
EXCISION
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Let A and B be subspaces of X, and suppose that their interiors U = int(A)
and V = int(B) cover X, so that X = U ∪ V = A∪B. Say that a singular n-chain∑
i niσi in X is fine (with respect to {A,B}) if each σi has image contained in A

or B. Let Cn(A + B) ⊂ Cn(X) be the subgroup of fine singular n-chains. The
boundary of a fine n-chain is a fine (n−1)-chain, so (C∗(A+B), ∂) is a subcomplex
of (C∗(X), ∂). Let

ι : C∗(A+B) −→ C∗(X)

be the inclusion of that subcomplex. Let Hn(A + B) = Hn(C∗(A + B), ∂) be the
homology groups of the subcomplex of fine chains.

Theorem 1 (Fine Chains). The inclusion ι induces an isomorphism

ι∗ : Hn(A+B)
∼=−→ Hn(X)

for each integer n.

Proof. We construct a subdivision operator S : Cn(X) → Cn(X) for each n, and
show that this is a chain map that is chain homotopic to the identity, by a chain
homotopy T : Cn(X) → Cn+1(X) with ∂T + T∂ = 1 − S. We arrange that S and
T restrict to fine operators S : Cn(A + B) → Cn(A + B) and T : Cn(A + B) →
Cn+1(A+B), respectively. Then we show that for each simplex σ : ∆n → X there
exists anm ≥ 0 such that Smσ is fine. It follows that for each chain α ∈ Cn(X) there
exists an m ≥ 0 such that Smα ∈ Cn(A+B). Notice that D = T +TS+ . . . TSm−1

is a chain homotopy from Sm to the identity, and that it restricts to a fine operator
D : Cn(A+B)→ Cn+1(A+B).

Consider any n-cycle α ∈ Zn(X) ⊂ Cn(X), and choose m so that Smα is fine.
Then Smα = α+∂Dα represents the same homology class as α. Since Smα is fine,
it follows that ι∗ maps the homology class of Smα ∈ Zn(A + B) to the homology
class of α, so ι∗ is surjective.

Consider any fine n-cycle α ∈ Zn(A + B) ⊂ Cn(A + B), and suppose that ι∗
maps the homology class of α to zero, i.e., that α = ∂β for a β ∈ Cn+1(X). Choose
m so that Smβ is fine. Then ∂Smβ = Sm∂β = Smα = α+ ∂Dα, where Dα is fine.
Hence α = ∂(Smβ − Dα) lies in Bn(A + B) and represents zero in Hn(A + B).
Thus ι∗ is injective.

We shall initially define S and T on the standard simplices ∆n = [e0, . . . , en]
for n ≥ 0, and thereafter extend to general singular simplices σ : ∆n → X in a
“natural” manner. The definitions will be inductively given in the wider generality
of linear simplices in R∞, i.e., singular simplices σ : ∆n → R∞ given by the order-
preserving affine linear maps taking e0, . . . , en to given points v0, . . . , vn. We shall
write [v0, . . . , vn] for this linear simplex, also in the cases where v0, . . . , vn are not
in general position. A finite sum of linear simplices, with integer coefficients, will
be called a linear chain.

For any linear n-simplex σ = [v0, . . . , vn] and any point b let the join of b and σ
be the linear (n+ 1)-simplex

bσ = [b, v0, . . . , vn] .
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Extend the rule σ 7→ bσ to linear chains λ =
∑
i niσi by additivity, so that bλ =∑

i ni(bσi). Then

∂(bσ) = ∂[b, v0, . . . , vn] = [v0, . . . , vn]−
n∑
i=0

(−1)i[b, v0, . . . , v̂i, . . . , vn] = σ − b∂σ ,

where b∂σ is interpreted as [b] for n = 0. Hence ∂b+ b∂ = 1− [b]ε.
Given any linear n-simplex σ = [v0, . . . , vn], let

bσ = (

n∑
i=0

vi)/(n+ 1)

be its barycenter. It is the point with barycentric coordinates (t0, . . . , tn) = (1/(n+
1), . . . , 1/(n+ 1)) all equal.

We now define the subdivision operator S on linear chains. Each linear 0-chain
is its own subdivision: we define S(σ) = σ for σ = [v0], and extend additively to
linear 0-chains. For n ≥ 1, assume that the subdivision S(λ) has been defined for
all linear (n− 1)-chains, including λ = ∂σ. Then for each linear n-simplex σ we let

S(σ) = bσS(∂σ) .

As usual, we extend S additively to linear n-chains. For example,

S([v0, v1]) = b([v1]− [v0]) = [b, v1]− [b, v0]

where b is the barycenter of [v0, v1]. Continuing,

S([v0, v1, v2]) = bS([v1, v2])− bS([v0, v2]) + bS([v0, v1])

= [b, b12, v2]− [b, b12, v1]− [b, b02, v2]

+ [b, b02, v0] + [b, b01, v1]− [b, b12, v0] ,

where b is the barycenter of [v0, v1, v2], and bij is the barycenter of [vi, vj ].
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The subdivision operator commutes with the boundary operators, i.e., ∂S(λ) =
S∂(λ). This is clear on linear 0-chains, and to prove it for a linear n-simplex σ we
may assume that it holds for all linear (n− 1)-chains, including ∂σ. Then

∂S(σ) = ∂bσS(∂σ) = S(∂σ)− bσ∂S(∂σ) = S(∂σ)− bσS(∂∂σ) = S(∂σ) .

Notice that for each linear n-simplex σ = [v0, . . . , vn], the subdivision S(σ) is a
signed sum of linear n-simplices τ , each with image contained in (the image of) σ.
For later use, we note that the diameter of (the image of) each τ , with respect to
the Euclidean metric in R∞, is at most n/(n+ 1) times that of σ:

diam(τ) ≤ n

n+ 1
diam(σ) .
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To see this, note first that the diameter of τ is the distance between two of its
vertices. If both of these lie in a proper face of σ, we are done by induction, since
n/(n + 1) increases with n. Otherwise, one of the two vertices is the barycenter b
of σ, and we may assume that the other vertex is one of the vertices vi of σ. Now
b lies n/(n+ 1)-th of the way from vi to the barycenter of the opposite face, so the
distance from vi to b is bounded by n/(n+ 1) times the diameter of σ, as claimed.

We continue by defining the chain homotopy T on linear chains. For n = 0 we
let T (σ) = [v0, v0] for σ = [v0], and extend additively to all linear 0-chains. For
n ≥ 1 assume that T (λ) has been defined for all linear (n − 1)-chains, including
λ = ∂σ. Then for each linear n-simplex σ we let

T (σ) = bσ(σ − T (∂σ)) .

Again, we extend T additively to linear n-chains. For example,

T ([v0, v1]) = b([v0, v1]− T ([v1]− [v0])) = [b, v0, v1]− [b, v1, v1] + [b, v0, v0]

where b is the barycenter of [v0, v1].
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We prove that ∂T + T∂ = 1 − S on linear n-chains by induction on n. For
n = 0, this is the true assertion ∂[v0, v0] = [v0] − [v0]. Let n ≥ 1 and assume that
∂T + T∂ = 1 − S on linear (n − 1)-chains. In particular, for any linear n-simplex
σ, we know that ∂T (∂σ) + T (∂∂σ) = ∂σ−S(∂σ), so ∂(σ− T (∂σ)) = S(∂σ). Then

∂T (σ) = ∂bσ(σ − T (∂σ)) = (σ − T (∂σ))− bσ∂(σ − T (∂σ))

= σ − T (∂σ)− bσS(∂σ) = σ − T (∂σ)− S(σ) .

Hence ∂T + T∂ = 1− S on σ, and therefore also on general linear n-chains.
Now we extend the operators S and T to singular chains in X. For σ : ∆n → X

define S(σ) ∈ Cn(X) by

S(σ) = σ#S(∆n) .

Here S(∆n) is a signed sum of linear n-simplices ∆n → ∆n in ∆n ⊂ R∞; by
σ#S(∆n) we mean the corresponding signed sum of singular simplices in X given
by composing σ with these linear simplices. For example, when n = 1,

S(σ) = σ|[b, v1]− σ|[b, v0]

where b is the barycenter of [v0, v1], and each restriction is implicitly composed with
the order-preserving affine linear homeomorphism [e0, e1] → [b, v1], or [e0, e1] →
[b, v0], according to the case. As usual, S is defined on singular n-chains by addi-
tivity. It follows from the fact that σ# is a chain map, ∂S = S∂ on linear chains,
and the definitions given, that

∂S(σ) = σ#S(∂∆n) = S(∂σ) .

Finally, we define T : Cn(X)→ Cn+1(X) by

T (σ) = σ#T (∆n) .

Here T (∆n) is a signed sum of linear n-simplices in ∆n ⊂ R∞, and σ#T (∆n)
denotes the corresponding signed sum of singular simplices in X obtained by com-
position with σ : ∆n → X. As for S we find that σ#T (∂∆n) = T (∂σ), so

∂T (σ) = σ − σ#T (∂∆n)− σ#S(∆n) = σ − T (∂σ)− S(σ) ,
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and ∂T + T∂ = 1 − S on σ. Hence this identity also holds on general singular
n-chains α.

It is clear that if σ has image in A (resp. B), then S(σ) and T (σ) are signed
sums of singular simplices with images in A (resp. B), so if α is fine with respect
to {A,B}, then so are S(α) and T (α).

It remains to show that for each σ : ∆n → X we can find an m ≥ 0 such that
Smσ is fine. For this, we use the Lebesgue number lemma for the compact space
∆n, with the Euclidean metric from Rn+1, and the open cover {σ−1(U), σ−1(V )}.
The lemma asserts that there exists an ε > 0 such that every subset Q ⊂ ∆n of
diameter less than ε is contained in σ−1(U) ⊂ σ−1(A) or in σ−1(V ) ⊂ σ−1(B).
Equivalently, σ(Q) is contained in U ⊂ A or in V ⊂ B. Hence if Q is a linear
simplex within ∆n, then σ restricted to Q is fine with respect to {A,B}.

Recall that S(∆n) is a signed sum of linear simplices with images of diameter

at most n/(n + 1) times diam(∆n) =
√

2. More generally, Sm(∆n) is a signed

sum of linear simplices τ with images of diameter at most (n/(n + 1))m ·
√

2.
These bounds tend to 0 as m increases to ∞, so there exists an m ≥ 0 with
(n/(n+ 1))m ·

√
2 < ε, where ε is a Lebesgue number of {σ−1(U), σ−1(V )}. Hence

for this m, the subdivision Sm(σ) is fine with respect to {A,B}, as claimed. �

Consider the following inclusion maps.

A ∩B iA //

iB

��

A

jA

��

B
jB // X

Theorem 2 (Mayer–Vietoris). Let A,B ⊂ X be subspaces whose interiors cover X.
There is a natural long exact sequence

. . .
∂−→ Hn(A ∩B)

Φ−→ Hn(A)⊕Hn(B)
Ψ−→ Hn(X)

∂−→ Hn−1(A ∩B)
Φ−→ . . .

where Φ = (iA∗, iB∗) and Ψ = jA∗ − jB∗.

Proof. In each degree n, the subgroups Cn(A) and Cn(B) of Cn(X) intersect in
Cn(A ∩ B) and span Cn(A + B). Hence there is a short exact sequence of chain
complexes

(1) 0→ C∗(A ∩B)
φ−→ C∗(A)⊕ C∗(B)

ψ−→ C∗(A+B)→ 0

where φ = (iA#, iB#) and ιψ = jA# − jB#. Hence the upper row in the following
diagram is exact, and splices together to a long exact sequence as n varies.

Hn(A ∩B)
Φ // Hn(A)⊕Hn(B) //

Ψ
((

Hn(A+B)

ι∗

��

// Hn−1(A ∩B)

Hn(X)

∂

77

By the previous theorem, ι∗ is an isomorphism under the topological hypothesis on
A and B. Hence the lower row is also exact, and splices together for varying n to
a long exact sequence. �

Note that the homomorphism ∂ in the Mayer–Vietoris long exact sequence is
given by first inverting ι∗, and then applying the connecting homomorphism for
the short exact sequence of chain complexes (1). More explicitly, for an n-cycle
γ ∈ Zn(X) we apply subdivision enough times to ensure that we can write Sm(γ) =
α − β with α ∈ Cn(A) and β ∈ Cn(B). Then ∂α = ∂β is a cycle in Cn−1(A ∩ B),
and ∂[γ] = [∂α] is its homology class.
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Theorem 3 (Excision). Let A,B ⊂ X be subspaces whose interiors cover X. Then
the inclusion (B,A ∩B)→ (X,A) induces isomorphisms

Hn(B,A ∩B)
∼=−→ Hn(X,A)

for all n. Equivalently, if Z ⊂ A ⊂ X are such that cl(Z) ⊂ int(A), then the
inclusion (X \ Z,A \ Z)→ (X,A) induces isomorphisms

Hn(X \ Z,A \ Z)
∼=−→ Hn(X,A)

for all n.

Proof. In each degree n, the subgroups Cn(A) and Cn(B) of Cn(X) intersect in
Cn(A∩B) and span Cn(A+B). Hence the inclusion C∗(B)→ C∗(A+B) induces
an isomorphism of chain complexes

C∗(B)/C∗(A ∩B)
∼=−→ C∗(A+B)/C∗(A) .

We write C∗(B,A∩B) for the left hand quotient, as usual, and write C∗(A+B,A)
for the right hand quotient. With this notation, we have the following vertical maps
of horizontal short exact sequences of chain complexes:

0 // C∗(A ∩B) //

��

C∗(B) //

��

C∗(B,A ∩B) //

∼=
��

0

0 // C∗(A) //

=

��

C∗(A+B) //

ι

��

C∗(A+B,A) //

ῑ

��

0

0 // C∗(A) // C∗(X) // C∗(X,A) // 0

The homomorphism of relative homology groups induced by the inclusion (B,A ∩
B)→ (X,A) is thus the composite of the isomorphism

H∗(B,A ∩B)
∼=−→ H∗(A+B,A)

induced by the chain level isomorphism above, and the homomorphism

ῑ∗ : H∗(A+B,A) −→ H∗(X,A)

induced by the chain map ῑ : C∗(A+B,A)→ C∗(X,A). The identity map, ι and ῑ
induce a vertical map of horizontal long exact sequences

Hn(A) //

=

��

Hn(A+B) //

ι∗

��

Hn(A+B,A)
∂ //

ῑ∗

��

Hn−1(A) //

=

��

Hn−1(A+B)

ι∗

��

Hn(A) // Hn(X) // Hn(X,A)
∂ // Hn−1(A) // Hn−1(X) .

The maps in the first, second, fourth and fifth columns are isomorphisms, by the
proposition above in the case of ι∗. Hence, by the five-lemma it follows that the map
in the third column, ῑ∗, is also an isomorphism. Thus H∗(B,A ∩ B) → H∗(X,A)
is a composite of two isomorphisms, and is therefore an isomorphism.

The alternative formulation arises by setting B = X \ Z, since then int(B) =
X \ cl(Z), and int(A) ∪ int(B) = X is equivalent to cl(Z) ⊂ int(A). �
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