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Introduction

0.1 Algebraic Topology

Algebraic topology is largely about problems in algebra and topology, where ‘topology’ includes
the study of topological spaces and continuous maps, and ‘algebra’ includes the study of groups
and homomorphisms.

In this course (MAT4530) we shall study two constructions, leading from topology to algebra,
which were essentially introduced by Henri Poincaré in the 1890s. The first, the fundamental
group, assigns to each based space (X,x0) a group π1(X,x0). The second, the homology groups,
assigns to each space X a sequence of abelian groups Hn(X), one for each n ≥ 0. By considering
all the groups Hn(X) together, rather than for one n at a time, it is possible to axiomatize the
properties of the rule taking X to Hn(X). This was done by Eilenberg–Steenrod in the 1940s.
During the present course we shall establish as theorems the properties taken as axioms by
these authors.

In the sequel to this course (MAT4540), a dual construction to homology, called cohomology,
is studied. One key property of the sequence of cohomology groups Hn(X) is a bilinear pairing
∪ : Hn(X)×Hm(X)→ Hn+m(X), which ultimately derives from the diagonal map X → X×X.
The fundamental group will also be put into a more natural context, as the example i = 1 of the
sequence of homotopy groups πi(X,x0) for i ≥ 1. The homotopy groups of a space are powerful,
but subtle, invariants of that space, and their study forms a core part of homotopy theory.

0.2 Lifting Problems

Some geometric questions can be expressed as lifting problems, and this leads us to study
covering spaces.

Consider the unit sphere Sn in Euclidean (n+ 1)-space. For each point x ∈ Sn the tangent
space TxS

n can be identified with the orthogonal complement x⊥ = {t ∈ Rn+1 | x · t = 0} of x
viewed as a vector in Rn+1. These tangent spaces combine to the total space

TSn = {(x, t) | x · t = 0} ⊂ Sn × Rn+1

of the tangent bundle of Sn. There is a projection map

p : TSn −→ Sn

(x, t) 7−→ x

with fibers p−1(x) = TxS
n, for all x ∈ Sn. A continuous vector field on Sn is a map

v : Sn −→ TSn
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such that v(x) ∈ TxSn, for each x ∈ Sn. Equivalently, the composition p ◦ v is the identity map
id : Sn → Sn.

TSn

p

��

Sn

v
<<

id
// Sn

We say that v : Sn → TSn is a lifting of id : Sn → Sn over the projection p : TSn → Sn.
In this case, a lifting always exists, e.g. given by the zero vector field, with v(x) = 0 ∈ TxSn,

for each x ∈ Sn. A more interesting question is whether there exists a nowhere zero vector field
on Sn. To describe this as a lifting problem, we consider the subspace

T ′Sn = {(x, t) | x · t = 0, t 6= 0} ⊂ Sn × (Rn+1 − {0})

of TSn given by the nonzero tangent vectors. There is still a projection map p′ : T ′Sn → Sn,
and a nowhere zero vector field on Sn is a map v : Sn → T ′Sn with p′v = id.

T ′Sn

p′

��

Sn

v
<<

id
// Sn

A well-known theorem now states that such vectors fields exist for n odd, but not for n even.
You cannot ‘comb the hair on a coconut’ without a cowlick.

A typical proof of this would show that if p′v = id then the identity map id : Sn → Sn can
be continuously deformed to the antipodal map a : Sn → Sn (with a(x) = −x), and for n even
this contradicts the fact that these maps have degree 1 and (−1)n+1 = −1, respectively. See
Theorem 2.28 in [1].

More generally, we can consider a map p : E → B and a space Y . Given a map f : Y → B
we may ask if there is a continuous lift ` : Y → E of f over p, meaning that p ◦ ` = f :

E

p

��

Y

`
>>

f
// B

As stated, this question will depend on the choice of map f . However, for many maps p : E → B
of spaces the answer does not change if we make a continuous deformation of f , i.e., change f
by a homotopy.

Recall that a two maps f0, f1 : Y → B are homotopic if there exists a map

F : Y × [0, 1] −→ B

with F (y, 0) = f0(y) and F (y, 1) = f1(y), for all y ∈ Y . Here [0, 1] denotes the unit interval
in R, often abbreviated to I. A map F as above is called a homotopy from f0 to f1, and we
write F : f0 ' f1.

Definition 0.2.1. A map p : E → B has the homotopy lifting property (abbreviated HLP) if for
any space Y , any map `0 : Y → E, and any homotopy F : f0 ' f1 of the composite f0 = p ◦ `0,
there exists a lifted homotopy L : `0 ' `1, with F = p ◦ L.

Y
`0 //

i0
��

E

p

��

Y × I

L
<<

F
// B
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Here i0 : Y → Y × I denotes the inclusion i0(y) = (y, 0).

Lemma 0.2.2. If p : E → B has the homotopy lifting property, f0, f1 : Y → B are homotopic
maps, and f0 admits a lift `0 : Y → E over p, then f1 also admits a lift `1 : Y → E over p.

Proof. Choose a homotopy F : f0 ' f1 and lift it to a homotopy L : `0 ' `1, using the homotopy
lifting property. Then `1 is the required lift of f1.

Example 0.2.3. The projection map p′ : T ′Sn → Sn has the homotopy lifting property. This
is an example of a fiber bundle (over a numerable base space), all of which have the homotopy
lifting property.

When Y = ∗ is a single point, the homotopy lifting property specializes to the path lifting
property: For any point e0 ∈ E and any path f : I → B from f(0) = p(e0) there exists a lifted
path f̃ : I → E from f̃(0) = e0 with pf̃ = f .

In Section 1.3 of [1] we will discuss covering spaces, and prove that they satisfy a strong
form of the homotopy lifting property, called the covering homotopy property (CHP):

Proposition 0.2.4. Given a covering space p : E → B, a homotopy F : Y × I → B, and a
map f̃ : Y → E with pf̃(y) = F (y, 0) for all y ∈ Y , then there exists a unique homotopy
F̃ : Y × I → E with f̃(y) = F̃ (y, 0) and pF̃ = F .

It will turn out that the fundamental group π1(X,x0) is an excellent tool for the classification
of covering spaces p : X̃ → X. For half-reasonable spaces X, the connected based covering
spaces (X̃, x̃0) → (X,x0) are in one-to-one correspondence with the subgroups of π1(X,x0).
See Theorem 1.38 in [1].

0.3 Extension Problems

Other geometric questions can be expressed as extension problems, and this leads us to study
CW complexes.

For example, if f : Dn → Dn is any self-map of the unit disc in Euclidean n-space, then
Brouwer’s fixed point theorem asserts that there exists a point x ∈ Dn with f(x) = x. To prove
this, note that if f has no fixed point, then there exists a map r : Dn → Sn−1, to the boundary
(n − 1)-sphere of that disc, such that f(x), x and r(x) lie on a straight line, in that order. In
particular, r(x) = x if x ∈ Sn−1, so r is a retraction of Dn to the subspace Sn−1. In other
words, if f has no fixed point, then the identity map id : Sn−1 → Sn−1 can be extended over
the inclusion Sn−1 ⊂ Dn.

Sn−1

id

##

��

��

Dn
r
// Sn−1

The proof of Brouwer’s theorem then proceeds by showing that no such extension r of id over
Sn−1 ⊂ Dn exists.

More generally, one can consider spaces X and Y , and a subspace A of X. Given any map
f : A→ Y we may ask if there exists an extension e : X → Y of f over A ⊂ X, meaning that e
is a map with e|A = f :

A
f

  

��

��

X e
// Y
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As stated, this question will depend on the choice of map f . Again, for many pairs (X,A) of
spaces the answer does not change if we deform f by a homotopy.

Definition 0.3.1. A pair (X,A) has the homotopy extension property (abbreviated HEP) if for
any space Y , any map e0 : X → Y , and any homotopy F : f0 ' f1 of the restriction f0 = e0|A,
there exists an extended homotopy E : e0 ' e1, with F = E|A× I.

A
i0 //

��

��

A× I
��

�� F

��

X
i0 //

e0 //

X × I
E

##
Y

Lemma 0.3.2. If (X,A) has the homotopy extension property, f0, f1 : A → Y are homotopic
maps, and f0 admits an extension e0 : X → Y , then f1 also admits an extension e1 : X → Y .

Proof. Choose a homotopy F : f0 ' f1 and extend it to a homotopy E : e0 ' e1, using the
homotopy extension property. Then e1 is the required extension of f1.

Proposition 0.3.3. The pair (Dn, Sn−1) has the homotopy extension property, for each n ≥ 0.

Proof. Let M = Dn × {0} ∪ Sn−1 × I be the mapping cylinder of the inclusion Sn−1 ⊂ Dn.
Let i : M → Dn × I denote the evident inclusion. Given a map e0 : Dn → Y and a homotopy
F : Sn−1 × I → Y from f0 = e0|Sn−1 to f1, we can combine these to a map G : M → Y , given
by G(x, 0) = e0(x) for x ∈ Dn and G(a, t) = F (a, t) for a ∈ Sn−1 and t ∈ I.

Sn−1 i0 //
��

��

Sn−1 × I
��

��

Dn //M
��

i
��

G

$$
Dn × I

E
// Y

To show that (Dn, Sn−1) has the homotopy extension property, we must show that G can
be extended over i to a map E : Dn × I → Y . This is achieved by exhibiting a retraction
r : Dn × I → M , and setting E = G ◦ r. Such a retraction r is given by radial projection
from (0, 2) ∈ Dn × [0, 2] ⊂ Rn × R, so that (0, 2), (x, t) and r(x, t) lie on a straight line, with
(x, t) ∈ Dn × I and r(x, t) ∈M .

We now produce more examples, using (Dn, Sn−1) as a building block.

Definition 0.3.4. Let ϕ : Sn−1 → A be a map. Form the quotient space

X = (A
∐

Dn)/∼ ,

where ∼ denotes the equivalence relation generated by x ∼ ϕ(x) for x ∈ Sn−1 ⊂ Dn and
ϕ(x) ∈ A. We write X = A ∪ϕ Dn or A ∪ϕ en, and say that we obtain X from A by attaching
an n-cell along ϕ.

Sn−1 ϕ
//

��

��

A
��

��

Dn Φ // X
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Note that A is a subspace of X. The canonical map Φ: Dn → X is called the characteristic
map of the n-cell. It restricts to a homeomorphism Dn − Sn−1 ∼= X −A.

Example 0.3.5. If A = ∗ is a single point, and ϕ : Sn−1 → ∗ is the only such map, then
X = ∗ ∪ϕ Dn is the quotient space

(∗
∐

Dn)/∼ = Dn/Sn−1

which is homeomorphic to the n-sphere Sn. Hence Sn ∼= ∗ ∪ϕ en is obtained by attaching an
n-cell to ∗.

We shall see that (X,A) has the homotopy extension property, if X is obtained by attaching
a cell to A. We can also attach many cells, in sequence. For simplicity, we start with the
‘absolute’ case A = ∅.

Definition 0.3.6. A CW complex is a space X with a sequence of subspaces

∅ = X(−1) ⊂ X(0) ⊂ · · · ⊂ X(n−1) ⊂ X(n) ⊂ · · · ⊂ X

such that the n-skeleton X(n) is obtained from the (n− 1)-skeleton X(n−1) by attaching n-cells
along a set of attaching maps {ϕα : Sn−1 → X(n−1)}α, for each n ≥ 0:∐

α S
n−1 ϕ

//

��

��

X(n−1)
��

��∐
αD

n Φ // X(n)

Here ϕ =
∐
α ϕα and Φ =

∐
α Φα, where ϕα : Sn−1 → X(n−1) and Φα : Dn → X(n) are called

the attaching map and the characteristic map of the n-cell with index α. In particular, X(0) is
any set with the discrete topology. We require that X has the weak topology generated by the
skeleta, meaning that a subset L ⊂ X is closed if and only if L∩X(n) is closed in X(n), for each
n ≥ 0.

The open subsets U ⊂ X are precisely those for which U ∩X(n) is open in X(n) for all n ≥ 0.
Hatcher simply writes Xn for the n-skeleton. The assumption that all n-cells are attached to
the (n−1)-skeleton is what distinguishes CW complexes within the larger class of spaces known
as cell complexes. The prefix ‘CW’ refers to ‘closure finite’ and ‘weak topology’, and originated
with a different, but equivalent, definition used by J. H. C. Whitehead, who introduced this
class of spaces in the 1940s. For the purposes of algebraic topology, all spaces are ‘weakly’
equivalent to CW complexes. In particular, for each space Y there is a CW complex X with
π1(X) ∼= π1(Y ) and Hn(X) ∼= Hn(Y ) for all n ≥ 0.

Definition 0.3.7. A relative CW complex is a pair (X,A) with a sequence of subspaces

A = X(−1) ⊂ X(0) ⊂ · · · ⊂ X(n−1) ⊂ X(n) ⊂ · · · ⊂ X

such that the relative n-skeleton X(n) is obtained from the relative (n− 1)-skeleton X(n−1) by
attaching n-cells along a set of attaching maps {ϕα : Sn−1 → X(n−1)}α, for each n ≥ 0:∐

α S
n−1 ϕ

//

��

��

X(n−1)
��

��∐
αD

n Φ // X(n)

As in the absolute case, we require that X has the weak topology generated by the relative
skeleta X(n).
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Proposition 0.3.8. Any relative CW complex (X,A) has the homotopy extension property.

Sketch proof. First use Proposition 0.3.3 to deduce that

(
∐
α∈J

Dn,
∐
α∈J

Sn−1)

has the homotopy extension property, for any indexing set J . Then use the definition of X(n)

as the union of X(n−1) with
∐
αD

n along
∐
α S

n−1, to deduce that (X(n), X(n−1)) has the
homotopy extension property. By induction on n ≥ 0, it follows that (X(n), A) has the homotopy
extension property, for each n ≥ 0. Using the assumption that X has the weak topology, it
follows that (X,A) has the homotopy extension property. See Proposition 0.16 in [1].

Example 0.3.9. The n-sphere Sn admits the structure of a CW complex, with one 0-cell and
one n-cell. For n ≥ 1, the 0-skeleton is a point ∗, and the n-skeleton is all of Sn.

Example 0.3.10. Let real projective n-space RPn be the quotient space

RPn = Sn/∼

where x ∼ a(x) = −x identifies antipodal points. As a set

RPn ∼= {L ⊂ Rn+1 | dimL = 1}

can be identified with the set of lines through the origin (1-dimensional real subspaces) of Rn+1,
taking the equivalence class [x] = {x,−x} to the line L = Rx, for x ∈ Sn ⊂ Rn+1.

The inclusions 0 ⊂ R1 ⊂ · · · ⊂ Rn ⊂ Rn+1 then lead to inclusions

∅ ⊂ RP 0 ⊂ · · · ⊂ RPn−1 ⊂ RPn

and this sequence is the skeleton filtration of a CW structure on RPn, with k-skeleton (RPn)(k) =
RP k for each k ≤ n. Let

Dn
+ = {(x0, . . . , xn) ∈ Sn | xn ≥ 0}

be the upper hemisphere in Sn. The projection to the first n coordinates induces a homeomor-
phism Dn

+
∼= Dn, and the composition

Φn : Dn ∼= Dn
+ ⊂ Sn

pn−→ RPn

where pn is the canonical quotient map, is the characteristic map of the single n-cell in RPn.
The attaching map

ϕn : Sn−1 −→ RPn−1

is equal to pn−1. Hence
RPn ∼= RPn−1 ∪ϕn D

n .

Sn−1 ϕn //
��

��

RPn−1
��

��

Dn Φn // RPn

More generally, RPn has one k-cell for each 0 ≤ k ≤ n, with attaching map ϕk = pk−1 : Sk−1 →
RP k−1:

RPn = ∗ ∪ϕ1 D
1 ∪ϕ2 · · · ∪ϕn−1 D

n−1 ∪ϕn D
n .

We can also form the infinite-dimensional real projective space

RP∞ =
⋃
n

RPn

which is a CW complex with n-skeleton RPn, having exactly one n-cell for each n ≥ 0.
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Example 0.3.11. Let complex projective n-space CPn be the quotient space

CPn = S2n+1/∼

where S2n+1 is the unit sphere in R2n+2 ∼= Cn+1 and x ∼ λx for all λ ∈ S1 ⊂ C. As a set

CPn ∼= {L ⊂ Cn+1 | dimL = 1}

can be identified with the set of complex lines through the origin (1-dimensional complex sub-
spaces) of Cn+1, taking the equivalence class [x] = {λx | λ ∈ S1} to the complex line L = Cx,
for x ∈ S2n+1 ⊂ Cn+1.

The inclusions 0 ⊂ C1 ⊂ · · · ⊂ Cn ⊂ Cn+1 then lead to inclusions

∅ ⊂ CP 0 ⊂ · · · ⊂ CPn−1 ⊂ CPn

and this sequence is the skeleton filtration of a CW structure on CPn, with 2k-skeleton (CPn)(2k) =
CP k for each k ≤ n. Let

D2n
+ = {(x0, . . . , xn) ∈ S2n+1 | xn ≥ 0}

be the subspace of S2n+1 ⊂ Cn+1 where the last complex coordinate, xn ∈ C, is real and
non-negative. Note that

xn =
√

1− |x0|2 − · · · − |xn−1|2

for (x0, . . . , xn) ∈ D2n
+ . The projection to the first n complex coordinates induces a homeomor-

phism D2n
+
∼= D2n ⊂ Cn, and the composition

Φ2n : D2n ∼= D2n
+ ⊂ S2n+1 qn−→ CPn

where qn is the canonical quotient map, is the characteristic map of the single 2n-cell in CPn.
The attaching map

ϕ2n : S2n−1 −→ CPn−1

is equal to qn−1. Hence
CPn ∼= CPn−1 ∪ϕ2n D

2n .

S2n−1 ϕ2n //
��

��

CPn−1
��

��

D2n Φ2n // CPn

More generally, CPn has one 2k-cell for each 0 ≤ k ≤ n, with attaching map ϕ2k = qk−1 : S2k−1 →
CP k−1:

CPn = ∗ ∪ϕ2 D
2 ∪ϕ4 · · · ∪ϕ2n−2 D

2n−2 ∪ϕ2n D
2n .

We can also form the infinite-dimensional complex projective space

CP∞ =
⋃
n

CPn

which is a CW complex with 2n-skeleton CPn, having exactly one 2n-cell for each n ≥ 0, and
no odd-dimensional cells.
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The maps pn : Sn → RPn are examples of covering maps. The maps qn : S2n+1 → CPn
are not covering maps, but they have the homotopy lifting property, and are examples of ‘fiber
bundles’, which also include the projection map p′ : T ′Sn → Sn previously discussed.

There is a close connection between the cell structure of a CW complex X and the homology
groups Hn(X) of that space. The attaching maps of the (n + 1)- and n-cells determine two
homomorphisms ⊕

α

Z ∂n+1−→
⊕
β

Z ∂n−→
⊕
γ

Z

where α, β and γ run over the sets of (n+ 1)-cells, n-cells and (n− 1)-cells in X, respectively.
The group Cn(X) =

⊕
β Z is called the group of cellular n-chains in X. The image Bn(X) =

im(∂n+1) is called the group of n-boundaries, and the kernel Zn(X) = ker(∂n) is called the
group of n-cycles. The composite ∂n ◦ ∂n+1 is zero, so

Bn(X) ⊂ Zn(X) ⊂ Cn(X) .

To measure whether each n-cycle is an n-boundary we consider the quotient group

Hn(X) = Zn(X)/Bn(X) .

This is the n-th (cellular) homology group of X. It measures, in some sense, the presence of
n-dimensional ‘holes’ in X. See Section 2.2 in [1].

Example 0.3.12. H2k(CPn) ∼= Z for each 0 ≤ k ≤ n, while the remaining groups Hi(CPn)
are trivial.

0.4 Homotopy Functors

Lifting problems for maps to p : E → B, where p has the homotopy lifting property, only
depend on the homotopy class [f ] of the map f : Y → B that is to be lifted. In the same way,
extension problems for maps out of i : A → X, where i has the homotopy extension property,
only depend on the homotopy class [f ] of the map f : A → Y to be extended. It is therefore
possible to address these questions using constructions that are insensitive to deformations
through continuous maps, i.e., homotopies.

The constructions π1 and Hn are examples of such constructions, or functors, from spaces
to groups, taking maps to homomorphisms. The condition of functoriality implies that these
constructions take homeomorphisms to isomorphisms, so that if X ∼= Y then Hn(X) ∼= Hn(Y )
for all n ≥ 0, and similarly for π1 in the based case.

Moreover, π1 and Hn are homotopy invariant, in the sense that homotopic maps are taken
to the same homomorphism. For instance, if f ' f ′ : X → Y , then Hn(f) = Hn(f ′) : Hn(X)→
Hn(Y ) for each n ≥ 0. This implies that not only homeomorphic spaces X and Y have isomor-
phic homology groups, but also any pair of homotopy equivalent spaces:

Definition 0.4.1. A map f : X → Y is a homotopy equivalence if there exists a map g : Y → X,
called the homotopy inverse, such that there are homotopies gf ' id : X → X and fg ' id : Y →
Y . In this case we say that X and Y are homotopy equivalent, and write X ' Y .

There is therefore an intermediate context, or category, between topology and algebra, called
the homotopy category. The objects of study are still topological spaces, but the morphisms
from a space X to a space Y are not the set of maps f : X → Y , but instead the quotient set
of homotopy classes [f ] of such a map.
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In this category, the homotopy classes [f ] and [g] of a homotopy equivalence f and its
homotopy inverse g are strict inverses, in the sense that [g][f ] = idX and [f ][g] = idY are equal,
as homotopy classes of maps.

Questions in topology can therefore be studied in two steps, first by comparison with a
homotopy invariant problem in the homotopy category, and then by means of π1 and the Hn in
terms of a problem in algebra.

Topological Spaces −→ Homotopy Category −→ Graded Abelian Groups

X 7−→ X 7−→ H∗(X)

f 7−→ [f ] 7−→ f∗

Taking the cup product into account, the second map can be further refined as a map
to ‘Graded Rings’ (using cohomology). Alteratively, it can be extended through the ‘Stable
Homotopy Category’, which is even closer to algebra than the ordinary homotopy category.
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