MAT4530 (2021 SPRING) MANDATORY ASSIGNMENT

MAKOTO YAMASHITA

Typeset your solutions to these problems by LaTeX and submit the file on the course canvas page. Due date is March 28.

Problem 1 (Section 1.1, Exercise 5). Let X be a topological space. Show that the following conditions are equivalent.

- (1) Any loop $f: S^1 \to X$ is homotopic to a constant map.
- (2) Any loop $f: S^1 \to X$ can be extended to a map $f: D^2 \to X$ up to the identification $S^1 = \partial D^2$.
- (3) For any $x_0 \in X$, the fundamental group $\pi_1(X, x_0)$ is trivial.

Problem 2 (Section 1.2, Exercise 9). Here M_g is the closed oriented surface of genus g, and M'_g is the complement of an open disk in M_g (punctured surface). Let C be a cycle in M_g that separates M_g to punctured surfaces M'_h and M'_k , with $\partial M'_h = C = \partial M'_k$.

- (1) Show that M'_h does not retract onto C.
- (2) Show that M_g retracts onto the 'meridian' cycle C' along any hole. (Picture proof is enough.)

Problem 3 (Section 1.3, Exercises 1 and 2). Here $p: \tilde{X} \to X$ denotes a covering.

- (1) Given $p: \tilde{X} \to X$ and a subspace $A \subset X$, show that $\tilde{A} = p^{-1}(A)$ becomes a covering over A.
- (2) Given $p_1: \tilde{X}_1 \to X_1$ and $p_2: \tilde{X}_2 \to X_2$, show that the direct product space $\tilde{X}_1 \times \tilde{X}_2$ becomes a covering over $X_1 \times X_2$.
- (3) Use these to show that, given $p_1: \tilde{X}_1 \to X$ and $p_2: \tilde{X}_2 \to X$, the fiber product space $\tilde{X}_1 \times_X \tilde{X}_2$ becomes a covering over X.
- **Problem 4** (Section 2.1, Exercise 3). (1) Construct a Δ -complex structure on S^n whose vertices are the points $(0, \ldots, \pm 1, \ldots, 0) \in S^n \subset \mathbb{R}^{n+1}$.
 - (2) Construct a Δ -complex structure on $\mathbb{R}P^n$ as a quotient of this structure.

Date: 23.02.2021.