EXCISION

JOHN ROGNES

Let A and B be subspaces of X, and suppose that their interiors U = int(A)
and V = int(B) cover X, so that X = UUV = AU B. Say that a singular n-chain
>, mio; in X is fine (with respect to {4, B}) if each o; has image contained in A
or B. Let C,,(A+ B) C C,(X) be the subgroup of fine singular n-chains. The
boundary of a fine n-chain is a fine (n— 1)-chain, so (C.(A+ B), 0) is a subcomplex
of (Ci(X),0). Let

t: Co(A+ B) — C.(X)
be the inclusion of that subcomplex. Let H,(A + B) = H,(C«(A + B),d) be the
homology groups of the subcomplex of fine chains.

Theorem 1 (Fine Chains). The inclusion v induces an isomorphism
Lot Hy(A+ B) = H,(X)
for each integer n.

Proof. We construct a subdivision operator S: Cp(X) — C,(X) for each n, and
show that this is a chain map that is chain homotopic to the identity, by a chain
homotopy T': C,(X) — Cpy1(X) with 0T +T9 = 1 — S. We arrange that S and
T restrict to fine operators S: Cp(A+ B) — Cp(A+ B) and T: C,(A + B) —
Crn+1(A + B), respectively. Then we show that for each simplex o: A™ — X there
exists an m > 0 such that S™ ¢ is fine. It follows that for each chain « € C}, (X)) there
exists an m > 0 such that S™« € C,(A+ B). Notice that D = T+TS+...TS™ 1
is a chain homotopy from S™ to the identity, and that it restricts to a fine operator
D:C,(A+ B) = Cpy1(A+ B).

Consider any n-cycle o € Z,(X) C Cp(X), and choose m so that S™« is fine.
Then S™a = a+ dDa represents the same homology class as «. Since S™« is fine,
it follows that ¢, maps the homology class of S™«a € Z,(A 4+ B) to the homology
class of «, so ¢, is surjective.

Consider any fine n-cycle a € Z,(A+ B) C C,,(A + B), and suppose that ¢,
maps the homology class of « to zero, i.e., that « = 9 for a 8 € C},41(X). Choose
m so that S™f is fine. Then 9S™f = S™0S = S™a = a+ dDa, where Da is fine.
Hence a = 9(S™B — Da) lies in B, (A + B) and represents zero in H,(A + B).
Thus ¢, is injective.

We shall initially define S and T on the standard simplices A™ = [eq, ..., €,]
for n > 0, and thereafter extend to general singular simplices o: A" — X in a
“natural” manner. The definitions will be inductively given in the wider generality
of linear simplices in R*°, i.e., singular simplices o: A™ — R> given by the order-
preserving affine linear maps taking ey, ..., e, to given points v, ..., v,. We shall
write [vg, ..., v,] for this linear simplex, also in the cases where vy, ..., v, are not
in general position. A finite sum of linear simplices, with integer coefficients, will
be called a linear chain.

For any linear n-simplex o = [vy, ..., v,] and any point b let the join of b and o
be the linear (n + 1)-simplex

bo = [b,vg,...,vn].
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Extend the rule o + bo to linear chains A = )", n;o; by additivity, so that bA =
Zi ’I’Ll(bﬁl) Then

d(bo) = O[b,vg, ..., vn] = [Vo, ..., Vn] —Z(—l)i[b,vo,...,@,...,vn] =0 —boo,
i=0

where bOo is interpreted as [b] for n = 0. Hence 9b + b0 = 1 — [ble.

Given any linear n-simplex o = [vg, ..., v,], let
be = (D vi)/(n+1)
i=0

be its barycenter. It is the point with barycentric coordinates (to,...,t,) = (1/(n+
1),...,1/(n+1)) all equal.

We now define the subdivision operator S on linear chains. Each linear 0-chain
is its own subdivision: we define S(o) = o for o = [vp], and extend additively to
linear O-chains. For n > 1, assume that the subdivision S(\) has been defined for
all linear (n — 1)-chains, including A = do. Then for each linear n-simplex o we let

S(o) = b,5(00).
As usual, we extend S additively to linear n-chains. For example,
S([vo, v1]) = b([v1] = [vo]) = [b, v1] — [b, vo]
where b is the barycenter of [vg, v;]. Continuing,
S([vo, v1,v2]) = bS([v1, v2]) — bS([vg,v2]) + bS([ve, v1])
= [b,b12,va] — [b,b12,v1] — [b, boz, v2]
+ [b, boz, vo] + [b, bo1, v1] — [b, b12,vo] ,

where b is the barycenter of [vg, v, v2], and b;; is the barycenter of [v;, v;].

R\

The subdivision operator commutes with the boundary operators, i.e., dS(\) =
SA(N). This is clear on linear 0-chains, and to prove it for a linear n-simplex o we
may assume that it holds for all linear (n — 1)-chains, including do. Then

0S(0) = 0b,8(00) = S(00) — b,05(00) = S(0c) — b, S(000) = S(do) .

Notice that for each linear n-simplex o = [vg, ..., v,], the subdivision S(o) is a
signed sum of linear n-simplices 7, each with image contained in (the image of) o
For later use, we note that the diameter of (the image of) each 7, with respect to
the Euclidean metric in R*°, is at most n/(n + 1) times that of o:

V2

bo2

Vo

diam(7) < - :L_ i diam(o) .
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To see this, note first that the diameter of 7 is the distance between two of its
vertices. If both of these lie in a proper face of o, we are done by induction, since
n/(n + 1) increases with n. Otherwise, one of the two vertices is the barycenter b
of o, and we may assume that the other vertex is one of the vertices v; of 0. Now
b lies n/(n + 1)-th of the way from v; to the barycenter of the opposite face, so the
distance from v; to b is bounded by n/(n + 1) times the diameter of o, as claimed.

We continue by defining the chain homotopy 7' on linear chains. For n = 0 we
let T'(o) = [vg,v0] for o = [vg], and extend additively to all linear O-chains. For
n > 1 assume that T'(\) has been defined for all linear (n — 1)-chains, including
A = Jo. Then for each linear n-simplex o we let

T(0) =bs(c —T(00)).
Again, we extend T additively to linear n-chains. For example,
T([U07/U1]) = b([?}o,'[}l] - T([Ul] - [UO])) = [b7 'U07'Ul] - [b7 'U17'Ul] + [b7 UO7UO]

where b is the barycenter of [vg, v1].

Vo b (%
Vo U1

We prove that 07T + T9 = 1 — S on linear n-chains by induction on n. For
n = 0, this is the true assertion d[vg, vo] = [vg] — [vo]. Let n > 1 and assume that
OT +T9 =1— 5 on linear (n — 1)-chains. In particular, for any linear n-simplex
o, we know that 0T(9o) + T(000) = do — S(9o), so O(o —T(do)) = S(0o). Then

0T (o) = 0b, (0 —T(00)) = (6 — T(00)) — by0(c — T'(J0))
=0 —T(9o) —b,S(00) =0 —T(do) — S(0).

Hence 9T +T90 =1 — S on o, and therefore also on general linear n-chains.

Now we extend the operators S and T to singular chains in X. For o: A" - X
define S(o) € C,,(X) by

S(o) = ox4S(A").

Here S(A™) is a signed sum of linear n-simplices A" — A™ in A™ C R*; by
o4 S(A™) we mean the corresponding signed sum of singular simplices in X given
by composing o with these linear simplices. For example, when n =1,

S(o) = al[b,v1] — al[b, vo]
where b is the barycenter of [vg, v1], and each restriction is implicitly composed with
the order-preserving affine linear homeomorphism [eg,e1] — [b,v1], or [eg,e1] —
[b, vg], according to the case. As usual, S is defined on singular n-chains by addi-

tivity. It follows from the fact that oy is a chain map, 95 = S0 on linear chains,
and the definitions given, that

05(0) = o4 S(0A™) = S(00o) .
Finally, we define T': Cy,(X) — Crq1(X) by
T(o) =o0xT(A").

Here T(A™) is a signed sum of linear n-simplices in A™ C R*, and 04T (A")
denotes the corresponding signed sum of singular simplices in X obtained by com-
position with o: A™ — X. As for S we find that 04T (0A™) = T(do), so

0T (o) =0 —oxT(0A™) — 04 S(A") =0 —T(90) — S(0),
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and 0T +T0 = 1 — S on 0. Hence this identity also holds on general singular
n-chains a.

It is clear that if o has image in A (resp. B), then S(o) and T'(o) are signed
sums of singular simplices with images in A (resp. B), so if « is fine with respect
to {A, B}, then so are S(«) and T'(«).

It remains to show that for each o: A™ — X we can find an m > 0 such that
S™¢ is fine. For this, we use the Lebesgue number lemma for the compact space
A", with the Euclidean metric from R"*!, and the open cover {c~1(U),oc~1(V)}.
The lemma asserts that there exists an ¢ > 0 such that every subset ) C A" of
diameter less than € is contained in o= 1(U) C 071(A) or in o= }(V) C o~ }(B).
Equivalently, o(Q) is contained in U C A or in V' C B. Hence if Q is a linear
simplex within A™, then o restricted to @ is fine with respect to {4, B}.

Recall that S(A™) is a signed sum of linear simplices with images of diameter
at most n/(n 4 1) times diam(A™) = /2. More generally, S™(A") is a signed
sum of linear simplices 7 with images of diameter at most (n/(n + 1))™ - /2.
These bounds tend to 0 as m increases to oo, so there exists an m > 0 with
(n/(n+1))™ - /2 < ¢, where € is a Lebesgue number of {¢=(U),oc~*(V)}. Hence
for this m, the subdivision S™ (o) is fine with respect to {A, B}, as claimed. O

Consider the following inclusion maps.

ANB—“,4

B_75 . x
Theorem 2 (Mayer—Vietoris). Let A, B C X be subspaces whose interiors cover X .

There is a natural long exact sequence

L HL(ANB) % Hy(A) @ Hy(B) - Hy(X) -5 Hy(ANB) -2 ..
where ® = (iax, i) and ¥ = jax — jBx-

Proof. In each degree n, the subgroups C,(A) and C,(B) of C,(X) intersect in
Cn(AN B) and span C,(A + B). Hence there is a short exact sequence of chain
complexes

(1) 0= CL(ANB) -2 CL(A) & C.(B) -5 CL.(A+ B) > 0

where ¢ = (ia#,ipx) and 1 = jag — jpx. Hence the upper row in the following
diagram is exact, and splices together to a long exact sequence as n varies.

H,(ANB) —2— H,(A) & H,(B) — H,(A+ B) — H,_1(AN B)

By the previous theorem, ¢, is an isomorphism under the topological hypothesis on
A and B. Hence the lower row is also exact, and splices together for varying n to
a long exact sequence. O

Note that the homomorphism 0 in the Mayer—Vietoris long exact sequence is
given by first inverting ¢., and then applying the connecting homomorphism for
the short exact sequence of chain complexes (1). More explicitly, for an n-cycle
v € Z,(X) we apply subdivision enough times to ensure that we can write S™(vy) =
a— B with a € Cy,(A) and § € C,(B). Then da = 9 is a cycle in C,,_1(AN B),
and 9[y] = [0q] is its homology class.
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Theorem 3 (Excision). Let A, B C X be subspaces whose interiors cover X. Then
the inclusion (B, AN B) — (X, A) induces isomorphisms

H,(B,ANB) = H,(X, A)
for all n. Equivalently, if Z C A C X are such that cl(Z) C int(A), then the
inclusion (X \ Z, A\ Z) — (X, A) induces isomorphisms
Ho(X\ Z,A\ Z) = H,(X, A)
for all n.

Proof. In each degree n, the subgroups C,(A) and C,(B) of C,(X) intersect in
Cpn(ANB) and span C, (A + B). Hence the inclusion C,(B) — C.(A+ B) induces
an isomorphism of chain complexes

C.(B)/C.(ANB) =5 C.(A+ B)/C.(A).

We write C\ (B, AN B) for the left hand quotient, as usual, and write C.(A+ B, A)
for the right hand quotient. With this notation, we have the following vertical maps
of horizontal short exact sequences of chain complexes:

0—— C.(AN B) C.(B) C.(B,ANB) ——0

| J y

0 Cu(A) —— C(A+ B) —— Cu(A+ B, A) —— 0

1

0— C.(4) Cy(X) Ci(X,A) ——0

The homomorphism of relative homology groups induced by the inclusion (B, AN
B) — (X, A) is thus the composite of the isomorphism

H.(B,ANB) — H,(A+ B, A)
induced by the chain level isomorphism above, and the homomorphism
Is: H{(A+ B,A) — H.(X,A)

induced by the chain map z: C,(A+ B, A) — C.(X, A). The identity map, ¢ and ¢
induce a vertical map of horizontal long exact sequences

Hy(A) — Hy(A+ B) — Hy(A+ B, A) —2— H,_1(A) — H,_1(A + B)

Hp(A) ——— Hy(X) ———— Ho (X, A) — 2 Hy 1 (A) ——— Hy 1 (X).
The maps in the first, second, fourth and fifth columns are isomorphisms, by the
proposition above in the case of t,.. Hence, by the five-lemma it follows that the map
in the third column, Z,, is also an isomorphism. Thus H.(B,AN B) — H.(X, A)
is a composite of two isomorphisms, and is therefore an isomorphism.

The alternative formulation arises by setting B = X \ Z, since then int(B)

X\ cl(Z), and int(A) Uint(B) = X is equivalent to cl(Z) C int(A).
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