proposition 13.2, fork =1,...,n, each x¥ can be extended to a C* function & on

M that agrees with x* in a neighborhood V of p in U. Therefore, on V,

Xit = (Zai gxi)ik = (Za’gxl) = dk.

This proves that a* is C* at p. Since p is an arbitrary point in U, the function a
C* on U. By the smoothness criterion of Proposition 14.2, X is smooth.

In this proof it is necessary to extend x* to a C* global function ¥ on M, for
while it is true that Xa¥ = ¢, the coordinate function x* is defined only on U, not on
M, and so the smoothness hypothesis on X f does not apply to X x*. a

ks

By Proposition 14.3, we may view a C” vector field X as a linear operator
X: C”(M) — C~(M) on the algebra of C* functions on M. As in Proposition 2.6,
this linear operator X : C*(M) — C™(M) is a derivation: for all f,g € C*(M),

X(fg)=(Xf)g+ f(Xg).

In the following we think of C* vector fields on M alternately as C* sections of the
tangent bundle TM and as derivations on the algebra C*(M) of C* functions. In
fact, it can be shown that these two descriptions of C* vector fields are equivalent
(Problem 19.12).

Proposition 13.2 on C™ extensions of functions has an analogue for vector fields.

Proposition 14.4 (C* extension of a vector field). Suppose X is a C* vector field
defined on a neighborhood U of a point p in a manifold M. Then there is a C vector
field X on M that agrees with X on some possibly smaller neighborhood of p.
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Proof. Choose a C* bump function p: M — R supported in U that is identically 1
in a neighborhood V of p (Figure 13.8). Define

- p(g)X, forginU,
%(g) = PN .
0 for g notin U.

The rest of the proof is the same as in Proposition 13.2. O

14.2 Integral Curves

In Example 12.8, it appears that through each point in the plane one can draw a circle
whose velocity at any point is the given vector field at that point. Such a curve is an
example of an integral curve of the vector field, which we now define.

Definition 14.5. Let X be a C™ vector field on a manifold M, and p € M. An integral
curve of X is a smooth curve c: Ja,b[ — M such that ¢/(r) = X, for all 7 € Ja,b].
Usually we assume that the open interval |a, b[ contains 0. In this case, if ¢(0) = p,
then we say that c is an integral curve starting at p and call p the initial point of c. To
show the dependence of such an integral curve on the initial point p, we also write
¢/(p) instead of ¢(t).

Definition 14.6. An integral curve is maximal if its domain cannot be extended to a
larger interval.

Example. Recall the vector field X, ;) = (—y,x) on R? (Figure 12.4). We will find

an integral curve c(t) of X starting at the point (1,0) € R?. The condition for ¢(t) =
(x(),y(t)) to be an integral curve is ¢’ (1) = X,(,), or

{xm] _ [—ym]
(1) ()]
so we need to solve the system of first-order ordinary differential equations

=y, (14.1)
y =1, (14.2)

with initial condition (x(0),y(0)) = (1,0). From (14.1), y = —X, so y = —&. Substi-
tuting into (14.2) gives
X=—x

It is well known that the general solution to this equation is

x =Acost + Bsint. (14.3)

Hence,
y = —X=Asint — Bcost. (14.4)
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The initial condition forces A = 1, B = 0, so the integral curve starting at (1,0) is
¢(t) = (cost,sint), which parametrizes the unit circle.

More generally, if the initial point of the integral curve, corresponding to t = 0,
is p = (x0,y0), then (14.3) and (14.4) give

A= X0, B= —Yo,
and the general solution to (14.1) and (14.2) is
X = Xgcost — ypsint,
y=uxpsint +ypcost, teR.

This can be written in matrix notation as
x(1) cost —sint | |xo cost —sinft
ct) = = = P
¥(t) sint  cost| |yo sint  cost

which shows that the integral curve of X starting at p can be obtained by rotating the
point p counterclockwise about the origin through an angle ¢. Notice that

cs(ei(p)) = cse(p)s

since a rotation through an angle 7 followed by a rotation through an angle s is the
same as a rotation through the angle s +¢. For eachr € R, ¢;: R? — R? is a diffeo-
morphism with inverse c_;.

Let Diff(M) be the group of diffeomorphisms of a manifold M with itself, the
group operation being composition. A homomorphism c¢: R — Diff(M) is called a
one-parameter group of diffeomorphisms of M. In this example the integral curves
of the vector field X, ) = (—,x) on R? give rise to a one-parameter group of dif-

feomorphisms of R

Example. Let X be the vector field x>d/dx on the real line R. Find the maximal
integral curve of X starting at x = 2.

Solution. Denote the integral curve by x(¢). Then

d _ od
x O dx’

where X' (1) is the velocity vector of the curve x(¢), and %(¢) is the calculus derivative
of the real-valued function x(r). Thus, x(¢) satisfies the differential equation

x(0) =2. (14.5)
On can solve (14.5) by separation of variables:

2= dr. (14.6)
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Integrating both sides of (14.6) gives

1 1
— =t C ——
N +C, or x faC
for some constant C. The initial condition x(0) = 2 forces C = —1/2. Hence, x(r) =

2/(1—2¢). The maximal interval containing 0 on which x(¢) is defined is | — oo, 1/2].

From this example we see that it may not be possible to extend the domain of
definition of an integral curve to the entire real line.

14.3 Local Flows

The two examples in the preceding section illustrate the fact that locally, finding an
integral curve of a vector field amounts to solving a system of first-order ordinary
differential equations with initial conditions. In general, if X is a smooth vector field
on a manifold M, to find an integral curve ¢(r) of X starting at p, we first choose a
coordinate chart (U, ¢) = (U,x!,...,x") about p. In terms of the local coordinates,

Xy = L)

9

()

and by Proposition 8.15,
;. d
"= ¢ér) .
=Y 3,

()

where /() = x' o ¢(¢) is the ith component of ¢(¢) in the chart (U, ¢). The condition
c'(t) = X,(y) is thus equivalent to

¢ty =ad'(c(t)) fori=1,...,n. (14.7)

This is a system of ordinary differential equations (ODE); the initial condition ¢(0) =
p translates to (c!(0),...,¢"(0)) = (p',...,p"). By an existence and uniqueness
theorem from the theory of ODE, such a system always has a unique solution in the
following sense.

Theorem 14.7. Let V be an open subset of R", pg a pointinV,and f: V —R" a C*
function. Then the differential equation

dy/dt = f(y), ¥(0)= po,

has a unique C* solutiony: la(po),b(po)[ — V, where Ja(po),b(po)] is the maximal
open interval containing O on which y is defined.

The uniqueness of the solution means that if z: |6,&[ — V satisfies the same
differential equation

dz/dt = f(z), z(0)= po,
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then the domain of definition |8, €[ of z is a subset of Ja(po),b(po)[ and z(r) = y(¢)
on the interval |5, €].

For a vector field X on a chart U of a manifold and a point p € U, this theorem
guarantees the existence and uniqueness of a maximal integral curve starting at p.

Next we would like to study the dependence of an integral curve on its initial
point. Again we study the problem locally on R”. The function y will now be a
function of two arguments ¢ and ¢, and the condition for y to be an integral curve
starting at the point g is

8y(

Py t,q)=f((t.q), ¥0,9)=gq. (14.8)

The following theorem from the theory of ODE guarantees the smooth depen-
dence of the solution on the initial point.

Theorem 14.8. Let V be an open subset of R" and f: V — R" a C* function on'V.
For each point pg € V, there are a neighborhood W of po in'V, a number € > 0, and
a C” function

yi]-ge[xW—=V
such that

?)f (t,9) = f((t.9)), ¥(0,9) =4

forall (t,q) € ]—¢€,e[ x W.

For a proof of these two theorems, see [7, Appendix C, pp. 359-366].

It follows from Theorem 14.8 and (14.8) that if X is any C™ vector field on a
chart U and p € U, then there are a neighborhood W of p in U, an € > 0, and a C*
map

F:l—ge[xW—=U (14.9)

such that for each ¢ € W, the function F(¢,q) is an integral curve of X starting at g.
In particular, F(0,q) = q. We usually write F;(q) for F(¢,q).

Fia) F1(Fi(q)) = Fi4s(q)

Fig. 14.1. The flow line through ¢ of a local flow.

Suppose s,7 in the interval | — €, €[ are such that both F;(F;(q)) and Fy4(g) are
defined. Then both F;(F;(q)) and Fiy4(gq) as functions of ¢ are integral curves of X
with initial point Fy(g), which is the point corresponding to # = 0. By the uniqueness
of the integral curve starting at a point,
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F(F(q)) = Fi+s(q)- (14.10)

The map F in (14.9) is called a local flow generated by the vector field X. For each
q € U, the function F;(q) of 1 is called a flow line of the local flow. Each flow line is
an integral curve of X. If a local flow F is defined on R x M, then it is called a global
flow. Every smooth vector field has a local flow about any point, but not necessarily
a global flow. A vector field having a global flow is called a complete vector field. If
F is a global flow, then for every ¢ € R,

FolF  =F oF=F=1y,

so F;: M — M is a diffeomorphism. Thus, a global flow on M gives rise to a one-
parameter group of diffeomorphisms of M.
This discussion suggests the following definition.

Definition 14.9. A local flow about a point p in an open set U of a manifold is a C*
function

F:l—¢ge[xW—=U,

where € is a positive real number and W is a neighborhood of p in U, such that
writing F;(q) = F(t,q), we have

(i) Fo(q) =qforallge W,
(ii) F;(Fs(q)) = Fi4+5(q) whenever both sides are defined.

If F(t,q) is a local flow of the vector field X on U, then

oF
F(0.9)=q and 5 (0.q) =Xr(q) =X,

Thus, one can recover the vector field from its flow.

Example. The function F: R x R? — R?,

e X = |cost —sint | |x
“lyl ) |sint  cost| |y|’
is the global flow on R? generated by the vector field
oF —sint —cost| |x
X(X»Y) T ot (t, (x,y)) o - [ cost —Sinl‘:| M
Cfo—1][x] _[-y] 9@ d
SR | ER R

This is Example 12.8 again.
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14.4 The Lie Bracket

Suppose X and Y are smooth vector fields on an open subset U of a manifold M.
We view X and Y as derivations on C*(U). For a C* function f on U, by Proposi-
tion 14.3 the function Y f is C* on U, and the function (XY)f := X (Y f) is also C*
on U. Moreover, because X and Y are both R-linear maps from C*(U) to C*(U ), the
map XY : C*(U) — C*(U) is R-linear. However, XY does not satisfy the derivation
property: if f,g € C*(U), then

XY(fg)=X((Yf)g+fYg)
=(XYf)g+(Yf)(Xg)+(Xf)(Yg)+ f(XYg).

Looking more closely at this formula, we see that the two extra terms (Y f)(Xg)
and (X f)(Yg) that make XY not a derivation are symmetric in X and Y. Thus, if we
compute YX (fg) as well and subtract it from XY (fg), the extra terms will disappear,
and XY — YX will be a derivation of C*(U).
Given two smooth vector fields X and Y on U and p € U, we define their Lie
bracket [X,Y] at p to be
[va]pf = (XPY o pr)f

for any germ f of a C* function at p. By the same calculation as above, but now
evaluated at p, it is easy to check that [X, Y], is a derivation of C;; (U) and is therefore
a tangent vector at p (Definition 8.1). As p varies over U, [X,Y] becomes a vector
field on U.

Proposition 14.10. If X and Y are smooth vector fields on M, then the vector field
[X,Y] is also smooth on M.

Proof. By Proposition 14.3 it suffices to check that if f is a C* function on M, then
sois [X,Y]f. But

which is clearly C* on M, since both X and Y are. O

From this proposition, we see that the Lie bracket provides a product operation
on the vector space X(M) of all smooth vector fields on M. Clearly,

[Y,X]=-[X,Y].
Exercise 14.11 (Jacobi identity). Check the Jacobi identity:

Y x.[v.z]]=0.

cyclic

This notation means that one permutes X, Y, Z cyclically and one takes the sum of the resulting
terms. Written out,

Y, [X.[v.Z]] = [X,[Y.Z]] + [, [Z,X]] + [Z,[X,Y]].

cyclic
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Definition 14.12. Let K be a field. A Lie algebra over K is a vector space V over K
together with a product [, |: V x V — V, called the bracket, satisfying the following
properties: foralla,b € K and X,Y,Z €V,

(i) (bilinearity) [aX + bY,Z] = a[X,Z] + D[Y,Z],
[Z,aX +bY] = a[Z,X]+b[Z,Y],
(i) (anticommutativity) [Y,X] = —[X,Y],
(iii) (Jacobi identity) ¥cyeiic [X, [Y,Z]] = 0.

In practice, we will be concerned only with real Lie algebras, i.e., Lie algebras
over R. Unless otherwise specified, a Lie algebra in this book means a real Lie
algebra.

Example. On any vector space V, define [X,Y] =0 for all X, ¥ € V. With this
bracket, V becomes a Lie algebra, called an abelian Lie algebra.

Our definition of an algebra in Subsection 2.2 requires that the product be asso-
ciative. An abelian Lie algebra is trivially associative, but in general the bracket of a
Lie algebra need not be associative. So despite its name, a Lie algebra is in general
not an algebra.

Example. If M is a manifold, then the vector space X (M) of C* vector fields on M is
areal Lie algebra with the Lie bracket [, ] as the bracket.

Example. Let K™*" be the vector space of all n x n matrices over a field K. Define
for X,Y € K™,
[X,Y]=XY -YX,

where XY is the matrix product of X and Y. With this bracket, K"*" becomes a
Lie algebra. The bilinearity and anticommutativity of [ , | are immediate, while the
Jacobi identity follows from the same computation as in Exercise 14.11.

More generally, if A is any algebra over a field K, then the product

[x,y] =xy—yx, x,y€A,

makes A into a Lie algebra over K.

Definition 14.13. A derivation of a Lie algebra V over a field K is a K-linear map
D:V — V satisfying the product rule

D[Y,Z) = [DY,Z]+[Y,DZ] forY,ZeV.

Example. Let V be a Lie algebra over a field K. For each X in V, define ady: V —
V by
adx(Y) = [X,Y].
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We may rewrite the Jacobi identity in the form
X, [v,Z]] = [[X,Y],Z] + [, [X,Z]

or
adx[Y,Z] = [ade7Z] + [Y'7El(1)(Z]7

which shows that ady : V — V is a derivation of V.

14.5 The Pushforward of Vector Fields

Let F: N — M be a smooth map of manifolds and let F.: T,N — T(,)M be its
differential at a point p in N. If X, € TN, we call F.(X,) the pushforward of the
vector X, at p. This notion does not extend in general to vector fields, since if X is a
vector field on N and z = F(p) = F(q) for two distinct points p,q € N, then X, and
X, are both pushed forward to tangent vectors at z € M, but there is no reason why
F.(X,) and F.(X,) should be equal (see Figure 14.2).

4

)4 p

RZ

¢
=

Fig. 14.2. The vector field X cannot be pushed forward under the first projection F: R?> — R.

In one important special case, the pushforward F.X of any vector field X on
N always makes sense, namely, when F': N — M is a diffeomorphism. In this case,
since F is injective, there is no ambiguity about the meaning of (F.X) () = Fi,p(X)p),
and since F is surjective, F,. X is defined everywhere on M.

14.6 Related Vector Fields

Undera C” map F: N — M, although in general a vector field on N cannot be pushed
forward to a vector field on M, there is nonetheless a useful notion of related vector
fields, which we now define.
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Definition 14.14. Let F: N — M be a smooth map of manifolds. A vector field X
on N is F-related to a vector field X on M if for all p € N,

Fop(Xp) = Xp(p). (14.11)

),

Example 14.15 (Pushforward by a diffeomorphism). If F: N — M is a diffeomor-
phism and X is a vector field on N, then the pushforward F, X is defined. By def-
inition, the vector field X on N is F-related to the vector field F.X on M. In Sub-
section 16.5, we will see examples of vector fields related by a map F that is not a
diffeomorphism.

We may reformulate condition (14.11) for F-relatedness as follows.

Proposition 14.16. Let F: N — M be a smooth map of manifolds. A vector field X
on N and a vector field X on M are F-related if and only if for all g € C*(M),

X(goF)Z(Xg)oF

Proof.
(=) Suppose X on N and X on M are F-related. By (14.11), for any g € C*(M) and
pEN,
Fop(Xp)g = Xr(p)& (definition of F-relatedness),
X,(goF)=(Xg)(F(p)) (definitions of F, and Xg),
(X (g F))(p) = (X)(F(p))-

Since this is true for all p € N,
X(goF) = (Xg) oF.
(<) Reversing the set of equations above proves the converse. ad

Proposition 14.17. Let F: N — M be a smooth map of manifolds. If the C* vector
fields X and 'Y on N are F-related to the C* vector fields X and Y, respectively, on
M, then the Lie bracket [X,Y] on N is F-related to the Lie bracket [X,Y] on M.

Proof. For any g € C*(M),
[X,Y](go F)=XY(goF)—YX(goF) (definition of [X,Y])

=X((Yg)oF)—Y((Xg)oF) (Proposition 14.16)
XYg)oF —(YXg)oF (Proposition 14.16)

By Proposition 14.16 again, this proves that [X,Y] on N and [X,Y] on M are F-
related. O
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Problems

14.1.* Equality of vector fields
Show that two C* vector fields X and Y on a manifold M are equal if and only if for every C*
function f on M, we have X f =Y f.

14.2. Vector field on an odd sphere
Let x!,y!,... x",y" be the standard coordinates on R?". The unit sphere $2"~1 in R?" is
defined by the equation Y'*_, (x')? + (y')?> = 1. Show that

-9 9
Xfi:Zl—y oxi +x P

is a nowhere-vanishing smooth vector field on §2*~!. Since all spheres of the same dimen-
sion are diffeomorphic, this proves that on every odd-dimensional sphere there is a nowhere-
vanishing smooth vector field. It is a classical theorem of differential and algebraic topology
that on an even-dimensional sphere every continuous vector field must vanish somewhere (see
[28, Section 5, p. 31] or [16, Theorem 16.5, p. 70]). (Hint: Use Problem 11.1 to show that X
is tangent to $2"~ 1))

14.3. Maximal integral curve on a punctured line
Let M be R — {0} and let X be the vector field d/dx on M (Figure 14.3). Find the maximal
integral curve of X starting at x = 1.

0 1
Fig. 14.3. The vector field d/dx on R — {0}.

14.4. Integral curves in the plane
Find the integral curves of the vector field

_ d d o X 2
Xixy) 7x8x_y8y = {—y} on R“.

14.5. Maximal integral curve in the plane
Find the maximal integral curve c(r) starting at the point (a,b) € R? of the vector field Xiy) =

0/0x+x0d/dy on R,
14.6. Integral curve starting at a zero of a vector field

(a)* Suppose the smooth vector field X on a manifold M vanishes at a point p € M. Show that
the integral curve of X with initial point p is the constant curve c(t) = p.

(b) Show that if X is the zero vector field on a manifold M, and ¢;(p) is the maximal integral
curve of X starting at p, then the one-parameter group of diffeomorphisms c¢: R — Diff(M)
is the constant map c(r) = 1.
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14.7. Maximal integral curve
Let X be the vector field x d/dx on R. For each p in R, find the maximal integral curve c(r)
of X starting at p.

14.8. Maximal integral curve
Let X be the vector field x?d /dx on the real line R. For each p > 0 in R, find the maximal
integral curve of X with initial point p.

14.9. Reparametrization of an integral curve
Suppose c¢: |a,b[ — M is an integral curve of the smooth vector field X on M. Show that for
any real number s, the map

cstlats,b+s[ =M, c(t)=c(t—s),
is also an integral curve of X.

14.10. Lie bracket of vector fields
If f and g are C*™ functions and X and Y are C* vector fields on a manifold M, show that
[fX,gY] = fg[X, Y]+ f(Xg)Y —g(Y )X.
14.11. Lie bracket of vector fields on R?
Compute the Lie bracket
0 n Jd 0

Y ox xay " ox
on RZ.
14.12. Lie bracket in local coordinates
Consider two C* vector fields X, Y on R”":

0 0

— 1 — J
X_Zaaxi’ y=)b daxJ’

where @', b/ are C* functions on R". Since [X,Y] is also a C* vector field on R”,

d
X,y =Y &
X, ] Z dxk
for some C* functions ¢*. Find the formula for ¢¥ in terms of @’ and b/.

14.13. Vector field under a diffeomorphism
Let F: N — M be a C™ diffeomorphism of manifolds. Prove that if g is a C* function and X
a C* vector field on N, then

F.(gX)=(go F HFEX.

14.14. Lie bracket under a diffeomorphism
Let F: N — M be a C* diffeomorphism of manifolds. Prove that if X and Y are C™ vector
fields on N, then

F.[X,Y] = [FX,F.Y].



Chapter 4

Lie Groups and Lie Algebras

A Lie group is a manifold that is also a group such that the group operations are
smooth. Classical groups such as the general and special linear groups over R and
over C, orthogonal groups, unitary groups, and symplectic groups are all Lie groups.

A Lie group is a homogeneous space in the sense that left translation by a group
element g is a diffeomorphism of the group onto itself that maps the identity element
to g. Therefore, locally the group looks the same around any point. To study the
local structure of a Lie group, it is enough to examine a neighborhood of the identity
element. It is not surprising that the tangent space at the identity of a Lie group
should play a key role.

The tangent space at the identity of a Lie group G turns out to have a canonical
bracket operation [ , | that makes it into a Lie algebra. The tangent space T,G with
the bracket is called the Lie algebra of the Lie group G. The Lie algebra of a Lie
group encodes within it much information about the group.

In a series of papers in the decade from 1874 to
1884, the Norwegian mathematician Sophus Lie ini-
tiated the study of Lie groups and Lie algebras. At
first his work gained little notice, possibly because
at the time he wrote mostly in Norwegian. In 1886,
Lie became a professor in Leipzig, Germany, and his
theory began to attract attention, especially after the
publication of the three-volume treatise Theorie der
Transformationsgruppen that he wrote in collabora-
tion with his assistant Friedrich Engel.

Lie’s original motivation was to study the group
of transformations of a space as a continuous ana-
logue of the group of permutations of a finite set.
Indeed, a diffeomorphism of a manifold M can be
Sophus Lie viewed as a permutation of the points of M. The
interplay of group theory, topology, and linear alge-
bra makes the theory of Lie groups and Lie algebras

(1842-1899)
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a particularly rich and vibrant branch of mathematics. In this chapter we can but
scratch the surface of this vast creation. For us, Lie groups serve mainly as an im-
portant class of manifolds, and Lie algebras as examples of tangent spaces.

615 Lie Groups

We begin with several examples of matrix groups, subgroups of the general linear
group over a field. The goal is to exhibit a variety of methods for showing that
a group is a Lie group and for computing the dimension of a Lie group. These
examples become templates for investigating other matrix groups. A powerful tool,
which we state but do not prove, is the closed subgroup theorem. According to this
theorem, an abstract subgroup that is a closed subset of a Lie group is itself a Lie
group. In many instances, the closed subgroup theorem is the easiest way to prove
that a group is a Lie group.

The matrix exponential gives rise to curves in a matrix group with a given initial
vector. It is useful in computing the differential of a map on a matrix group. As an
example, we compute the differential of the determinant map on the general linear
group over R.

15.1 Examples of Lie Groups

We recall here the definition of a Lie group, which first appeared in Subsection 6.5.

Definition 15.1. A Lie group is a C* manifold G that is also a group such that the
two group operations, multiplication

u:GxG—G, u(a,b)=ab,

and inverse
1:G—G, ta)=a',

are C™.

For a € G, denote by £,: G — G, {,(x) = t(a,x) = ax, the operation of left mul-
tiplication by a, and by r,: G — G, r,(x) = xa, the operation of right multiplication
by a. We also call left and right multiplications left and right translations.

Exercise 15.2 (Left multiplication).* For an element « in a Lie group G, prove that the left
multiplication ¢, : G — G is a diffeomorphism.

Definition 15.3. A map F: H — G between two Lie groups H and G is a Lie group
homomorphism if it is a C* map and a group homomorphism.

The group homomorphism condition means that for all 4,x € H,
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F(hx) = F(h)F(x). (15.1)

This may be rewritten in functional notation as
Foly="{pgyoF forallhe€H. (15.2)

Let ey and e be the identity elements of H and G, respectively. Taking /# and x
in (15.1) to be the identity ey, it follows that F (ey) = eg. So a group homomorphism
always maps the identity to the identity.

NOTATION. We use capital letters to denote matrices, but generally lowercase letters
to denote their entries. Thus, the (i, j)-entry of the matrix AB is (AB);; = Yx aixbx;.

Example 15.4 (General linear group). In Example 6.21, we showed that the general
linear group
GL(n,R) ={A € R"" | detA # 0}

is a Lie group.

Example 15.5 (Special linear group). The special linear group SL(n,R) is the sub-
group of GL(n,R) consisting of matrices of determinant 1. By Example 9.13,
SL(n,R) is a regular submanifold of dimension n> — 1 of GL(n,R). By Exam-
ple 11.16, the multiplication map

fi: SL(n,R) x SL(n,R) — SL(n,R)

is C”.
To see that the inverse map

i: SL(n,R) — SL(n,R)

is C, leti: SL(n,R) — GL(n,R) be the inclusion map and 1 : GL(n,R) — GL(n,R)
the inverse map of GL(n,R). As the composite of two C* maps,

loi: SL(n,R) -5 GL(n,R) % GL(n,R)

is a C* map. Since its image is contained in the regular submanifold SL(n,R), the
induced map 1 : SL(n,R) — SL(n,R) is C* by Theorem 11.15. Thus, SL(n,R) is a
Lie group.

An entirely analogous argument proves that the complex special linear group
SL(n,C) is also a Lie group.

Example 15.6 (Orthogonal group). Recall that the orthogonal group O(n) is the sub-
group of GL(n,R) consisting of all matrices A satisfying ATA = I. Thus, O(n) is the
inverse image of / under the map f(A) = ATA.

In Example 11.3 we showed that f: GL(n,R) — GL(n,R) has constant rank.
By the constant-rank level set theorem, O(n) is a regular submanifold of GL(n,R).
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One drawback of this approach is that it does not tell us what the rank of f is, and so
the dimension of O(n) remains unknown.

In this example we will apply the regular level set theorem to prove that O(n) is a
regular submanifold of GL(n,R). This will at the same time determine the dimension
of O(n). To accomplish this, we must first redefine the target space of f. Since AT A
is a symmetric matrix, the image of f lies in §,, the vector space of all n x n real
symmetric matrices. The space S, is a proper subspace of R"*" as soon as n > 2.

Exercise 15.7 (Space of symmetric matrices).* Show that the vector space S, of n x n real
symmetric matrices has dimension (n? 4-n)/2.

Consider the map f: GL(n,R) — S,,, f(A) = ATA. The tangent space of S, at
any point is canonically isomorphic to S, itself, because S, is a vector space. Thus,
the image of the differential

fea: TA(GL(n,R)) — Tf(A)(Sn) ~S,

lies in S,,. While it is true that f also maps GL(n,R) to GL(n,R) or R"*", if we had
taken GL(n, R) or R"*" as the target space of f, the differential f; 4 would never be
surjective for any A € GL(n,R) when n > 2, since f 4 factors through the proper
subspace S, of R"*”. This illustrates a general principle: for the differential f, 4 to
be surjective, the target space of f should be as small as possible.

To show that the differential of

f: GL(n,R) = S,, f(A)=ATA,

is surjective, we compute explicitly the differential f. 4. Since GL(n,R) is an open
subset of R"*"_ its tangent space at any A € GL(n,R) is

To(GL(n,R)) = Ty (R"™") = R"*",

For any matrix X € R"*", there is a curve () in GL(n,R) with ¢(0) = A and ¢/(0) =
X (Proposition 8.16). By Proposition 8.18,

d

f*,A(X) = dt

fle()

=0
=(O)Tc(t)+c()T (1)) (by Problem 15.2)
=Xx"A+A"X.

The surjectivity of f, 4 becomes the following question: if A € O(n) and B is any
symmetric matrix in S,, does there exist an n x n matrix X such that

XTA4+ATX =B?

Note that since (X7 A)T = ATX, it is enough to solve
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1
ATx = ,B (15.3)

for then 1 {
XTA+ATX = B+ B=B.
Equation (15.3) clearly has a solution: X = }(A7)7!B. So f,4: TAGL(n,R) —
Sy is surjective for all A € O(n), and O(n) is a regular level set of f. By the regular
level set theorem, O(n) is a regular submanifold of GL(n,R) of dimension

2 2
dimO(n) = n* — dimS, = n> — " ;” " ) " (15.4)

15.2 Lie Subgroups

Definition 15.8. A Lie subgroup of a Lie group G is (i) an abstract subgroup H
that is (ii) an immersed submanifold via the inclusion map such that (iii) the group
operations on H are C”.

An “abstract subgroup” simply means a subgroup in the algebraic sense, in con-
trast to a “Lie subgroup.” The group operations on the subgroup H are the restrictions
of the multiplication map u and the inverse map t from G to H. For an explanation
of why a Lie subgroup is defined to be an immersed submanifold instead of a regular
submanifold, see Remark 16.15. Because a Lie subgroup is an immersed subman-
ifold, it need not have the relative topology. However, being an immersion, the
inclusion map i: H <— G of a Lie subgroup H is of course C”. It follows that the
composite

Uo(ixi):HXH—-GxG—G

is C”. If H were defined to be a regular submanifold of G, then by Theorem 11.15,
the multiplication map H x H — H and similarly the inverse map H — H would
automatically be C™, and condition (iii) in the definition of a Lie subgroup would
be redundant. Since a Lie subgroup is defined to be an immersed submanifold, it is
necessary to impose condition (iii) on the group operations on H.

Example 15.9 (Lines with irrational slope in a torus). Let G be the torus R?/7Z?
and L a line through the origin in R?. The torus can also be represented by the unit
square with the opposite edges identified. The image H of L under the projection
n: R? — R?/7Z? is a closed curve if and only if the line L goes through another
lattice point, say (m,n) € Z*. This is the case if and only if the slope of L is n/m, a
rational number or oo; then H is the image of finitely many line segments on the unit
square. It is a closed curve diffeomorphic to a circle and is a regular submanifold of
R?/7? (Figure 15.1).

If the slope of L is irrational, then its image H on the torus will never close up. In
this case the restriction to L of the projection map, f = 7|.: L — R?/Z?, is a one-to-
one immersion. We give H the topology and manifold structure induced from f. It
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(3,2)
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(0,0

Fig. 15.1. An embedded Lie subgroup of the torus.

can be shown that H is a dense subset of the torus [3, Example I11.6.15, p. 86]. Thus,
H is an immersed submanifold but not a regular submanifold of the torus R? /Z?.

Whatever the slope of L, its image H in R?/Z? is an abstract subgroup of the
torus, an immersed submanifold, and a Lie group. Therefore, H is a Lie subgroup of
the torus.

Exercise 15.10 (Induced topology versus subspace topology).# Suppose H C R?/Z? is the
image of a line L with irrational slope in R?. We call the topology on H induced from the

bijection f: L =5 H the induced topology and the topology on H as a subset of R? /Z2 the
subspace topology. Compare these two topologies: is one a subset of the other?

Proposition 15.11. If H is an abstract subgroup and a regular submanifold of a Lie
group G, then it is a Lie subgroup of G.

Proof. Since a regular submanifold is the image of an embedding (Theorem 11.14),
it is also an immersed submanifold.

Let u: G x G — G be the multiplication map on G. Since H is an immersed
submanifold of G, the inclusion map i: H — G is C”. Hence, the inclusion map
ixi: HxH< GxGisC,and the composition (L o (i xi): Hx H— G is C*. By
Theorem 11.15, because H is a regular submanifold of G, the induced map fi: H x
H— HisC”.

The smoothness of the inverse map 7: H — H can be deduced from the smooth-
ness of 1: G — G just as in Example 15.5. O

A subgroup H as in Proposition 15.11 is called an embedded Lie subgroup, be-
cause the inclusion map i: H — G of a regular submanifold is an embedding (Theo-
rem 11.14).

Example. We showed in Examples 15.5 and 15.6 that the subgroups SL(n,R) and
O(n) of GL(n,R) are both regular submanifolds. By Proposition 15.11 they are
embedded Lie subgroups.

We state without proof an important theorem about Lie subgroups. If G is a Lie
group, then an abstract subgroup that is a closed subset in the topology of G is called
a closed subgroup.
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Theorem 15.12 (Closed subgroup theorem). A closed subgroup of a Lie group is
an embedded Lie subgroup.

For a proof of the closed subgroup theorem, see [38, Theorem 3.42, p. 110].

Examples.

(i) A line with irrational slope in the torus R? /Z? is not a closed subgroup, since it
is not the whole torus, but being dense, its closure is.

(ii) The special linear group SL(n,R) and the orthogonal group O(n) are the zero
sets of polynomial equations on GL(n,R). As such, they are closed subsets of
GL(n,R). By the closed subgroup theorem, SL(n,R) and O(n) are embedded
Lie subgroups of GL(n,R).

15.3 The Matrix Exponential

To compute the differential of a map on a subgroup of GL(n,R), we need a curve
of nonsingular matrices. Because the matrix exponential is always nonsingular, it is
uniquely suited for this purpose.

A norm on a vector space V is a real-valued function || - ||: V — R satisfying the
following three properties: forall r € Rand vyw € V,

(i) (positive-definiteness) |v|| > 0 with equality if and only if v = 0,
(ii) (positive homogeneity) ||rv|| = |r|||v]],
(iii) (subadditivity) [|v+w]| < [|v||+ |w]|.

A vector space V together with a norm || - || is called a normed vector space. The

2 . . .
vector space R"*" ~ R"" of all n X n real matrices can be given the Euclidean norm:
for X = [x,-j] e R,

xi= (X))

The matrix exponential eX of a matrix X € R"*" is defined by the same formula as
the exponential of a real number:

eX:I+X+21'X2+31'X3+---, (15.5)
where [ is the n x n identity matrix. For this formula to make sense, we need to show
that the series on the right converges in the normed vector space R"*" ~ R”.

A normed algebra V is a normed vector space that is also an algebra over R
satisfying the submultiplicative property: for all v,w € V, |[vw| < ||v||[|w]|. Matrix
multiplication makes the normed vector space R"*" into a normed algebra.

Proposition 15.13. For X,Y € R"™",

XY[| < [[X[[{¥l
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Proof. Write X = [x;j] and Y = [y;;] and fix a pair of subscripts (i, j). By the Cauchy—
Schwarz inequality,

2
(0 = (L) < (L5)(Lod) = ey,
k k k
where we set a; = Y, xz, and b; = Y vz Then
Xy P = L < Zaits = (Lar) (Zb)
i,J iJ i j
= (L) (To%) = IxIP Iy 0
ik J.k

In a normed algebra, multiplication distributes over a finite sum. When the sum
is infinite as in a convergent series, the distributivity of multiplication over the sum
requires a proof.

Proposition 15.14. Let V be a normed algebra.

(1) If a €V and sy, is a sequence in 'V that converges to s, then as,, converges to as.
(ii) If a € V and Y.;7_ by is a convergent series in'V, then ay ; by = Y ; aby.

Exercise 15.15 (Distributivity over a convergent series).* Prove Proposition 15.14.

In anormed vector space V a series ) a, is said to converge absolutely if the series
Y ||ax|| of norms converges in R. The normed vector space V is said to be complete
if every Cauchy sequence in V converges to a point in V. For example, R"*" is a
complete normed vector space.! It is easy to show that in a complete normed vector
space, absolute convergence implies convergence [26, Theorem 2.9.3, p. 126]. Thus,
to show that a series ) Y} of matrices converges, it is enough to show that the series
Y ||Yx|| of real numbers converges.

For any X € R™" and k > 0, repeated applications of Proposition 15.13 give
X < [1X]||¥. So the series Y5 [|X*/k!|| is bounded term by term in absolute value
by the convergent series

1 1
Vit X[ X4 5 X+ = (Vi - 1)+ e,

By the comparison test for series of real numbers, the series Y5> || X*/k!|| converges.
Therefore, the series (15.5) converges absolutely for any n x n matrix X.

NOTATION. Following standard convention we use the letter e both for the expo-
nential map and for the identity element of a general Lie group. The context should
prevent any confusion. We sometimes write exp(X ) for eX.

IA complete normed vector space is also called a Banach space, named after the Polish
mathematician Stefan Banach, who introduced the concept in 1920-1922. Correspondingly, a
complete normed algebra is called a Banach algebra.
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Unlike the exponential of real numbers, when A and B are n X n matrices with
n > 1, it is not necessarily true that

eA+B _ eAeB.

Exercise 15.16 (Exponentials of commuting matrices). Prove that if A and B are commuting
n X n matrices, then
AP =ATE.

Proposition 15.17. For X € R"*",

d

X =xeX = XX,
dt

Proof. Because each (i, j)-entry of the series for the exponential function /X is a
power series in ¢, it is possible to differentiate term by term [35, Theorem 8.1, p.
173]. Hence,

d x d L oo, 133
= (I+tXx+_1°X £2x34 .
ar® dt(+ LT T
1
:X+tX2—|—2't2X3+---
1
=X (I—HX + 2't2X2 +- ) = XX (Proposition 15.14(ii)).

In the second equality above, one could have factored out X as the second factor:

d tX 2 1 2v3
=X +1X 2x34+ ...
dte + +2! +
= (1+1X+21|z2X2+--->X:efXX. 0

The definition of the matrix exponential ¢X makes sense even if X is a complex
matrix. All the arguments so far carry over word for word; one merely has to replace
the Euclidean norm || X||? = ):x,-zj by the Hermitian norm || X||> = ¥ |x;;|?, where |x;;]|
is the modulus of a complex number x;;.

15.4 The Trace of a Matrix
Define the frace of an n x n matrix X to be the sum of its diagonal entries:
tI’(X) = ZX,',‘.
i=1
Lemma 15.18.

(1) For any two matrices X,Y € R tr(XY) = tr(YX).
(ii) For X € R™" and A € GL(n,R), tr(AXA™") = tr(X).
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Proof.
(1)
uw(XY) =Y (XY)i =YY xuvui,
i ik
w(YX) =Y (YX)u =YY i
3 ki
(i) SetB=XA"1in (). O

The eigenvalues of an n X n matrix X are the roots of the polynomial equation
det(AI —X) = 0. Over the field of complex numbers, which is algebraically closed,
such an equation necessarily has n roots, counted with multiplicity. Thus, the advan-
tage of allowing complex numbers is that every n X n matrix, real or complex, has n
complex eigenvalues, counted with multiplicity, whereas a real matrix need not have

any real eigenvalue.
0—-1
1 0

has no real eigenvalues. It has two complex eigenvalues, +i.

Example. The real matrix

The following two facts about eigenvalues are immediate from the definitions:
(i) Two similar matrices X and AXA~! have the same eigenvalues, because
det(Al —AXA™") = det (A(AI —X)A™") = det(A] — X).
(i1) The eigenvalues of a triangular matrix are its diagonal entries, because
)u] * n
det | AI— :H(A—A,-).
0 A =
By a theorem from algebra [19, Th. 6.4.1, p. 286], any complex square matrix
X can be triangularized; more precisely, there exists a nonsingular complex square
matrix A such that AXA~! is upper triangular. Since the eigenvalues A;,...,4, of X

are the same as the eigenvalues of AXA™!, the triangular matrix AXA~! must have
the eigenvalues of X along its diagonal:

M %

0 An

A real matrix X, viewed as a complex matrix, can also be triangularized, but of
course the triangularizing matrix A and the triangular matrix AXA~! are in general
complex.
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Proposition 15.19. The trace of a matrix, real or complex, is equal to the sum of its
complex eigenvalues.

Proof. Suppose X has complex eigenvalues A1, ...,A,. Then there exists a nonsin-
gular matrix A € GL(n,C) such that

)u] *
AXA™! = )
0 A
By Lemma 15.18,
tr(X) = r(AXA™ ") =} 4. m

Proposition 15.20. For any X € R™", det(eX) = "X,

Proof.
Case 1. Assume that X is upper triangular:
M %
X = ..
0 An
Then
Ak * eM *
1 1
X _ k_ . _
CEL | |7 K
0 A 0 et
Hence, det e¥ = [Je# = L = X,
Case 2. Given a general matrix X, with eigenvalues A1, ..., A,, we can find a nonsin-
gular complex matrix A such that
)u] *
AXA™! = ) ,
0 An

an upper triangular matrix. Then

1
(AXA™1)3 4.

. 1
AT T AXAT 4 (AXA™1) 4

21

1 1
=I+AXA"'+A (2')(2) Al4A (3'X3>A1 SR
=AeXA™!  (by Proposition 15.14(ii)).

Hence,
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det ¥ = det(Ac¥ A1) = det(eXAT)

= irAxA™h (by Case 1, since AXA™! is upper triangular)

=X (by Lemma 15.18). 0

It follows from this proposition that the matrix exponential X is always non-
singular, because det(eX) = e is never 0. This is one reason why the matrix ex-
ponential is so useful, for it allows us to write down explicitly a curve in GL(n,R)
with a given initial point and a given initial velocity. For example, c(t) = ¢X : R —
GL(n,R) is a curve in GL(n,R) with initial point / and initial velocity X, since

d
c(0)=e®=e"=1 and (0)= dtetX . =Xxe¥|_,=X. (15.6)

Similarly, c(t) = Ae’X : R — GL(n,R) is a curve in GL(n, R) with initial point A and
initial velocity AX.
15.5 The Differential of det at the Identity

Let det: GL(n,R) — R be the determinant map. The tangent space 7; GL(n,R) to
GL(n,R) at the identity matrix 7 is the vector space R"*" and the tangent space 7] R
toRat1lisR. So

det,;: R"" - R.

Proposition 15.21. For any X € R"™", det, ;(X) = trX.

Proof. We use a curve at [ to compute the differential (Proposition 8.18). As a curve
c(t) with ¢(0) = I and ¢’(0) = X, choose the matrix exponential ¢(t) = ¢'X. Then

d d
det, ;(X) = det(e’X) _ ¢ ux
' dt =0 dt o
= (trX)eanL:O =trX. -

Problems

15.1. Matrix exponential
For X € R™*", define the partial sum s, = }* ;X k /k!.

(a) Show that for £ > m,

l
k
lse—smll < ) IX[</k!
k=m+1

(b) Conclude that s,, is a Cauchy sequence in R"*" and therefore converges to a matrix, which
y seq g

we denote by ¢X . This gives another way of showing that YioX k /k! is convergent, with-
out using the comparison test or the theorem that absolute convergence implies conver-
gence in a complete normed vector space.
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15.2. Product rule for matrix-valued functions

Let Ja, b[ be an open interval in R. Suppose A: Ja,b[ — R"*" and B: |a,b| — R’ are m X n
and n x p matrices respectively whose entries are differentiable functions of ¢ € |a,b[. Prove
that for 7 € |a, b],

th(z)B(z) =A'()B(t) +A(t)B (1),

where A'(t) = (dA/dt)(t) and B'(t) = (dB/dt)(t).

15.3. Identity component of a Lie group
The identity component Gy of a Lie group G is the connected component of the identity ele-
ment e in G. Let it and t be the multiplication map and the inverse map of G.

(a) For any x € Gy, show that u({x} X Go) C Gy. (Hint: Apply Proposition A.43.)
(b) Show that 1(Gy) C Go.

(c) Show that Gy is an open subset of G. (Hint: Apply Problem A.16.)

(d) Prove that Gy is itself a Lie group.

15.4.* Open subgroup of a connected Lie group
Prove that an open subgroup H of a connected Lie group G is equal to G.

15.5. Differential of the multiplication map

Let G be a Lie group with multiplication map it : G X G — G, andlet{,: G— Gand ry: G —
G be left and right multiplication by a and b € G, respectively. Show that the differential of u
at (a,b) e GXx G is

P (ap) Xas Yp) = (1)« (Xa) + (£a)(Yp)  for Xq € Ta(G), Y, € Tp(G).

15.6. Differential of the inverse map
Let G be a Lie group with multiplication map i: G x G — G, inverse map 1: G — G, and
identity element e. Show that the differential of the inverse map at a € G,

tea: TG = T,i G,

is given by
l*-ﬂ(Yd) = _(ra*I )* (éa*‘ )*Yaa

where (r,-1)« = (ry-1)s,e and (€41 )5 = ({4-1)+,q. (The differential of the inverse at the identity
was calculated in Problem 8.8(b).)

15.7.* Differential of the determinant map at A
Show that the differential of the determinant map det: GL(n,R) — R at A € GL(n,R) is
given by

det, o (AX) = (detA)trX for X € R"™". (15.7)
15.8.* Special linear group
Use Problem 15.7 to show that 1 is a regular value of the determinant map. This gives a quick

proof that the special linear group SL(n,R) is a regular submanifold of GL(n,R).

15.9. Structure of a general linear group
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(a) For r e R* :=R — {0}, let M, be the n X n matrix
r
M, = . =[rej ey -+ en],
. 1
where ey, ..., e, is the standard basis for R”. Prove that the map
f: GL(n,R) — SL(n,R) x R,
As (AM) g, det )

is a diffeomorphism.

(b) The center Z(G) of a group G is the subgroup of elements g € G that commute with all
elements of G:

Z(G):={ge G| gx=xgforallx € G}.

Show that the center of GL(2,R) is isomorphic to R*, corresponding to the subgroup of
scalar matrices, and that the center of SL(2,R) x R* is isomorphic to {£1} x R*. The
group R* has two elements of order 2, while the group {#1} x R* has four elements
of order 2. Since their centers are not isomorphic, GL(2,R) and SL(2,R) x R* are not
isomorphic as groups.

(c) Show that

h: GL(3,R) — SL(3,R) x R*,
As ((detA)1/3A,detA) ,

is a Lie group isomorphism.

The same arguments as in (b) and (c) prove that for n even, the two Lie groups GL(n,R)
and SL(n,R) x R* are not isomorphic as groups, while for n odd, they are isomorphic as Lie
groups.

15.10. Orthogonal group
Show that the orthogonal group O(n) is compact by proving the following two statements.

(a) O(n) is a closed subset of R"*",
(b) O(n) is a bounded subset of R"*",

15.11. Special orthogonal group SO(2)
The special orthogonal group SO(n) is defined to be the subgroup of O(n) consisting of ma-
trices of determinant 1. Show that every matrix A € SO(2) can be written in the form

A—laclZ cos® —sin6
~|bd| |sinf cos6

for some real number 6. Then prove that SO(2) is diffeomorphic to the circle S'.

15.12. Unitary group
The unitary group U(n) is defined to be

U(n) = {A € GL(n,C) |ATA =1},
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where A denotes the complex conjugate of A, the matrix obtained from A by conjugating

every entry of A: (A);; = a;;. Show that U(n) is a regular submanifold of GL(»n,C) and that
dimU(n) = n?.

15.13. Special unitary group SU(2)
The special unitary group SU(n) is defined to be the subgroup of U(n) consisting of matrices
of determinant 1.

(a) Show that SU(2) can also be described as the set

SU(2) = { {Z _ﬂ €22

ad+b}3:1}.

(Hint: Write out the condition A~! = AT in terms of the entries of A.)
(b) Show that SU(2) is diffeomorphic to the three-dimensional sphere

SSZ{(x17x27x37x4)€R4 ‘x%+x%+x%+x%:1}

15.14. A matrix exponential

Compute exp {(1) (1)} .

15.15. Symplectic group
This problem requires a knowledge of quaternions as in Appendix E. Let H be the skew field
of quaternions. The symplectic group Sp(n) is defined to be

Sp(n) = {A € GL(n,H) |ATA =1},

where A denotes the quaternionic conjugate of A. Show that Sp(n) is a regular submanifold of
GL(n,H) and compute its dimension.

15.16. Complex symplectic group
Let J be the 2n x 2n matrix

where I, denotes the n X n identity matrix. The complex symplectic group Sp(2n,C) is defined
to be
Sp(2n,C) = {A € GL(21,C) |ATJA = J}.

Show that Sp(2n, C) is a regular submanifold of GL(2n,C) and compute its dimension. (Hint:
Mimic Example 15.6. It is crucial to choose the correct target space for the map f(A) = AT JA.)
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616 Lie Algebras

In a Lie group G, because left translation by an element g € G is a diffeomorphism
that maps a neighborhood of the identity to a neighborhood of g, all the local in-
formation about the group is concentrated in a neighborhood of the identity, and the
tangent space at the identity assumes a special importance.

Moreover, one can give the tangent space 7,G a Lie bracket [ , |, so that in
addition to being a vector space, it becomes a Lie algebra, called the Lie algebra of
the Lie group. This Lie algebra encodes in it much information about the Lie group.
The goal of this section is to define the Lie algebra structure on 7,G and to identity
the Lie algebras of a few classical groups.

The Lie bracket on the tangent space 7,G is defined using a canonical isomor-
phism between the tangent space at the identity and the vector space of left-invariant
vector fields on G. With respect to this Lie bracket, the differential of a Lie group
homomorphism becomes a Lie algebra homomorphism. We thus obtain a functor
from the category of Lie groups and Lie group homomorphisms to the category of
Lie algebras and Lie algebra homomorphisms. This is the beginning of a reward-
ing program, to understand the structure and representations of Lie groups through a
study of their Lie algebras.

16.1 Tangent Space at the Identity of a Lie Group

Because of the existence of a multiplication, a Lie group is a very special kind of
manifold. In Exercise 15.2, we learned that for any g € G, left translation £,: G — G
by g is a diffeomorphism with inverse £,-1. The diffeomorphism /, takes the identity
element e to the element g and induces an isomorphism of tangent spaces

low = (Lg)se: T.(G) = T, (G).

Thus, if we can describe the tangent space T, (G) at the identity, then (,, T, (G) will
give a description of the tangent space T, (G) at any point g € G.

Example 16.1 (The tangent space to GL(n,R) at I). In Example 8.19, we identified
the tangent space GL(n,R) at any point g € GL(n,R) as R"*", the vector space of
all n x n real matrices. We also identified the isomorphism /g : 77(GL(n,R)) —
T,(GL(n,R)) as left multiplication by g : X — gX.

Example 16.2 (The tangent space to SL(n,R) at I). We begin by finding a condition
that a tangent vector X in 7;(SL(n,R)) must satisfy. By Proposition 8.16 there is a
curve ¢: |—¢g,€[ — SL(n,R) with ¢(0) =1 and ¢/(0) = X. Being in SL(n,RR), this
curve satisfies

detc(r) =1

for all 7 in the domain ] — €, €[. We now differentiate both sides with respect to # and
evaluate at t = 0. On the left-hand side, we have
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i)

d
O— (detoc)* (dl‘

") det(c(r))

=

d
=det, (c* ) (by the chain rule)
' dt |,
= det, ;(c'(0))
= det*,[ (X)
= tr(X) (by Proposition 15.21).
Thus,
d
tr(X)= 1| =0.
dr t=0

So the tangent space T;(SL(n,R)) is contained in the subspace V of R"*" defined by
V={X eR™"|trX = 0}.
Since dimV = n? — 1 = dim 7;(SL(n, R)), the two spaces must be equal.

Proposition 16.3. The tangent space T;(SL(n,R)) at the identity of the special linear
group SL(n,R) is the subspace of R"*" consisting of all n X n matrices of trace 0.

Example 16.4 (The tangent space to O(n) at I). Let X be a tangent vector to the
orthogonal group O(n) at the identity I. Choose a curve ¢(¢) in O(n) defined on a
small interval containing O such that ¢(0) = I and ¢/(0) = X. Since ¢(¢) is in O(n),

c(t)e(t) =1.

Differentiating both sides with respect to ¢ using the matrix product rule (Prob-

lem 15.2) gives
IO et)+c()'d(t)=0.
Evaluating at r = 0 gives
X" +x=0.

Thus, X is a skew-symmetric matrix.
Let K, be the space of all n x n real skew-symmetric matrices. For example, for
n = 3, these are matrices of the form

0 a b
—a 0 c|, wherea,b,c,eR.
—b—c 0

The diagonal entries of such a matrix are all 0 and the entries below the diagonal are
determined by those above the diagonal. So

n* — # diagonal entries 1

dimK, = (n* —n).
2 2

‘We have shown that
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T;1(0O(n)) C K,. (16.1)
By an earlier computation (see (15.4)),

2

dim7;(0(n)) = dimO(n) = 2_”

Since the two vector spaces in (16.1) have the same dimension, equality holds.

Proposition 16.5. The tangent space T;(O(n)) of the orthogonal group O(n) at the
identity is the subspace of R"™" consisting of all n X n skew-symmetric matrices.

16.2 Left-Invariant Vector Fields on a Lie Group

Let X be a vector field on a Lie group G. We do not assume X to be C”. For any
g € G, because left multiplication £, : G — G is a diffeomorphism, the pushforward
le.X is a well-defined vector field on G. We say that the vector field X is left-
invariant if

L X =X

for every g € G; this means for any 4 € G,
Los(Xn) = Xgn-

In other words, a vector field X is left-invariant if and only if it is £,-related to itself
forall g € G.
Clearly, a left-invariant vector field X is completely determined by its value X, at
the identity, since
X, = Lo (Xe). (16.2)

Conversely, given a tangent vector A € T,(G) we can define a vector field A on G
by (16.2): (A)g = £.A. So defined, the vector field A is left-invariant, since
Eg* (A~h) = gg*fh*A
= (ly o ly)+A (by the chain rule)
= (Lgn)«(A)

e

gh-

We call A the left-invariant vector field on G generated by A € T,G. Let L(G) be
the vector space of all left-invariant vector fields on G. Then there is a one-to-one
correspondence
T.(G) <+ L(G), (16.3)
Xe 1 X,
A A.

It is easy to show that this correspondence is in fact a vector space isomorphism.
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Example 16.6 (Left-invariant vector fields on R). On the Lie group R, the group
operation is addition and the identity element is 0. So “left multiplication” £, is
actually addition:

lo(x) = g+x.

Let us compute 4. (d/dx|o). Since £,.(d/dx|y) is a tangent vector at g, it is a scalar
multiple of d /dx

g

by (jx 0) :a;x g (16.4)
To evaluate a, apply both sides of (16.4) to the function f(x) = x:
Thus, J p
b (dx 0) ~ dx ¢

This shows that d /dx is a left-invariant vector field on R. Therefore, the left-invariant
vector fields on R are constant multiples of d/dx.

Example 16.7 (Left-invariant vector fields on GL(n,R)). Since GL(n,R) is an open
subset of R"*", at any g € GL(n,R) there is a canonical identification of the tangent
space T,(GL(n,IR)) with R"*”, under which a tangent vector corresponds to an n X n
matrix: 5

Yaij, | <l (16.5)

Xij g
We use the same letter B to denote alternately a tangent vector B =Y b;; d/dx;j|; €
T;(G(n,R)) at the identity and a matrix B = [b;;]. Let B=Y b;; d/dx;j|1 € T1(GL(n,R))
and let B be the left-invariant vector field on GL(n,R) generated by B. By Exam-
ple 8.19,
By, = ({,).B+— gB

under the identification (16.5). In terms of the standard basis d/dx;;

J
=) (Zk:gikbkj> Ix,)

g i

8

N d
B = Z(gB)ij 8xij

i.J

4

Proposition 16.8. Any left-invariant vector field X on a Lie group G is C*.

Proof. By Proposition 14.3 it suffices to show that for any C* function f on G,
the function X f is also C*. Choose a C* curve c: I — G defined on some interval /
containing 0 such that ¢(0) = e and ¢/ (0) = X,.. If g € G, then gc(¢) is a curve starting
at g with initial vector X, since gc(0) = ge = g and

(gc)/(O) = Eg*c/(o) = Eg*Xe =X,.
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By Proposition 8.17,

d
dt|,_

(X/)(g) =Xef = [f(ge(t)).

Now the function f(gc(¢)) is a composition of C* functions

Ixc

GxI1Y% 6x6 B ¢ LR,
(8:1) — (g,¢(t)) = ge(t) = f(ge(t));

as such, it is C. Its derivative with respect to ¢,

! figelr)),

is therefore also C*. Since (X f)(g) is a composition of C* functions,

G GxI5LR,
d
g8 (8,0) = F(g,0)= | [flge(t)),
Ti=o
it is a C* function on G. This proves that X is a C* vector field on G. O

It follows from this proposition that the vector space L(G) of left-invariant vector
fields on G is a subspace of the vector space X(G) of all C* vector fields on G.

Proposition 16.9. If X and Y are left-invariant vector fields on G, then so is [X,Y].

Proof. For any g in G, X is {,-related to itself, and Y is fc-related to itself. By
Proposition 14.17, [X,Y] is {,-related to itself. O

16.3 The Lie Algebra of a Lie Group

Recall that a Lie algebra is a vector space g together with a bracket, i.e., an anticom-
mutative bilinear map [, |: g x g — g that satisfies the Jacobi identity (Definition
14.12). A Lie subalgebra of a Lie algebra g is a vector subspace b C g that is closed
under the bracket [ , ]. By Proposition 16.9, the space L(G) of left-invariant vector
fields on a Lie group G is closed under the Lie bracket [, | and is therefore a Lie
subalgebra of the Lie algebra X(G) of all C* vector fields on G.

As we will see in the next few subsections, the linear isomorphism ¢@: 7,G ~
L(G) in (16.3) is mutually beneficial to the two vector spaces, for each space has
something that the other one lacks. The vector space L(G) has a natural Lie algebra
structure given by the Lie bracket of vector fields, while the tangent space at the
identity has a natural notion of pushforward, given by the differential of a Lie group
homomorphism. The linear isomorphism ¢: T,G ~ L(G) allows us to define a Lie
bracket on 7,G and to push forward left-invariant vector fields under a Lie group
homomorphism.
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We begin with the Lie bracket on T,G. Given A,B € T,G, we first map them via
¢ to the left-invariant vector fields A, B, take the Lie bracket [A, B] = AB — BA, and
then map it back to 7,G via ¢ ~!. Thus, the definition of the Lie bracket [A, B] € T,G
should be

[A,B] = [A,B],. (16.6)

Proposition 16.10. If A,B € T,G and A,B are the left-invariant vector fields they
generate, then
[A,B] = [A,B]

Proof. Applying ( ) to both sides of (16.6) gives
[A’BT: ([A’g]€)~: [A,E],
since ( )"and (), are inverse to each other. O

With the Lie bracket [, ], the tangent space T,(G) becomes a Lie algebra, called
the Lie algebra of the Lie group G. As a Lie algebra, T, (G) is usually denoted by g.

16.4 The Lie Bracket on gl(n,R)

For the general linear group GL(n,R), the tangent space at the identity / can be
identified with the vector space R"*" of all n x n real matrices. We identified a
tangent vector in 77(GL(n,R)) with a matrix A € R via

d
Za,-j 8xij . — [Cl,'j]. (16.7)

The tangent space Ty GL(n,R) with its Lie algebra structure is denoted by gl(n,R).
Let A be the left-invariant vector field on GL(n,R) generated by A. Then on the Lie
algebra gl(n,IR) we have the Lie bracket [A, B] = [A, B]; coming from the Lie bracket
of left-invariant vector fields. In the next proposition, we identify the Lie bracket in
terms of matrices.

Proposition 16.11. Let

€ T(GL(n,R)).

d d
A=Y dxij |y’ B=Lby 9xij |y
v d

[A,B] = [A,B]; = ZCU Ixi; (16.8)

b
I
then

Cij = Zaikbkj — byay;.
3

Thus, if derivations are identified with matrices via (16.7), then

[A,B] = AB— BA.
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Proof. Applying both sides of (16.8) to x;;, we get

Cij = [Aag]lxij :AIEXU —EIAX,-/-
= ABx;; — BAx;; (because A; =A, B; =B),

s0 it is necessary to find a formula for the function Bx;;.
In Example 16.7 we found that the left-invariant vector field B on GL(n,R) is
given by

5 d
B = Z(gB)ij ox,; atg € GL(n,R).
g

iJ

Hence,

Byxij = (gB)ij = Y gikbij = Y bijxix(g)
k k
Since this formula holds for all g € GL(n,R), the function Byx;; is
Ex,-j = Zbij,'k.
k
It follows that

ABx;; = Za,,q &

= Zaikbkj =
3

Interchanging A and B gives

(Zbk].xlk> = Z aqukjéipékq

Pk

BAx;; = Zb,kak ;= (BA);;.

Therefore,
cij = Y aitb; — biarj = (AB— BA)jj. O
k

16.5 The Pushforward of Left-Invariant Vector Fields

As we noted in Subsection 14.5, if F': N — M is a C* map of manifolds and X is a C™
vector field on N, the pushforward F.X is in general not defined except when F is a
diffeomorphism. In the case of Lie groups, however, because of the correspondence
between left-invariant vector fields and tangent vectors at the identity, it is possible
to push forward left-invariant vector fields under a Lie group homomorphism.

Let F: H— G be a Lie group homomorphism. A left-invariant vector field X
on H is generated by its value A = X, € T,H at the identity, so that X = A. Since a
Lie group homomorphism F': H — G maps the identity of H to the identity of G, its
differential F . at the identity is a linear map from 7. H to T,G. The diagrams
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Fipe
TH >T.G Al >F.A
V_ V_ % \
L(H) - = > L(G), A == (FA)

show clearly the existence of an induced linear map F.: L(H) — L(G) on left-
invariant vector fields as well as a way to define it.

Definition 16.12. Let F: H — G be a Lie group homomorphism. Define
F.: L(H) — L(G) by

F(A) = (FiA)
forallA € T,H.

Proposition 16.13. If F: H — G is a Lie group homomorphism and X is a left-
invariant vector field on H, then the left-invariant vector field F,X on G is F -related
to the left-invariant vector field X.

Proof. For each h € H, we need to verify that
Fon(Xn) = (FX)F()- (16.9)
The left-hand side of (16.9) is
Fon(Xp) = Fp(Ups eXe) = (F o lp)s e (Xe),
while the right-hand side of (16.9) is

(FX)pn) = (FeeXe)F(n) (definition of F,.X)
= Lp(nyFre(Xe) (definition of left invariance)

= (Lp(n o F)xe(Xe) (chain rule).

Since F is a Lie group homomorphism, we have F o £, = £y, o F, so the two sides
of (16.9) are equal. a

If F: H— G is a Lie group homomorphism and X is a left-invariant vector field
on H, we will call F.X the pushforward of X under F .

16.6 The Differential as a Lie Algebra Homomorphism

Proposition 16.14. If F: H — G is a Lie group homomorphism, then its differential
at the identity,
F.=F.,: T,H— TG,

is a Lie algebra homomorphism, i.e., a linear map such that for all A,B € T,H,

F.]A,B] = [F.A,F.B).
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Proof. By Proposition 16.13, the vector field F,A on G is F-related to the vector field
A on H, and the vector field F,.B is F-related to B on H. Hence, the bracket [F,A, F,.B]
on G is F-related to the bracket [A, B] on H (Proposition 14.17). This means that

F,([A,B).) = [F.A,F.B)p(, = [F.A,F.B]..
The left-hand side of this equality is Fi[A, B], while the right-hand side is

[F.A,F.B), = [(F.A),(F.B)]. (definition of F,A)
= [F.A,F.B| (definition of [, | on T,G).

Equating the two sides gives
F.|A,B] = [F,A,F.B]. O

Suppose H is a Lie subgroup of a Lie group G, with inclusion map i: H — G.
Since i is an immersion, its differential

iv: TH—T,G

is injective. To distinguish the Lie bracket on T,H from the Lie bracket on 7,G, we
temporarily attach subscripts 7.H and 7,G to the two Lie brackets respectively. By
Proposition 16.14, for X,Y € T,H,

i (X, Y]n) = [1.X,i.Y )16 (16.10)

This shows that if 7.H is identified with a subspace of T,G via i, then the bracket
on T,H is the restriction of the bracket on 7,G to T.H. Thus, the Lie algebra of a Lie
subgroup H may be identified with a Lie subalgebra of the Lie algebra of G.

In general, the Lie algebras of the classical groups are denoted by gothic letters.
For example, the Lie algebras of GL(n,R), SL(n,R), O(n), and U(n) are denoted
by gl(n,R), sl(n,R), o(n), and u(n), respectively. By (16.10) and Proposition 16.11,
the Lie algebra structures on s[(n,R), o(n), and u(n) are given by

[A,B] = AB — BA,
as on gl(n,R).

Remark 16.15. A fundamental theorem in Lie group theory asserts the existence of
a one-to-one correspondence between the connected Lie subgroups of a Lie group
G and the Lie subalgebras of its Lie algebra g [38, Theorem 3.19, Corollary (a), p.
95]. For the torus R?/Z?2, the Lie algebra g has R? as the underlying vector space
and the one-dimensional Lie subalgebras are all the lines through the origin. Each
line through the origin in R? is a subgroup of R? under addition. Its image under the
quotient map R? — R?/Z? is a subgroup of the torus R?/Z?. If a line has rational
slope, then its image is a regular submanifold of the torus. If a line has irrational
slope, then its image is only an immersed submanifold of the torus. According to the
correspondence theorem just quoted, the one-dimensional connected Lie subgroups
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of the torus are the images of all the lines through the origin. Note that if a Lie
subgroup had been defined as a subgroup that is also a regular submanifold, then
one would have to exclude all the lines with irrational slopes as Lie subgroups of the
torus, and it would not be possible to have a one-to-one correspondence between the
connected subgroups of a Lie group and the Lie subalgebras of its Lie algebra. It is
because of our desire for such a correspondence that a Lie subgroup of a Lie group
is defined to be a subgroup that is also an immersed submanifold.

Problems

In the following problems the word “dimension” refers to the dimension as a real vector space
or as a manifold.

16.1. Skew-Hermitian matrices

A complex matrix X € C"*" is said to be skew-Hermitian if its conjugate transpose X T is equal
to —X. Let V be the vector space of n x n skew-Hermitian matrices. Show that dimV = n2.
16.2. Lie algebra of a unitary group

Show that the tangent space at the identity / of the unitary group U(n) is the vector space of
n X n skew-Hermitian matrices.

16.3. Lie algebra of a symplectic group

Refer to Problem 15.15 for the definition and notation concerning the symplectic group Sp(n).
Show that the tangent space at the identity 7 of the symplectic group Sp(n) C GL(n,H) is the
vector space of all n x n quaternionic matrices X such that X7 = —X.

16.4. Lie algebra of a complex symplectic group

(a) Show that the tangent space at the identity / of Sp(2n,C) C GL(2n,C) is the vector space
of all 2n x 2n complex matrices X such that JX is symmetric.
(b) Calculate the dimension of Sp(2n,C).

16.5. Left-invariant vector fields on R”
Find the left-invariant vector fields on R”.

16.6. Left-invariant vector fields on a circle
Find the left-invariant vector fields on S!.

16.7. Integral curves of a left-invariant vector field

Let A € gl(n,R) and let A be the left-invariant vector field on GL(n,R) generated by A. Show
that ¢(¢) = " is the integral curve of A starting at the identity matrix . Find the integral curve
of A starting at g € GL(n,R).

16.8. Parallelizable manifolds

A manifold whose tangent bundle is trivial is said to be parallelizable. 1f M is a manifold
of dimension n, show that parallelizability is equivalent to the existence of a smooth frame
Xi,...,XponM.

16.9. Parallelizability of a Lie group
Show that every Lie group is parallelizable.
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16.10.* The pushforward of left-invariant vector fields
Let F: H— G be a Lie group homomorphism and let X and Y be left-invariant vector fields
on H. Prove that Fi[X,Y] = [F.X,F.Y].

16.11. The adjoint representation
Let G be a Lie group of dimension n with Lie algebra g.

(a) For each a € G, the differential at the identity of the conjugation map ¢, := {4 o 71 :
G — G is a linear isomorphism ¢4« : g — g. Hence, ¢4 € GL(g). Show that the map
Ad: G — GL(g) defined by Ad(a) = ¢4« is a group homomorphism. It is called the adjoint
representation of the Lie group G.

(b) Show that Ad: G — GL(g) is C*.

16.12. A Lie algebra structure on R>

The Lie algebra o(n) of the orthogonal group O(n) is the Lie algebra of n X n skew-symmetric
real matrices, with Lie bracket [A,B] = AB— BA. When n = 3, there is a vector space isomor-
phism ¢@: 0(3) — R3,

0 ayp az ai
pA)=¢ | |-a1 0a||=|-a|=a
—ap —az 0 as

Prove that ¢([A,B]) = @(A) x ¢(B). Thus, R? with the cross product is a Lie algebra.



Chapter 5

Differential Forms

Differential forms are generalizations of real-valued functions on a manifold. Instead
of assigning to each point of the manifold a number, a differential k-form assigns to
each point a k-covector on its tangent space. For k = 0 and 1, differential k-forms are
functions and covector fields respectively.

Differential forms play a crucial role in manifold
theory. First and foremost, they are intrinsic objects
associated to any manifold, and so can be used to
construct diffeomorphism invariants of a manifold.
In contrast to vector fields, which are also intrinsic
to a manifold, differential forms have a far richer al-
gebraic structure. Due to the existence of the wedge
product, a grading, and the exterior derivative, the
set of smooth forms on a manifold is both a graded
algebra and a differential complex. Such an alge-
braic structure is called a differential graded alge-
bra. Moreover, the differential complex of smooth
forms on a manifold can be pulled back under a
smooth map, making the complex into a contravari-

Elie Cartan ant functor called the de Rham complex of the man-
ifold. We will eventually construct the de Rham co-
(1869-1951) homology of a manifold from the de Rham complex.

Because integration of functions on a Euclidean space depends on a choice of
coordinates and is not invariant under a change of coordinates, it is not possible to
integrate functions on a manifold. The highest possible degree of a differential form
is the dimension of the manifold. Among differential forms, those of top degree turn
out to transform correctly under a change of coordinates and are precisely the objects
that can be integrated. The theory of integration on a manifold would not be possible
without differential forms.

Very loosely speaking, differential forms are whatever appears under an integral
sign. In this sense, differential forms are as old as calculus, and many theorems in

L.W. Tu, 4n Introduction to Manifolds, Universitext, DOI 10.1007/978-1-4419-7400-6_6, 189
© Springer Science+Business Media, LLC 2011
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calculus such as Cauchy’s integral theorem or Green’s theorem can be interpreted as
statements about differential forms. Although it is difficult to say who first gave dif-
ferential forms an independent meaning, Henri Poincaré [32] and Elie Cartan [5] are
generally both regarded as pioneers in this regard. In the paper [5] published in 1899,
Cartan defined formally the algebra of differential forms on R” as the anticommuta-
tive graded algebra over C* functions generated by dx!, ... dx" in degree 1. In the
same paper one finds for the first time the exterior derivative on differential forms.
The modern definition of a differential form as a section of an exterior power of the
cotangent bundle appeared in the late forties [6], after the theory of fiber bundles
came into being.

In this chapter we give an introduction to differential forms from the vector bun-
dle point of view. For simplicity we start with 1-forms, which already have many of
the properties of k-forms. We give various characterizations of smooth forms, and
show how to multiply, differentiate, and pull back these forms. In addition to the
exterior derivative, we also introduce the Lie derivative and interior multiplication,
two other intrinsic operations on a manifold.

617 Differential 1-Forms

Let M be a smooth manifold and p a point in M. The cotangent space of M at p,
denoted by T,y (M) or Ty M, is defined to be the dual space of the tangent space 7,M:

T'M = (T,M)" = Hom(T,M,R).
An element of the cotangent space T,;M is called a covector at p. Thus, a covector
@, at p is a linear function

p: Ty,M — R.

A covector field, a differential 1-form, or more simply a 1-form on M, is a func-
tion @ that assigns to each point p in M a covector ), at p. In this sense it is dual
to a vector field on M, which assigns to each point in M a tangent vector at p. There
are many reasons for the great utility of differential forms in manifold theory, among
which is the fact that they can be pulled back under a map. This is in contrast to
vector fields, which in general cannot be pushed forward under a map.

Covector fields arise naturally even when one is interested only in vector fields.
For example, if X is a C™ vector field on R", then at each point p € R", X, =
Y.a'd/dx'|p. The coefficient a' depends on the vector X,,. It is in fact a linear
function: T,R" — R, i.e., a covector at p. As p varies over R", a' becomes a cov-
ector field on R”. Indeed, it is none other than the 1-form dx’ that picks out the ith
coefficient of a vector field relative to the standard frame d/dx!, ..., 9 /dx".
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17.1 The Differential of a Function

Definition 17.1. If f is a C* real-valued function on a manifold M, its differential
is defined to be the 1-form df on M such that for any p € M and X, € T,M,

(df)p(Xp) =Xpf.

Instead of (df),, we also write df|, for the value of the 1-form df at p. This is
parallel to the two notations for a tangent vector: (d/dt), = d/dt/|,.

In Subsection 8.2 we encountered another notion of the differential, denoted by
f«, for a map f between manifolds. Let us compare the two notions of the differen-
tial.

Proposition 17.2. If f: M — R is a C* function, then for p € M and X, € T,M,

d

f*(Xp) = (df)p(xp) dt

f(p)

Proof. Since f.(X,) € Ty()R, there is a real number a such that

d
fi(Xp) =a . (17.1)
dt f(p)
To evaluate a, apply both sides of (17.1) to x:
a=f(Xp)(t) =Xp(to f) =Xpf = (df) p(Xp). o

This proposition shows that under the canonical identification of the tangent
space Ty, R with R via

d
a — a,

dt |z

[« 1s the same as df. For this reason, we are justified in calling both of them the
differential of f. In terms of the differential df, a C™ function f: M — R has a
critical point at p € M if and only if (df), = 0.

17.2 Local Expression for a Differential 1-Form

Let (U,¢) = (U,x',...,x") be a coordinate chart on a manifold M. Then the differ-
entials dx', ..., dx" are 1-forms on U.

Proposition 17.3. At each point p € U, the covectors (dx'),, ..., (dx"), form a basis
for the cotangent space Ty M dual 1o the basis d /0x'|,,...,d/dx"|, for the tangent
space T,M.
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Proof. The proof is just like that in the Euclidean case (Proposition 4.1):

; 0 _d
() <8xj p> T Ox/

Thus, every 1-form @ on U can be written as a linear combination
o= Zaidxi,

where the coefficients a; are functions on U. In particular, if f is a C* function on
M, then the restriction of the 1-form df to U must be a linear combination

df =Y ajdx'.

X = 5; O
p

To find a, we apply the usual trick of evaluating both sides on 9 /dx/:
0 i 0d af i
(df) (8xj> —zi:a,-dx (8x1> = o —zi:a,ﬁj—aj.
This gives a local expression for df:

dfzzgfi dx'. (17.2)

17.3 The Cotangent Bundle

The underlying set of the cotangent bundle T*M of a manifold M is the union of the
cotangent spaces at all the points of M:

"M := | T;M. (17.3)
PEM

Just as in the case of the tangent bundle, the union (17.3) is a disjoint union and
there is a natural map 7: 7*M — M given by n(a) = p if a € T;M. Mimicking the
construction of the tangent bundle, we give T*M a topology as follows. If (U,¢) =
(U,x',...,x")isacharton M and p € U, then each & € T;M can be written uniquely
as a linear combination

o= Zci(a)dxi|,,.

This gives rise to a bijection

¢0:TU — ¢(U) xR, (17.4)
o= (¢(p),ci(a),...,co(t)) = (@ om,cp,...,cn)().

Using this bijection, we can transfer the topology of ¢ (U) x R" to T*U.

Now for each domain U of a chart in the maximal atlas of M, let By be the
collection of all open subsets of 7°U, and let B be the union of the By. As in
Subsection 12.1, B satisfies the conditions for a collection of subsets of T*M to be a
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basis. We give T*M the topology generated by the basis B. As for the tangent bundle,
with the maps ¢ = (xl oM,..., X" o T,C1,...,cy) Of (17.4) as coordinate maps, T*M
becomes a C* manifold, and the projection map 7w: T*M — M becomes a vector
bundle of rank n over M, justifying the “bundle” in the name “cotangent bundle.” If
x!,...,x" are coordinates on U C M, then m*x!,... m*x",c1,...,c, are coordinates
on t~'U C T*M. Properly speaking, the cotangent bundle of a manifold M is the
triple (T*M,M,r), while T*M and M are the fotal space and the base space of the
cotangent bundle respectively, but by abuse of language, it is customary to call 7*M
the cotangent bundle of M.

In terms of the cotangent bundle, a 1-form on M is simply a section of the cotan-
gent bundle 7*M; i.e., it is a map @: M — T*M such that T o @ = 1y, the identity

map on M. We say that a 1-form w is C* ifitis C* asamap M — T*M.

Example 17.4 (Liouville form on the cotangent bundle). If a manifold M has dimen-
sion n, then the total space 7*M of its cotangent bundle 7: T*M — M is a manifold
of dimension 2n. Remarkably, on T*M there is a 1-form A, called the Liouville form
(or the Poincaré form in some books), defined independently of charts as follows.
A point in 7*M is a covector @, € T,;M at some point p € M. If Xy, is a tangent
vector to T*M at @), then the pushforward 7, (Xg,) is a tangent vector to M at p.
Therefore, one can pair up @, and 7. (X, ) to obtain a real number ), (7. (Xw,)).
Define
)““’p (X“’p) = wp (7'[* (pr)) :

The cotangent bundle and the Liouville form on it play an important role in the
mathematical theory of classical mechanics [1, p. 202].

17.4 Characterization of C* 1-Forms

We define a 1-form @ on a manifold M to be smooth if @: M — T*M is smooth as a
section of the cotangent bundle 7: T*M — M. The set of all smooth 1-forms on M
has the structure of a vector space, denoted by Q! (M). In a coordinate chart (U, ¢) =
(U,x',...,x") on M, the value of the 1-form @ at p € U is a linear combination

@y =) ai(p)dx'|.

As p varies in U, the coefficients a; become functions on U. We will now derive

smoothness criteria for a 1-form in terms of the coefficient functions a;. The devel-

opment is parallel to that of smoothness criteria for a vector field in Subsection 14.1.
By Subsection 17.3, the chart (U, ¢) on M induces a chart

(T*U,$) = (T*U,&,..., & c1,....cn)
on T*M, where ¥ = *x' = x' o 7t and the ¢; are defined by
a=)Y c(a)dx'|,, acT;M.

Comparing the coefficients in
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0y = Zai(P) dxi|p = Zci(wp)dxi|p7

we get a; = ¢j o @, where ® is viewed as a map from U to T*U. Being coordinate
functions, the ¢; are smooth on 7*U. Thus, if @ is smooth, then the coefficients a; of
o=Ya; dx' relative to the frame dx' are smooth on U. The converse is also true, as
indicated in the following lemma.

Lemma 17.5. Let (U, ¢) = (U,x',...,x") be a chart on a manifold M. A 1-form
o =Y a;dx' on U is smooth if and only if the coefficient functions a; are all smooth.

Proof. This lemma is a special case of Proposition 12.12, with E the cotangent bun-
dle T*M and s; the coordinate 1-forms dx/. However, a direct proof is also possible
(cf. Lemma 14.1).

Since ¢: T*U — U x R" is a diffeomorphism, @: U — T*M is smooth if and
onlyif ¢ o w: U — U x R" is smooth. For p € U,

(¢ ° w)(p) = q;(wp) = (xl (P),.n 7xn(p)7c1(wp)ﬂ“' ’cn(wp))
= (x'(p),....x"(p),ai(p),--,an(p)) -

As coordinate functions, x', ..., x" are smooth on U. Therefore, by Proposition 6.13,
¢ o  is smooth on U if and only if all a; are smooth on U. a

Proposition 17.6 (Smoothness of a 1-form in terms of coefficients). Ler @ be a
1-form on a manifold M. The following are equivalent:

(i) The 1-form @ is smooth on M.
(i1) The manifold M has an atlas such that on any chart (U,x1 ,-,X") of the atlas,
the coefficients a; of ® = Y. a;dx' relative to the frame dx' are all smooth.
(iii) On any chart (U,x',...,x") on the manifold, the coefficients a; of @ = ¥ a;dx'
relative to the frame dx' are all smooth.

Proof. The proof is omitted, since it is virtually identical to that of Proposition 14.2.
O

Corollary 17.7. If f is a C* function on a manifold M, then its differential df is a
C” 1-form on M.

Proof. On any chart (U,x',...,x") on M, the equality df = Y.(df/dx')dx' holds.
Since the coefficients d f/dx' are all C*, by Proposition 17.6(iii), the 1-form df
is C*™. a

If w is a 1-form and X is a vector field on a manifold M, we define a function
®(X) on M by the formula

oX),=w,X,) R, peM.

Proposition 17.8 (Linearity of a 1-form over functions). Let  be a 1-form on a
manifold M. If f is a function and X is a vector field on M, then o(fX) = fo(X).
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Proof. At each point p € M,

o(fX), = @, (f(P)Xp) = f(p)0p(Xp) = (f0(X)),,

because @(X) is defined pointwise, and at each point, @), is R-linear in its argument.
O

Proposition 17.9 (Smoothness of a 1-form in terms of vector fields). A 1-form @
on a manifold M is C* if and only if for every C” vector field X on M, the function
o(X) is C* on M.

Proof.

(=) Suppose @ is a C* 1-form and X is a C* vector field on M. On any chart
(U,x',...,x") on M, by Propositions 14.2 and 17.6, ® =} a;dx' and X = Y b'd/dx’
for C* functions a;,b’. By the linearity of 1-forms over functions (Proposition 17.8),

~(Ladd) (975, ) = Law'si = Las
iJ

a C* function on U. Since U is an arbitrary chart on M, the function ®(X) is C*
onM.

(«<=) Suppose w is a 1-form on M such that the function ®(X) is C* for every C*
vector field X on M. Given p € M, choose a coordinate neighborhood (U X X"
about p. Then @ = ):a,-dxi on U for some functions a;.

Fix an integer j, 1 < j < n. By Proposition 14.4, we can extend the C* vector
field X = 9d/dx/ on U to a C* vector field X on M that agrees with d/dx’/ in a

neighborhood V) of p in U. Restricted to the open set V.,

o(X) = (Y aidx’) ( >=a,.

This proves that a; is C* on the coordinate chart (V,{ ,x',...,x"). On the intersection

V,:=(;Vp,all a; are C*. By Lemma 17.5, the 1-form @ is C* on V,,. So for each
p € M, we have found a coordinate neighborhood V), on which @ is C*. It follows
that @ is a C* map from M to T*M. a

Let F = C*(M) be the ring of all C* functions on M. By Proposition 17.9, a 1-
form @ on M defines a map X(M) — F, X — o(X). According to Proposition 17.8,
this map is both R-linear and J-linear.

17.5 Pullback of 1-Forms
If F: N — M is a C* map of manifolds, then at each point p € N the differential

F*,pl TpN — TF(p)M
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is a linear map that pushes forward vectors at p from N to M. The codifferential, i.e.,
the dual of the differential,

(Fep)' s TgyM = TN,
reverses the arrow and pulls back a covector at F(p) from M to N. Another notation

for the codifferential is F* = (F.,)". By the definition of the dual, if @, € T;(p)M
is a covector at F(p) and X, € T,N is a tangent vector at p, then

F* (0r(p)) (Xp) = ((Fep) ' Or(p)) (Xp) = O () (Fe pXp)-

We call F* (@ ,)) the pullback of the covector @p(, by F. Thus, the pullback of
covectors is simply the codifferential.

Unlike vector fields, which in general cannot be pushed forward under a C*
map, every covector field can be pulled back by a C* map. If @ is a 1-form on M, its
pullback F* @ is the 1-form on N defined pointwise by

(Ffw),=F" (O)F(p)), pEN.
This means that
(F*0)y(Xp) = @p () (F(X)p))
for all X, € T,N. Recall that functions can also be pulled back: if F' is a C* map
from N to M and g € C*(M), then F*g =g o F € C*(N).

This difference in the behavior of vector fields and forms under a map can be
traced to a basic asymmetry in the concept of a function—every point in the domain
maps to only one image point in the range, but a point in the range can have several
preimage points in the domain.

Now that we have defined the pullback of a 1-form under a map, a question
naturally suggests itself. Is the pullback of a C* 1-form under a C* map C*? To

answer this question, we first need to establish three commutation properties of the
pullback: its commutation with the differential, sum, and product.

Proposition 17.10 (Commutation of the pullback with the differential). Let F: N
— M be a C* map of manifolds. For any h € C*(M), F*(dh) = d(F*h).

Proof. It suffices to check that for any point p € N and any tangent vector X, € TN,
(F*dh)p(X,) = (dF*h),(X,). (17.5)
The left-hand side of (17.5) is
(F*dh)p(Xp) = (dh)p(p)(Fi(Xp))  (definition of the pullback of a 1-form)
= (Fi(X,))h (definition of the differential dh)
=X,(hoF) (definition of F}).
The right-hand side of (17.5) is

(dF*h),(X,) =X,(F*h)  (definition of d of a function)
=X,(hoF) (definition of F* of a function). O
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Pullback of functions and 1-forms respects addition and scalar multiplication.

Proposition 17.11 (Pullback of a sum and a product). Let F: N — M be a C* map
of manifolds. Suppose @, T € Q' (M) and g € C*(M). Then

() Ff(lo+1)=F*o+F'T,
(i) F*(gw) = (F*g)(F* ®).
Proof. Problem 17.5.

Proposition 17.12 (Pullback of a C* 1-form). The pullback F*® of a C* 1-form
on M undera C* map F: N — M is C* 1-form on N.

Proof. Given p € N, choose a chart (V,y) = (V,y!,...,y") in M about F(p). By
the continuity of F, there is a chart (U,¢) = (U,x',...,x") about p in N such that
F(U)CV.OnV,®=Ya;dy forsomea; € C*(V).OnU,

o= Z *a;)F* (dy') (Proposition 17.11)
=Y (F*a;)dF*y' (Proposition 17.10)
= Z ajoF)d y o F) (definition of F* of a function)

OF" .
= Z ajoF) dx’  (equation (17.2)).
Py 3x/

Since the coefficients (a; o F)dF!/dx/ are all C*, by Proposition 17.5 the 1-form
F*® is C* on U and therefore at p. Since p was an arbitrary point in N, the pullback
F*wisC” onN. O

Example 17.13 (Liouville form on the cotangent bundle). Let M be a manifold. In
terms of the pullback, the Liouville form A on the cotangent bundle 7*M introduced
in Example 17.4 can be expressed as Ay, = 7*(®,) at any @, € T*M.

17.6 Restriction of 1-Forms to an Immersed Submanifold

Let S C M be an immersed submanifold and i: S — M the inclusion map. At any
p € S, since the differential i, : 7,S — T,M is injective, one may view the tangent
space 7,5 as a subspace of T,M. If @ is a 1-form on M, then the restriction of @ to
S is the 1-form w|s defined by

(ols), (v) =awp(v) forallpeSandveT,S.

Thus, the restriction ®|s is the same as @ except that its domain has been restricted
from M to S and for each p € S, the domain of (®|s), has been restricted from T,M
to 7,S. The following proposition shows that the restriction of 1-forms is simply the
pullback of the inclusion i.

Proposition 17.14. Ifi: S — M is the inclusion map of an immersed submanifold S
and @ is a 1-form on M, then i* © = ©|s.
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Proof. For pc Sandv € TS,

(@) p(v) = @y(p)(ixv)  (definition of pullback)
=wp(v) (both i and i, are inclusions)
= (o[s),(v) (definition of w|s). O

To avoid too cumbersome a notation, we sometimes write @ to mean ®|g, relying
on the context to make clear that it is the restriction of @ to S.

Example 17.15 (A 1-form on the circle). The velocity vector field of the unit circle
c(t) = (x,y) = (cost,sint) in R? is

c'(t) = (—sint,cost) = (—y,x).

Thus,
d d
X=-
Y ox e dy

is a C* vector field on the unit circle S!. What this notation means is that if x,y are
the standard coordinates on R? and i: S' < R? is the inclusion map, then at a point
p=(x,y) €S', onehas i.X, = —yd/dx|, +x9/dy|,, where d/dx|, and d/dy|, are
tangent vectors at p in R2. Find a 1-form @ = adx+ bdy on S' such that o(X) = 1.

Solution. Here  is viewed as the restriction to S' of the 1-form adx+ bdy on R?,
We calculate in R?, where dx, dy are dual to d/dx, d/dy:

o(X) = (adx+bdy) (—y ax+x§y> = —ay+bx=1. (17.6)

)

Since x> +y> =1onS',a= —yand b = x is a solution to (17.6). So ® = —ydx+xdy
is one such 1-form. Since @(X) = 1, the form @ is nowhere vanishing on the circle.

Remark. In the notation of Problem 11.2, ® should be written —ydx+ Xdy, since x,y
are functions on R? and %, ¥ are their restrictions to S'. However, one generally uses
the same notation for a form on R" and for its restriction to a submanifold. Since
i*x = x and i*dx = dXx, there is little possibility of confusion in omitting the bar while
dealing with the restriction of forms on R”. This is in contrast to the situation for
vector fields, where i, (d/9x|,) # 9 /0x|p.

Example 17.16 (Pullback of a 1-form). Let h: R — S' C R? be given by h(t) = (x,y)
= (cost,sint). If @ is the 1-form —ydx+ xdy on S', compute the pullback /* ®.

Solution.
W (—ydx+xdy) = —(h*y)d(h*x) + (h*x)d(h*y) (by Proposition 17.11)
= —(sin?)d(cost) + (cost)d(sint)
=sin’tdr + cos’tdt = dt.
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Problems

17.1. A 1-form on R — {(0,0)}
Denote the standard coordinates on R? by x,y, and let

J —i—xa and Y =x

d
X=-y dx ~dy dx +y dy

be vector fields on R?. Find a 1-form @ on R? — {(0,0)} such that @(X) = 1 and @(¥) = 0.

17.2. Transition formula for 1- forms
Suppose (U,x',...,x") and (V,y',...,y") are two charts on M with nonempty overlap U NV.
Then a C* 1-form @ on U NV has two different local expressions:

o= Za j dx! = Zb dy'.
Find a formula for a; in terms of b;.

17.3. Pullback of a 1-form on S'
Multiplication in the unit circle S!, viewed as a subset of the complex plane, is given by

el e =)y e R,
In terms of real and imaginary parts,
(cost +isint)(x+iy) = ((cost)x — (sinz)y) +i((sinf)x + (cost)y) .
Hence, if g = (cost,sinz) € S' C R, then the left multiplication le: S I 51 is given by

Lg(x,y) = ((cost)x — (sint)y, (sinf)x + (cost)y).

Let @ = —ydx +xdy be the 1-form found in Example 17.15. Prove that [fg‘a) = o for all
gesh.

17.4. Liouville form on the cotangent bundle

(a) Let (U,9) = (U,x',...,x") be a chart on a manifold M, and let
(ﬂ71U7$) = (ﬂilU,)Zl,...,XH,C],...,Cn)

be the induced chart on the cotangent bundle T*M. Find a formula for the Liouville form
A on 771U in terms of the coordinates &' ,...,#,c1,...,cn.
(b) Prove that the Liouville form A on T*M is C°° (Hint: Use (a) and Proposition 17.6.)

17.5. Pullback of a sum and a product
Prove Proposition 17.11 by verifying both sides of each equality on a tangent vector X, at a
point p.

17.6. Construction of the cotangent bundle
Let M be a manifold of dimension n. Mimicking the construction of the tangent bundle in
Section 12, write out a detailed proof that 7: T*M — M is a C* vector bundle of rank n.
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618 Differential k-Forms

We now generalize the construction of 1-forms on a manifold to k-forms. After
defining k-forms on a manifold, we show that locally they look no different from k-
forms on R”. In parallel to the construction of the tangent and cotangent bundles on
a manifold, we construct the kth exterior power A*(T*M) of the cotangent bundle.
A differential k-form is seen to be a section of the bundle A*(T*M). This gives a
natural notion of smoothness of differential forms: a differential k-form is smooth
if and only if it is smooth as a section of the vector bundle AX(7*M). The pullback
and the wedge product of differential forms are defined pointwise. As examples of
differential forms, we consider left-invariant forms on a Lie group.

18.1 Differential Forms
Recall that a k-tensor on a vector space V is a k-linear function
fiVx---xV =R

The k-tensor f is alternating if for any permutation ¢ € Sy,

FOo(1ys- Vo) = (sgn o) f(vi,... Vi) (18.1)

When k = 1, the only element of the permutation group S| is the identity permutation.
So for 1-tensors the condition (18.1) is vacuous and all 1-tensors are alternating (and
symmetric too). An alternating k-tensor on V is also called a k-covector on V.

For any vector space V, denote by A, (V) the vector space of alternating k-tensors
on V. Another common notation for the space A (V) is A*(V"). Thus,

A?(VY)=Ay(V), and so on.

In fact, there is a purely algebraic construction /\k(V), called the kth exterior power
of the vector space V, with the property that A¥(V") is isomorphic to A(V). To
delve into this construction would lead us too far afield, so in this book A (VY will
simply be an alternative notation for A, (V).

We apply the functor A;( ) to the tangent space T,M of a manifold M at a point
p. The vector space Ay(T,M), usually denoted by /\k(T;M), is the space of all
alternating k-tensors on the tangent space 7,M. A k-covector field on M is a function
o that assigns to each point p € M a k-covector @, € AF (T;M ). A k-covector field
is also called a differential k-form, a differential form of degree k, or simply a k-form.
A top form on a manifold is a differential form whose degree is the dimension of the
manifold.
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If w is a k-form on a manifold M and Xi,...,X; are vector fields on M, then
o(Xy,...,X) is the function on M defined by

(@(Xi,... X)) (p) = @p((X1)p, -, (Xi)p)-

Proposition 18.1 (Multilinearity of a form over functions). Let @ be a k-form on
a manifold M. For any vector fields X1, ...,X; and any function h on M,

(1.)(X17 o hX, . ,Xk) = ]’l(J)(Xl, R, €A ,Xk).
Proof. The proof is essentially the same as that of Proposition 17.8. O

Example 18.2. Let (U,x',...,x") be a coordinate chart on a manifold. At each point
p € U, abasis for the tangent space T,,U is

0
ox!

d

o
» ox

p

As we saw in Proposition 17.3, the dual basis for the cotangent space 7, U is

(dx")p, ..., (dX")p.

As p varies over points in U, we get differential 1-forms dx',...,dx" on U.
By Proposition 3.29 a basis for the alternating k-tensors in /\k(Tp*U ) is

(dxV)p A A(dx®),, 1<ip < <ip<n.
If ® is a k-form on R", then at each point p € R”", @, is a linear combination
W, = Zail...ik(p) (dx'V)py Ao A (dx™) .
Omitting the point p, we write
0= Zail”'ik dx'V A Ndr.

In this expression the coefficients a;,...;, are functions on U because they vary with
the point p. To simplify the notation, we let

jkﬁn:{I:(ilwugik)llSil <~~~<ik§n}

be the set of all strictly ascending multi-indices between 1 and n of length &, and
write

= Z aldxl,

Iij.’n

where dx! stands for dxt A --- A dxit.
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18.2 Local Expression for a k-Form

By Example 18.2, on a coordinate chart (U b ,x") of a manifold M, a k-form on
U is a linear combination @ = Y. a;dx!, where I € Jk » and the a; are functions on U.
As a shorthand, we write d; = d/dx’ for the ith coordinate vector field. Evaluating
pointwise as in Lemma 3.28, we obtain the following equality on U for I,J € Ty ,:

1 forl=J
dx'(9;,,...,0;) =&l = ’ 18.2
( J1 ]k) J {0 fOI‘I#J. ( )
Proposition 18.3 (A wedge of differentials in local coordinates). Let (U,x', ... ,x")
be a chart on a manifold and f',.. .. f* smooth functions on U. Then
Af',... M ;
df' A Ndff = ) (fl. ’ ’fl.)dx’l/\--~/\dx'k.
= d(xin,... xl)
Proof. On U, ' _
df' Ao Adff =Y cpdx A Ndx (18.3)
JEjk.n

for some functions c;. By the definition of the differential, df(d/dx/) = df/dx/.

Applying both sides of (18.3) to the list of coordinate vectors 8i1 ey 8ik, we get
1 k af! .
LHS = (df" A+ Adf*)(9yy, ..., 0y, ) = det 9 by Proposition 3.27
X
_ A
d(xit, ... xik)’
RHS = chdx,(ail soees i) = 2015/ =cr by Lemma 18.2.
J J
Hence, c; = d(f',...,f5)/a(x,... ,x%). 0
If (U,x',...,x") and (V,y',...,y") are two overlapping charts on a manifold,

then on the intersection U NV, Proposition 18.3 becomes the transition formula for
k-forms: . )
Ay, ... y)
dy’ = N
Y lea(x’17...,x’k)

Two cases of Proposition 18.3 are of special interest:

Corollary 18.4. Let (U,x',...,x") be a chart on a manifold, and let f, f', ..., f" be
C* functions on U. Then

() (1-forms) df = Y.(3.f/dx')dx,
(i) (top forms) df' A--- Ndf" = det[d f7/Ix]dx' A--- Ndx".

Case (i) of the corollary agrees with the formula we derived in (17.2).
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Exercise 18.5 (Transition formula for a 2-form).* If (U,x',...,x") and (V,y!,...,y") are

two overlapping coordinate charts on M, then a C* 2-form w on U NV has two local expres-
sions:
= Zaijdxi Adx! = Z bk/gdyk /\dyé.
i<j k<t

Find a formula for a;; in terms of by and the coordinate functions xl., s xt y1 R A

18.3 The Bundle Point of View

Let M be a manifold of dimension n. To better understand differential forms, we
mimic the construction of the tangent and cotangent bundles and form the set

N(T*M) = Upem /\k(T;M) = Upem Ax(T,M)

of all alternating k-tensors at all points of the manifold M. This set is called the kth
exterior power of the cotangent bundle. There is a projection map 7 : NF (T*M) —M
givenby m(a) =pif o € /\k(T;M).

If (U, ¢) is a coordinate chart on M, then there is a bijection

NT*U) = Upey N(T;U) = 9 (U) x RW,
a € N(T;U) = (9(p), {cr(a) ),

where @ = Y ¢;(a)dx!|, € /\k(T;U) and I = (1 <ij < - <ix <n). In this way we
can give A¥(T*U) and hence A¥(T*M) a topology and even a differentiable struc-
ture. The details are just like those for the construction of the tangent bundle, so we
omit them. The upshot is that the projection map 7: /\k(T*M) — M is a C™ vector
bundle of rank (Z) and that a differential k-form is simply a section of this bundle. As
one might expect, we define a k-form to be C* if it is C™ as a section of the bundle
n: NNT*M) — M.

NOTATION. If E — M is a C™ vector bundle, then the vector space of C* sections
of E is denoted by I'(E) or I'(M,E). The vector space of all C* k-forms on M is
usually denoted by Q*(M). Thus,

QM) =T (/\k(T*M)> -r (M, /\k(T*M)) .

18.4 Smooth 4-Forms

There are several equivalent characterizations of a smooth k-form. Since the proofs
are similar to those for 1-forms (Lemma 17.5 and Propositions 17.6 and 17.9), we
omit them.

Lemma 18.6 (Smoothness of a k-form on a chart). Let (U,x',...,x") be a chart
on a manifold M. A k-form @ = Y. a;dx' on U is smooth if and only if the coefficient
functions ay are all smooth on U.
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Proposition 18.7 (Characterization of a smooth k-form). Let @ be a k-form on a
manifold M. The following are equivalent:

(1) The k-form w is C* on M.

(ii) The manifold M has an atlas such that on every chart (U,¢) = (U,x!,... x")
in the atlas, the coefficients a; of @ = Y.a;dx' relative to the coordinate frame
{dxl}legk‘n are all C*.

(iii) On every chart (U,¢) = (U,x',...,x") on M, the coefficients a; of ® = ¥ aydx’
relative to the coordinate frame {dx'} g,  are all C*.

(iv) For any k smooth vector fields X, ..., X; on M, the function o(Xy,...,.Xg) is C™
on M.

We defined the O-tensors and the 0-covectors to be the constants, that is, Ly(V) =
Ao(V) = R. Therefore, the bundle A°(T*M) is simply M x R and a O-form on M is
a function on M. A C* 0-form on M is thus the same as a C* function on M. In our
new notation,

Q' (M) =T (A\%(T*M)) =T (M x R) = C=(M).

Proposition 13.2 on C* extensions of functions has a generalization to differential
forms.

Proposition 18.8 (C~ extension of a form). Suppose v is a C™ differential form
defined on a neighborhood U of a point p in a manifold M. Then there is a C* form
T on M that agrees with T on a possibly smaller neighborhood of p.

The proof is identical to that of Proposition 13.2. We leave it as an exercise. Of
course, the extension 7 is not unique. In the proof it depends on p and on the choice
of a bump function at p.

18.5 Pullback of k-Forms

We have defined the pullback of 0-forms and 1-forms under a C* map F: N — M.
For a C* O-form on M, i.e., a C* function on M, the pullback F*f is simply the
composition

NEMLR, F(f)=f-FeQW).

To generalize the pullback to k-forms for all £k > 1, we first recall the pullback of
k-covectors from Subsection 10.3. A linear map L: V — W of vector spaces induces
a pullback map L*: Ay (W) — Ai(V) by

(L*(X)(Vl,... 7Vk) = (X(L(V]),... ,L(Vk))

for o € Ag(W) and vy,...,v €V.
Now suppose F': N — M is a C* map of manifolds. At each point p € N, the
differential
F*,pl TpN — TF(p)M
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is a linear map of tangent spaces, and so by the preceding paragraph there is a pull-
back map
(F*J,)* . Ak(TF(p)M) — Ak(TpN).

This ugly notation is usually simplified to F*. Thus, if @, is a k-covector at F(p)
in M, then its pullback F* (@p,)) is the k-covector at p in N given by
F* (Q)F(p)) (V] yeen 7Vk) = Q)F(p)(F*ﬁpvl yen ,F*,pvk)7 Vi € TPN.

Finally, if o is a k-form on M, then its pullback F* ® is the k-form on N defined
pointwise by (F*®), = F* (wp(,)) for all p € N. Equivalently,

(F*a))p(vh...,vk) :(DF([,)(F*)pvl,...7F*7pvk), V,'ETPN. (18.4)

When k = 1, this formula specializes to the definition of the pullback of a 1-form in
Subsection 17.5. The pullback of a k-form (18.4) can be viewed as a composition

TyN x - x TN 228 M x T M —25 R.

Proposition 18.9 (Linearity of the pullback). Let F: N — M be a C* map. If ®,T
are k-forms on M and a is a real number, then

(i) Ff(o+1)=F'o+F't;

(ii) F*(a®) = aF* o.
Proof. Problem 18.2. a

At this point, we still do not know, other than for k = 0, 1, whether the pullback of
a C” k-form under a C* map remains C*. This very basic question will be answered
in Subsection 19.5.

18.6 The Wedge Product

We learned in Section 3 that if o and 8 are alternating tensors of degree k and /¢
respectively on a vector space V, then their wedge product @ A B is the alternating
(k4 £)-tensor on V defined by

(AAB)(V1,- - Vierr) = Y (5g00)A(Ve (1) - Vo ())BVo(krt)s - Voikts)s

where v; € V and o runs over all (k,¢)-shuffles of 1,...,k+ ¢. For example, if a and
B are 1-covectors, then

(€ AB)(vi,v2) = a(vi)B(va) — a(va)B(v1).

The wedge product extends pointwise to differential forms on a manifold: for a
k-form @ and an ¢-form T on M, define their wedge product @ A 7T to be the (k+ £)-
form on M such that

(OAT), =0, T,

atall p e M.
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Proposition 18.10. If ® and T are C* forms on M, then ® A\ T is also C*.
Proof. Let (U,x',...,x") be a charton M. On U,

w=Yady, tv=Y bjdy’
for C* function a;,b; on U. Their wedge product on U is

oAt = (Y ardx") A (Y bydx") =Y aibydx' ndx'.

In this sum, dx! Adx’ = 0 if I and J have an index in common. If 7 and J are disjoint,
then dx! Adx’ = +dxX, where K = IUJ but reordered as an increasing sequence.
Thus,

a)/\T:Z< ZK ﬁ:aﬂu) dxk.

K 1uJj=
1.J disjoint

Since the coefficients of dxX are C* on U, by Proposition 18.7, ® A T is C™. O

Proposition 18.11 (Pullback of a wedge product). If F: N — M is a C* map of
manifolds and @ and 7T are differential forms on M, then

F*(oNnt)=F"0NF"T.
Proof. Problem 18.3. a

Define the vector space Q*(M) of C* differential forms on a manifold M of
dimension n to be the direct sum

What this means is that each element of Q*(M) is uniquely a sum Y}_, @, where
ay € QX(M). With the wedge product, the vector space Q*(M) becomes a graded
algebra, the grading being the degree of differential forms.

18.7 Differential Forms on a Circle

Consider the map
h:R— 8" h(t) = (cost,sint).

Since the derivative /(t) = (—sint,cost) is nonzero for all ¢, the map 7: R — S' is
a submersion. By Problem 18.8, the pullback map /*: Q*(S') — Q*(R) on smooth
differential forms is injective. This will allow us to identify the differential forms on
S! with a subspace of differential forms on R.

Let @ = —ydx +xdy be the nowhere-vanishing form on S' from Example 17.15.
In Example 17.16, we showed that /*® = dt. Since @ is nowhere vanishing, it is a
frame for the cotangent bundle 7*S Uover S, and every C* 1-form o on S! can be
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written as o = f@ for some function f on § !. By Proposition 12.12, the function
fis C=. Its pullback f := h* f is a C* function on R. Since pulling back preserves
multiplication (Proposition 18.11),

W o= (hf)(h*o) = fdt. (18.5)

We say that a function g or a 1-form gdr on R is periodic of period aif g(t+a) = g(t)
forallz € R.

Proposition 18.12. For k = 0,1, under the pullback map h*: Q*(S') — Q*(R),
smooth k-forms on S' are identified with smooth periodic k-forms of period 27 on R.

Proof. Tf f € Q°(S'), then since h: R — S is periodic of period 27, the pullback
h*f = f o h € Q°(R) is periodic of period 27.

Conversely, suppose f € Q°(R) is periodic of period 2. For p € S!, let s be
the C* inverse in a neighborhood U of p of the local diffeomorphism 4 and define
f=fosonU. To show that f is well defined, let s; and s, be two inverses of &
over U. By the periodic properties of sine and cosine, 5| = s, +27n for some n € Z.
Because f is periodic of period 27, we have f o s; = f o s5. This proves that f is
well defined on U. Moreover,

f=fos'=foh=h*f on h ' (U).

As p varies over S!, we obtain a well-defined C* function f on S! such that f =
h* f. Thus, the image of *: Q°(S") — Q°(R) consists precisely of the C* periodic
functions of period 27 on R.

As for 1-forms, note that Q'(S') = Q°(S")w and Q!(R) = Q°(R)dr. The
pullback 7#*: Q!(S') — Q!(R) is given by h*(fw) = (h*f)dt, so the image of
n*: Q1(S') — Q'(R) consists of C* periodic 1-forms of period 27. O

18.8 Invariant Forms on a Lie Group

Just as there are left-invariant vector fields on a Lie group G, so also are there left-
invariant differential forms. For g € G, let {,: G — G be left multiplication by g. A
k-form @ on G is said to be left-invariant if £, = @ for all g € G. This means that
for all g,x € G,

Uy (@gx) = .

Thus, a left-invariant k-form is uniquely determined by its value at the identity, since
for any g € G,
W, = 62,1 (®,). (18.6)

Example 18.13 (A left-invariant 1-form on S'). By Problem 17.3, @ = —ydx + xdy
is a left-invariant 1-form on S'.

We have the following analogue of Proposition 16.8.

Proposition 18.14. Every left-invariant k-form ® on a Lie group G is C*.
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Proof. By Proposition 18.7(iii), it suffices to prove that for any k smooth vector fields
Xi,...,X; on G, the function 0(Xj,...,X;) is C* on G. Let (¥}),,...,(¥;). be a basis
for the tangent space 7,G and Y1, ..., Y, the left-invariant vector fields they generate.
Then Yi,...,Y, is a C” frame on G (Proposition 16.8). Each X; can be written as
a linear combination X; = Y.a%Y;. By Proposition 12.12, the functions a; are C*.
Hence, to prove that @ is C*, it suffices to show that ®(Y;,,...,Y; ) is C* for the
left-invariant vector fields Y, ...,Y; . But

(w(Yi17""Yik))(g) = wg((Yll)é’v’(Yl )g)
= (6271 (we)) (gg*(yil)ea e 7£g*(Yik)e)
= we((Yil)eV"v(Yik)e)ﬂ

which is a constant, independent of g. Being a constant function, oo(Y,-1 e ,Y,-k) is
C”onG. O

Similarly, a k-form @ on G is said to be right-invariant if r, = o for all g € G.
The analogue of Proposition 18.14, that every right-invariant form on a Lie group is
C=, is proven in the same way.

Let QX(G)¢ denote the vector space of left-invariant k-forms on G. The linear
map

QG = N(gY), o~ o,

has an inverse defined by (18.6) and is therefore an isomorphism. It follows that
dimQk(G)¢ = (})-

Problems
18.1. Characterization of a smooth k-form

Write out a proof of Proposition 18.7(i)<(iv).

18.2. Linearity of the pullback
Prove Proposition 18.9.

18.3. Pullback of a wedge product
Prove Proposition 18.11.

18.4.* Support of a sum or product
Generalizing the support of a function, we define the support of a k-form @ € QF (M) to be

supp @ = closure of {p € M | w, # 0} = Z(w)¢,

where Z(®)¢ is the complement of the zero set Z(®) of @ in M. Let  and 7 be differential
forms on a manifold M. Prove that

(a) supp(®w+T) C suppwUsupp T,
(b) supp(@ A T) C supp @ Nsupp 7.



18.8 Invariant Forms on a Lie Group 209

18.5. Support of a linear combination
Prove that if the k-forms @', ..., " € QF(M) are linearly independent at every point of a

manifold M and ay,...,a, are C* functions on M, then

r r
supp Z a0 = U suppa;.
i=1 i=1

18.6.* Locally finite collection of supports

Let {po }aea be a collection of functions on M and @ a C* k-form with compact support on
M. If the collection {supp pg }uea Of supports is locally finite, prove that py @ = 0 for all but
finitely many o.

18.7. Locally finite sums

We say that a sum Y @y, of differential k-forms on a manifold M is locally finite if the collection
{supp g } of supports is locally finite. Suppose ¥ @y and ¥ 74 are locally finite sums and f
is a C™ function on M.

(a) Show that every point p € M has a neighborhood U on which )’ @y, is a finite sum.
(b) Show that Y @y + ¢ is a locally finite sum and

Y 0o+10 =Y 0a+) T

(c) Show that Y f@yq is a locally finite sum and

L/oa=1(Loa).

18.8.* Pullback by a surjective submersion

In Subsection 19.5, we will show that the pullback of a C* form is C*. Assuming this fact for
now, prove that if 77: M — M is a surjective submersion, then the pullback map 7*: Q* (M) —
Q* (M) is an injective algebra homomorphism.

18.9. Bi-invariant top forms on a compact, connected Lie group
Suppose G is a compact, connected Lie group of dimension n with Lie algebra g. This exercise
proves that every left-invariant n-form on G is right-invariant.

(a) Let o be a left-invariant n-form on G. For any a € G, show that ) @ is also left-invariant,
where r,: G — G is right multiplication by a.

(b) Since dimQ"(G)? = dim A\"(g¥) = 1, r @ = f(a)w for some nonzero real number f(a)
depending on a € G. Show that f: G — R* is a group homomorphism.

(c) Show that f: G — R* is C*. (Hint: Note that f(a)@, = (r;0) = ry(@q) = ryl_ ().
Thus, f(a) is the pullback of the map Ad(a~!): g — g. See Problem 16.11.)

(d) As the continuous image of a compact connected set G, the set f(G) C R* is compact and
connected. Prove that f(G) = 1. Hence, rj;o0 = o forall a € G.



210 §19 The Exterior Derivative

§19 The Exterior Derivative

In contrast to undergraduate calculus, where the basic objects of study are functions,
the basic objects in calculus on manifolds are differential forms. Our program now
is to learn how to integrate and differentiate differential forms.

Recall that an antiderivation on a graded algebra A = EBZC':OAk is an R-linear map
D: A — A such that

D(w-1)= (Do) -1+ (—1)fw Dt

for @ € A* and 7 € A’. In the graded algebra A, an element of Ak is called a homo-
geneous element of degree k. The antiderivation is of degree m if

degDw =degw+m

for all homogeneous elements @ € A.

Let M be a manifold and Q*(M) the graded algebra of C* differential forms
on M. On the graded algebra Q*(M) there is a uniquely and intrinsically defined
antiderivation called the exterior derivative. The process of applying the exterior
derivative is called exterior differentiation.

Definition 19.1. An exterior derivative on a manifold M is an R-linear map
D: Q" (M) — Q*(M)
such that

(1) D is an antiderivation of degree 1,
(i) DoD =0,
(iii) if f is a C* function and X a C* vector field on M, then (Df)(X) =X f.

Condition (iii) says that on O-forms an exterior derivative agrees with the differ-
ential df of a function f. Hence, by (17.2), on a coordinate chart (Upcl7 con ),

J .
Df:dfzza)];dx’.

In this section we prove the existence and uniqueness of an exterior derivative
on a manifold. Using its three defining properties, we then show that the exterior
derivative commutes with the pullback. This will finally allow us to prove that the
pullback of a C* form by a C* map is C*”.
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19.1 Exterior Derivative on a Coordinate Chart

We showed in Subsection 4.4 the existence and uniqueness of an exterior derivative
on an open subset of R”. The same proof carries over to any coordinate chart on a
manifold.

More precisely, suppose (U,x!,...,x") is a coordinate chart on a manifold M.
Then any k-form @ on U is uniquely a linear combination

W = Zaldxl, ar € Coo(U).
If D is an exterior derivative on U, then

Do =Y (Daj) Adx'+Y aiDdx"  (by (i)

=Y (Da;) ndx' (by (iii) and (i), Dd = D* = 0)
=LY 3,“; dx! N (by (iii)). (19.1)
[

Hence, if an exterior derivative D exists on U, then it is uniquely defined by (19.1).

To show existence, we define D by the formula (19.1). The proof that D satisfies
(1), (ii), and (iii) is the same as in the case of R" in Proposition 4.7. We will denote
the unique exterior derivative on a chart (U, ¢) by dy.

Like the derivative of a function on R”, an antiderivation D on Q*(M) has the
property that for a k-form @, the value of D® at a point p depends only on the
values of @ in a neighborhood of p. To explain this, we make a digression on local
operators.

19.2 Local Operators

An endomorphism of a vector space W is often called an operator on W. For exam-
ple, if W = C*(R) is the vector space of C* functions on R, then the derivative d /dx

is an operator on W':
d
C W= 1),

The derivative has the property that the value of f’(x) at a point p depends only on
the values of f in a small neighborhood of p. More precisely, if f = g on an open set
U in R, then f' = g’ on U. We say that the derivative is a local operator on C*(R).

Definition 19.2. An operator D: Q*(M) — Q*(M) is said to be local if for all k > 0,
whenever a k-form @ € Q%(M) restricts to 0 on an open set U in M, then Do = 0
onU.

Here by restricting to 0 on U, we mean that @, = 0 at every point p in U, and
the symbol “= 0” means “is identically zero”: (D), = 0 at every point p in U. An
equivalent criterion for an operator D to be local is that for all k£ > 0, whenever two
k-forms @, T € QF(M) agree on an open set U, then Do = D7 on U.
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Example. Define the integral operator
I: C*(la,b]) = C~([a,b])
by
b
1= [ fd.
a

Here I(f) is a number, which we view as a constant function on [a,b]. The integral
is not a local operator, since the value of /(f) at any point p depends on the values
of f over the entire interval [a, b].

Proposition 19.3. Any antiderivation D on Q*(M) is a local operator.

Proof. Suppose ® € QF(M) and @ = 0 on an open subset U. Let p be an arbitrary
point in U. It suffices to prove that (Dw), = 0.

Choose a C* bump function f at p supported in U. In particular, f =1 in a
neighborhood of p in U. Then f® = 0 on M, since if a point g is in U, then @, = 0,
and if ¢ is not in U, then f(q) = 0. Applying the antiderivation property of D to f®,
we get

0=D(0)=D(fo) = (Df) Ao+ (—1)°f A (D).

Evaluating the right-hand side at p, noting that @, = 0 and f(p) = 1, gives 0 =
(D). O

Remark. The same proof shows that a derivation on Q*(M) is also a local operator.

19.3 Existence of an Exterior Derivative on a Manifold

To define an exterior derivative on a manifold M, let @ be a k-formon M and p € M.
Choose a chart (U,x',...,x") about p. Suppose @ = Y a;dx' on U. In Subsec-
tion 19.1 we showed the existence of an exterior derivative dyy on U with the property

dyo =Y dajndx' onU. (19.2)

Define (dw), = (dyw),. We now show that (dy ), is independent of the chart U
containing p. If (V,y',...,y") is another chart about p and @ = Y. b;dy’ on V, then

onUNYV,
Y ajax' =Y byay’.
On U NV there is a unique exterior derivative
dynv: Q(UNV) = Q(UNV).
By the properties of the exterior derivative, on U NV

dyry (Y ardx") = dyry (Y bsdy’),
or  Y.daAdx'=Y dbjndy'.
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In particular,

(Ydainax') = (Y dbsnay’) .

Thus, (d®), = (dy®),, is well defined, independently of the chart (U,x!,...,x").
As p varies over all points of M, this defines an operator

d: QF (M) — Q*(M).

To check properties (i), (ii), and (iii), it suffices to check them at each point p € M.
As in Subsection 19.1, the verification reduces to the same calculation as for the
exterior derivative on R” in Proposition 4.7.

19.4 Uniqueness of the Exterior Derivative

Suppose D: Q*(M) — Q*(M) is an exterior derivative. We will show that D coin-
cides with the exterior derivative d defined in Subsection 19.3.

If f is a C” function and X a C* vector field on M, then by condition (iii) of
Definition 19.1,

(Df)(X) =X [f = (df)(X).

Therefore, Df = df on functions f € Q°(M).
Next consider a wedge product of exact 1-forms df!' A --- Adf¥:

D(df' A---AdfY)
= D(Df'A---ADf¥) (because Df" = df?)

(—1)"_1Df1 AREE /\DDfi Neee /\ka (D is an antiderivation)

I
™~

i=1

I
=
—
o)
35}
Il
=
~~

Finally, we show that D agrees with d on any k-form @ € Q*(M). Fix p €
M. Choose a chart (U,x!,...,x") about p and suppose @ = Y a;dx’ on U. Extend
the functions a7,x',...,x" on U to C* functions @, X', ..., on M that agree with
ar,x',...,x" on a neighborhood of V of p (by Proposition 18.8). Define

=Y ads € Q"M).

Then
w=® onV.

Since D is a local operator,
Dwo=D&® onV.

Thus,
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(Do), = (D®), = (Dzdldfg)p
= (Y pandi' +) aADdT)
= (Y dajndi'),  (because Dd¥' = DDi=0)
= (Y da;ndx )p (since D is a local operator)

We have proven the following theorem.

Theorem 19.4. On any manifold M there exists an exterior derivative d: Q* (M) —
Q*(M) characterized uniquely by the three properties of Definition 19.1.

19.5 Exterior Differentiation Under a Pullback

The pullback of differential forms commutes with the exterior derivative. This fact,
together with Proposition 18.11 that the pullback preserves the wedge product, is a
cornerstone of calculations involving the pullback. Using these two properties, we
will finally be in a position to prove that the pullback of a C* form under a C* map
is C™.

Proposition 19.5 (Commutation of the pullback with d). Let F: N — M be a
smooth map of manifolds. If @ € QX(M), then dF*® = F*d .

Proof. The case k = 0, when @ is a C* function on M, is Proposition 17.10. Next
consider the case k > 1. It suffices to verify dF*® = F*d® at an arbitrary point p €
N. This reduces the proof to a local computation, i.e., computation in a coordinate
chart. If (V,y!,...,y™) is a chart on M about F(p), thenon V,

a):z’aldyil/\~~~/\alyi"7 I= (i) < <iy),
for some C* functions a; on V and
F*o =Y (F*a))F*dy" A---ANF*dy* (Proposition 18.11)
=Y (a;oF)dF"' \--- NdF' (F*dy' = dF*y' = d(y' o F) = dF").

> dF*® =Y d(ajo F)NdF" \--- NdF*.
On the other hand,
Frdw =F* (Y da; ndy" A--- Ndy*)
= ZF*dal AF*dy"t A--- NF*dy'
=Y d(F*a;) NdF" A--- NdF" (by the case k = 0)
=Y d(ajo F)NdF" A--- NdF*.
Therefore,

dFfo =F*do. O
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Corollary 19.6. If U is an open subset of a manifold M and ® € QF(M), then
(do)|ly =d(wlv).

Proof. Let i: U < M be the inclusion map. Then ®|y = i* o, so the corollary is
simply a restatement of the commutativity of d with i*. O

Example. Let U be the open set |0, 0] x ]0,27[in the (r, 8)-plane R?. Define F: U C
R? — R? by

F(r,0) = (rcos,rsin@).
If x,y are the standard coordinates on the target R, compute the pullback F*(dx A
dy).

Solution. We first compute F*dx:

F*dx=dF*x (Proposition 19.5)
=d(xoF) (definition of the pullback of a function)
=d(rcos0)

= (cos0)dr—rsin0d0.
Similarly,
F'dy=dF*y=d(rsin@) = (sin@)dr+rcos0d6.
Since the pullback commutes with the wedge product (Proposition 18.11),
F*(dxNdy) = (F*dx) N\ (F*dy)
= ((cos@)dr—rsin0dO) A ((sinB)dr+rcos0do)
= (rcos’ 0 +rsin”0)drAd@ (because d@ Adr = —drAd6)
=rdr/Adeo. O

Proposition 19.7. If F: N — M is a C* map of manifolds and ® is a C* k-form on
M, then F*® is a C* k-form on N.

Proof. 1t is enough to show that every point in N has a neighborhood on which F*®
is C*. Fix p € N and choose a chart (V,y',...,y") on M about F(p). Let F' =y o F
be the ith coordinate of the map F in this chart. By the continuity of F, there is a
chart (U,x',...,x") on N about p such that F(U) C V. Because @ is C*, on V,

0= Zaldyil A~ Ny
1

for some C* functions a; € C*(V) (Proposition 18.7(i)=-(ii)). By properties of the
pullback,

Fro= Z F*(dy")A---F*(dy") (Propositions 18.9 and 18.11)
Z dF*y"' A---NdF*y*  (Proposition 19.5)
=Y aloF dF'UA - NdF'* (F*y' =y o F = F')

I(F™,.
Z aroF) ) g (Proposition 18.3).
7 (xll . xlk)
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Since the aj o F and 9 (F",... F')/d(x/1,... x/) are all C*, F* @ is C* by Propo-
sition 18.7(iii)=-(1). a

In summary, if F: N — M is a C* map of manifolds, then the pullback map
F*: Q"(M) — Q*(N) is a morphism of differential graded algebras, i.e., a degree-
preserving algebra homomorphism that commutes with the differential.

19.6 Restriction of k-Forms to a Submanifold

The restriction of a k-form to an immersed submanifold is just like the restriction of
a I-form, but with k arguments. Let S be a regular submanifold of a manifold M. If
o is a k-form on M, then the restriction of @ to S is the k-form w|s on S defined by

(w|S)p(V17~~~;Vk) = wp(vl,... 7vk)

for vi,...,vx € T,S C T,M. Thus, (@[s), is obtained from w), by restricting the
domain of @, to T,S X --- X T,S (k times). As in Proposition 17.14, the restriction of
k-forms is the same as the pullback under the inclusion map i: S — M.

A nonzero form on M may restrict to the zero form on a submanifold S. For ex-
ample, if S is a smooth curve in R? defined by the nonconstant function f(x,y), then
df = (df/dx)dx+ (df/dy)dy is a nonzero 1-form on R2, but since f is identically
zero on S, the differential df is also identically zero on S. Thus, (df)|s = 0. Another
example is Problem 19.9.

One should distinguish between a nonzero form and a nowhere-zero or nowhere-
vanishing form. For example, xdy is a nonzero form on R?, meaning that it is not
identically zero. However, it is not nowhere-zero, because it vanishes on the y-axis.
On the other hand, dx and dy are nowhere-zero 1-forms on R2,

NOTATION. Since pullback and exterior differentiation commute, (df)|s = d(f]s),
so one may write df|s to mean either expression.

19.7 A Nowhere-Vanishing 1-Form on the Circle

In Example 17.15 we found a nowhere-vanishing 1-form —ydx -+ x dy on the unit
circle. As an application of the exterior derivative, we will construct in a different
way a nowhere-vanishing 1-form on the circle. One advantage of the new method is
that it generalizes to the construction of a nowhere-vanishing top form on a smooth
hypersurface in R"*!, a regular level set of a smooth function f: R"*! — R. As we
will see in Section 21, the existence of a nowhere-vanishing top form is intimately
related to orientations on a manifold.

Example 19.8. Let S' be the unit circle defined by x> +y*> = 1 in R%. The 1-form dx
restricts from R? to a 1-form on S'. At each point p € S', the domain of (dx|g1), is
T,(S') instead of T,(R?):

(dx|g1)p: Tp(S") = R.
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At p = (1,0), a basis for the tangent space T,,(S") is d/dy (Figure 19.1). Since

(@) (gy) =0

we see that although dx is a nowhere-vanishing 1-form on R?, it vanishes at (1,0)
when restricted to S'.

dy

Fig. 19.1. The tangent space to S' at p = (1,0).

To find a nowhere-vanishing 1-form on S!. we take the exterior derivative of both

sides of the equation
¥+ y2 =1.
Using the antiderivation property of d, we get
2xdx+2ydy=0. (19.3)
Of course, this equation is valid only at a point (x,y) € S'. Let
Ur={(x,y) €S' [x#0} and U, ={(x,y)€S"|y#0}.

By (19.3), on U, NU,,

dy _dx
x oy
Define a 1-form  on S! by
d
Y on Uy,
x
0= dx (19.4)
- on Uj.
y

Since these two 1-forms agree on U, N Uy,  is a well-defined 1-form on § l—py.U Uy.
To show that @ is C* and nowhere-vanishing, we need charts. Let

U/ ={(x,y) €S"|x>0}.

We define similarly U,", U}, U, (Figure 19.2). On U, y is a local coordinate, and
50 dy is a basis for the cotangent space T (S') at each point p € U Since ® = dy/x
on U;", @ is C* and nowhere zero on U);f . A similar argument applies to dy/x on U,
and —dx/y on Uy+ and Uy_. Hence, ® is C* and nowhere vanishing on St
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Fig. 19.2. Two charts on the unit circle.

Problems

19.1. Pullback of a differential form
Let U be the open set ]0,00[ x |0, [ x ]0,27[ in the (p, ¢, 6)-space R3. Define F: U — R3
by

F(p,0,0)=(psingcos,psingsinf,pcos¢).

If x,y, z are the standard coordinates on the target R3, show that
F*(dxAdyNdz) = p*singdp Ado Ad.

19.2. Pullback of a differential form
Let F: R?> — R? be given by
F(x,y) = (¥ +y*,x).

If u, v are the standard coordinates on the target R?, compute F*(udu+vdv).

19.3. Pullback of a differential form by a curve

Let 7 be the 1-form T = (—ydx +xdy)/(x> +y*) on R — {0}. Define y: R — R? — {0}
by y(¢) = (cost,sint). Compute y*7. (This problem is related to Example 17.16 in that if
it S' < R? — {0} is the inclusion, then y =i o c and ® = i*T.)

19.4. Pullback of a restriction
Let F: N — M be aC™ map of manifolds, U an open subset of M, and F |p-1(y): FYu)—-U

the restriction of F to F~!(U). Prove that if @ € QF(M), then

(F|F—1(U))* (@ly) = (F )| 1)-

19.5. Coordinate functions and differential forms

Let f1,..., f" be C* functions on a neighborhood U of a point p in a manifold of dimension
n. Show that there is a neighborhood W of p on which f!,..., " form a coordinate system if
and only if (df' A--- Adf"), # 0.

19.6. Local operators

An operator L: Q*(M) — Q*(M) is support-decreasing if supp L(®) C supp @ for every k-
form w € Q*(M) for all k > 0. Show that an operator on Q*(M) is local if and only if it is
support-decreasing.
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19.7. Derivations of C* functions are local operators

Let M be a smooth manifold. The definition of a local operator D on C*(M) is similar to
that of a local operator on Q*(M): D is local if whenever a function f € C*(M) vanishes
identically on an open subset U, then Df =0 on U. Prove that a derivation of C*(M) is a
local operator on C*(M).

19.8. Nondegenerate 2-forms

A 2-covector o on a 2n-dimensional vector space V is said to be nondegenerate if o' :=
aA--- Ao (ntimes) is not the zero 2n-covector. A 2-form @ on a 2n-dimensional manifold
M is said to be nondegenerate if at every point p € M, the 2-covector @), is nondegenerate on
the tangent space T,M.

(a) Prove that on C" with real coordinates x',y', ..., x",y", the 2-form

n
= Z dx! Ndy’
j=1
is nondegenerate.

(b) Prove that if A is the Liouville form on the total space T*M of the cotangent bundle of an
n-dimensional manifold M, then dA is a nondegenerate 2-form on T*M.

19.9.* Vertical planes
Let x,y,z be the standard coordinates on R3. A plane in R3 is vertical if it is defined by
ax+ by = 0 for some (a,b) # (0,0) € R?. Prove that restricted to a vertical plane, dx Ady = 0.

19.10. Nowhere-vanishing form on S'

Prove that the nowhere-vanishing form ® on S! constructed in Example 19.8 is the form
—ydx +xdy of Example 17.15. (Hint: Consider Uy and Uy separately. On Uy, substitute
dx = —(y/x)dy into —ydx+xdy.)

19.11. A C” nowhere-vanishing form on a smooth hypersurface

(a) Let f(x,y) be a C* function on R? and assume that 0 is a regular value of f. By the
regular level set theorem, the zero set M of f(x,y) is a one-dimensional submanifold of
R2. Construct a C* nowhere-vanishing 1-form on M.

(b) Let f(x,y,z) be a C* function on R> and assume that 0 is a regular value of f. By the
regular level set theorem, the zero set M of f(x,y,z) is a two-dimensional submanifold of
R3. Let fi, Jfy» [z be the partial derivatives of f with respect to x, y, z, respectively. Show
that the equalities

dxNdy dyANdz dzAdx
1z fe Iy
hold on M whenever they make sense, and therefore the three 2-forms piece together to
give a C” nowhere-vanishing 2-form on M.
(c) Generalize this problem to a regular level set of f(x', ..., x"T1) in R**+1,

19.12. Vector fields as derivations of C* functions

In Subsection 14.1 we showed that a C* vector field X on a manifold M gives rise to a deriva-
tion of C*(M). We will now show that every derivation of C**(M) arises from one and only
one vector field, as promised earlier. To distinguish the vector field from the derivation, we
will temporarily denote the derivation arising from X by ¢(X). Thus, for any f € C*(M),

(@(X)f)(p) =X,f forallpeM.
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(a) Let F = C*(M). Prove that ¢: X(M) — Der(C*(M)) is an F-linear map.
(b) Show that ¢ is injective.
(¢) If D is a derivation of C*(M) and p € M, define D),: C;’(M) — C;(M) by

Dy[f] = [Df] € C; (M),

where [f] is the germ of f at p and £ is a global extension of f, such as those given by
Proposition 18.8. Show that D, [f] is well defined. (Hint: Apply Problem 19.7.)

(d) Show that D), is a derivation of C};’(M).

(e) Prove that ¢: X(M) — Der(C*(M)) is an isomorphism of F-modules.

19.13. Twentieth-century formulation of Maxwell’s equations

In Maxwell’s theory of electricity and magnetism, developed in the late nineteenth century,
the electric field E = (Ey, E,, E3) and the magnetic field B = (By, B>, B3) in a vacuum R? with
no charge or current satisfy the following equations:

JB JE
VXE=— VxB=
* at’ * ot’
divE =0, divB =0.

By the correspondence in Subsection 4.6, the 1-form E on R corresponding to the vector
field E is
E=E dx+Eydy+Ezdz

and the 2-form B on R corresponding to the vector field B is
B=B;dyNdz+BydzNdx+B3dx\dy.

Let R* be space-time with coordinates (x,y,z,7). Then both E and B can be viewed as
differential forms on R*. Define F to be the 2-form

F=ENdt+B
on space-time. Decide which two of Maxwell’s equations are equivalent to the equation
dF =0.

Prove your answer. (The other two are equivalent to d * F' = O for a star-operator * defined in
differential geometry. See [2, Section 19.1, p. 689].)



20.1 Families of Vector Fields and Differential Forms 221

620 The Lie Derivative and Interior Multiplication

The only portion of this section necessary for the remainder of the book is Subsec-
tion 20.4 on interior multiplication. The rest may be omitted on first reading.

The construction of exterior differentiation in Section 19 is local and depends on
a choice of coordinates: if ® =Y ay dx!, then

dwzzgjjdxfmx’.

It turns out, however, that this d is in fact global and intrinsic to the manifold, i.e.,
independent of the choice of local coordinates. Indeed, for a C* 1-form @ and C~
vector fields X, Y on a manifold M, one has the formula

(do)X,Y)=Xo(Y)-Yo(X)—o([X,Y]).

In this section we will derive a global intrinsic formula like this for the exterior
derivative of a k-form.

The proof uses the Lie derivative and interior multiplication, two other intrinsic
operations on a manifold. The Lie derivative is a way of differentiating a vector field
or a differential form on a manifold along another vector field. For any vector field
X on a manifold, the interior multiplication ty is an antiderivation of degree —1 on
differential forms. Being intrinsic operators on a manifold, both the Lie derivative
and interior multiplication are important in their own right in differential topology
and geometry.

20.1 Families of Vector Fields and Differential Forms

A collection {X;} or {ay} of vector fields or differential forms on a manifold is said
to be a 1-parameter family if the parameter ¢ runs over some subset of the real line.
Let I be an open interval in R and let M be a manifold. Suppose {X; } is a 1-parameter
family of vector fields on M defined for all # € I except at#p € I. We say that the limit
lim;_;, X; exists if every point p € M has a coordinate neighborhood (U XX
on which X; |, = Y a!(t, p)d /dx| , and lim,_, a'(¢, p) exists for all i. In this case, we
set

(20.1)

n
: )
. I
tlglt})XJp—IZ:ltlglt})a 2 ax'|,

In Problem 20.1 we ask the reader to show that this definition of the limit of X; as
t — 1y is independent of the choice of the coordinate neighborhood (U b X,

A 1-parameter family {X;};c; of smooth vector fields on M is said to depend
smoothly on t if every point in M has a coordinate neighborhood (U, x!,...,x") on
which

. (t,p)elIxU, (20.2)
P

), = Ldwp) J
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for some C* functions a’ on I x U. In this case we also say that {X; },¢; is a smooth
family of vector fields on M.
For a smooth family of vector fields on M, one can define its derivative with

respectto ¢ att = fy by
d
dt

for (1o, p) € I x U. It is easy to check that this definition is independent of the chart
(U,x',...,x") containing p (Problem 20.3). Clearly, the derivative d/dt|—,X; is a
smooth vector field on M.

Similarly, a 1-parameter family { @ };c; of smooth k-forms on M is said to depend
smoothly on t if every point of M has a coordinate neighborhood (U, x!,...,x") on
which

da’ d
Xi| = (t0:P) (203)
— ’) L 0p) 5, )

(@), =Y bs(t,p)dx"|p,  (t.p) €IxU,

for some C* functions by on I x U. We also call such a family { e, };c; a smooth
Jfamily of k-forms on M and define its derivative with respect to ¢ to be

d
dt

As for vector fields, this definition is independent of the chart and defines a C* k-
form d /dt|;—;, 0 on M.

db
a);) =) atJ (10, p)dx’| .
=ty p

NOTATION. We write d/dt for the derivative of a smooth family of vector fields or
differential forms, but d/dr for the partial derivative of a function of several vari-
ables.

Proposition 20.1 (Product rule for d/dr). If {@:} and {7} are smooth families of
k-forms and {-forms respectively on a manifold M, then

d( AT) = d AT+ /\dT
dtwt 1) = dtwt t + O dr

Proof. Written out in local coordinates, this reduces to the usual product rule in

calculus. We leave the details as an exercise (Problem 20.4). a

Proposition 20.2 (Commutation of d /dt|,—;, with d). If { &, },; is a smooth family
of differential forms on a manifold M, then
d
.
=ty

doy=d
o <dt

Proof. In this proposition, there are three operations—exterior differentiation, dif-
ferentiation with respect to ¢, and evaluation at = ¢ty. We will first show that d and
d/dt commute:

d
dt

=ty
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d d
dr (doy) =d (dta»> : (20.4)

It is enough to check the equality at an arbitrary point p € M. Let (U,x',...,x") be
a neighborhood of p such that @ = ¥, bydx’ for some C* functions by on I x U.
On U,

d

d aby .
dt (day) = Ut Jz} 8x’j' dx' Adx’  (note that there is no dr term)

_g’&x" ( Py ) dx' Ndx’  (since by is C™)

=d (;%btfczx’) :d(jtwt> :

Evaluation at t = #y commutes with d, because d involves only partial derivatives
with respect to the x' variables. Explicitly,

d o 0 ;
()L - (5 maens)
=1y iJ =ty
: p)
b,) dx'Adx’=d<

ot

w; | .
)

Evaluating both sides of (20.4) at t = fy completes the proof of the proposition. O

20.2 The Lie Derivative of a Vector Field

In a first course on calculus, one defines the derivative of a real-valued function f on
R ata point p € R as
F(p) = tim S0 = f(p)
t—0 t

The problem in generalizing this definition to the derivative of a vector field Y on a
manifold M is that at two nearby points p and g in M, the tangent vectors ¥, and Y,
are in different vector spaces T,M and T;M and so it is not possible to compare them
by subtracting one from the other. One way to get around this difficulty is to use the
local flow of another vector field X to transport ¥, to the tangent space T,M at p.
This leads to the definition of the Lie derivative of a vector field.

Recall from Subsection 14.3 that for any smooth vector field X on M and point
p in M, there is a neighborhood U of p on which the vector field X has a local flow;
this means that there exist a real number € > 0 and a map

Q:]—¢e,e[xU—M

such that if we set ¢, (¢) = ¢(z,q), then
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0
a,(Pr(Q):X@(q), ®(q)=q forqeU. (20.5)

In other words, for each ¢ in U, the curve ¢ (g) is an integral curve of X with initial
point g. By definition, ¢y: U — U is the identity map. The local flow satisfies the

property
Qs o O = Qsyt

whenever both sides are defined (see (14.10)). Consequently, for each ¢ the map
¢;: U — ¢, (U) is a diffeomorphism onto its image, with a C* inverse @_;:

Qo =0=1, @Qop_,=q¢y=1.

Let Y be a C* vector field on M. To compare the values of ¥ at ¢, (p) and at p,
we use the diffeomorphism ¢_;: ¢;(U) — U to push Y, () into 7,M (Figure 20.1).

P—t+ (Y(P/ (17))

Fig. 20.1. Comparing the values of Y at nearby points.

Definition 20.3. For X,Y € X(M) and p € M, let ¢: |—¢€,€[ x U — M be a local
flow of X on a neighborhood U of p and define the Lie derivative LxY of Y with
respect to X at p to be the vector

s (Y, -7, Y )p — Y,
(LXY)p:hm(P ! ( (Pt(P)) p — lim ((p t )P P d

= _1xY ) p-
10 t -0 t dt ,zo(q) ¥y

In this definition the limit is taken in the finite-dimensional vector space T,M.
For the derivative to exist, it suffices that {@_,.Y'} be a smooth family of vector
fields on M. To show the smoothness of the family {¢_;.Y }, we write out ¢_..Y in
local coordinates x', ..., x" in a chart. Let ¢ and ¢’ be the ith components of ¢; and
¢ respectively. Then

(9)'(p) = ¢'(t,p) = (' > )(t,p)-

By Proposition 8.11, relative to the frame {d/ ox’}, the differential .. at p is repre-
sented by the Jacobian matrix [d(¢y)'/dx’(p)] = [0¢@'/dx’(t, p)]. This means that
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J-xdnen?,

< ox/

Thus, if Y = Y.b/ 9 /dx/, then

o (p)

q’r(!’))

- ¢ 0
_ j _
%;b (‘P(tap))axj( 1,p) 2|,

91« (Yo(p) = L6 (9(,)) p-1x <;xj

J

(20.6)

When X and Y are C* vector fields on M, both (pi and b’ are C* functions. The
formula (20.6) then shows that {@_,.Y } is a smooth family of vector fields on M. Tt
follows that the Lie derivative Ly Y exists and is given in local coordinates by

ExVo= 4 e (Yo ()
0 . ¢! P
j pa—

It turns out that the Lie derivative of a vector field gives nothing new.

Theorem 20.4. If X and Y are C* vector fields on a manifold M, then the Lie deriva-
tive LxY coincides with the Lie bracket [X,Y].

Proof. Tt suffices to check the equality LxY = [X,Y] at every point. To do this,
we expand both sides in local coordinates. Suppose a local flow for X is ¢:
|—¢€,€[ x U — M, where U is a coordinate chart with coordinates x!,...,x". Let
X =Yd d/ox and Y = Y b/d/dx/ on U. The condition (20.5) that ¢,(p) be an
integral curve of X translates into the equations

‘98":'@7;7) —di(o(t,p)), i=1,....n, (t,p)€]—e.e[xU.

Atr=0,0¢'/91(0,p) = a'(9(0,p)) = d'(p).
By Problem 14.12, the Lie bracket in local coordinates is

L b da\ 0
XY — bt .
X, Y] = Z( oxk oxk ) oxi
Expanding (20.7) by the product rule and the chain rule, we get

(LxY), = lZ (3?2("’“”’”&5; ) ey )> i

ijk
8 ¢! d
_Z( 8xl ot (— )> 8x"]t

b 20 P C9d N\ o
- 0, Y () . (208
= T (G et p>)ax, ¥ (V)50 ) 5y @08)

i,J
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Since ¢ (0, p) = p, @y is the identity map and hence its Jacobian matrix is the identity
matrix. Thus,

¢’ i
Py (0,p) =6}, the Kronecker delta.
So (20.8) simplifies to
b da’\ 9
LxY = ko bk =[x,Y]. O
X IZ,:’ (a dxk 8xk> ox! X.7]

Although the Lie derivative of a vector field gives us nothing new, in conjunction
with the Lie derivative of differential forms it turns out to be a tool of great utility,
for example, in the proof of the global formula for the exterior derivative in Theorem
20.14.

20.3 The Lie Derivative of a Differential Form

Let X be a smooth vector field and @ a smooth k-form on a manifold M. Fix a point
p €M andlet ¢;: U — M be a flow of X in a neighborhood U of p. The definition
of the Lie derivative of a differential form is similar to that of the Lie derivative of a
vector field. However, instead of pushing a vector at ¢, (p) to p via (¢_;)., we now
pull the k-covector @y, (,) back to p via ¢/".

Definition 20.5. For X a smooth vector field and @ a smooth k-form on a manifold

M, the Lie derivative Lx @ at p € M is

o, — o) — o
(Lxw), =lim o ( ‘Pf(”)) P _ lim (o), — o, _d
I3

*
= ), .
-0 t 1—0 t dt|,_ (¢ )p

By an argument similar to that for the existence of the Lie derivative LxY in
Section 20.2, one shows that { @@} is a smooth family of k-forms on M by writing
it out in local coordinates. The existence of (Lx @), follows.

Proposition 20.6. If f is a C* function and X a C* vector field on M, then Lx f = Xf.

Proof. Fix a point p in M and let ¢;: U — M be a local flow of X as above. Then

d
(Lxf)p= (@' f) (definition of Ly f)
dt p
t=0
d . .
= 4| (fe@)(p) (definition of ¢; 1)
t=0
=Xpf (Proposition 8.17),

since ¢;(p) is a curve through p with initial vector X),. O
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20.4 Interior Multiplication

We first define interior multiplication on a vector space. If  is a k-covector on a
vector space V and v € V, for k > 2 the interior multiplication or contraction of 3
with v is the (k — 1)-covector 1,3 defined by

(WB)(va, ..., vi) =B(v,va, .. vk),  vo,..., i EV.

We define 1,8 = B(v) € R for a 1-covector  on V and 1,8 = 0 for a 0-covector f3 (a
constant) on V.

k

Proposition 20.7. For 1-covectors o/ ,... of on a vector space V and v €V,

(o' AN ak) = vl A Adi A Aak,

IIM»

where the caret ~ over o means that o is omitted from the wedge product.

Proof.

(lv (al/\---/\ak» (vay.o s vk)
= (Ocl /\---/\Ock) (v,va,.. Vi)
al(v) ol (vy) -+ ol ()
o?(v) o*(vy) -+ 0% (vy)

=det| . . . (Proposition 3.27)

ot(v) a(v) - ot (vp)

'M*

Il
-

(—1)* ol (v)det[a (v j)]%g’éi#i (expansion along first column)
<Jj<

I
™~

I
—

(=)ol (v) (al A NGEA - /\Ock> (v2,...,v) (Proposition 3.27).
O

Proposition 20.8. For v in a vector space V, let 1,: N*(VV) — N*"H(VY) be interior
multiplication by v. Then

() 1,01,=0,
(i) for B € AX(VV) and y e N'(VY),

WBAY) = WB) AT+ (=1 BALY.
In other words, 1, is an antiderivation of degree —1 whose square is zero.
Proof. (i) Let B € A*(VY). By the definition of interior multiplication,

(L(WB))(va,..yvi) = (WB) V3, ..y ve) = BV v, v3,...,v) =0,

because f3 is alternating and there is a repeated variable v among its arguments.
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(ii) Since both sides of the equation are linear in 8 and in ¥, we may assume that
B=a'A---Aak, y= oA A R
where the o are all 1-covectors. Then

L(BAY)

= (o' Ao A

k -
= (Z(—l)l‘al(v)al /\---/\(xi/\---/\ak> AU A A okt
i=1
k _ . —
+(=Dfa A ndE A Y (1) T )T A A ek A AT
i=1

(by Proposition 20.7)
= (LB) AT+ (=1 BALY. D

Interior multiplication on a manifold is defined pointwise. If X is a smooth vector
field on M and ® € Q% (M), then 1x @ is the (k — 1)-form defined by (ix®), = Lx, Wp
for all p € M. The form 1y on M is smooth because for any smooth vector fields
X2,..., X onM,

(le)(X27 s 7Xk) = (D(X,X% s 7Xk)

is a smooth function on M (Proposition 18.7(iii)=-(i)). Of course, ix® = ®(X)
for a 1-form @ and 1x f = O for a function f on M. By the properties of interior
multiplication at each point p € M (Proposition 20.8), the map tx : Q* (M) — Q*(M)
is an antiderivation of degree —1 such that 1y o 1y = 0.

Let J be the ring C*(M) of C* functions on the manifold M. Because 1y @ is a
point operator—that is, its value at p depends only on X, and w,—it is J-linear in
either argument. This means that 1y @ is additive in each argument and moreover, for
any f € J,

(i) 1x0 = fixw;

(i) x(fo)=fixo.
Explicitly, the proof of (i) goes as follows. For any p € M,
(1x@)p = Ly(p)x, @p = f(P)ix, 0p = (fix @),
Hence, 17x @ = fix ®. The proof of (ii) is similar. Additivity is more or less obvious.

Example 20.9 (Interior multiplication on R?). Let X = xd/dx +yd/dy be the ra-
dial vector field and o = dx A dy the area 2-form on the plane R?. Compute the
contraction ly C.

Solution. We first compute ty dx and ty dy:
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) 0
1y dx =dx(X) =dx <x8x+y8y> =X,

d d
dy=dy(X)=d =y.
wdy = dy(X) y<x3x+y3y> y
By the antiderivation property of 1y,
1x o = 1x(dx Ady) = (1x dx)dy — dx (1x dy) = xdy — ydx,

which restricts to the nowhere-vanishing 1-form @ on the circle S' in Example 17.15.

20.5 Properties of the Lie Derivative

In this section we state and prove several basic properties of the Lie derivative. We
also relate the Lie derivative to two other intrinsic operators on differential forms on
a manifold: the exterior derivative and interior multiplication. The interplay of these
three operators results in some surprising formulas.

Theorem 20.10. Assume X to be a C* vector field on a manifold M.

(i) The Lie derivative Lx : Q*(M) — Q*(M) is a derivation: it is an R-linear map
and if ® € QK(M) and © € QY (M), then

Lx(oNT)=(Lx o) AT+ OA(LxT).

(i1) The Lie derivative Lx commutes with the exterior derivative d.
(iii) (Cartan homotopy formula) Ly = dix + 1xd.
(iv) (“Product” formula) For @ € Q¥(M) and Yy, ...,Y, € X(M),

k
Lx(oX,....Y;)) = (Lxw)(Y1,....Y) + Z o(Yy,...,LxYi,... . Yp).

i=1
Proof. In the proof let p € M and let ¢;: U — M be a local flow of the vector field
X in a neighborhood U of p.
(1) Since the Lie derivative Ly is d/dt of a vector-valued function of 7, the derivation
property of Ly is really just the product rule for d/dt (Proposition 20.1). More
precisely,

d
dt

(Lx(@AT))p

(¢ (@A T))p
=0

(@ @)p N (@ T)p

dr t=0
. d
t:O((P[ O)p | ATp+ 0 A dt

d

dt
(product rule for d/dr)
= (QX (l))p AT+ 0p A\ (fo)p.

(9 7)p
t=0
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(i1)
d
Lxdw = o'do (definition of Ly)
dt|,_,
= do/o (d commutes with pullback)
dr =0
d . ..
=d ¢ ® | (by Proposition 20.2)
dr t=0
= dLX .

(iii)) We make two observations that reduce the problem to a simple case. First, for
any @ € Q*(M), to prove the equality Lx @ = (dix + ixd) o it suffices to check it at
any point p, which is a local problem. In a coordinate neighborhood (U, x', ... x")
about p, we may assume by linearity that @ is a wedge product @ = f dx't A--- Adx'.

Second, on the left-hand side of the Cartan homotopy formula, by (i) and (ii),
Ly is a derivation that commutes with d. On the right-hand side, since d and ty are
antiderivations, diy + Lyd is a derivation by Problem 4.7. It clearly commutes with
d. Thus, both sides of the Cartan homotopy formula are derivations that commute
with d. Consequently, if the formula holds for two differential forms ® and 7, then
it holds for the wedge product @ A T as well as for dw. These observations reduce
the verification of (iii) to checking

Lxf= (le + lxd)f for f € CW(U).
This is quite easy:

(diy +ixd) f = wdf (because 1y f = 0)
= (df)(X) (definition of 1y)
=Xf=X~Lxf (Proposition 20.6).

(iv) We call this the “product” formula, even though there is no product in (¥,

., ¥¢), because this formula can be best remembered as though the juxtaposition
of symbols were a product. In fact, even its proof resembles that of the product
formula in calculus. To illustrate this, consider the case k = 2. Let @ € Q*(M) and
X,Y,Z € X(M). The proof looks forbidding, but the idea is quite simple. To compare
the values of ®(Y,Z) at the two points ¢;(p) and p, we subtract the value at p from
the value at ¢4 (p). The trick is to add and subtract terms so that each time only one of
the three variables w, Y, and Z moves from one point to the other. By the definitions
of the Lie derivative and the pullback of a function,

. *( Y,Z —(w(Y.Z
(Lx(0(Y,2))), = }%(%( ( )))f (0(Y,2)),
= lim O (p) (Y‘Pr(ﬁ)’zfpr(ﬂ)) - 0y(Yy,Z))

t—0 ¢



20.5 Properties of the Lie Derivative 231

O, (p) Yo (p): Zon(p) — Op (-t (Y (p) » Pt (Zou (1))

=lim
t—0 t
(20.9)
+1im @ (O Vo)) 01 (Zo ) = @ (¥, 01+ (Zo())
t—0 !
(20.10)
Y, 0. (Z — (Y, Z,
i @ V000 (Zoy ) = 00X, Zp) (20.11)
t—0 t

In this sum the quotient in the first limit (20.9) is

(0 @,()) (015 (Yo () » 915 (Zip () = Op (D=t Y (1)) + -1 (Zgy (1))
t

9 (D)) — O
_ P (W :) P ((p_,* (Y(p,(p)) » P—tx (Z(Pr(l’))) :

On the right-hand side of this equality, the difference quotient has a limit at = 0,
namely the Lie derivative ({x @) ,, and by (20.6) the two arguments of the difference
quotient are C*™ functions of #. Therefore, the right-hand side is a continuous function
of t and its limit as 7 goes to 0 is (Lx ®),(Y),Z,) (by Problem 20.2).

By the bilinearity of ®,, the second term (20.10) is

(‘Pr* Ypp) — Y

lima)p : p,([)_t* (Z(Py(p))> = (Dp((LXY)p,Zp).

t—0

Similarly, the third term (20.11) is @, (Y,, (£xZ)p).
Thus

LX(w(Yv Z)) = (LX (J)) (Yv Z) =+ (J)(ny, Z) + (J)(Y,sz)-

The general case is similar. a

Remark. Unlike interior multiplication, the Lie derivative Lx @ is not F-linear in
either argument. By the derivation property of the Lie derivative (Theorem 20.10(1)),

Lx(fo)=(Lxflo+ fLx o= (Xflo+ fLx o.
We leave the problem of expanding £ sy @ as an exercise (Problem 20.7).

Theorem 20.10 can be used to calculate the Lie derivative of a differential form.

Example 20.11 (The Lie derivative on a circle). Let @ be the 1-form —ydx + xdy
and let X be the tangent vector field —yd/dx+xd/dy on the unit circle S! from
Example 17.15. Compute the Lie derivative Ly @.
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Solution. By Proposition 20.6,

Next we compute Lx (—ydx):

Lx(—ydx)=—(Lxy)dx—yLxdx (Lx is a derivation)
—(Lxy)dx—ydLxx (Lx commutes with d)
= —xdx—+ydy.

Similarly, Lx (xdy) = —ydy+xdx. Hence, Lx @ = Lx(—ydx+xdy) =0.

20.6 Global Formulas for the Lie and Exterior Derivatives

The definition of the Lie derivative £x @ is local, since it makes sense only in a
neighborhood of a point. The product formula in Theorem 20.10(iv), however, gives
a global formula for the Lie derivative.

Theorem 20.12 (Global formula for the Lie derivative). For a smooth k-form @
and smooth vector fields X, Y1, ..., Y, on a manifold M,

(1)(Y17 [X,Y,’],...7Yk).

'M*

I
—

(Lx 0)(¥i,..., X)) = X (@Y., Y0)) —
Proof. In Theorem 20.10(iv), Lx(w(Y1,..., %)) = X(w(Y1,...,Y;)) by Proposition
20.6 and LxY; = [X,Y;] by Theorem 20.4. O

The definition of the exterior derivative d is also local. Using the Lie derivative,
we obtain a very useful global formula for the exterior derivative. We first derive the
formula for the exterior derivative of a 1-form, the case most useful in differential
geometry.

Proposition 20.13. If @ is a C* 1-form and X and 'Y are C* vector fields on a mani-
fold M, then
do(X,Y)=Xo(Y)-Yo(X)— o([X,Y]).

Proof. Ttis enough to check the formula in a chart (U,x!,...,x"), so we may assume
® = Y.a;dx'. Since both sides of the equation are R-linear in @, we may further
assume that @ = fdg, where f,g € C*(U).
In this case, do =d(fdg) = df Ndg and
do(X,Y) =df(X)dg(Y) —df(Y)dg(X) = (Xf)Yg - (Y)Xg,
oY) =X(fdg(Y)) =X(fYg) = (Xf)Yg+ fXYg,
o(X) = Y(fdg(X)) = Y(fXg) = (Y ))Xg+ fY X,
o([X,Y]) = fdg([X,Y]) = f(XY —YX)g.
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It follows that
Xo(¥) - Yo(X) - o(X,¥]) = (Xf)Yg— (Yf)Xg = do(X,Y). 0
Theorem 20.14 (Global formula for the exterior derivative). Assume k > 1. For
a smooth k-form ® and smooth vector fields Yy,Y1,. .., Y, on a manifold M,
k . ~
(da))(Y07 s aYk) = Z(_l)lYlw(Y07 N (A aYk)
i=0

+ Z (_l)iJrja)([YianLYOa"'723"'7%7"'ayk)'
0<i<j<k

Proof. When k = 1, the formula is proven in Proposition 20.13.

Assuming the formula for forms of degree kK — 1, we can prove it by induction
for a form @ of degree k. By the definition of 1y, and Cartan’s homotopy formula
(Theorem 20.10(iii)),

(da))(Y(),Yl,...,Yk) = (lyod(l))(Yl,...,Yk)
= (LYOO))(Yl,...,Yk) — (dlyoa))(Yl,...,Yk).

The first term of this expression can be computed using the global formula for the Lie
derivative Ly, , while the second term can be computed using the global formula
for d of a form of degree k — 1. This kind of verification is best done by readers on
their own. We leave it as an exercise (Problem 20.6). a

Problems

20.1. The limit of a family of vector fields

Let / be an open interval, M a manifold, and {X;} a 1-parameter family of vector fields on M
defined for all 7 # #o € 1. Show that the definition of lim;_; X; in (20.1), if the limit exists, is
independent of coordinate charts.

20.2. Limits of families of vector fields and differential forms

Let I be an open interval containing 0. Suppose { @ };c; and {Y; };¢; are 1-parameter families
of 1-forms and vector fields respectively on a manifold M. Prove that if lim,_,g @ = @y and
lim; 0 Y: = Y, then lim,—0 @ (Y;) = wy(Yp). (Hint: Expand in local coordinates.) By the
same kind of argument, one can show that there is a similar formula for a family {;} of
2-forms: lim,—0 @ (Y:,Z;) = 0 (Yo, Zo).

20.3.* Derivative of a smooth family of vector fields
Show that the definition (20.3) of the derivative of a smooth family of vector fields on M is
independent of the chart (U,x!,...,x") containing p.

20.4. Product rule for d/dt
Prove that if {@} and {7;} are smooth families of k-forms and ¢-forms respectively on a
manifold M, then

d( AT) = d AT+ /\dr
a AN = g 1A T
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20.5. Smooth families of forms and vector fields
If { & };¢; is a smooth family of 2-forms and {Y; };<; and {Z; };<; are smooth families of vector
fields on a manifold M, prove that @ (X;,Y;) is a C* function on I x M.

20.6.* Global formula for the exterior derivative
Complete the proof of Theorem 20.14.

20.7. F-Linearity and the Lie Derivative
Let @ be a differential form, X a vector field, and f a smooth function on a manifold. The
Lie derivative £x  is not F-linear in either variable, but prove that it satisfies the following
identity:

Lxo=fLxow+df Nixo.
(Hint: Start with Cartan’s homotopy formula Lx = diy +1xd.)

20.8. Bracket of the Lie Derivative and Interior Multiplication
If X and Y are smooth vector fields on a manifold M, prove that on differential forms on M

Lxly—lyﬁx = l[va].

(Hint: Let @ € QF(M) and Y, Y1,..., Yi_1 € X(M). Apply the global formula for Lx to

(wLlxw)1,....Y%1) = (Lx0)(¥.Y1,....Y%1).)

20.9. Interior multiplication on R”
Let ® = dx' A--- Adx" be the volume form and X = ¥ x' 9 /dx’ the radial vector field on R”.
Compute the contraction 1y @.

20.10. The Lie derivative on the 2-sphere
Let @ = xdyAdz—ydx Ady+zdxAdy and X = —yd/dx+x3/dy on the unit 2-sphere $Z in
R3. Compute the Lie derivative £y .



Chapter 6

Integration

On a manifold one integrates not functions as in calculus on R” but differential forms.
There are actually two theories of integration on manifolds, one in which the inte-
gration is over a submanifold and the other in which the integration is over what is
called a singular chain. Singular chains allow one to integrate over an object such as
a closed rectangle in R:

[a,b] x [¢,d] :={(x,y) ER? |a<x < b, c <y<d},

which is not a submanifold of R? because of its corners.

For simplicity we will discuss only integration of smooth forms over a submani-
fold. For integration of noncontinuous forms over more general sets, the reader may
consult the many excellent references in the bibliography, for example [3, Section
VI1.2], [7, Section 8.2], or [25, Chapter 14].

For integration over a manifold to be well defined, the manifold needs to be ori-
ented. We begin the chapter with a discussion of orientations on a manifold. We
then enlarge the category of manifolds to include manifolds with boundary. Our
treatment of integration culminates in Stokes’s theorem for an n-dimensional man-
ifold. Stokes’s theorem for a surface with boundary in R3 was first published as a
question in the Smith’s Prize Exam that Stokes set at the University of Cambridge
in 1854. It is not known whether any student solved the problem. According to
[21, p. 150], the same theorem had appeared four years earlier in a letter of Lord
Kelvin to Stokes, which only goes to confirm that the attribution of credit in mathe-
matics is fraught with pitfalls. Stokes’s theorem for a general manifold resulted from
the work of many mathematicians, including Vito Volterra (1889), Henri Poincaré
(1899), Edouard Goursat (1917), and Elie Cartan (1899 and 1922). First there were
many special cases, then a general statement in terms of coordinates, and finally a
general statement in terms of differential forms. Cartan was the master of differen-
tial forms par excellence, and it was in his work that the differential form version of
Stokes’s theorem found its clearest expression.

L.W. Tu, 4n Introduction to Manifolds, Universitext, DOI 10.1007/978-1-4419-7400-6 7, 235
© Springer Science+Business Media, LLC 2011
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621 Orientations

It is a familiar fact from vector calculus that line and surface integrals depend on
the orientation of the curve or surface over which the integration takes place: revers-
ing the orientation changes the sign of the integral. The goal of this section is to
define orientation for n-dimensional manifolds and to investigate various equivalent
characterizations of orientation.

We assume all vector spaces in this section to be finite-dimensional and real. An
orientation of a finite-dimensional real vector space is simply an equivalence class
of ordered bases, two ordered bases being equivalent if and only if their transition
matrix has positive determinant. By its alternating nature, a multicovector of top
degree turns out to represent perfectly an orientation of a vector space.

An orientation on a manifold is a choice of an orientation for each tangent space
satisfying a continuity condition. Globalizing n-covectors over a manifold, we ob-
tain differential n-forms. An orientation on an n-manifold can also be given by an
equivalence class of C* nowhere-vanishing n-forms, two such forms being equiva-
lent if and only if one is a multiple of the other by a positive function. Finally, a
third way to represent an orientation on a manifold is through an oriented atlas, an
atlas in which any two overlapping charts are related by a transition function with
everywhere positive Jacobian determinant.

21.1 Orientations of a Vector Space

On R! an orientation is one of two directions (Figure 21.1).

_— @ —

Fig. 21.1. Orientations of a line.

On R? an orientation is either counterclockwise or clockwise (Figure 21.2).

NN

Fig. 21.2. Orientations of a plane.
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e3 = thumb

e = index finger

Fig. 21.3. Right-handed orientation (ey,e;,e3) of R3.

e3 = thumb
) ( % / /  ep =index finger
el

Fig. 21.4. Left-handed orientation (e;,eq,e3) of R3.

On R? an orientation is either right-handed (Figure 21.3) or left-handed (Fig-
ure 21.4). The right-handed orientation of R is the choice of a Cartesian coordinate
system such that if you hold out your right hand with the index finger curling from
the vector e in the x-axis to the vector e; in the y-axis, then your thumb points in the
direction of of the vector e3 in the z-axis.

How should one define an orientation for R*, R3, and beyond? If we analyze
the three examples above, we see that an orientation can be specified by an ordered
basis for R”. Let e, ..., e, be the standard basis for R”. For R! an orientation could
be given by either e; or —ej. For R? the counterclockwise orientation is (ey,e;),
while the clockwise orientation is (e,e;). For R? the right-handed orientation is
(e1,e2,e3), and the left-handed orientation is (e, e1,e3).

For any two ordered bases (uy,u,) and (v1,v,) for R?, there is a unique nonsin-
gular 2 x 2 matrix A = [a}] such that

2
i .
Mj:Zviajv ]21727
i=1
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called the change-of-basis matrix from (vy,v;) to (u1,us). In matrix notation, if we
write ordered bases as row vectors, for example, [u] uy| for the basis (u;,u), then

[u1 uz] = [Vl VZ]A.

We say that two ordered bases are equivalent if the change-of-basis matrix A has pos-
itive determinant. It is easy to check that this is indeed an equivalence relation on the
set of all ordered bases for R?. It therefore partitions ordered bases into two equiva-
lence classes. Each equivalence class is called an orientation of R?. The equivalence
class containing the ordered basis (1, e;) is the counterclockwise orientation and the
equivalence class of (ep,e)) is the clockwise orientation.

The general case is similar. We assume all vector spaces in this section to be
finite-dimensional. Two ordered bases u = [u; -+ u,] and v = [v; --- v,] of a vector
space V are said to be equivalent, written u ~ v, if u = vA for an n X n matrix A with
positive determinant. An orientation of V is an equivalence class of ordered bases.
Any finite-dimensional vector space has two orientations. If i is an orientation of a
finite-dimensional vector space V, we denote the other orientation by —u and call it
the opposite of the orientation [L.

The zero-dimensional vector space {0} is a special case because it does not have
a basis. We define an orientation on {0} to be one of the two signs + and —.

NOTATION. A basis for a vector space is normally written vy, ..., v,, without paren-
theses, brackets, or braces. If it is an ordered basis, then we enclose it in parenthe-
ses: (vi,...,v,). In matrix notation, we also write an ordered basis as a row vector
[vi -+ vy). An orientation is an equivalence class of ordered bases, so the notation is
[(vi,...,vu)], where the brackets now stand for equivalence class.

21.2 Orientations and n-Covectors

Instead of using an ordered basis, we can also use an n-covector to specify an orien-
tation of an n-dimensional vector space V. This approach to orientations is based on
the fact that the space /" (V") of n-covectors on V is one-dimensional.

Lemma 21.1. Let uy, ... ,u, and vy,...,v, be vectors in a vector space V. Suppose
n .
i )
uj = Z:v,-aj7 j=1,....n,
i=1

for a matrix A = [a;] of real numbers. If B is an n-covector on 'V, then

Buy,...,uy) = (detA)B(vi,...,vn).

Proof. By hypothesis,

L Al
uj = Zv,aj.
1

Since B is n-linear,
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Bup,...,u,)=p (Zvila§'7...,2vina5f) :Zalf ced Bviyy i)

For B(vi,,...,v;,) to be nonzero, the subscripts iy,...,i, must be all distinct. An or-
dered n-tuple I = (iy,...,i,) with distinct components corresponds to a permutation
orof1,...,nwith 6;(j) =ij for j=1,...,n. Since B is an alternating n-tensor,

ﬁ(vi17~~~;vin) = (sgnol)ﬁ(vl,...,vn).

Thus,
Bluy,...,uy) = Z (sgnop)al ---ay B(vi,...,vn) = (detA) B(vi,...,vy). O
G]ES,,
As a corollary, if uy,...,u, and vy,...,v, are ordered bases of a vector space V,
then
B(uy,...,u,) and B(vy,...,v,) have the same sign
<= detA>0
<= uy,...,upand vy,...,v, are equivalent ordered bases.
We say that the n-covector 3 determines or specifies the orientation (vy,...,v,) if

B(vi,...,vy) > 0. By the preceding corollary, this is a well-defined notion, indepen-
dent of the choice of ordered basis for the orientation. Moreover, two n-covectors 3
and ' on V determine the same orientation if and only if § = a8’ for some positive
real number a. We define an equivalence relation on the nonzero n-covectors on the
n-dimensional vector space V by setting

B~p <+= B =aP forsomea>0.

Thus, in addition to an equivalence class of ordered bases, an orientation of V is also
given by an equivalence class of nonzero n-covectors on V.

A linear isomorphism A" (V") ~ R identifies the set of nonzero n-covectors on
V with R — {0}, which has two connected components. Two nonzero n-covectors f3
and ' on V are in the same component if and only if § = af3’ for some real number
a > 0. Thus, each connected component of A\" (V") — {0} determines an orientation
of V.

Example. Let e, e, be the standard basis for R? and a!, a? its dual basis. Then the
2-covector ¢! A a2 determines the counterclockwise orientation of RZ, since

(Oll /\062) (e1,e2) =1>0.

Example. Let d/9x],,d/dy|, be the standard basis for the tangent space T,(IR?),
and (dx),,(dy), its dual basis. Then (dx A dy), determines the counterclockwise
orientation of 7),(R?).



240 §21 Orientations
21.3 Orientations on a Manifold

Recall that every vector space of dimension n has two orientations, corresponding
to the two equivalence classes of ordered bases or the two equivalence classes of
nonzero n-covectors. To orient a manifold M, we orient the tangent space at each
point in M, but of course this has to be done in a “coherent” way so that the orienta-
tion does not change abruptly anywhere.

As we learned in Subsection 12.5, a frame on an open set U C M is an n-tuple
(X1,...,X,) of possibly discontinuous vector fields on U such that at every point
p € U, the n-tuple (Xy p,...,X, ) of vectors is an ordered basis for the tangent space
T,M. A global frame is a frame defined on the entire manifold M, while a local
frame about p € M is a frame defined on some neighborhood of p. We introduce an
equivalence relation on frames on U':

(Xl,...,Xn)N(Yl,...,Yn) N (Xl,py---aXn,p)N(Yl,py---ayn,p) forall p e U.

In other words, if ¥; = ):,-a;X,-, then two frames (Xi,...,X,) and (Y;,...,Y,) are
equivalent if and only if the change-of-basis matrix A = [a’]] has positive determinant
at every pointin U.

A pointwise orientation on a manifold M assigns to each p € M an orientation
U, of the tangent space T,M. In terms of frames, a pointwise orientation on M is
simply an equivalence class of possibly discontinuous frames on M. A pointwise
orientation i on M is said to be continuous at p € M if p has a neighborhood U
on which u is represented by a continuous frame; i.e., there exist continuous vector
fields Y;,...,Y, on U such that gty = [(Y14,...,Ys4)] forall g € U. The pointwise
orientation [ is continuous on M if it is continuous at every point p € M. Note that
a continuous pointwise orientation need not be represented by a continuous global
frame; it suffices that it be locally representable by a continuous local frame. A
continuous pointwise orientation on M is called an orientation on M. A manifold is
said to be orientable if it has an orientation. A manifold together with an orientation
is said to be oriented.

Example. The Euclidean space R” is orientable with orientation given by the contin-
uous global frame (9/dr!,...,d/dr").

Example 21.2 (The open Mdbius band). Let R be the rectangle
R={(x,y)eR*|0<x<1, -1<y<l1}.

The open Mdobius band M (Figures 21.5 and 21.6) is the quotient of the rectangle R
by the equivalence relation generated by

0,y) ~ (1,—y). 1.1
The interior of R is the open rectangle

U={(xy)eR*|0<x<1, -1<y<l1}.
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Fig. 21.5. Mobius band.

Fig. 21.6. Nonorientability of the M&bius band.

Suppose the Mobius band M is orientable. An orientation on M restricts to an ori-
entation on U. To avoid confusion with an ordered pair of numbers, in this example
we write an ordered basis without the parentheses. For the sake of definiteness, we
first assume the orientation on U to be given by e, e>. By continuity the orientations
at the points (0,0) and (1,0) are also given by e;,e;. But under the identification
(21.1), the ordered basis ej,e; at (1,0) maps to e}, —e at (0,0). Thus, at (0,0) the
orientation has to be given by both e1,e; and e1, —e», a contradiction. Assuming the
orientation on U to be given by e, e; also leads to a contradiction. This proves that
the Mobius band is not orientable.

Proposition 21.3. A connected orientable manifold M has exactly two orientations.

Proof. Let u and v be two orientations on M. At any point p € M, i, and v, are
orientations of 7,M. They either are the same or are opposite orientations. Define a
function f: M — {£1} by

f(p)={ LTk, =V,

-1 ifpu,=—v,.

Fix a point p € M. By continuity, there exists a connected neighborhood U of p on
which u = [(Xy,...,X,)] and v = [(Y1,...,Y,)] for some continuous vector fields X;
and Yj on U. Then there is a matrix-valued function A = [a;]: U — GL(n,R) such
thatY; =}, aiX,-. By Proposition 12.12 and Remark 12.13, the entries afi are continu-
ous, so that the determinant detA: U — R* is continuous also. By the intermediate
value theorem, the continuous nowhere-vanishing function det A on the connected
set U is everywhere positive or everywhere negative. Hence, 4t =V or 4 = —Vv on
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U. This proves that the function f: M — {£1} is locally constant. Since a locally
constant function on a connected set is constant (Problem 21.1), y =vor g = —v
onM. a

21.4 Orientations and Differential Forms

While the definition of an orientation on a manifold as a continuous pointwise ori-
entation is geometrically intuitive, in practice it is easier to manipulate the nowhere-
vanishing top forms that specify a pointwise orientation. In this section we show
that the continuity condition on pointwise orientations translates to a C* condition
on nowhere-vanishing top forms.

If f is a real-valued function on a set M, we use the notation f > 0 to mean that
[ is everywhere positive on M.

Lemma 21.4. A pointwise orientation [(Xi,...,X,)] on a manifold M is continuous
if and only if each point p € M has a coordinate neighborhood (U7x17...7x”) on
which the function (dx' A--- Ndx")(X1,...,X,) is everywhere positive.

Proof.

(=) Assume that the pointwise orientation 1 = [(X,...,X,)] on M is continuous.
This does not mean that the global frame (Xj,...,X,) is continuous. What it means is
that every point p € M has a neighborhood W on which p is represented by a continu-
ous frame (Yi,...,Y,). Choose a connected coordinate neighborhood (U,x',...,x")
of p contained in W and let 9; = d/dx'. Then Y¥; = },;b'0; for a continuous ma-
trix function [b’]] U — GL(n,R), the change-of-basis matrix at each point. By
Lemma 21.1,

(dx' A-eondx") (Yi,... Y,) = (det[BY]) (dx' A+ AdX") (9., 0y) = det[b],

which is never zero, because [b’]] is nonsingular. As a continuous nowhere-vanishing

real-valued function on a connected set, (dx' A--- Adx")(Y1,...,Y,) is everywhere

positive or everywhere negative on U. If it is negative, then by setting ¥' = —x!, we

have on the chart (U, %', x?,...,x") that
(d&' NdxP A+ AdX") (Y1,...,Yy) > 0.

Renaming %! as x', we may assume that on the coordinate neighborhood (U,x',...,

x") of p, the function (dx' A--- Adx")(Yy,...,Y,) is always positive. '
Since u =[(X1,...,Xy)] =[(V1,....Ys)] on U, the change-of-basis matrix C = [c}]
such that X; =} ; C§Yi has positive determinant. By Lemma 21.1 again, on U,

(dx' A+ ndx") (Xy,...,X,) = (det C) (dx' A+ Adx") (Y1,...,Y,) > 0.
(<) On the chart (U,x',...,x"), suppose X; = ¥ d’; d;. As before,

(dx' A+ ndx") (X, X)) = (det[d)]) (dx' Ao Adx") (3., 0,) = det[al].
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By hypothesis, the left-hand side of the equalities above is positive. Therefore, on
U, det[da’] > 0 and [(X1,...,X,)] = [(d1,...,d,)], which proves that the pointwise
orientation U is continuous at p. Since p was arbitrary, ( is continuous on M. a

Theorem 21.5. A manifold M of dimension n is orientable if and only if there exists
a C*” nowhere-vanishing n-form on M.

Proof.
(=) Suppose [(X1,...,X,)] is an orientation on M. By Lemma 21.4, each point p
has a coordinate neighborhood (U, x!,...,x") on which

(dx' A+ ndx") (Xy,...,X,) > 0. (21.2)

Let {(Ug,xk,...,x%)} be a collection of these charts that covers M, and let {pq } be
a C* partition of unity subordinate to the open cover {Uy}. Being a locally finite
sum, the n-form @ = ¥, padxl, A--- Adx?, is well defined and C* on M. Fix p € M.
Since py(p) > 0 for all o and py(p) > O for at least one o, by (21.2),

@p (X1,ps- . Xnp) = ) Pa(p) (dxg A--- Ndxg) , (X1, Xnp) > 0.
o

Therefore, @ is a C* nowhere-vanishing n-form on M.

(<) Suppose o is a C* nowhere-vanishing n-form on M. At each point p € M,
choose an ordered basis (Xi p,...,X, ) for T,M such that @, (X p,...,X,,) > 0.
Fix p € M and let (U X ,X") be a connected coordinate neighborhood of p. On
U, ® = fdx' A--- Adx" for a C* nowhere-vanishing function f. Being continuous
and nowhere vanishing on a connected set, f is everywhere positive or everywhere
negative on U. If f > 0, then on the chart (U,x',... x"),

(dx" A~ Ndx") (Xy,... . X,) > 0.
If f < 0, then on the chart (U, —x!,x%,... x"),
(d(—xl)/\dxz/\---/\dx”) (X1,...,X,) >0.

In either case, by Lemma 21.4, u = [(Xy,...,X,)] is a continuous pointwise orienta-
tion on M. O

Example 21.6 (Orientability of a regular zero set). By the regular level set theorem,
if 0 is a regular value of a C* function f(x,y,z) on R3, then the zero set f~(0) is a
C* manifold. In Problem 19.11 we constructed a nowhere-vanishing 2-form on the
regular zero set of a C* function. It then follows from Theorem 21.5 that the regular
zero set of a C* function on R? is orientable.

As an example, the unit sphere S in R is orientable. As another example, since
an open Mobius band is not orientable (Example 21.2), it cannot be realized as the
regular zero set of a C