Problem 7

Let X be a compact, convex set in \mathbb{R}^{n} with $\stackrel{o}{X} \neq \varnothing$. Replacing X with a set homeomorphic to X, if necesssary, we may assume that $\mathbf{0} \in \stackrel{o}{X}$ and that $\mathbb{D}^{n} \subset X$.

Define $f: \mathbb{S}^{n} \rightarrow[1, \infty)$ by $f(x)=\sup \{t \mid t x \in X\}$. Since X is compact, and therefore bounded and closed, and convex, it is clear that f is well defined, and that $t x \in X$ when $t \in[0, f(x)]$. We will show that f is continuous. Let $x_{0} \in \mathbb{S}^{n}$ and let x_{k} be a sequence in \mathbb{S}^{n} with limit x_{0}. We must show that $f\left(x_{k}\right) \rightarrow f\left(x_{0}\right)$. Since X, and therefore f is bounded we may, by replacing x_{k} by some subsequence, assume that $f\left(x_{k}\right)$ is convergent to some t_{0}, and we must prove that $t_{0}=f\left(x_{0}\right)$.

To this end, let $u_{1}, \ldots u_{n}$ be a basis of \mathbb{R}^{n} with $u_{i} \in \mathbb{S}^{n}$ for each i, and $u_{1}=x_{0}$. For each k, we can write $x_{k}=\sum_{i=1}^{n} a_{i}(k) u_{i}$. Define $v_{i}(k)=-u_{i}$ if $a_{i}(k)<0$ and let $v_{i}(k)=u_{i}$ otherwise. Redefining the constants $a_{i}(k)$ if necessary, we can write $x_{k}=\sum_{i=1}^{n} a_{i}(k) v_{i}(k)$ with $a_{i}(k) \geq 0$ for each i and k, and we get that $\sum_{i=0}^{n} \frac{a_{i}(k)}{f\left(v_{i}(k)\right)}>0$. Put $t(k)=\left(1 / \sum_{i=0}^{n} \frac{a_{i}(k)}{f\left(v_{i}(k)\right)}\right)$ and $b_{i}(k)=\frac{t(k) a_{i}(k)}{f\left(v_{i}(k)\right)}$. Then

$$
\sum_{i=1}^{n} b_{i}(k) f\left(v_{i}(k)\right) v_{i}(k)=t(k) \sum_{i=1}^{n} a_{i}(k) v_{i}(k)=t(k) x_{k}
$$

Since $\sum_{i=1}^{n} b_{i}(k)=1, b_{i}(k) \geq 0, f\left(v_{i}(k)\right) v_{i}(k) \in X$ and X is convex, we get that $t(k) x_{k} \in X$. From the definition of f, it follows that $f\left(x_{k}\right) \geq t(k)$.

Since $x_{k} \rightarrow x_{0}$, we must have that $a_{1}(k) \rightarrow 1$ and $a_{i}(k) \rightarrow 0$ for $i>1$ as $k \rightarrow \infty$, since it follows from our definitions that $x_{k} \rightarrow x_{0}$ implies that $v_{1}(k)=u_{1}=x_{0}$ for k large. It follows that $t(k) \rightarrow f\left(x_{0}\right)$. Since $f\left(x_{k}\right) \geq t(k)$, we get that $t_{0} \geq f\left(x_{0}\right)$. On the other hand, since $f\left(x_{k}\right) x_{k} \in X, X$ is closed and $f\left(x_{k}\right) x_{k} \rightarrow t_{0} x_{0}$, we get that $t_{0} x_{0} \in X$. So $t_{0}>f\left(x_{0}\right)$ is impossible (by the definition of f), and we must have $t_{0}=f\left(x_{0}\right)$. The continuity of f follows from this.

We will now see that $\partial X=\left\{f(x) x \mid x \in \mathbb{S}^{n}\right\}$. Since $t x \notin X$ for $t>f(x)$, and $t x \in X$ for $t \in[0, f(x)]$ it is clear that $\left\{f(x) x \mid x \in \mathbb{S}^{n}\right\} \subset \partial X$. If $0<t<f(x)$, it follows from the continuity of f that there exists an open neighborhood V of x in \mathbb{S}^{n} such that $f(y)>\frac{t}{2}+\frac{f(x)}{2}$ when $y \in V .\left\{s y \left\lvert\, s \in\left(0, \frac{t}{2}+\frac{f(x)}{2}\right)\right., y \in V\right\}$ is thus an open neighborhood of $t x$ contained in X, and we get that $t x \in \stackrel{0}{X} . \partial X=\left\{f(x) x \mid x \in \mathbb{S}^{n}\right\}$ follows from this.

Let $g: X \rightarrow \mathbb{R}^{n}$ be defined by $g(x)=x / f\left(\frac{x}{\|x\|}\right)$, when $x \neq 0$ and $f(\mathbf{0})=\mathbf{0}$. Since f is continuous and $\geq 1, g$ is continuous. We it leave as an easy exercise to prove that f is one-to-one with image equal \mathbb{D}^{n} and that $f(\partial X)=f\left(\left\{f(x) x \mid x \in \mathbb{S}^{n}\right\}\right)=\mathbb{S}^{n}$. Since X is compact and \mathbb{D}^{n} is Hausdorff, it follows that f also is closed and therefore a homemorphism between $(X, \partial X)$ and $\left(\mathbb{D}^{n}, \mathbb{S}^{n}\right)$.

