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1. Some Exercises

5.4 We will prove the following. Suppose that (U, φ) is a chart on a
manifold M . Then for any open set V ⊂ U we have that (V, φV ) is a
coordinate chart.

First of all, since V ⊂ U is open, we have that φ(V ) is open and

φV : V → φ(V )

is a homeomorphism. Suppose then that (W,ψ) is another chart. Then

ψ ◦ φ−1 : φ(U) ∩W → ψ(U ∩W )

is smooth. Then

ψ ◦ φ−1V : φV (V ) ∩W → ψ(U ∩W )

is smooth. Similarly φV ◦ ψ−1 becomes smooth.

6.1

a) The atlases are not compatible since ψ ◦ φ−1(x) = x1/3 which is not
smooth.

b) Consider the map f : R → R′ given by f(x) = x3. Using the two
charts we have that

ψ ◦ f ◦ φ−1(x) = x

which is smooth. Similarly one shows that f−1 is smooth.

6.4

We need to check where the Jacobian matrix 1 0 0
2x 2y 2z
0 0 1


has maximal rank. We see that the map serves a a local coordinate system
except at the points y = 0.

7.2

Follow the hint.

7.6
1
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Show first that the induced equivalence relation is open, and that the
topology is Hausdorff. Then the orbit space S is Hausdorff and second
countable. Consider the open sets U1 = (0, 2π) and U2 = (π, 3π) in R. Then
the quotient maps πj : Uj → Vj = πj(Uj) ⊂ S are homeomorphisms. The
pair {V1, V2} covers S and so S is locally euclidean. Now we have that V1∩V2
consists of two connected components, and the transition map π2 ◦ π−11 is
given by the identity map and the map x 7→ x+ 2π.

8.1

In the book.

8.2

We have seen that for a general smooth map F : Rn → Rm the differential
F∗,p is represented by the Jaconian matrix JF (p). For a linear map F = L
this Jacobian coincides with L itself.

9.1

The Jacobian of f is (
3x2 − 6y 2y − 6x

)
If the rank is 0 we have that y = 3x and y = (1/2)x2. So we would have
0 = 3x − (1/2)x2 = x(3 − (1/2)x). So the rank is 1 outside the two points
(0, 0) and (6, 18).

9.2

The solution set is the 0-level set of the function

f(x, y, z, w) = x5 + y5 + z5 + w5 − 1

The Jacobian of this map is

5
(
x4 y4 z4 w4

)
The rank of this matrix is zero only if x = y = z = w = 0, but in that case
we are not on the 0-level set of f . So the level set if a regular submanifold.

9.3

We consider the map f : R3 → R defined by

f(x, y, z) = (x3 + y3 + z3 − 1, z − xy)

such that the solution set is the 0-level set of f . The Jacobian of the map f
is given by (

3x2 3y2 3z2

−y −x 1

)
If the rank of this matrix less than 2 we need y3 − x3 = 0 which means
x = y. We would further have y2 = −z2y and so y = −z2. We would have
that z − z4 = z(1 − z3) = 0. If z = 1 then we would need x = y = 0, but

then z − xy 6= 0. If z = 0 we have that 2x3 = 1 and so x = y = 2−1/3 but
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then z − xy 6= 0. So the rank of f is two along the 0-level set, and so the
level set is a regular submanifold.

11.1

For a point p ∈ Sn the tangent space TpS
n is an n-dimensional subspace

of TpRn+1. Any ν ∈ TpSn is induced by a smooth curve c : (−ε, ε) → Sn.

Setting f(x) =
∑n+1

i=1 (xi)2 we have that f(c(t)) ≡ 1, and so d
dtf(c(t)) ≡ 0.

By the chain rule we have that

d

dt
f(c(t)) = ∇f(c(t)) · ·c(t)

and so

d

dt
f(c(t))|t=0 = ∇f(p) · ·c(0) = 2

n+1∑
i=1

·pj ·cj(0) = 0

This shows that TpS
n is a subspace of the vector space of tangent vectors

Xp =
∑

ai
∂

∂xi
|p

such that ∇f(p) · a = 0. The tangent space TpS
n has dimension n, so it has

to be all of this space.

12.1

Let νp, νq ∈ TM be distinct. If p 6= q there are disjoint open sets U, V
with p ∈ U, q ∈ V . Then TU and TV are disjoint open sets containing
νp, νq ∈ TM respectively.

If p = q choose a coordinate chart (U, φ) with p ∈ U . Then ν1 = φ̃(νp) and

ν2 = φ̃(νq) are distinct, so there are disjoint open subsets V,W in φ(U)×Rn

of ν1 and ν2 resepectively. So φ̃−1(V ) and φ̃−1(W ) are disjoint open subsets
of TM separating the original two points.

12.2

(a) We have seen that the map ψ̃ ◦ φ̃ is the map

ψ̃ ◦ φ̃(x, a) = ((ψ ◦ φ−1)(x), J(ψ ◦ φ−1)(x)a) = ((ψ ◦ φ−1)(x), [
∂yi

∂xj
](x)a)

The n last components, indexed by i, become∑
j

∂yi

∂xj
(x) · aj

The Jacobian consists of four n×n-blocks. The upper left block is the map

ψ ◦ φ−1 differentiated with respect to the x-varibles, which is [ ∂y
i

∂xj
](x). The

map ψ◦φ−1 does not depend on a so the upper right block is zero. The lower
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left block you get from differentiating the n last components with respect
to the xjs so this is the matrix

[
∑
j

∂2yi

∂xj∂xk
(x) · aj ]1≤i,k≤n

The lower right block you get by differentiating the last n components with

respect to the ais, and you get back [ ∂y
i

∂xj
](x).

(b) The Jacobian determinant is the determinant of the Jabian described
in (a) wich is the product of the determinants of the upper left and the lower
right determinants.

18.3

On the one hand we have that

F ∗ω ∧ F ∗τ(X1, ..., Xk+l) =
1

k!l!

∑
σ

sgnσ · F ∗ω ⊗ F ∗τ(Xσ(1), ..., Xσ(τ))

=
1

k!l!

∑
σ

sgnσ · ω ⊗ τ(F∗Xσ(1), ..., F∗Xσ(τ))

One the other hand we have that

F ∗(ω ∧ τ)(X1, ..., Xk+l) = ω ∧ τ(F∗X1, ..., F∗Xk+l)

=
1

k!l!

∑
σ

sgnσ · ω ⊗ τ(F∗Xσ(1), ..., F∗Xσ(τ))

19.2

We are given

F (x, y) = (x2 + y2, xy) and ω = udu+ vdv
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We have that

F ∗ω = F ∗uF ∗du+ F ∗vF ∗dv

= u ◦ FdF ∗u+ v ◦ FdF ∗v
= (x2 + y2)d(x2 + y2) + xyd(xy)

= (x2 + y2)(2xdx+ 2ydy) + xy(ydx+ xdy)

= (2x3 + xy2)dx+ (2y3 + x2y)dy

19.3

We are given

τ =
−ydx+ xdy

x2 + y2
and γ(t) = (cos(t), sin(t)), t ∈ R

We have that

γ∗τ = (− sin(t)d(cos(t)) + cos(t)d(sin(t)))dt

= (sin2(t) + cos2(t))dt = dt

21.2

Suppose that [(X1, ..., Xn)] is continuous. Then for each point q ∈ M
there is a coordinate neighborhood (U, φ = (x1, ..., xn)) such that

[(X1, ..., Xn)] ∼ [(
∂

∂x1
, ...,

∂

∂xn
)]

on U . But then

[(φ∗X1, ..., φ∗Xn)] ∼ [(φ∗
∂

∂x1
, ..., φ∗

∂

∂xn
)] = [(

∂

∂r1
, ...,

∂

∂rn
)]

On the other hand, if

[(φ∗X1, ..., φ∗Xn)] ∼ [(
∂

∂r1
, ...,

∂

∂rn
)]

then

[(X1, ..., Xn)] ∼ [(
∂

∂x1
, ...,

∂

∂xn
)]

by applying (φ−1)∗

22.4 This is a ∗-problem.

23.1 Letting E denote the domain enclosed by the ellipse. There is an
orientation preserving diffeomorphism F : B2 → E defined by

F (x, y) = (ax, by)

We have that

A(E) =

∫
E
du ∧ dv =

∫
B2

F ∗(du ∧ dv) =

∫
B2

abdx ∧ dy = abπ

23.3 This is a ∗-problem.
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24.1 Let ω = df be a smooth 1-form an a compact manifold M . Since M
is compact we have that f has a global maximum at a point p. Choosing a
coordinate chart (U, φ) near p we have that ∂f

∂xj
(p) = 0 for j = 1, ..., n. We

have that

ω(p) =
∑
j

∂f

∂xj
(p)

∂

∂xj
|p = 0

25.1 Prove Proposition 25.2. (misprint)

25.2 Prove Proposition 25.3. (misprint)

(ii) Consider an exact sequence

A
f→ B

g

→ C→ 0

It is standard that g induces an injective linear map g̃ : B/Imf → C since
Imf = Ker(g). Since g is surjective we have that g̃ is surjective, and so g̃ is
an isomorphism.

25.3 Prove the exactness of the cohomology sequence (25.4) at Hk(A)
and Hk(B).

26.1

Prove exactness of the sequence

0→ Ωk(M)
i→ Ωk(U)⊕ Ωk(V )

j→ Ωk(U ∩ V )→ 0

at Ωk(U)⊕ Ωk(V ).

Imi ⊂ Kerj: For ω ∈ Ωk(M) we have that i(ω) = (ω|U , ω|V ). By defini-
tion

j(iω) = ω|U∩V − ω|U∩V = 0.

Kerj ⊂ Imi: Suppose that (ω, τ) ∈ Kerj. Then ω|U∩V = τ |U∩V , and so
there is a σ ∈ Ωk(M) such that σ|U = ω, σ|V = τ .

27.1

There is a homotopy equivalence f : M → N with homotopy inverse
g : N → M , and a homotopy equivalence h : N → P with homotopy
inverse k : P → N . There is a homotopy F : M × R → M such that
F (·, 0) = g ◦ f, F (·, 1) = Id, and a homotopy G : N × R → N such that
G(·, 0) = k ◦ h, F (·, 1) = Id.

We now want to show that g ◦ k ◦ h ◦ f : M → M is homotopic to the
identity map.

Step 1. Consider the homotopy g ◦Gt ◦ f . We have that

g ◦G0 ◦ f = g ◦ k ◦ h ◦ f and g ◦G1 ◦ f = g ◦ f
So

g ◦ k ◦ h ◦ f ∼ g ◦ f
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Step 2. By assumption we have g ◦ f ∼ Id. Since ∼ is an equivalence
relation (proved in class) we have that g ◦ k ◦ h ◦ f ∼ Id.

In a similar fashion we may show that h ◦ f ◦ g ◦ k ∼ Id.

27.2 Let p, q ∈ M where M is contractible. By definition, there is a
smooth map F : M × R → R such that F (·, 0) = Id and F (·, 1) = {x} for
some point x ∈M .

Then γ(t) = F (p, t), t ∈ [0, 1], is a continuous path such that γ(0) =
p, γ(1) = x, and γ̃(t) = F (q, t), t ∈ [0, 1], is a continuous path such that
γ̃(0) = q, γ(1) = x. We define a continuous path κ : [0, 2] → M by setting
κ(t) = γ(t) for t ∈ [0, 1] and κ(t) = γ̃(1 − t/2) for t ∈ [1, 2]. Then κ is a
continuous path connecting p and q.

27.3 In this case it is easy to write down a retraction:

F (p, v, t) = (p, (1− t)v)

We may also then show that S1 ⊂ R2 \ {0} is a deformation retract. There
is a diffeomorphism G : R2 \ {0} → S1 × R defined by

G(x) = (x/‖x‖, log ‖x‖)
sending S1 to S1 ×{0}. Its inverse is given by H(p, v) = evp. We have that

H ◦ Ft ◦G(x) = H(x/‖x‖, (1− t) log ‖x‖) = e(1−t) log ‖x‖x/‖x‖
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