
Homotopy theory begins with the homotopy groups πn(X) , which are the nat-

ural higher-dimensional analogs of the fundamental group. These higher homotopy

groups have certain formal similarities with homology groups. For example, πn(X)

turns out to be always abelian for n ≥ 2, and there are relative homotopy groups fit-

ting into a long exact sequence just like the long exact sequence of homology groups.

However, the higher homotopy groups are much harder to compute than either ho-

mology groups or the fundamental group, due to the fact that neither the excision

property for homology nor van Kampen’s theorem for π1 holds for higher homotopy

groups.

In spite of these computational difficulties, homotopy groups are of great theo-

retical significance. One reason for this is Whitehead’s theorem that a map between

CW complexes which induces isomorphisms on all homotopy groups is a homotopy

equivalence. The stronger statement that two CW complexes with isomorphic homo-

topy groups are homotopy equivalent is usually false, however. One of the rare cases

when a CW complex does have its homotopy type uniquely determined by its homo-

topy groups is when it has just a single nontrivial homotopy group. Such spaces,

known as Eilenberg–MacLane spaces, turn out to play a fundamental role in algebraic

topology for a variety of reasons. Perhaps the most important is their close connec-

tion with cohomology: Cohomology classes in a CW complex correspond bijectively

with homotopy classes of maps from the complex into an Eilenberg–MacLane space.
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Thus cohomology has a strictly homotopy-theoretic interpretation, and there is an

analogous but more subtle homotopy-theoretic interpretation of homology, explained

in §4.F.

A more elementary and direct connection between homotopy and homology is

the Hurewicz theorem, asserting that the first nonzero homotopy group πn(X) of a

simply-connected space X is isomorphic to the first nonzero homology group H̃n(X) .

This result, along with its relative version, is one of the cornerstones of algebraic

topology.

Though the excision property does not always hold for homotopy groups, in some

important special cases there is a range of dimensions in which it does hold. This

leads to the idea of stable homotopy groups, the beginning of stable homotopy theory.

Perhaps the major unsolved problem in algebraic topology is the computation of the

stable homotopy groups of spheres. Near the end of §4.2 we give some tables of

known calculations that show quite clearly the complexity of the problem.

Included in §4.2 is a brief introduction to fiber bundles, which generalize covering

spaces and play a somewhat analogous role for higher homotopy groups. It would

easily be possible to devote a whole book to the subject of fiber bundles, even the

special case of vector bundles, but here we use fiber bundles only to provide a few

basic examples and to motivate their more flexible homotopy-theoretic generalization,

fibrations, which play a large role in §4.3. Among other things, fibrations allow one

to describe, in theory at least, how the homotopy type of an arbitrary CW complex

is built up from its homotopy groups by an inductive procedure of forming ‘twisted

products’ of Eilenberg–MacLane spaces. This is the notion of a Postnikov tower. In

favorable cases, including all simply-connected CW complexes, the additional data

beyond homotopy groups needed to determine a homotopy type can also be described,

in the form of a sequence of cohomology classes called the k invariants of a space. If

these are all zero, the space is homotopy equivalent to a product of Eilenberg–MacLane

spaces, and otherwise not. Unfortunately the k invariants are cohomology classes

in rather complicated spaces in general, so this is not a practical way of classifying

homotopy types, but it is useful for various more theoretical purposes.

This chapter is arranged so that it begins with purely homotopy-theoretic notions,

largely independent of homology and cohomology theory, whose roles gradually in-

crease in later sections of the chapter. It should therefore be possible to read a good

portion of this chapter immediately after reading Chapter 1, with just an occasional

glimpse at Chapter 2 for algebraic definitions, particularly the notion of an exact se-

quence which is just as important in homotopy theory as in homology and cohomology

theory.
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Perhaps the simplest noncontractible spaces are spheres, so to get a glimpse of

the subtlety inherent in homotopy groups let us look at some of the calculations of

the groups πi(S
n) that have been made. A small sample is shown in the table below,

extracted from [Toda 1962].

πi(S
n)

i -→
1 2 3 4 5 6 7 8 9 10 11 12

n 1 Z 0 0 0 0 0 0 0 0 0 0 0

↓ 2 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2× Z2

3 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2× Z2

4 0 0 0 Z Z2 Z2 Z× Z12 Z2× Z2 Z2× Z2 Z24× Z3 Z15 Z2

5 0 0 0 0 Z Z2 Z2 Z24 Z2 Z2 Z2 Z30

6 0 0 0 0 0 Z Z2 Z2 Z24 0 Z Z2

7 0 0 0 0 0 0 Z Z2 Z2 Z24 0 0

8 0 0 0 0 0 0 0 Z Z2 Z2 Z24 0

This is an intriguing mixture of pattern and chaos. The most obvious feature is the

large region of zeros below the diagonal, and indeed πi(S
n) = 0 for all i < n as we

show in Corollary 4.9. There is also the sequence of zeros in the first row, suggesting

that πi(S
1) = 0 for all i > 1. This too is a fairly elementary fact, a special case of

Proposition 4.1, following easily from covering space theory.

The coincidences in the second and third rows can hardly be overlooked. These

are the case n = 1 of isomorphisms πi(S
2n) ≈ πi−1(S

2n−1)×πi(S
4n−1) that hold for

n = 1,2,4 and all i . The next case n = 2 says that each entry in the fourth row is

the product of the entry diagonally above it to the left and the entry three units below

it. Actually, these isomorphisms πi(S
2n) ≈ πi−1(S

2n−1)×πi(S
4n−1) hold for all n if

one factors out 2 torsion, the elements of order a power of 2. This is a theorem of

James that will be proved in [SSAT].

The next regular feature in the table is the sequence of Z ’s down the diagonal. This

is an illustration of the Hurewicz theorem, which asserts that for a simply-connected

space X , the first nonzero homotopy group πn(X) is isomorphic to the first nonzero

homology group Hn(X) .

One may observe that all the groups above the diagonal are finite except for

π3(S
2) , π7(S

4) , and π11(S
6) . In §4.B we use cup products in cohomology to show

that π4k−1(S
2k) contains a Z direct summand for all k ≥ 1. It is a theorem of Serre

proved in [SSAT] that πi(S
n) is finite for i > n except for π4k−1(S

2k) , which is the

direct sum of Z with a finite group. So all the complexity of the homotopy groups of

spheres resides in finite abelian groups. The problem thus reduces to computing the

p torsion in πi(S
n) for each prime p .
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An especially interesting feature of the table is that along each diagonal the groups

πn+k(S
n) with k fixed and varying n eventually become independent of n for large

enough n . This stability property is the Freudenthal suspension theorem, proved in

§4.2 where we give more extensive tables of these stable homotopy groups of spheres.

Definitions and Basic Constructions

Let In be the n dimensional unit cube, the product of n copies of the interval

[0,1] . The boundary ∂In of In is the subspace consisting of points with at least one

coordinate equal to 0 or 1. For a space X with basepoint x0 ∈ X , define πn(X,x0)

to be the set of homotopy classes of maps f : (In, ∂In)→(X,x0) , where homotopies

ft are required to satisfy ft(∂I
n) = x0 for all t . The definition extends to the case

n = 0 by taking I0 to be a point and ∂I0 to be empty, so π0(X,x0) is just the set of

path-components of X .

When n ≥ 2, a sum operation in πn(X,x0) , generalizing the composition opera-

tion in π1 , is defined by

(f + g)(s1, s2, ··· , sn) =

{
f(2s1, s2, ··· , sn), s1 ∈ [0,

1/2]
g(2s1 − 1, s2, ··· , sn), s1 ∈ [

1/2,1]

It is evident that this sum is well-defined on homotopy classes. Since only the first

coordinate is involved in the sum operation, the same arguments as for π1 show that

πn(X,x0) is a group, with identity element the constant map sending In to x0 and

with inverses given by −f(s1, s2, ··· , sn) = f(1− s1, s2, ··· , sn) .

The additive notation for the group operation is used because πn(X,x0) is abelian

for n ≥ 2. Namely, f +g ≃ g+f via the homotopy indicated in the following figures.

The homotopy begins by shrinking the domains of f and g to smaller subcubes of

In , with the region outside these subcubes mapping to the basepoint. After this has

been done, there is room to slide the two subcubes around anywhere in In as long

as they stay disjoint, so if n ≥ 2 they can be slid past each other, interchanging their

positions. Then to finish the homotopy, the domains of f and g can be enlarged

back to their original size. If one likes, the whole process can be done using just the

coordinates s1 and s2 , keeping the other coordinates fixed.

Maps (In, ∂In)→(X,x0) are the same as maps of the quotient In/∂In = Sn to X

taking the basepoint s0 = ∂I
n/∂In to x0 . This means that we can also view πn(X,x0)

as homotopy classes of maps (Sn, s0)→(X,x0) , where homotopies are through maps
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of the same form (Sn, s0)→(X,x0) . In this

interpretation of πn(X,x0) , the sum f +g

is the composition Sn
c
-----→ Sn ∨ Sn

f∨g
------------→X

where c collapses the equator Sn−1 in Sn

to a point and we choose the basepoint s0
to lie in this Sn−1 .

We will show next that if X is path-connected, different choices of the base-

point x0 always produce isomorphic groups πn(X,x0) , just as for π1 , so one is

justified in writing πn(X) for πn(X,x0) in these cases. Given a

path γ : I→X from x0 = γ(0) to another basepoint x1 = γ(1) ,

we may associate to each map f : (In, ∂In)→(X,x1) a new map

γf : (In, ∂In)→(X,x0) by shrinking the domain of f to a smaller

concentric cube in In , then inserting the path γ on each radial

segment in the shell between this smaller cube and ∂In . When

n = 1 the map γf is the composition of the three paths γ , f , and the inverse of γ ,

so the notation γf conflicts with the notation for composition of paths. Since we are

mainly interested in the cases n > 1, we leave it to the reader to make the necessary

notational adjustments when n = 1.

A homotopy of γ or f through maps fixing ∂I or ∂In , respectively, yields a homo-

topy of γf through maps (In, ∂In)→(X,x0) . Here are three other basic properties:

(1) γ(f + g) ≃ γf + γg .

(2) (γη)f ≃ γ(ηf) .

(3) 1f ≃ f , where 1 denotes the constant path.

The homotopies in (2) and (3) are obvious. For (1), we first deform f and g to be

constant on the right and left halves of In , respectively, producing maps we may

call f + 0 and 0+ g , then we excise a progressively wider symmetric middle slab of

γ(f + 0)+ γ(0+ g) until it becomes γ(f + g) :

An explicit formula for this homotopy is

ht(s1, s2, ··· , sn) =

{
γ(f + 0)

(
(2− t)s1, s2, ··· , sn

)
, s1 ∈ [0,

1/2]
γ(0+ g)

(
(2− t)s1 + t − 1, s2, ··· , sn

)
, s1 ∈ [

1/2,1]

Thus we have γ(f + g) ≃ γ(f + 0)+ γ(0+ g) ≃ γf + γg .

If we define a change-of-basepoint transformation βγ :πn(X,x1)→πn(X,x0) by

βγ([f ]) = [γf] , then (1) shows that βγ is a homomorphism, while (2) and (3) im-

ply that βγ is an isomorphism with inverse βγ where γ is the inverse path of γ ,
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γ(s) = γ(1− s) . Thus if X is path-connected, different choices of basepoint x0 yield

isomorphic groups πn(X,x0) , which may then be written simply as πn(X) .

Now let us restrict attention to loops γ at the basepoint x0 . Since βγη = βγβη , the

association [γ]֏ βγ defines a homomorphism from π1(X,x0) to Aut(πn(X,x0)) ,

the group of automorphisms of πn(X,x0) . This is called the action of π1 on πn ,

each element of π1 acting as an automorphism [f ]֏ [γf] of πn . When n = 1

this is the action of π1 on itself by inner automorphisms. When n > 1, the action

makes the abelian group πn(X,x0) into a module over the group ring Z[π1(X,x0)] .

Elements of Z[π1] are finite sums
∑
iniγi with ni ∈ Z and γi ∈ π1 , multiplication

being defined by distributivity and the multiplication in π1 . The module structure on

πn is given by
(∑

iniγi
)
α =

∑
ini(γiα) for α ∈ πn . For brevity one sometimes says

πn is a π1 module rather than a Z[π1] module.

In the literature, a space with trivial π1 action on πn is called ‘n simple’, and

‘simple’ means ‘n simple for all n ’. In this book we will call a space abelian if it has

trivial action of π1 on all homotopy groups πn , since when n = 1 this is the condition

that π1 be abelian. This terminology is consistent with a long-established usage of

the term ‘nilpotent’ to refer to spaces with nilpotent π1 and nilpotent action of π1

on all higher homotopy groups; see [Hilton, Mislin, & Roitberg 1975]. An important

class of abelian spaces is H–spaces, as we show in Example 4A.3.

We next observe that πn is a functor. Namely, a map ϕ : (X,x0)→(Y ,y0) in-

duces ϕ∗ :πn(X,x0)→πn(Y ,y0) defined by ϕ∗([f ]) = [ϕf] . It is immediate from

the definitions that ϕ∗ is well-defined and a homomorphism for n ≥ 1. The func-

tor properties (ϕψ)∗ = ϕ∗ψ∗ and 11∗ = 11 are also evident, as is the fact that if

ϕt : (X,x0)→(Y ,y0) is a homotopy then ϕ0∗ =ϕ1∗ .

In particular, a homotopy equivalence (X,x0) ≃ (Y ,y0) in the basepointed sense

induces isomorphisms on all homotopy groups πn . This is true even if basepoints are

not required to be stationary during homotopies. We showed this for π1 in Proposi-

tion 1.18, and the generalization to higher n ’s is an exercise at the end of this section.

Homotopy groups behave very nicely with respect to covering spaces:

Proposition 4.1. A covering space projection p : (X̃, x̃0)→(X,x0) induces isomor-

phisms p∗ :πn(X̃, x̃0)→πn(X,x0) for all n ≥ 2 .

Proof: For surjectivity of p∗ we apply the lifting criterion in Proposition 1.33, which

implies that every map (Sn, s0)→(X,x0) lifts to (X̃, x̃0) provided that n ≥ 2 so that

Sn is simply-connected. Injectivity of p∗ is immediate from the covering homotopy

property, just as in Proposition 1.31 which treated the case n = 1. ⊔⊓

In particular, πn(X,x0) = 0 for n ≥ 2 whenever X has a contractible universal

cover. This applies for example to S1 , so we obtain the first row of the table of homo-

topy groups of spheres shown earlier. More generally, the n dimensional torus Tn ,
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the product of n circles, has universal cover Rn , so πi(T
n) = 0 for i > 1. This is

in marked contrast to the homology groups Hi(T
n) which are nonzero for all i ≤ n .

Spaces with πn = 0 for all n ≥ 2 are sometimes called aspherical.

The behavior of homotopy groups with respect to products is very simple:

Proposition 4.2. For a product
∏
αXα of an arbitrary collection of path-connected

spaces Xα there are isomorphisms πn
(∏

αXα
)
≈
∏
απn(Xα) for all n .

Proof: A map f :Y→
∏
αXα is the same thing as a collection of maps fα :Y→Xα .

Taking Y to be Sn and Sn×I gives the result. ⊔⊓

Very useful generalizations of the homotopy groups πn(X,x0) are the relative

homotopy groups πn(X,A,x0) for a pair (X,A) with a basepoint x0 ∈ A . To define

these, regard In−1 as the face of In with the last coordinate sn = 0 and let Jn−1 be the

closure of ∂In − In−1 , the union of the remaining faces of In . Then πn(X,A,x0) for

n ≥ 1 is defined to be the set of homotopy classes of maps (In, ∂In, Jn−1)→(X,A,x0) ,

with homotopies through maps of the same form. There does not seem to be a com-

pletely satisfactory way of defining π0(X,A,x0) , so we shall leave this undefined (but

see the exercises for one possible definition). Note that πn(X,x0, x0) = πn(X,x0) , so

absolute homotopy groups are a special case of relative homotopy groups.

A sum operation is defined in πn(X,A,x0) by the same formulas as for πn(X,x0) ,

except that the coordinate sn now plays a special role and is no longer available for

the sum operation. Thus πn(X,A,x0) is a group for n ≥ 2, and this group is abelian

for n ≥ 3. For n = 1 we have I1 = [0,1] , I0 = {0} , and J0
= {1} , so π1(X,A,x0)

is the set of homotopy classes of paths in X from a varying point in A to the fixed

basepoint x0 ∈ A . In general this is not a group in any natural way.

Just as elements of πn(X,x0) can be regarded as homotopy classes of maps

(Sn, s0)→(X,x0) , there is an alternative definition of πn(X,A,x0) as the set of ho-

motopy classes of maps (Dn, Sn−1, s0)→(X,A,x0) , since collapsing Jn−1 to a point

converts (In, ∂In, Jn−1) into (Dn, Sn−1, s0) . From this viewpoint, addition is done via

the map c :Dn→Dn ∨Dn collapsing Dn−1
⊂ Dn to a point.

A useful and conceptually enlightening reformulation of what it means for an

element of πn(X,A,x0) to be trivial is given by the following compression criterion:

A map f : (Dn, Sn−1, s0)→(X,A,x0) represents zero in πn(X,A,x0) iff it is ho-

motopic rel Sn−1 to a map with image contained in A .

For if we have such a homotopy to a map g , then [f ] = [g] in πn(X,A,x0) , and

[g] = 0 via the homotopy obtained by composing g with a deformation retraction of

Dn onto s0 . Conversely, if [f ] = 0 via a homotopy F :Dn×I→X , then by restricting

F to a family of n disks in Dn×I starting with Dn×{0} and ending with the disk

Dn×{1}∪ Sn−1
×I , all the disks in the family having the same boundary, then we get

a homotopy from f to a map into A , stationary on Sn−1 .
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A map ϕ : (X,A,x0)→(Y , B,y0) induces maps ϕ∗ :πn(X,A,x0)→πn(Y , B,y0)

which are homomorphisms for n ≥ 2 and have properties analogous to those in the

absolute case: (ϕψ)∗ = ϕ∗ψ∗ , 11∗ = 11, and ϕ∗ = ψ∗ if ϕ ≃ ψ through maps

(X,A,x0)→(Y , B,y0) .

Probably the most useful feature of the relative groups πn(X,A,x0) is that they

fit into a long exact sequence

··· -→πn(A,x0)
i∗-----→πn(X,x0)

j∗
-----→πn(X,A,x0)

∂
-----→πn−1(A,x0) -→··· -→π0(X,x0)

Here i and j are the inclusions (A,x0)֓ (X,x0) and (X,x0, x0)֓ (X,A,x0) . The

map ∂ comes from restricting maps (In, ∂In, Jn−1)→(X,A,x0) to In−1 , or by restrict-

ing maps (Dn, Sn−1, s0)→(X,A,x0) to Sn−1 . The map ∂ , called the boundary map,

is a homomorphism when n > 1.

Theorem 4.3. This sequence is exact.

Near the end of the sequence, where group structures are not defined, exactness

still makes sense: The image of one map is the kernel of the next, those elements

mapping to the homotopy class of the constant map.

Proof: With only a little more effort we can derive the long exact sequence of a triple

(X,A, B,x0) with x0 ∈ B ⊂ A ⊂ X :

··· -→πn(A, B,x0)
i∗-----→πn(X, B,x0)

j∗
-----→πn(X,A,x0)

∂
-----→πn−1(A, B,x0) -→···

-→π1(X,A,x0)

When B = x0 this reduces to the exact sequence for the pair (X,A,x0) , though the lat-

ter sequence continues on two more steps to π0(X,x0) . The verification of exactness

at these last two steps is left as a simple exercise.

Exactness at πn(X, B,x0) : First note that the composition j∗i∗ is zero since every

map (In, ∂In, Jn−1)→(A, B,x0) represents zero in πn(X,A,x0) by the compression

criterion. To see that Ker j∗ ⊂ Im i∗ , let f : (In, ∂In, Jn−1)→(X, B,x0) represent zero

in πn(X,A,x0) . Then by the compression criterion again, f is homotopic rel ∂In to

a map with image in A , hence the class [f ] ∈ πn(X, B,x0) is in the image of i∗ .

Exactness at πn(X,A,x0) : The composition ∂j∗ is zero since the restriction of a

map (In, ∂In, Jn−1)→(X, B,x0) to In−1 has image lying in B , and hence represents

zero in πn−1(A, B,x0) . Conversely, suppose the restriction

of f : (In, ∂In, Jn−1)→(X,A,x0) to In−1 represents zero in

πn−1(A, B,x0) . Then f ||I
n−1 is homotopic to a map with im-

age in B via a homotopy F : In−1
×I→A rel ∂In−1 . We can

tack F onto f to get a new map (In, ∂In, Jn−1)→(X, B,x0)

which, as a map (In, ∂In, Jn−1)→(X,A,x0) , is homotopic to

f by the homotopy that tacks on increasingly longer initial

segments of F . So [f ] ∈ Im j∗ .
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Exactness at πn(A, B,x0) : The composition i∗∂ is zero since the restriction of a map

f : (In+1, ∂In+1, Jn)→(X,A,x0) to In is homotopic rel ∂In to a constant map via f

itself. The converse is easy if B is a point, since a nullhomotopy ft : (In, ∂In)→(X,x0)

of f0 : (In, ∂In)→(A,x0) gives a map F : (In+1, ∂In+1, Jn)→(X,A,x0) with ∂([F]) =

[f0] . Thus the proof is finished in this case. For a general B , let F be a nullhomo-

topy of f : (In, ∂In, Jn−1)→(A, B,x0) through maps (In, ∂In, Jn−1)→(X, B,x0) , and

let g be the restriction of F to In−1
×I , as in the first of the two pictures below.

Reparametrizing the nth and (n + 1)st coor-

dinates as shown in the second picture, we see

that f with g tacked on is in the image of ∂ .

But as we noted in the preceding paragraph,

tacking g onto f gives the same element of

πn(A, B,x0) . ⊔⊓

Example 4.4. Let CX be the cone on a path-connected space X , the quotient space

of X×I obtained by collapsing X×{0} to a point. We can view X as the subspace

X×{1} ⊂ CX . Since CX is contractible, the long exact sequence of homotopy groups

for the pair (CX,X) gives isomorphisms πn(CX,X,x0) ≈ πn−1(X,x0) for all n ≥ 1.

Taking n = 2, we can thus realize any group G , abelian or not, as a relative π2 by

choosing X to have π1(X) ≈ G .

The long exact sequence of homotopy groups is clearly natural: A map of base-

pointed triples (X,A, B,x0)→(Y ,C,D,y0) induces a map between the associated long

exact sequences, with commuting squares.

There are change-of-basepoint isomorphisms βγ for relative homotopy groups

analogous to those in the absolute case. One starts with a path γ in A ⊂ X from x0

to x1 , and this induces βγ :πn(X,A,x1)→πn(X,A,x0) by setting

βγ([f ]) = [γf] where γf is defined as in the picture, by placing

a copy of f in a smaller cube with its face In−1 centered in the

corresponding face of the larger cube. This construction satisfies

the same basic properties as in the absolute case, with very similar

proofs that we leave to the exercises. Separate proofs must be given in the two cases

since the definition of γf in the relative case does not specialize to the definition of

γf in the absolute case.

The isomorphisms βγ show that πn(X,A,x0) is independent of x0 when A is

path-connected. In this case πn(X,A,x0) is often written simply as πn(X,A) .

Restricting to loops at the basepoint, the association γ֏βγ defines an action of

π1(A,x0) on πn(X,A,x0) analogous to the action of π1(X,x0) on πn(X,x0) in the

absolute case. In fact, it is not hard to see that π1(A,x0) acts on the whole long exact

sequence of homotopy groups for (X,A,x0) , the action commuting with the various

maps in the sequence.



346 Chapter 4 Homotopy Theory

A space X with basepoint x0 is said to be n connected if πi(X,x0) = 0 for

i ≤ n . Thus 0 connected means path-connected and 1 connected means simply-

connected. Since n connected implies 0 connected, the choice of the basepoint x0 is

not significant. The condition of being n connected can be expressed without mention

of a basepoint since it is an easy exercise to check that the following three conditions

are equivalent.

(1) Every map Si→X is homotopic to a constant map.

(2) Every map Si→X extends to a map Di+1→X .

(3) πi(X,x0) = 0 for all x0 ∈ X .

Thus X is n connected if any one of these three conditions holds for all i ≤ n .

Similarly, in the relative case it is not hard to see that the following four conditions

are equivalent, for i > 0:

(1) Every map (Di, ∂Di)→(X,A) is homotopic rel ∂Di to a map Di→A .

(2) Every map (Di, ∂Di)→(X,A) is homotopic through such maps to a map Di→A .

(3) Every map (Di, ∂Di)→(X,A) is homotopic through such maps to a constant map

Di→A .

(4) πi(X,A,x0) = 0 for all x0 ∈ A .

When i = 0 we did not define the relative π0 , and (1)–(3) are each equivalent to saying

that each path-component of X contains points in A since D0 is a point and ∂D0 is

empty. The pair (X,A) is called n connected if (1)–(4) hold for all i ≤ n , i > 0, and

(1)–(3) hold for i = 0.

Note that X is n connected iff (X,x0) is n connected for some x0 and hence

for all x0 .

Whitehead’s Theorem

Since CW complexes are built using attaching maps whose domains are spheres,

it is perhaps not too surprising that homotopy groups of CW complexes carry a lot of

information. Whitehead’s theorem makes this explicit:

Theorem 4.5. If a map f :X→Y between connected CW complexes induces isomor-

phisms f∗ :πn(X)→πn(Y ) for all n , then f is a homotopy equivalence. In case f is

the inclusion of a subcomplex X֓Y , the conclusion is stronger: X is a deformation

retract of Y .

The proof will follow rather easily from a more technical result that turns out to

be very useful in quite a number of arguments. For convenient reference we call this

the compression lemma.

Lemma 4.6. Let (X,A) be a CW pair and let (Y , B) be any pair with B ≠ ∅ . For

each n such that X −A has cells of dimension n , assume that πn(Y , B,y0) = 0 for

all y0 ∈ B . Then every map f : (X,A)→(Y , B) is homotopic rel A to a map X→B .
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When n = 0 the condition that πn(Y , B,y0) = 0 for all y0 ∈ B is to be regarded

as saying that (Y , B) is 0 connected.

Proof: Assume inductively that f has already been homotoped to take the skeleton

Xk−1 to B . If Φ is the characteristic map of a cell ek of X − A , the composition

fΦ : (Dk, ∂Dk)→(Y , B) can be homotoped into B rel ∂Dk in view of the hypothesis

that πk(Y , B,y0) = 0 if k > 0, or that (Y , B) is 0 connected if k = 0. This homotopy

of fΦ induces a homotopy of f on the quotient space Xk−1
∪ ek of Xk−1

∐ Dk , a

homotopy rel Xk−1 . Doing this for all k cells of X − A simultaneously, and taking

the constant homotopy on A , we obtain a homotopy of f ||X
k
∪ A to a map into B .

By the homotopy extension property in Proposition 0.16, this homotopy extends to a

homotopy defined on all of X , and the induction step is completed.

Finitely many applications of the induction step finish the proof if the cells of

X − A are of bounded dimension. In the general case we perform the homotopy of

the induction step during the t interval [1 − 1/2k,1 − 1/2k+1] . Any finite skeleton

Xk is eventually stationary under these homotopies, hence we have a well-defined

homotopy ft , t ∈ [0,1] , with f1(X) ⊂ B . ⊔⊓

Proof of Whitehead’s Theorem: In the special case that f is the inclusion of a sub-

complex, consider the long exact sequence of homotopy groups for the pair (Y ,X) .

Since f induces isomorphisms on all homotopy groups, the relative groups πn(Y ,X)

are zero. Applying the lemma to the identity map (Y ,X)→(Y ,X) then yields a de-

formation retraction of Y onto X .

The general case can be proved using mapping cylinders. Recall that the mapping

cylinder Mf of a map f :X→Y is the quotient space of the disjoint union of X×I

and Y under the identifications (x,1) ∼ f(x) . Thus Mf contains both X = X×{0}

and Y as subspaces, and Mf deformation retracts onto Y . The map f becomes the

composition of the inclusion X֓Mf with the retraction Mf→Y . Since this retraction

is a homotopy equivalence, it suffices to show that Mf deformation retracts onto X if

f induces isomorphisms on homotopy groups, or equivalently, if the relative groups

πn(Mf , X) are all zero.

If the map f happens to be cellular, taking the n skeleton of X to the n skeleton

of Y for all n , then (Mf , X) is a CW pair and so we are done by the first paragraph of

the proof. If f is not cellular, we can either appeal to Theorem 4.8 which says that f

is homotopic to a cellular map, or we can use the following argument. First apply the

preceding lemma to obtain a homotopy rel X of the inclusion (X∪Y ,X)֓(Mf , X) to

a map into X . Since the pair (Mf , X ∪Y) obviously satisfies the homotopy extension

property, this homotopy extends to a homotopy from the identity map of Mf to a map

g :Mf→Mf taking X ∪ Y into X . Then apply the lemma again to the composition

(X×I ∐ Y ,X×∂I ∐ Y) -→ (Mf , X ∪ Y)
g
-----→ (Mf , X) to finish the construction of a

deformation retraction of Mf onto X . ⊔⊓
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Whitehead’s theorem does not say that two CW complexes X and Y with isomor-

phic homotopy groups are homotopy equivalent, since there is a big difference be-

tween saying that X and Y have isomorphic homotopy groups and saying that there

is a map X→Y inducing isomorphisms on homotopy groups. For example, consider

X = RP2 and Y = S2
×RP∞ . These both have fundamental group Z2 , and Proposi-

tion 4.1 implies that their higher homotopy groups are isomorphic since their univer-

sal covers S2 and S2
×S∞ are homotopy equivalent, S∞ being contractible. But RP2

and S2
×RP∞ are not homotopy equivalent since their homology groups are vastly dif-

ferent, S2
×RP∞ having nonvanishing homology in infinitely many dimensions since

it retracts onto RP∞ . Another pair of CW complexes that are not homotopy equiv-

alent but have isomorphic homotopy groups is S2 and S3
×CP∞ , as we shall see in

Example 4.51. In fact it turns out to be quite rare that the homotopy type of a CW

complex is determined by its homotopy groups.

One very special case when the homotopy type of a CW complex is determined by

its homotopy groups is when all the homotopy groups are trivial, for then the inclusion

map of a 0 cell into the complex induces an isomorphism on homotopy groups, so

the complex deformation retracts to the 0 cell.

Somewhat similar in spirit to the compression lemma is the following rather basic

extension lemma:

Lemma 4.7. Given a CW pair (X,A) and a map f :A→Y with Y path-connected,

then f can be extended to a map X→Y if πn−1(Y ) = 0 for all n such that X − A

has cells of dimension n .

Proof: Assume inductively that f has been extended over the (n−1) skeleton. Then

an extension over an n cell exists iff the composition of the cell’s attaching map

Sn−1→Xn−1 with f :Xn−1→Y is nullhomotopic. ⊔⊓

Cellular Approximation

An intuitively appealing strategy for proving that πn(S
k) = 0 for n < k would

be to show first that every map Sn→Sk can be deformed to make its image miss at

least one point of Sk , and then use the fact that the complement of a point in Sk is

contractible to finish the proof. One might think that the first step was unnecessary,

that no continuous map Sn→Sk could be surjective when n < k , but it is not hard to

use space-filling curves from point-set topology to produce such maps. Thus to make

this strategy into a valid proof some work must be done to construct homotopies

eliminating the strange behavior of these dimension-raising maps.

For maps between CW complexes it turns out to be sufficient for this and many

other purposes in homotopy theory to require just that cells map to cells of the same

or lower dimension. Such a map f :X→Y , satisfying f(Xn) ⊂ Yn for all n , is called
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a cellular map. It is a fundamental fact that arbitrary maps can always be deformed

to be cellular. This is the cellular approximation theorem:

Theorem 4.8. Every map f :X→Y of CW complexes is homotopic to a cellular map.

If f is already cellular on a subcomplex A ⊂ X , the homotopy may be taken to be

stationary on A .

Corollary 4.9. πn(S
k) = 0 for n < k .

Proof: If Sn and Sk are given their usual CW structures, with the 0 cells as basepoints,

then every basepoint-preserving map Sn→Sk can be homotoped, fixing the basepoint,

to be cellular, and hence constant if n < k . ⊔⊓

Linear maps cannot increase dimension, so one might try to prove the theorem by

showing that arbitrary maps between CW complexes can be homotoped to have some

sort of linearity properties. For simplicial complexes the simplicial approximation

theorem, Theorem 2C.1, achieves this, and cellular approximation can be regarded as

a CW analog of simplicial approximation since simplicial maps are cellular. However,

simplicial maps are much more rigid than cellular maps, which perhaps explains why

subdivision of the domain is required for simplicial approximation but not for cellular

approximation. The core of the proof of cellular approximation will be a weak form of

simplicial approximation that can be proved by a rather elementary direct argument.

Proof of 4.8: Suppose inductively that f :X→Y is already cellular on the skeleton

Xn−1 , and let en be an n cell of X . The closure of en in X is compact, being the

image of a characteristic map for en , so f takes the closure of en to a compact

set in Y . Since a compact set in a CW complex can meet only finitely many cells by

Proposition A.1 in the Appendix, it follows that f(en) meets only finitely many cells

of Y . Let ek ⊂ Y be a cell of highest dimension meeting f(en) . We may assume

k > n , otherwise f is already cellular on en . We will show below that it is possible to

deform f ||X
n−1
∪en , staying fixed on Xn−1 , so that f(en) misses some point p ∈ ek .

Then we can deform f ||X
n−1

∪ en rel Xn−1 so that f(en) misses the whole cell ek

by composing with a deformation retraction of Y k − {p} onto Y k − ek . By finitely

many iterations of this process we eventually make f(en) miss all cells of dimension

greater than n . Doing this for all n cells simultaneously, staying fixed on n cells

in A where f is already cellular, we obtain a homotopy of f ||X
n rel Xn−1

∪ An to

a cellular map. The induction step is then completed by appealing to the homotopy

extension property in Proposition 0.16 to extend this homotopy, together with the

constant homotopy on A , to a homotopy defined on all of X . Letting n go to ∞ , the

resulting possibly infinite string of homotopies can be realized as a single homotopy

by performing the nth homotopy during the t interval [1 − 1/2n,1− 1/2n+1] . This

makes sense since each point of X lies in some Xn , which is eventually stationary in

the infinite chain of homotopies.
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To fill in the missing step in this argument we will need a technical lemma about

deforming maps to create some linearity. Define a polyhedron in Rn to be a subspace

that is the union of finitely many convex polyhedra, each of which is a compact set

obtained by intersecting finitely many half-spaces defined by linear inequalities of the

form
∑
i aixi ≤ b . By a PL (piecewise linear) map from a polyhedron to Rk we shall

mean a map which is linear when restricted to each convex polyhedron in some such

decomposition of the polyhedron into convex polyhedra.

Lemma 4.10. Let f : In→Z be a map, where Z is obtained from a subspace W by

attaching a cell ek . Then there is a homotopy ft :
(
In, f−1(ek)

)
→
(
Z, ek

)
rel f−1(W)

from f = f0 to a map f1 for which there is a polyhedron K ⊂ In such that :

(a) f1(K) ⊂ e
k and f1

||K is PL with respect to some identification of ek with Rk .

(b) K ⊃ f−1
1 (U) for some nonempty open set U in ek .

Before proving the lemma, let us see how it finishes the proof of the cellular

approximation theorem. Composing the given map f :Xn−1
∪ en→Y k with a char-

acteristic map In→X for en , we obtain a map f as in the lemma, with Z = Y k and

W = Y k − ek . The homotopy given by the lemma is fixed on ∂In , hence induces a

homotopy ft of f ||X
n−1

∪ en fixed on Xn−1 . The image of the resulting map f1

intersects the open set U in ek in a set contained in the union of finitely many hy-

perplanes of dimension at most n , so if n < k there will be points p ∈ U not in the

image of f1 . ⊔⊓

Proof of 4.10: Identifying ek with Rk , let B1, B2 ⊂ e
k be the closed balls of radius 1

and 2 centered at the origin. Since f−1(B2) is closed and therefore compact in In , it

follows that f is uniformly continuous on f−1(B2) . Thus there exists ε > 0 such that

|x−y| < ε implies |f(x)− f(y)| < 1/2 for all x,y ∈ f−1(B2) . Subdivide the interval

I so that the induced subdivision of In into cubes has each cube lying in a ball of

diameter less than ε . Let K1 be the union of all the cubes meeting f−1(B1) , and let

K2 be the union of all the cubes meeting K1 . We may assume ε is chosen smaller

than half the distance between the compact sets f−1(B1) and In − f−1(int(B2)) , and

then we will have K2 ⊂ f
−1(B2) .
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Now we subdivide all the cubes of K2 into simplices. This can be done inductively.

The boundary of each cube is a union of cubes of one lower dimension, so assuming

these lower-dimensional cubes have already been subdivided into simplices, we obtain

a subdivision of the cube itself by taking its center point as a new vertex and joining

this by a cone to each simplex in the boundary of the cube.

Let g :K2→e
k
= R

k be the map that equals f on all vertices of simplices of the

subdivision and is linear on each simplex. Let ϕ :K2→[0,1] be the map that is linear

on simplices and has the value 1 on vertices in K1 and 0 on vertices in K2−K1 . Thus

ϕ(K1) = 1. Define a homotopy ft :K2→e
k by the formula (1 − tϕ)f + (tϕ)g , so

f0 = f and f1
||K1 = g ||K1 . Since ft is the constant homotopy on simplices in K2

disjoint from K1 , and in particular on simplices in the closure of In − K2 , we may

extend ft to be the constant homotopy of f on In − K2 .

The map f1 takes the closure of In − K1 to a compact set C which, we claim, is

disjoint from the centerpoint 0 of B1 and hence from a neighborhood U of 0. This

will prove the lemma, with K = K1 , since we will then have f−1
1 (U) ⊂ K1 with f1 PL

on K1 where it is equal to g .

The verification of the claim has two steps:

(1) On In −K2 we have f1 = f , and f takes In −K2 outside B1 since f−1(B1) ⊂ K2

by construction.

(2) For a simplex σ of K2 not in K1 we have f(σ) contained in some ball Bσ of

radius 1/2 by the choice of ε and the fact that K2 ⊂ f
−1(B2) . Since f(σ) ⊂ Bσ

and Bσ is convex, we must have g(σ) ⊂ Bσ , hence also ft(σ) ⊂ Bσ for all t ,

and in particular f1(σ) ⊂ Bσ . We know that Bσ is not contained in B1 since σ

contains points outside K1 hence outside f−1(B1) . The radius of Bσ is half that

of B1 , so it follows that 0 is not in Bσ , and hence 0 is not in f1(σ) . ⊔⊓

Example 4.11: Cellular Approximation for Pairs. Every map f : (X,A)→(Y , B) of

CW pairs can be deformed through maps (X,A)→(Y , B) to a cellular map. This

follows from the theorem by first deforming the restriction f :A→B to be cellular,

then extending this to a homotopy of f on all of X , then deforming the resulting map

to be cellular staying fixed on A . As a further refinement, the homotopy of f can be

taken to be stationary on any subcomplex of X where f is already cellular.

An easy consequence of this is:

Corollary 4.12. A CW pair (X,A) is n connected if all the cells in X − A have

dimension greater than n . In particular the pair (X,Xn) is n connected, hence the

inclusion Xn֓X induces isomorphisms on πi for i < n and a surjection on πn .

Proof: Applying cellular approximation to maps (Di, ∂Di)→(X,A) with i ≤ n gives

the first statement. The last statement comes from the long exact sequence of the

pair (X,Xn) . ⊔⊓
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CW Approximation

A map f :X→Y is called a weak homotopy equivalence if it induces isomor-

phisms πn(X,x0)→πn
(
Y , f (x0)

)
for all n ≥ 0 and all choices of basepoint x0 .

Whitehead’s theorem can be restated as saying that a weak homotopy equivalence

between CW complexes is a homotopy equivalence. It follows easily that this holds

also for spaces homotopy equivalent to CW complexes. In general, however, weak

homotopy equivalence is strictly weaker than homotopy equivalence. For example,

there exist noncontractible spaces whose homotopy groups are all trivial, such as the

‘quasi-circle’ according to an exercise at the end of this section, and for such spaces a

map to a point is a weak homotopy equivalence that is not a homotopy equivalence.

We will show that for every space X there is a CW complex Z and a weak homo-

topy equivalence f :Z→X . Such a map f :Z→X is called a CW approximation to X .

A weak homotopy equivalence induces isomorphisms on all homology and cohomol-

ogy groups, as we will see, so CW approximations allow many general statements in

algebraic topology to be proved using cell-by-cell arguments for CW complexes.

CW approximations to a given space X are unique up to homotopy equivalence

since if f :Z→X and f ′ :Z′→X are two CW approximations, then the composition

Z→X֓ Mf ′ can be deformed into Z′ by the compression lemma, giving a map

Z→Z′ which is a weak homotopy equivalence and hence a homotopy equivalence.

The construction of a CW approximation f :Z→X for a space X is inductive,

so let us describe the induction step. Suppose given a CW complex A with a map

f :A→X and suppose we have chosen a basepoint 0 cell aγ in each component of A .

Then for an integer k ≥ 0 we will attach k cells to A to form a CW complex B with a

map f :B→X extending the given f , such that:

(∗)
For each basepoint aγ the induced map f∗ :πi(B,aγ)→πi(X, f (aγ)) is injec-

tive for i = k− 1 (when k > 0) and surjective for i = k .

There are two steps in the construction, the first of which is omitted when k = 0:

(1) Choose maps ϕα : (Sk−1, s0)→(A,aγ) representing all nontrivial elements of the

kernels of the maps f∗ :πk−1(A,aγ)→πk−1(X, f (aγ)) for all the basepoints aγ .

We may assume the maps ϕα are cellular, where Sk−1 has its standard CW struc-

ture with s0 as 0 cell. Attaching cells ekα to A via the maps ϕα then produces

a CW complex, and the map f extends over these cells using nullhomotopies of

the compositions fϕα , which exist by the choice of the ϕα ’s.

(2) Choose maps fβ :Sk→X representing all nontrivial elements of πk(X, f (aγ)) for

all the aγ ’s, then attach cells ekβ to A via the constant maps at the appropriate

basepoints aγ and extend f over the resulting spheres Skβ via the maps fβ .

The surjectivity condition in (∗) then holds by construction. For the injectivity con-

dition, a nontrivial element of the kernel of f∗ :πk−1(B,aγ)→πk−1(X, f (aγ)) can be
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represented by a cellular map h :Sk−1→B . This has image in A , so is in the ker-

nel of f∗ :πk−1(A,aγ)→πk−1(X, f (aγ)) and hence is homotopic to some ϕα and is

therefore nullhomotopic in B .

More efficiently, in step (1) it suffices to attach cells just for generators of the

kernels when k > 1, and just for generators of πk(X, f (aγ)) in step (2) when k > 0.

Note that if the given map f :A→X happened to be injective or surjective on πi
for some i < k − 1 or i < k , respectively, then this remains true after attaching the

k cells. This is because attaching k cells does not affect πi if i < k − 1, by cellular

approximation, nor does it destroy surjectivity on πk−1 or indeed any πi , obviously.

Now to construct a CW approximation f :Z→X one can start with A consisting

of one point for each path-component of X , with f :A→X mapping each of these

points to the corresponding path-component. Having now a bijection on π0 , attach

1 cells to A to create a surjection on π1 for each path-component, then 2 cells to

improve this to an isomorphism on π1 and a surjection on π2 , and so on for each

successive πi in turn. After all cells have been attached one has a CW complex Z with

a weak homotopy equivalence f :Z→X . This proves:

Proposition 4.13. Every space X has a CW approximation f :Z→X . If X is path-

connected, Z can be chosen to have a single 0 cell, with all other cells attached by

basepoint-preserving maps. Thus every connected CW complex is homotopy equiva-

lent to a CW complex with these additional properties. ⊔⊓

Example 4.14. One can also apply this technique to produce a CW approximation to

a pair (X,X0) . First construct a CW approximation f0 :Z0→X0 , then starting with

the composition Z0→X0֓X , attach cells to Z0 to create a weak homotopy equiva-

lence f :Z→X extending f0 . By the five-lemma, the map f : (Z,Z0)→(X,X0) induces

isomorphisms on relative as well as absolute homotopy groups.

Here is another application of the technique, giving a more geometric interpreta-

tion to the homotopy-theoretic notion of n connectedness:

Proposition 4.15. If (X,A) is an n connected CW pair, then there exists a CW pair

(Z,A) ≃ (X,A) rel A such that all cells of Z −A have dimension greater than n .

Proof: Starting with the inclusion A֓ X , attach cells to A of dimension n + 1

and higher to produce a CW complex Z and a map f :Z→X that is the identity

on A and induces an injection on πn and isomorphisms on all higher homotopy

groups. The induced map on πn is also surjective since this is true for the composition

A֓Z
f
-----→X by the hypothesis that (X,A) is n connected. In dimensions below n , f

induces isomorphisms on homotopy groups since both inclusions A֓Z and A֓X

do. Thus f is a weak homotopy equivalence, and hence a homotopy equivalence.

To see that f is a homotopy equivalence rel A we could apply Proposition 0.19,

but here is an alternative argument. Let W be the quotient space of the mapping cylin-
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der Mf obtained by collapsing each segment {a}×I to a point, for a ∈ A . Assuming

f has been made cellular, W is a CW complex containing X and Z as subcomplexes,

and W deformation retracts to X just as Mf does. Also, πi(W,Z) = 0 for all i since

f induces isomorphisms on all homotopy groups, so W deformation retracts onto Z

by Theorem 4.5. These two deformation retractions of W onto X and Z are stationary

on A , hence give a homotopy equivalence X ≃ Z rel A . ⊔⊓

Example 4.16: Postnikov Towers. We can also apply the technique to construct, for

each connected CW complex X and each integer n ≥ 1, a CW complex Xn containing

X as a subcomplex such that:

(a) πi(Xn) = 0 for i > n .

(b) The inclusion X֓ Xn induces an isomorphism on πi for i ≤ n .

To do this, all we have to do is apply the general construction to the constant map

of X to a point, starting at the stage of attaching cells of dimension n + 2. Thus

we attach (n+ 2) cells to X using cellular maps Sn+1→X that generate πn+1(X) to

form a space with πn+1 trivial, then for this space we attach (n + 3) cells to make

πn+2 trivial, and so on. The result is a CW complex Xn with the desired properties.

The inclusion X֓Xn extends to a map Xn+1→Xn since Xn+1 is obtained from

X by attaching cells of dimension n+ 3 and greater, and πi(Xn) = 0 for i > n so we

can apply Lemma 4.7, the extension lemma. Thus we have a commu-

tative diagram as at the right. This is a called a Postnikov tower for X .

One can regard the spaces Xn as truncations of X which provide suc-

cessively better approximations to X as n increases. Postnikov towers

turn out to be quite powerful tools for proving general theorems, and

we will study them further in §4.3.

Now that we have seen several varied applications of the technique of attaching

cells to make a map f :A→X more nearly a weak homotopy equivalence, it might

be useful to give a name to the properties that the construction can achieve. To

simplify the description, we may assume without loss of generality that the given f

is an inclusion A֓ X by replacing X by the mapping cylinder of f . Thus, starting

with a pair (X,A) where the subspace A ⊂ X is a nonempty CW complex, we define

an n connected CW model for (X,A) to be an n connected CW pair (Z,A) and a

map f :Z→X with f ||A the identity, such that f∗ :πi(Z)→πi(X) is an isomorphism

for i > n and an injection for i = n , for all choices of basepoint. Since (Z,A) is

n connected, the map πi(A)→πi(Z) is an isomorphism for i < n and a surjection

for i = n . In the critical dimension n , the maps A֓ Z
f
-----→X induce a composition

πn(A)→πn(Z)→πn(X) factoring the map πn(A)→πn(X) as a surjection followed

by an injection, just as any homomorphism ϕ :G→H can be factored (uniquely) as a

surjection ϕ :G→ Imϕ followed by an injection Imϕ֓H . One can think of Z as
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a sort of homotopy-theoretic hybrid of A and X . As n increases, the hybrid looks

more and more like A , and less and less like X . Our earlier construction shows:

Proposition 4.17. For every pair (X,A) with A a nonempty CW complex there exist

n connected CW models f : (Z,A)→(X,A) for all n ≥ 0 , and these models can be

chosen to have the additional property that Z is obtained from A by attaching cells

of dimension greater than n . ⊔⊓

The construction of n connected CW models involves many arbitrary choices,

so it may be somewhat surprising that they turn out to be unique up to homotopy

equivalence. This will follow easily from the next proposition. Another application

of the proposition will be to build a tower like the Postnikov tower from the various

n -connected CW models for a given pair (X,A) .

Proposition 4.18. Suppose we are given :

(i) an n connected CW model f : (Z,A)→(X,A) ,
(ii) an n′ connected CW model f ′ : (Z′, A′)→(X′, A′) ,

(iii) a map g : (X,A)→(X′, A′) .
Then if n ≥ n′ , there is a map h :Z→Z′ such that h||A = g and gf ≃ f ′h rel A , so

the diagram above is commutative up to homotopy rel A . Furthermore, such a map

h is unique up to homotopy rel A .

Proof: By Proposition 4.15 we may assume all cells of Z −A have dimension greater

than n . Let W be the quotient space of the mapping cylinder of f ′ obtained by

collapsing each line segment {a′}×I to a point, for a′ ∈ A′ . We can think of W as a

relative mapping cylinder, and like the ordinary mapping cylinder, W contains copies

of Z′ and X′ , the latter as a deformation retract. The assumption that (Z′, A′) is an

n′ connected CW model for (X′, A′) implies that the relative groups πi(W,Z
′) are

zero for i > n′ .

Via the inclusion X′֓W we can view gf as a map Z→W . As a map of pairs

(Z,A)→(W,Z′) , gf is homotopic rel A to a map h with image in Z′ , by the com-

pression lemma and the hypothesis n ≥ n′ . This proves the first assertion. For the

second, suppose h0 and h1 are two maps Z→Z′ whose compositions with f ′ are

homotopic to gf rel A . Thus if we regard h0 and h1 as maps to W , they are homo-

topic rel A . Such a homotopy gives a map (Z×I, Z×∂I∪A×I)→(W,Z′) , and by the

compression lemma again this map can be deformed rel Z×∂I ∪A×I to a map with

image in Z′ , which gives the desired homotopy h0 ≃ h1 rel A . ⊔⊓

Corollary 4.19. An n connected CW model for (X,A) is unique up to homotopy

equivalence rel A .

Proof: Given two n connected CW models (Z,A) and (Z′, A) for (X,A) , we apply the

proposition twice with g the identity map to obtain maps h :Z→Z′ and h′ :Z′→Z .

The uniqueness statement gives homotopies hh′ ≃ 11 and h′h ≃ 11 rel A . ⊔⊓
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Taking n = n′ in the proposition, we obtain also a functoriality property for

n connected CW models. For example, a map X→X′ induces a map of CW approxi-

mations Z→Z′ , which is unique up to homotopy.

The proposition allows us to relate n connected CW models

(Zn, A) for (X,A) for varying n , by means of maps Zn→Zn−1

that form a tower as shown in the diagram, with commutative

triangles on the left and homotopy-commutative triangles on

the right. We can make the triangles on the right strictly com-

mutative by replacing the maps Zn→X by the compositions

through Z0 .

Example 4.20: Whitehead Towers. If we take X to be an arbitrary CW complex with

the subspace A a point, then the resulting tower of n connected CW models amounts

to a sequence of maps

···→Z2→Z1→Z0→X

with Zn n connected and the map Zn→X inducing an isomorphism on all homotopy

groups πi with i > n . The space Z0 is path-connected and homotopy equivalent

to the component of X containing A , so one may as well assume Z0 equals this

component. The next space Z1 is simply-connected, and the map Z1→X has the

homotopy properties of the universal cover of the component Z0 of X . For larger

values of n one can by analogy view the map Zn→X as an ‘n connected cover’ of

X . For n > 1 these do not seem to arise so frequently in nature as in the case

n = 1. A rare exception is the Hopf map S3→S2 defined in Example 4.45, which is a

2 connected cover.

Now let us show that CW approximations behave well with respect to homology

and cohomology:

Proposition 4.21. A weak homotopy equivalence f :X→Y induces isomorphisms

f∗ :Hn(X;G)→Hn(Y ;G) and f∗ :Hn(Y ;G)→Hn(X;G) for all n and all coefficient

groups G .

Proof: Replacing Y by the mapping cylinder Mf and looking at the long exact se-

quences of homotopy, homology, and cohomology groups for (Mf , X) , we see that it

suffices to show:

If (Z,X) is an n connected pair of path-connected spaces, then Hi(Z,X;G) = 0

and Hi(Z,X;G) = 0 for all i ≤ n and all G .

Let α =
∑
j njσj be a relative cycle representing an element of Hk(Z,X;G) , for sin-

gular k simplices σj :∆k→Z . Build a finite ∆ complex K from a disjoint union of

k simplices, one for each σj , by identifying all (k − 1) dimensional faces of these

k simplices for which the corresponding restrictions of the σj ’s are equal. Thus the

σj ’s induce a map σ :K→Z . Since α is a relative cycle, ∂α is a chain in X . Let
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L ⊂ K be the subcomplex consisting of (k − 1) simplices corresponding to the sin-

gular (k − 1) simplices in ∂α , so σ(L) ⊂ X . The chain α is the image under the

chain map σ♯ of a chain α̃ in K , with ∂α̃ a chain in L . In relative homology we then

have σ∗[α̃] = [α] . If we assume πi(Z,X) = 0 for i ≤ k , then σ : (K, L)→(Z,X) is

homotopic rel L to a map with image in X , by the compression lemma. Hence σ∗[α̃]

is in the image of the map Hk(X,X;G)→Hk(Z,X;G) , and since Hk(X,X;G) = 0 we

conclude that [α] = σ∗[α̃] = 0. This proves the result for homology, and the result

for cohomology then follows by the universal coefficient theorem. ⊔⊓

CW approximations can be used to reduce many statements about general spaces

to the special case of CW complexes. For example, the cup product version of the

Künneth formula in Theorem 3.15, asserting that H∗(X×Y ;R) ≈ H∗(X;R)⊗H∗(Y ;R)

under certain conditions, can now be extended to non-CW spaces since if X and Y

are CW approximations to spaces Z and W , respectively, then X×Y is a CW approx-

imation to Z×W . Here we are giving X×Y the CW topology rather than the product

topology, but this has no effect on homotopy groups since the two topologies have

the same compact sets, as explained in the Appendix. Similarly, the general Künneth

formula for homology in §3.B holds for arbitrary products X×Y .

The condition for a map Y→Z to be a weak homotopy equivalence involves only

maps of spheres into Y and Z , but in fact weak homotopy equivalences Y→Z behave

nicely with respect to maps of arbitrary CW complexes into Y and Z , not just spheres.

The following proposition gives a precise statement, using the notations [X, Y ] for

the set of homotopy classes of maps X→Y and 〈X,Y 〉 for the set of basepoint-

preserving-homotopy classes of basepoint-preserving maps X→Y . (The notation

〈X,Y 〉 is not standard, but is intended to suggest ‘pointed homotopy classes’.)

Proposition 4.22. A weak homotopy equivalence f :Y -→ Z induces bijections

[X, Y ]→[X,Z] and 〈X,Y 〉→〈X,Z〉 for all CW complexes X .

Proof: Consider first [X, Y ]→[X,Z] . We may assume f is an inclusion by replacing

Z by the mapping cylinder Mf as usual. The groups πn(Z, Y ,y0) are then zero for all

n and all basepoints y0 ∈ Y , so the compression lemma implies that any map X→Z
can be homotoped to have image in Y . This gives surjectivity of [X, Y ]→[X,Z] .
A relative version of this argument shows injectivity since we can deform a homotopy

(X×I,X×∂I)→(Z, Y ) to have image in Y .

In the case of 〈X,Y 〉→〈X,Z〉 the same argument applies if Mf is replaced by the

reduced mapping cylinder, the quotient of Mf obtained by collapsing the segment

{y0}×I to a point, for y0 the basepoint of Y . This collapsed segment then serves

as the common basepoint of Y , Z , and the reduced mapping cylinder. The reduced

mapping cylinder deformation retracts to Z just as the unreduced one does, but with

the advantage that the basepoint does not move. ⊔⊓
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Exercises

1. Suppose a sum f+′g of maps f ,g : (In, ∂In)→(X,x0) is defined using a coordinate

of In other than the first coordinate as in the usual sum f + g . Verify the formula

(f + g) +′ (h + k) = (f +′ h) + (g +′ k) , and deduce that f +′ k ≃ f + k so the two

sums agree on πn(X,x0) , and also that g +′ h ≃ h+ g so the addition is abelian.

2. Show that if ϕ :X→Y is a homotopy equivalence, then the induced homomor-

phisms ϕ∗ :πn(X,x0)→πn(Y ,ϕ(x0)) are isomorphisms for all n . [The case n = 1

is Proposition 1.18.]

3. For an H–space (X,x0) with multiplication µ :X×X→X , show that the group

operation in πn(X,x0) can also be defined by the rule (f + g)(x) = µ
(
f(x), g(x)

)
.

4. Let p : X̃→X be the universal cover of a path-connected space X . Show that

under the isomorphism πn(X) ≈ πn(X̃) , which holds for n ≥ 2, the action of

π1(X) on πn(X) corresponds to the action of π1(X) on πn(X̃) induced by the ac-

tion of π1(X) on X̃ as deck transformations. More precisely, prove a formula like

γp∗(α) = p∗
(
βγ̃(γ∗(α))

)
where γ ∈ π1(X,x0) , α ∈ πn(X̃, x̃0) , and γ∗ denotes the

homomorphism induced by the action of γ on X̃ .

5. For a pair (X,A) of path-connected spaces, show that π1(X,A,x0) can be identified

in a natural way with the set of cosets Hα of the subgroup H ⊂ π1(X,x0) represented

by loops in A at x0 .

6. If p : (X̃, Ã, x̃0)→(X,A,x0) is a covering space with Ã = p−1(A) , show that the

map p∗ :πn(X̃, Ã, x̃0)→πn(X,A,x0) is an isomorphism for all n > 1.

7. Extend the results proved near the beginning of this section for the change-of-

basepoint maps βγ to the case of relative homotopy groups.

8. Show the sequence π1(X,x0) -→π1(X,A,x0)
∂
-----→π0(A,x0) -→π0(X,x0) is exact.

9. Suppose we define π0(X,A,x0) to be the quotient set π0(X,x0)/i∗
(
π0(A,x0)

)
,

so that the long exact sequence of homotopy groups for the pair (X,A) extends to

··· -→π0(A,x0)
i∗-----→π0(X,x0) -→π0(X,A,x0) -→0.

(a) Show that with this extension, the five-lemma holds for the map of long exact

sequences induced by a map (X,A,x0)→(Y , B,y0) , in the following form: One

of the maps between the two sequences is a bijection if the four surrounding

maps are bijections for all choices of x0 .

(b) Show that the long exact sequence of a triple (X,A, B,x0) can be extended only to

the term π0(A, B,x0) in general, and that the five-lemma holds for this extension.

10. Show the ‘quasi-circle’ described in Exercise 7 in §1.3 has trivial homotopy groups

but is not contractible, hence does not have the homotopy type of a CW complex.

11. Show that a CW complex is contractible if it is the union of an increasing sequence

of subcomplexes X1 ⊂ X2 ⊂ ··· such that each inclusion Xi֓Xi+1 is nullhomotopic,

a condition sometimes expressed by saying Xi is contractible in Xi+1 . An example is
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S∞ , or more generally the infinite suspension S∞X of any CW complex X , the union

of the iterated suspensions SnX .

12. Show that an n connected, n dimensional CW complex is contractible.

13. Use the extension lemma to show that a CW complex retracts onto any contractible

subcomplex.

14. Use cellular approximation to show that the n skeletons of homotopy equivalent

CW complexes without cells of dimension n+ 1 are also homotopy equivalent.

15. Show that every map f :Sn→Sn is homotopic to a multiple of the identity map

by the following steps.

(a) Use Lemma 4.10 (or simplicial approximation, Theorem 2C.1) to reduce to the

case that there exists a point q ∈ Sn with f−1(q) = {p1, ··· , pk} and f is an

invertible linear map near each pi .

(b) For f as in (a), consider the composition gf where g :Sn→Sn collapses the

complement of a small ball about q to the basepoint. Use this to reduce (a)

further to the case k = 1.

(c) Finish the argument by showing that an invertible n×n matrix can be joined by

a path of such matrices to either the identity matrix or the matrix of a reflection.

(Use Gaussian elimination, for example.)

16. Show that a map f :X→Y between connected CW complexes factors as a com-

position X→Zn→Y where the first map induces isomorphisms on πi for i ≤ n and

the second map induces isomorphisms on πi for i ≥ n+ 1.

17. Show that if X and Y are CW complexes with X m connected and Y n connected,

then (X×Y ,X ∨ Y) is (m+n+ 1) connected, as is the smash product X ∧ Y .

18. Give an example of a weak homotopy equivalence X→Y for which there does not

exist a weak homotopy equivalence Y→X .

19. Consider the equivalence relation ≃w generated by weak homotopy equivalence:

X ≃w Y if there are spaces X = X1, X2, ··· , Xn = Y with weak homotopy equivalences

Xi→Xi+1 or Xi←Xi+1 for each i . Show that X ≃w Y iff X and Y have a common

CW approximation.

20. Show that [X, Y ] is finite if X is a finite connected CW complex and πi(Y ) is

finite for i ≤ dimX .

21. For this problem it is convenient to use the notations Xn for the nth stage in a

Postnikov tower for X and Xm for an (m−1) connected covering of X , where X is a

connected CW complex. Show that (Xn)m ≃ (Xm)
n , so the notation

Xnm is unambiguous. Thus πi(X
n
m) ≈ πi(X) for m ≤ i ≤ n and all

other homotopy groups of Xnm are zero.

22. Show that a path-connected space X has a CW approximation with countably many

cells iff πn(X) is countable for all n . [Use the results on simplicial approximations

to maps and spaces in §2.C.]
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23. If f :X→Y is a map with X and Y homotopy equivalent to CW complexes, show

that the pair (Mf , X) is homotopy equivalent to a CW pair, where Mf is the mapping

cylinder. Deduce that the mapping cone Cf has the homotopy type of a CW complex.

We have not yet computed any nonzero homotopy groups πn(X) with n ≥ 2.

In Chapter 1 the two main tools we used for computing fundamental groups were

van Kampen’s theorem and covering spaces. In the present section we will study

the higher-dimensional analogs of these: the excision theorem for homotopy groups,

and fiber bundles. Both of these are quite a bit weaker than their fundamental group

analogs, in that they do not directly compute homotopy groups but only give relations

between the homotopy groups of different spaces. Their applicability is thus more

limited, but suffices for a number of interesting calculations, such as πn(S
n) and more

generally the Hurewicz theorem relating the first nonzero homotopy and homology

groups of a space. Another noteworthy application is the Freudenthal suspension

theorem, which leads to stable homotopy groups and in fact the whole subject of

stable homotopy theory.

Excision for Homotopy Groups

What makes homotopy groups so much harder to compute than homology groups

is the failure of the excision property. However, there is a certain dimension range,

depending on connectivities, in which excision does hold for homotopy groups:

Theorem 4.23. Let X be a CW complex decomposed as the union of subcomplexes

A and B with nonempty connected intersection C = A∩B . If (A,C) is m connected

and (B,C) is n connected, m,n ≥ 0 , then the map πi(A,C)→πi(X, B) induced by

inclusion is an isomorphism for i < m+n and a surjection for i =m+n .

This yields the Freudenthal suspension theorem:

Corollary 4.24. The suspension map πi(S
n)→πi+1(S

n+1) is an isomorphism for

i < 2n − 1 and a surjection for i = 2n − 1 . More generally this holds for the

suspension πi(X)→πi+1(SX) whenever X is an (n− 1) connected CW complex.

Proof: Decompose the suspension SX as the union of two cones C+X and C−X

intersecting in a copy of X . The suspension map is the same as the map

πi(X) ≈ πi+1(C+X,X) -→πi+1(SX,C−X) ≈ πi+1(SX)
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where the two isomorphisms come from long exact sequences of pairs and the middle

map is induced by inclusion. From the long exact sequence of the pair (C±X,X) we

see that this pair is n connected if X is (n− 1) connected. The preceding theorem

then says that the middle map is an isomorphism for i + 1 < 2n and surjective for

i+ 1 = 2n . ⊔⊓

Corollary 4.25. πn(S
n) ≈ Z , generated by the identity map, for all n ≥ 1 . In

particular, the degree map πn(S
n)→Z is an isomorphism.

Proof: From the preceding corollary we know that in the sequence of suspension

maps π1(S
1)→π2(S

2)→π3(S
3)→ ··· the first map is surjective and all the subse-

quent maps are isomorphisms. Since π1(S
1) is Z generated by the identity map, it

follows that πn(S
n) for n ≥ 2 is a finite or infinite cyclic group independent of n ,

generated by the identity map. The fact that this cyclic group is infinite can be de-

duced from homology theory since there exist basepoint-preserving maps Sn→Sn

of arbitrary degree, and degree is a homotopy invariant. Alternatively, if one wants

to avoid appealing to homology theory one can use the Hopf bundle S1→S3→S2

described in Example 4.45, whose long exact sequence of homotopy groups gives an

isomorphism π1(S
1) ≈ π2(S

2) .

The degree map πn(S
n)→Z is an isomorphism since the map z֏ zk of S1 has

degree k , as do its iterated suspensions by Proposition 2.33. ⊔⊓

Proof of 4.23: We proceed by proving successively more general cases. The first case

contains the heart of the argument, and suffices for the calculation of πn(S
n) .

Case 1: A is obtained from C by attaching cells em+1
α and B is obtained from C

by attaching a cell en+1 . To show surjectivity of πi(A,C)→πi(X, B) we start with

a map f : (Ii, ∂Ii, Ji−1)→(X, B,x0) . This has compact image, meeting only finitely

many of the cells em+1
α and en+1 . By Lemma 4.10 we may homotope f through maps

(Ii, ∂Ii, Ji−1)→(X, B,x0) so that there are simplices ∆m+1
α ⊂ em+1

α and ∆n+1
⊂ en+1

for which f−1(∆m+1
α ) and f−1(∆n+1) are finite unions of convex polyhedra, on each

of which f is the restriction of a linear map from R
i to R

m+1 or Rn+1 . We may

assume these linear maps are surjections by rechoosing smaller simplices ∆m+1
α and

∆n+1 in the complement of the images of the nonsurjective linear maps.

Claim: If i ≤m+n , then there exist points pα ∈ ∆m+1
α ,

q ∈ ∆n+1 , and a map ϕ : Ii−1→[0,1) such that:

(a) f−1(q) lies below the graph of ϕ in Ii−1
×I = Ii .

(b) f−1(pα) lies above the graph of ϕ for each α .

(c) ϕ = 0 on ∂Ii−1 .

Granting this, let ft be a homotopy of f excising the region under the graph of ϕ by

restricting f to the region above the graph of tϕ for 0 ≤ t ≤ 1. By (b), ft(I
i−1) is

disjoint from P =
⋃
α{pα} for all t , and by (a), f1(I

i) is disjoint from Q = {q} . This
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means that in the commutative diagram

at the right the given element [f ] in

the upper-right group, when regarded

as an element of the lower-right group,

is equal to the element [f1] in the image of the lower horizontal map. Since the

vertical maps are isomorphisms, this proves the surjectivity statement.

Now we prove the Claim. For any q ∈ ∆n+1 , f−1(q) is a finite union of convex

polyhedra of dimension ≤ i − n − 1 since f−1(∆n+1) is a finite union of convex

polyhedra on each of which f is the restriction of a linear surjection R
i→R

n+1 .

We wish to choose the points pα ∈ ∆m+1
α so that not only is f−1(q) disjoint from

f−1(pα) for each α , but also so that f−1(q) and f−1(pα) have disjoint images under

the projection π : Ii→Ii−1 . This is equivalent to saying that f−1(pα) is disjoint from

T = π−1(π(f−1(q))
)
, the union of all segments {x}×I meeting f−1(q) . This set T is

a finite union of convex polyhedra of dimension ≤ i−n since f−1(q) is a finite union

of convex polyhedra of dimension ≤ i − n − 1. Since linear maps cannot increase

dimension, f(T) ∩ ∆m+1
α is also a finite union of convex polyhedra of dimension

≤ i − n . Thus if m + 1 > i − n , there is a point pα ∈ ∆m+1
α not in f(T) . This gives

f−1(pα)∩T = ∅ if i ≤m+n . Hence we can choose a neighborhood U of π
(
f−1(q)

)

in Ii−1 disjoint from π
(
f−1(pα)

)
for all α . Then there exists ϕ : Ii−1→[0,1) having

support in U , with f−1(q) lying under the graph of ϕ . This verifies the Claim, and

so finishes the proof of surjectivity in Case 1.

For injectivity in Case 1 the argument is very similar. Suppose we have two

maps f0, f1 : (Ii, ∂Ii, Ji−1)→(A,C,x0) representing elements of πi(A,C,x0) having

the same image in πi(X, B,x0) . Thus there is a homotopy from f0 to f1 in the form

of a map F : (Ii, ∂Ii, Ji−1)×[0,1]→(X, B,x0) . After a preliminary deformation of F

via Lemma 4.10, we construct a function ϕ : Ii−1
×I→[0,1) separating F−1(q) from

the sets F−1(pα) as before. This allows us to excise F−1(q) from the domain of F ,

from which it follows that f0 and f1 represent the same element of πi(A,C,x0) .

Since Ii×I now plays the role of Ii , the dimension i is replaced by i + 1 and the

dimension restriction i ≤m+n becomes i+ 1 ≤m+n , or i < m+n .

Case 2: A is obtained from C by attaching (m + 1) cells as in Case 1 and B is

obtained from C by attaching cells of dimension ≥ n + 1. To show surjectivity of

πi(A,C)→πi(X, B) , consider a map f : (Ii, ∂Ii, Ji−1)→(X, B,x0) representing an ele-

ment of πi(X, B) . The image of f is compact, meeting only finitely many cells, and by

repeated applications of Case 1 we can push f off the cells of B −C one at a time, in

order of decreasing dimension. Injectivity is quite similar, starting with a homotopy

F : (Ii, ∂Ii, Ji−1)×[0,1]→(X, B,x0) and pushing this off cells of B − C .

Case 3: A is obtained from C by attaching cells of dimension ≥m+1 and B is as in

Case 2. We may assume all cells of A− C have dimension ≤m+n+ 1 since higher-

dimensional cells have no effect on πi for i ≤m+n , by cellular approximation. Let
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Ak ⊂ A be the union of C with the cells of A of dimension ≤ k and let Xk = Ak ∪ B .

We prove the result for πi(Ak, C)→πi(Xk, B) by induction on k . The induction starts

with k = m + 1, which is Case 2. For the induction step consider the following

commutative diagram formed by the exact sequences of the triples (Ak, Ak−1, C) and

(Xk, Xk−1, B) :

When i < m+n the first and fourth vertical maps are isomorphisms by Case 2, while

by induction the second and fifth maps are isomorphisms, so the middle map is an

isomorphism by the five-lemma. Similarly, when i = m + n the second and fourth

maps are surjective and the fifth map is injective, which is enough to imply the middle

map is surjective by one half of the five-lemma. When i = 2 the diagram may contain

nonabelian groups and the two terms on the right may not be groups, but the five-

lemma remains valid in this generality, with trivial modifications to the proof in §2.1.

When i = 1 the assertion about π1(A,C)→π1(X, B) follows by a direct argument: If

m ≥ 1 then both terms are trivial, while if m = 0 then n ≥ 1 and the result follows

by cellular approximation.

After these special cases we can now easily deal with the general case. The con-

nectivity assumptions on the pairs (A,C) and (B,C) imply by Proposition 4.15 that

they are homotopy equivalent to pairs (A′, C) and (B′, C) as in Case 3, via homo-

topy equivalences fixed on C , so these homotopy equivalences fit together to give a

homotopy equivalence A∪B ≃ A′∪B′ . Thus the general case reduces to Case 3. ⊔⊓

Example 4.26. The calculation of πn(S
n) can be extended to show that πn(

∨
αS

n
α ) for

n ≥ 2 is free abelian with basis the homotopy classes of the inclusions Snα֓
∨
αS

n
α .

Suppose first that there are only finitely many summands Snα . We can regard
∨
αS

n
α

as the n skeleton of the product
∏
αS

n
α , where Snα is given its usual CW structure

and
∏
αS

n
α has the product CW structure. Since

∏
αS

n
α has cells only in dimen-

sions a multiple of n , the pair (
∏
αS

n
α ,
∨
αS

n
α) is (2n − 1) connected. Hence from

the long exact sequence of homotopy groups for this pair we see that the inclusion∨
αS

n
α֓

∏
αS

n
α induces an isomorphism on πn if n ≥ 2. By Proposition 4.2 we have

πn(
∏
αS

n
α) ≈

⊕
απn(S

n
α ) , a free abelian group with basis the inclusions Snα֓

∏
αS

n
α ,

so the same is true for
∨
αS

n
α . This takes care of the case of finitely many Snα ’s.

To reduce the case of infinitely many summands Snα to the finite case, consider the

homomorphism Φ :
⊕
απn(S

n
α)→πn(

∨
αS

n
α) induced by the inclusions Snα֓

∨
αS

n
α .

Then Φ is surjective since any map f :Sn→
∨
αS

n
α has compact image contained in

the wedge sum of finitely many Snα ’s, so by the finite case already proved, [f ] is in

the image of Φ . Similarly, a nullhomotopy of f has compact image contained in a

finite wedge sum of Snα ’s, so the finite case also implies that Φ is injective.
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Example 4.27. Let us show that πn(S
1
∨Sn) for n ≥ 2 is free abelian on a countably

infinite number of generators. By Proposition 4.1 we may compute πi(S
1
∨ Sn) for

i ≥ 2 by passing to the universal cover. This consists of a copy of R with a sphere

Snk attached at each integer point k ∈ R , so it is homotopy equivalent to
∨
kS
n
k . The

preceding Example 4.26 says that πn(
∨
kS
n
k ) is free abelian with basis represented

by the inclusions of the wedge summands. So a basis for πn of the universal cover

of S1
∨ Sn is represented by maps that lift the maps obtained from the inclusion

Sn֓ S1
∨ Sn by the action of the various elements of π1(S

1
∨ Sn) ≈ Z . This means

that πn(S
1
∨ Sn) is a free Z[π1(S

1
∨ Sn)] module on a single basis element, the

homotopy class of the inclusion Sn֓ S1
∨ Sn . Writing a generator of π1(S

1
∨ Sn)

as t , the group ring Z[π1(S
1
∨ Sn)] becomes Z[t, t−1] , the Laurent polynomials in t

and t−1 with Z coefficients, and we have πn(S
1
∨ Sn) ≈ Z[t, t−1] .

This example shows that the homotopy groups of a finite CW complex need not

be finitely generated, in contrast to the homology groups. However, if we restrict

attention to spaces with trivial action of π1 on all πn ’s, then a theorem of Serre,

proved in [SSAT], says that the homotopy groups of such a space are finitely generated

iff the homology groups are finitely generated.

In this example, πn(S
1
∨ Sn) is finitely generated as a Z[π1] module, but there

are finite CW complexes where even this fails. This happens in fact for π3(S
1
∨ S2) ,

according to Exercise 38 at the end of this section. In §4.A we construct more com-

plicated examples for each πn with n > 1, in particular for π2 .

A useful tool for more complicated calculations is the following general result:

Proposition 4.28. If a CW pair (X,A) is r connected and A is s connected, with

r , s ≥ 0 , then the map πi(X,A)→πi(X/A) induced by the quotient map X→X/A
is an isomorphism for i ≤ r + s and a surjection for i = r + s + 1 .

Proof: Consider X ∪ CA , the complex obtained from X by attaching a cone CA

along A ⊂ X . Since CA is a contractible subcomplex of X ∪ CA , the quotient map

X∪CA→(X∪CA)/CA = X/A is a homotopy equivalence by Proposition 0.17. So we

have a commutative diagram

where the vertical isomorphism comes from a long exact sequence. Now apply the

excision theorem to the first map in the diagram, using the fact that (CA,A) is

(s + 1) connected if A is s connected, which comes from the exact sequence for the

pair (CA,A) . ⊔⊓

Example 4.29. Suppose X is obtained from a wedge of spheres
∨
αS

n
α by attaching

cells en+1
β via basepoint-preserving maps ϕβ :Sn→

∨
αS

n
α , with n ≥ 2. By cellular
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approximation we know that πi(X) = 0 for i < n , and we shall show that πn(X) is

the quotient of the free abelian group πn
(∨
αS

n
α

)
≈
⊕
αZ by the subgroup generated

by the classes [ϕβ] . Any subgroup can be realized in this way, by choosing maps

ϕβ to represent a set of generators for the subgroup, so it follows that every abelian

group can be realized as πn(X) for such a space X =
(∨
αS

n
α

)⋃
β e
n+1
β . This is the

higher-dimensional analog of the construction in Corollary 1.28 of a 2 dimensional

CW complex with prescribed fundamental group.

To see that πn(X) is as claimed, consider the following portion of the long exact

sequence of the pair (X,
∨
αS

n
α) :

πn+1(X,
∨
αS

n
α)

∂
-------------→πn(

∨
αS

n
α) --------→πn(X) ----→0

The quotient X/
∨
αS

n
α is a wedge of spheres Sn+1

β , so the preceding proposition and

Example 4.26 imply that πn+1(X,
∨
αS

n
α) is free with basis the characteristic maps of

the cells en+1
β . The boundary map ∂ takes these to the classes [ϕβ] , and the result

follows.

Eilenberg–MacLane Spaces

A space X having just one nontrivial homotopy group πn(X) ≈ G is called an

Eilenberg–MacLane space K(G,n) . The case n = 1 was considered in §1.B, where

the condition that πi(X) = 0 for i > 1 was replaced by the condition that X have a

contractible universal cover, which is equivalent for spaces that have a universal cover

of the homotopy type of a CW complex.

We can build a CW complex K(G,n) for arbitrary G and n , assuming G is abelian

if n > 1, in the following way. To begin, let X be an (n− 1) connected CW complex

of dimension n+ 1 such that πn(X) ≈ G , as was constructed in Example 4.29 above

when n > 1 and in Corollary 1.28 when n = 1. Then we showed in Example 4.16 how

to attach higher-dimensional cells to X to make πi trivial for i > n without affecting

πn or the lower homotopy groups.

By taking products of K(G,n) ’s for varying n we can then realize any sequence

of groups Gn , abelian for n > 1, as the homotopy groups πn of a space.

A fair number of K(G,1) ’s arise naturally in a variety of contexts, and a few of

these are mentioned in §1.B. By contrast, naturally occurring K(G,n) ’s for n ≥ 2

are rare. It seems the only real example is CP∞ , which is a K(Z,2) as we shall see

in Example 4.50. One could of course trivially generalize this example by taking a

product of CP∞ ’s to get a K(G,2) with G a product of Z ’s.

Actually there is a fairly natural construction of a K(Z, n) for arbitrary n , the

infinite symmetric product SP(Sn) defined in §3.C. In §4.K we prove that the functor

SP has the surprising property of converting homology groups into homotopy groups,

namely πi
(
SP(X)

)
≈ Hi(X;Z) for all i > 0 and all connected CW complexes X . Taking

X to be a sphere, we deduce that SP(Sn) is a K(Z, n) . More generally, SP
(
M(G,n)

)

is a K(G,n) for each Moore space M(G,n) .
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Having shown the existence of K(G,n) ’s, we now consider the uniqueness ques-

tion, which has the nicest possible answer:

Proposition 4.30. The homotopy type of a CW complex K(G,n) is uniquely deter-

mined by G and n .

The proof will be based on a more technical statement:

Lemma 4.31. Let X be a CW complex of the form
(∨
αS

n
α

)⋃
β e
n+1
β for some n ≥ 1 .

Then for every homomorphism ψ :πn(X)→πn(Y ) with Y path-connected there ex-

ists a map f :X→Y with f∗ = ψ .

Proof: To begin, let f send the natural basepoint of
∨
αS

n
α to a chosen basepoint

y0 ∈ Y . Extend f over each sphere Snα via a map representing ψ([iα]) where iα
is the inclusion Snα֓ X . Thus for the map f :Xn→Y constructed so far we have

f∗([iα]) = ψ([iα]) for all α , hence f∗([ϕ]) = ψ([ϕ]) for all basepoint-preserving

maps ϕ :Sn→Xn since the iα ’s generate πn(X
n) . To extend f over a cell en+1

β all

we need is that the composition of the attaching map ϕβ :Sn→Xn for this cell with f

be nullhomotopic in Y . But this composition fϕβ represents f∗([ϕβ]) = ψ([ϕβ]) ,

and ψ([ϕβ]) = 0 because [ϕβ] is zero in πn(X) since ϕβ is nullhomotopic in X

via the characteristic map of en+1
β . Thus we obtain an extension f :X→Y . This has

f∗ = ψ since the elements [iα] generate πn(X
n) and hence also πn(X) by cellular

approximation. ⊔⊓

Proof of 4.30: Suppose K and K′ are K(G,n) CW complexes. Since homotopy equiv-

alence is an equivalence relation, there is no loss of generality if we assume K is a

particular K(G,n) , namely one constructed from a space X as in the lemma by at-

taching cells of dimension n+ 2 and greater. By the lemma there is a map f :X→K′

inducing an isomorphism on πn . To extend this f over K we proceed inductively.

For each cell en+2 , the composition of its attaching map with f is nullhomotopic

in K′ since πn+1(K
′) = 0, so f extends over this cell. The same argument applies

for all the higher-dimensional cells in turn. The resulting f :K→K′ is a homotopy

equivalence since it induces isomorphisms on all homotopy groups. ⊔⊓

The Hurewicz Theorem

Using the calculations of homotopy groups done above we can easily prove the

simplest and most often used cases of the Hurewicz theorem:

Theorem 4.32. If a space X is (n− 1) connected, n ≥ 2 , then H̃i(X) = 0 for i < n

and πn(X) ≈ Hn(X) . If a pair (X,A) is (n − 1) connected, n ≥ 2 , with A simply-

connected and nonempty, then Hi(X,A) = 0 for i < n and πn(X,A) ≈ Hn(X,A) .

Thus the first nonzero homotopy and homology groups of a simply-connected

space occur in the same dimension and are isomorphic. One cannot expect any nice
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relationship between πi(X) and Hi(X) beyond this. For example, Sn has trivial ho-

mology groups above dimension n but many nontrivial homotopy groups in this range

when n ≥ 2. In the other direction, Eilenberg–MacLane spaces such as CP∞ have triv-

ial higher homotopy groups but many nontrivial homology groups.

The theorem can sometimes be used to compute π2(X) if X is a path-connected

space that is nice enough to have a universal cover. For if X̃ is the universal cover, then

π2(X) ≈ π2(X̃) and the latter group is isomorphic to H2(X̃) by the Hurewicz theorem.

So if one can understand X̃ well enough to compute H2(X̃) , one can compute π2(X) .

In the part of the theorem dealing with relative groups, notice that X must be

simply-connected as well as A since (X,A) is 1 connected by hypothesis. There is

a more general version of the relative Hurewicz theorem given later in Theorem 4.37

that allows A and X to be nonsimply-connected, but this requires πn(X,A) to be

replaced by a certain quotient group.

Proof: We may assume X is a CW complex and (X,A) is a CW pair by taking CW

approximations to X and (X,A) . For CW pairs the relative case then reduces to

the absolute case since πi(X,A) ≈ πi(X/A) for i ≤ n by Proposition 4.28, while

Hi(X,A) ≈ H̃i(X/A) for all i by Proposition 2.22.

In the absolute case we can apply Proposition 4.15 to replace X by a homo-

topy equivalent CW complex with (n − 1) skeleton a point, hence H̃i(X) = 0 for

i < n . To show πn(X) ≈ Hn(X) , we can further simplify by throwing away cells

of dimension greater than n + 1 since these have no effect on πn or Hn . Thus X

has the form
(∨
αS

n
α

)⋃
β e
n+1
β . We may assume the attaching maps ϕβ of the cells

en+1
β are basepoint-preserving since this is what the proof of Proposition 4.15 gives.

Example 4.29 then applies to compute πn(X) as the cokernel of the boundary map

πn+1(X,X
n)→πn(X

n) , a map
⊕
βZ→

⊕
αZ . This is the same as the cellular bound-

ary map d :Hn+1(X
n+1, Xn)→Hn(X

n, Xn−1) since for a cell en+1
β , the coefficients of

den+1
β are the degrees of the compositions qαϕβ where qα collapses all n cells ex-

cept enα to a point, and the isomorphism πn(S
n) ≈ Z in Corollary 4.25 is given by

degree. Since there are no (n− 1) cells, we have Hn(X) ≈ Cokerd . ⊔⊓

Since homology groups are usually more computable than homotopy groups, the

following version of Whitehead’s theorem is often easier to apply:

Corollary 4.33. A map f :X→Y between simply-connected CW complexes is a ho-

motopy equivalence if f∗ :Hn(X)→Hn(Y ) is an isomorphism for each n .

Proof: After replacing Y by the mapping cylinder Mf we may take f to be an inclusion

X֓ Y . Since X and Y are simply-connected, we have π1(Y ,X) = 0. The relative

Hurewicz theorem then says that the first nonzero πn(Y ,X) is isomorphic to the first

nonzero Hn(Y ,X) . All the groups Hn(Y ,X) are zero from the long exact sequence

of homology, so all the groups πn(Y ,X) also vanish. This means that the inclusion
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X֓ Y induces isomorphisms on all homotopy groups, and therefore this inclusion

is a homotopy equivalence. ⊔⊓

Example 4.34: Uniqueness of Moore Spaces. Let us show that the homotopy type of

a CW complex Moore space M(G,n) is uniquely determined by G and n if n > 1, so

M(G,n) is simply-connected. Let X be an M(G,n) as constructed in Example 2.40 by

attaching (n+1) cells to a wedge sum of n spheres, and let Y be any other M(G,n)

CW complex. By Lemma 4.31 there is a map f :X→Y inducing an isomorphism on

πn . If we can show that f also induces an isomorphism on Hn , then the preceding

corollary will imply the result.

One way to show that f induces an isomorphism on Hn would be to use a more

refined version of the Hurewicz theorem giving an isomorphism between πn and

Hn that is natural with respect to maps between spaces, as in Theorem 4.37 below.

However, here is a direct argument which avoids naturality questions. For the mapping

cylinder Mf we know that πi(Mf , X) = 0 for i ≤ n . If this held also for i = n + 1

then the relative Hurewicz theorem would say that Hi(Mf , X) = 0 for i ≤ n+ 1 and

hence that f∗ would be an isomorphism on Hn . To make this argument work, let

us temporarily enlarge Y by attaching (n + 2) cells to make πn+1 zero. The new

mapping cylinder Mf then has πn+1(Mf , X) = 0 from the long exact sequence of the

pair. So for the enlarged Y the map f induces an isomorphism on Hn . But attaching

(n+2) cells has no effect on Hn , so the original f :X→Y had to be an isomorphism

on Hn .

It is certainly possible for a map of nonsimply-connected spaces to induce isomor-

phisms on all homology groups but not on homotopy groups. Nonsimply-connected

acyclic spaces, for which the inclusion of a point induces an isomorphism on ho-

mology, exhibit this phenomenon in its purest form. Perhaps the simplest nontrivial

acyclic space is the 2 dimensional complex constructed in Example 2.38 with funda-

mental group
〈
a,b |||| a

5
= b3

= (ab)2
〉

of order 120.

It is also possible for a map between spaces with abelian fundamental groups to

induce isomorphisms on homology but not on higher homotopy groups, as the next

example shows.

Example 4.35. We construct a space X = (S1
∨ Sn)∪ en+1 , for arbitrary n > 1, such

that the inclusion S1֓ X induces an isomorphism on all homology groups and on

πi for i < n , but not on πn . From Example 4.27 we have πn(S
1
∨ Sn) ≈ Z[t, t−1] .

Let X be obtained from S1
∨ Sn by attaching a cell en+1 via a map Sn→S1

∨ Sn

corresponding to 2t − 1 ∈ Z[t, t−1] . By looking in the universal cover we see that

πn(X) ≈ Z[t, t
−1]/(2t−1) , where (2t−1) denotes the ideal in Z[t, t−1] generated by

2t − 1. Note that setting t = 1/2 embeds Z[t, t−1]/(2t − 1) in Q as the subring Z[1/2]

consisting of rationals with denominator a power of 2. From the long exact sequence

of homotopy groups for the (n− 1) connected pair (X, S1) we see that the inclusion
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S1֓X induces an isomorphism on πi for i < n . The fact that this inclusion also in-

duces isomorphisms on all homology groups can be deduced from cellular homology.

The key point is that the cellular boundary map Hn+1(X
n+1, Xn)→Hn(X

n, Xn−1) is an

isomorphism since the degree of the composition of the attaching map Sn→S1
∨ Sn

of en+1 with the collapse S1
∨ Sn→Sn is 2− 1 = 1.

This example relies heavily on the nontriviality of the action of π1(X) on πn(X) ,

so one might ask whether the simple-connectivity assumption in Corollary 4.33 can

be weakened to trivial action of π1 on all πn ’s. This is indeed the case, as we will

show in Proposition 4.74.

The form of the Hurewicz theorem given above asserts merely the existence of an

isomorphism between homotopy and homology groups, but one might want a more

precise statement which says that a particular map is an isomorphism. In fact, there

are always natural maps from homotopy groups to homology groups, defined in the

following way. Thinking of πn(X,A,x0) for n > 0 as homotopy classes of maps

f : (Dn, ∂Dn, s0)→(X,A,x0) , the Hurewicz map h :πn(X,A,x0)→Hn(X,A) is de-

fined by h([f]) = f∗(α) where α is a fixed generator of Hn(D
n, ∂Dn) ≈ Z and

f∗ :Hn(D
n, ∂Dn)→Hn(X,A) is induced by f . If we have a homotopy f ≃ g through

maps (Dn, ∂Dn, s0)→(X,A,x0) , or even through maps (Dn, ∂Dn)→(X,A) not pre-

serving the basepoint, then f∗ = g∗ , so h is well-defined.

Proposition 4.36. The Hurewicz map h :πn(X,A,x0)→Hn(X,A) is a homomor-

phism, assuming n > 1 so that πn(X,A,x0) is a group.

Proof: It suffices to show that for maps f ,g : (Dn, ∂Dn)→(X,A) , the induced maps

on homology satisfy (f + g)∗ = f∗ + g∗ , for if this is the case then h([f + g]) =

(f + g)∗(α) = f∗(α)+ g∗(α) = h([f])+ h([g]) . Our proof that (f + g)∗ = f∗ + g∗
will in fact work for any homology theory.

Let c :Dn→Dn ∨Dn be the map collapsing the equatorial Dn−1 to a point, and

let q1, q2 :Dn ∨ Dn→Dn be the quotient maps onto the two summands, collapsing

the other summand to a point. We then have a diagram

The map q1∗⊕q2∗ is an isomorphism with inverse i1∗+ i2∗ where i1 and i2 are the

inclusions of the two summands Dn֓Dn ∨Dn . Since q1c and q2c are homotopic

to the identity through maps (Dn, ∂Dn)→(Dn, ∂Dn) , the composition (q1∗⊕q2∗)c∗
is the diagonal map x֏ (x,x) . From the equalities (f ∨g)i1 = f and (f ∨g)i2 = g

we deduce that (f ∨g)∗(i1∗+ i2∗) sends (x,0) to f∗(x) and (0, x) to g∗(x) , hence

(x,x) to f∗(x) + g∗(x) . Thus the composition across the top of the diagram is
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x֏f∗(x)+g∗(x) . On the other hand, f +g = (f ∨g)c , so this composition is also

(f + g)∗ . ⊔⊓

There is also an absolute Hurewicz map h :πn(X,x0)→Hn(X) defined in a simi-

lar way by setting h([f]) = f∗(α) for f : (Sn, s0)→(X,x0) and α a chosen generator

of Hn(S
n) . For example, if X = Sn then f∗(α) is (deg f)α by the definition of de-

gree, so we can view h in this case as the degree map πn(S
n)→Z , which we know is

an isomorphism by Corollary 4.25. The proof of the preceding proposition is readily

modified to show that the absolute h is a homomorphism for n ≥ 1.

The absolute and relative Hurewicz maps can be combined in a diagram of long

exact sequences

An easy definition check which we leave to the reader shows that this diagram com-

mutes up to sign at least. With more care in the choice of the generators α it can be

made to commute exactly.

Another elementary property of Hurewicz maps

is that they are natural: A map f : (X,x0)→(Y ,y0)

induces a commutative diagram as at the right, and

similarly in the relative case.

It is easy to construct nontrivial elements of the kernel of the Hurewicz homo-

morphism h :πn(X,x0)→Hn(X) if π1(X,x0) acts nontrivially on πn(X,x0) , namely

elements of the form [γ][f ]−[f ] . This is because γf and f , viewed as maps Sn→X ,

are homotopic if we do not require the basepoint to be fixed during the homotopy, so

(γf)∗(α) = f∗(α) for α a generator of Hn(S
n) .

Similarly in the relative case the kernel of h :πn(X,A,x0)→Hn(X,A) contains

the elements of the form [γ][f ]−[f ] for [γ] ∈ π1(A,x0) . For example the Hurewicz

map πn(S
1
∨ Sn, S1)→Hn(S

1
∨ Sn, S1) is the homomorphism Z[t, t−1]→Z sending

all powers of t to 1. Since the pair (S1
∨ Sn, S1) is (n− 1) connected, this example

shows that the hypothesis π1(A,x0) = 0 in the relative form of the Hurewicz theorem

proved earlier cannot be dropped.

If we define π ′n(X,A,x0) to be the quotient group of πn(X,A,x0) obtained by

factoring out the subgroup generated by all elements of the form [γ][f ]−[f ] , or the

normal subgroup generated by such elements in the case n = 2 when π2(X,A,x0)

may not be abelian, then h induces a homomorphism h′ :π ′n(X,A,x0)→Hn(X,A) .
The general form of the Hurewicz theorem deals with this homomorphism:
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Theorem 4.37. If (X,A) is an (n − 1) connected pair of path-connected spaces

with n ≥ 2 and A ≠ ∅ , then h′ :π ′n(X,A,x0)→Hn(X,A) is an isomorphism and

Hi(X,A) = 0 for i < n .

Note that this statement includes the absolute form of the theorem by taking A

to be the basepoint.

Before starting the proof of this general Hurewicz theorem we have a preliminary

step:

Lemma 4.38. If X is a connected CW complex to which cells enα are attached for

a fixed n ≥ 2 , forming a CW complex W = X
⋃
α e

n
α , then πn(W,X) is a free

π1(X) module with basis the homotopy classes of the characteristic maps Φα of the

cells enα , provided that the map π1(X)→π1(W) induced by inclusion is an isomor-

phism. In particular, this is always the case if n ≥ 3 . In the general n = 2 case,

π2(W,X) is generated by the classes of the characteristic maps of the cells e2
α to-

gether with their images under the action of π1(X) .

If the characteristic maps Φα : (Dn, ∂Dn)→(W,X) do not take a basepoint s0 in

∂Dn to the basepoint x0 in X , then they will define elements of πn(W,X,x0) only

after we choose change-of-basepoint paths from the points Φα(s0) to x0 . Differ-

ent choices of such paths yield elements of πn(W,X,x0) related by the action of

π1(X,x0) , so the basis for πn(W,X,x0) is well-defined up to multiplication by in-

vertible elements of Z[π1(X)] .

The situation when n = 2 and the map π1(X)→π1(W) is not an isomorphism is

more complicated because the relative π2 can be nonabelian in this case. Whitehead

analyzed what happens here and showed that π2(W,X) has the structure of a ‘free

crossed π1(X) module’. See [Whitehead 1949] or [Sieradski 1993].

Proof: Since W/X =
∨
αS

n
α , we have πn(W,X) ≈ πn(

∨
αS

n
α) when X is simply-

connected, by Proposition 4.28. The conclusion of the lemma in this case is then

immediate from Example 4.26.

When X is not simply-connected but the inclusion X֓W induces an isomor-

phism on π1 , then the universal cover of W is obtained from the universal cover of X

by attaching n cells lifting the cells enα . If we choose one such lift ẽnα of enα , then all

the other lifts are the images γẽnα of ẽnα under the deck transformations γ ∈ π1(X) .

The special case proved in the preceding paragraph shows that the relative πn for the

universal cover is the free abelian group with basis corresponding to the cells γẽnα . By

the relative version of Proposition 4.1, the projection of the universal cover of W onto

W induces an isomorphism on relative πn ’s, so πn(W,X) is free abelian with basis

the classes [γenα] as γ ranges over π1(X) , or in other words the free π1(X) module

with basis the cells enα .

It remains to consider the n = 2 case in general. Since both of the pairs (W,X)

and (X1⋃
α e

2
α, X

1) are 1 connected, the homotopy excision theorem implies that the
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map π2(X
1⋃

α e
2
α, X

1)→π2(W,X) is surjective. This gives a reduction to the case

that X is 1 dimensional. We may also assume the 2 cells e2
α are attached along loops

passing through the basepoint 0 cell x0 , since this can be achieved by homotopy of

the attaching maps, which does not affect the homotopy type of the pair (W,X) .

In the closure of each 2 cell e2
α choose an embedded disk D2

α which contains

x0 but is otherwise contained entirely in the interior of e2
α . Let Y = X

⋃
αD

2
α , the

wedge sum of X with the disks D2
α , and let Z = W −

⋃
α int(D2

α) , so Y and Z are

2 dimensional CW complexes with a common 1 skeleton Y 1
= Z1

= Y∩Z = X
∨
α∂D

2
α .

The inclusion (W,X)֓(W,Z) is a homotopy equivalence of pairs. Homotopy excision

gives a surjection π2(Y , Y
1)→π2(W,Z) . The universal cover Ỹ of Y is obtained from

the universal cover X̃ of X by taking the wedge sum with lifts D̃2
αβ of the disks D2

α .

Hence we have isomorphisms

π2(Y , Y
1) ≈ π2(Ỹ , Ỹ

1) where Ỹ 1 is the 1 skeleton of Ỹ

≈ π2(
∨
αβ D̃

2
αβ,
∨
αβ ∂D̃

2
αβ) since X̃ is contractible

≈ π1(
∨
αβ ∂D̃

2
αβ) since

∨
αβ D̃

2
αβ is contractible

This last group is free with basis the loops ∂D̃2
αβ , so the inclusions D̃2

αβ֓
∨
αβ D̃

2
αβ

form a basis for π2(
∨
αβ D̃

2
αβ,
∨
αβ ∂D̃

2
αβ) . This implies that π2(Y , Y

1) is generated by

the inclusions D2
α֓ Y and their images under the action of loops in X . The same is

true for π2(W,Z) via the surjection π2(Y , Y
1)→π2(W,Z) . Using the isomorphism

π2(W,Z) ≈ π2(W,X) , we conclude that π2(W,X) is generated by the characteristic

maps of the cells e2
α and their images under the action of π1(X) . ⊔⊓

Proof of the general Hurewicz Theorem: Since the pair (X,A) is (n− 1) connected

we may assume it is a CW pair such that the cells of X −A have dimension ≥ n . We

may assume also that X = Xn+1 since higher-dimensional cells have no effect on πn
or Hn . Consider the commutative diagram

where the maps q are the quotient maps. The first and third rows are exact sequences

for the triple (X,Xn ∪ A,A) . To construct the map ∂′ would take a small extra ar-

gument but we will not actually need this map so it can be ignored for the proof. If

we did have this map and we knew the middle row was exact, the theorem would

follow from the five-lemma once we show that the middle h′ is an isomorphism and

the left-hand h′ is surjective. Instead we will use exactness of the upper row and a

diagram chase similar to one in the proof of the five-lemma.
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The map d in the lower row is just the cellular boundary map for computing

Hn(X,A) as Coker(d) in the cellular chain complex for (X,A) since X = Xn+1 . In

particular Hn+1(X,X
n
∪A) and Hn(X

n
∪A,A) are free with bases the (n+1) cells and

n cells of X−A , respectively, so the left-hand and middle maps h′ are surjective. The

preceding lemma implies that the middle h′ is in fact an isomorphism when n ≥ 3.

When n = 2 the lemma implies that π ′2(X
2
∪A,A) is generated by the characteristic

maps of the 2 cells of X −A . The images of these generators under h′ form a basis

for H2(X
2
∪A,A) . The group π ′2(X

2
∪A,A) is abelian by Lemma 4.39 below, and h′

is a homomorphism from this group to a free abelian group taking a set of generators

to a basis, hence h′ is an isomorphism.

Now for the diagram chase to show that the right-hand h′ is an isomorphism.

Surjectivity is immediate since the lower i∗ and the middle h′ are surjective. For

injectivity, let x ∈ π ′n(X,A) be an element with h′(x) = 0. The map i′∗ is surjective

since the maps q and the upper map i∗ are surjective, so x = i′∗(y) for some y ∈

π ′n(X
n
∪A,A) . We have i∗h

′(y) = 0 in the lower row so h′(y) comes from an element

of Hn+1(X,X
n
∪ A) hence also from some z ∈ πn+1(X,X

n
∪ A) since the maps in

the left column are surjective. We have h′q∂(z) = h′(y) by commutativity, hence

q∂(z) = y since the middle h′ is injective. Then x = i′∗(y) = i
′
∗q∂(z) = qi∗∂(z) = 0

since i∗∂ = 0. ⊔⊓

Lemma 4.39. For any (X,A,x0) , the formula a + b − a = (∂a)b holds for all

a,b ∈ π2(X,A,x0) , where ∂ :π2(X,A,x0)→π1(A,x0) is the usual boundary map

and (∂a)b denotes the action of ∂a on b . Hence π ′2(X,A,x0) is abelian.

Here the ‘+ ’ and ‘− ’ in a+ b − a refer to the group operation in the nonabelian

group π2(X,A,x0) .

Proof: The formula is obtained by constructing a homotopy from a+b−a to (∂a)b

as indicated in the pictures below. ⊔⊓

The Plus Construction

There are quite a few situations in algebraic topology where having a nontriv-

ial fundamental group complicates matters considerably. We shall next describe a

construction which in certain circumstances allows one to modify a space so as to

eliminate its fundamental group, or at least simplify it, without affecting homology or

cohomology. Here is the simplest case:
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Proposition 4.40. Let X be a connected CW complex with H1(X) = 0 . Then there is

a simply-connected CW complex X+ and a map X→X+ inducing isomorphisms on

all homology groups.

Proof: Choose loops ϕα :S1→X1 generating π1(X) and use these to attach cells e2
α

to X to form a simply-connected CW complex X′ . The homology exact sequence

0 -→H2(X) -→H2(X
′) -→H2(X

′, X) -→0 = H1(X)

splits since H2(X
′, X) is free with basis the cells e2

α . Thus we have an isomorphism

H2(X
′) ≈ H2(X)⊕H2(X

′, X) . Since X′ is simply-connected, the Hurewicz theorem

gives an isomorphism H2(X
′) ≈ π2(X

′) , and so we may represent a basis for the free

summand H2(X
′, X) by maps ψα :S2→X′ . We may assume these are cellular maps,

and then use them to attach cells e3
α to X′ forming a simply-connected CW complex

X+ , with the inclusion X֓X+ an isomorphism on all homology groups. ⊔⊓

In the preceding proposition, the condition H1(X) = 0 means that π1(X) is equal

to its commutator subgroup, that is, π1(X) is a perfect group. Suppose more gen-

erally that X is a connected CW complex and H ⊂ π1(X) is a perfect subgroup.

Let p : X̃→X be the covering space corresponding to H , so π1(X̃) ≈ H is per-

fect and H1(X̃) = 0. From the previous proposition we get an inclusion X̃֓ X̃+ .

Let X+ be obtained from the disjoint union of X̃+ and the mapping cylinder Mp
by identifying the copies of X̃ in these two spaces. Thus

we have the commutative diagram of inclusion maps shown

at the right. From the van Kampen theorem, the induced

map π1(X)→π1(X
+) is surjective with kernel the normal

subgroup generated by H . Further, since X+/Mp is homeomorphic to X̃+/X̃ we

have H∗(X
+,Mp) = H∗(X̃

+, X̃) = 0, so the map X→X+ induces an isomorphism

on homology.

This construction X→X+ , killing a perfect subgroup of π1(X) while preserving

homology, is known as the Quillen plus construction. In some of the main applica-

tions X is a K(G,1) where G has perfect commutator subgroup, so the map X→X+

abelianizes π1 while preserving homology. The space X+ need no longer be a K(π,1) ,

and in fact its homotopy groups can be quite interesting. The most striking example is

G = Σ∞ , the infinite symmetric group consisting of permutations of 1,2, ··· fixing all

but finitely many n ’s, with commutator subgroup the infinite alternating group A∞ ,

which is perfect. In this case a famous theorem of Barratt, Priddy, and Quillen says

that the homotopy groups πi(K(Σ∞,1)+) are the stable homotopy groups of spheres!

There are limits, however, on which subgroups of π1(X) can be killed without

affecting the homology of X . For example, for X = S1
∨ S1 it is impossible to kill the

commutator subgroup of π1(X) while preserving homology. In fact, by Exercise 23

at the end of this section every space with fundamental group Z×Z must have H2

nontrivial.
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Fiber Bundles

A ‘short exact sequence of spaces’ A֓ X→X/A gives rise to a long exact se-

quence of homology groups, but not to a long exact sequence of homotopy groups due

to the failure of excision. However, there is a different sort of ‘short exact sequence of

spaces’ that does give a long exact sequence of homotopy groups. This sort of short

exact sequence F -→ E
p
-----→ B , called a fiber bundle, is distinguished from the type

A֓X→X/A in that it has more homogeneity: All the subspaces p−1(b) ⊂ E , which

are called fibers, are homeomorphic. For example, E could be the product F×B with

p :E→B the projection. General fiber bundles can be thought of as twisted products.

Familiar examples are the Möbius band, which is a twisted annulus with line segments

as fibers, and the Klein bottle, which is a twisted torus with circles as fibers.

The topological homogeneity of all the fibers of a fiber bundle is rather like the

algebraic homogeneity in a short exact sequence of groups 0→K -→ G
p
-----→ H→0

where the ‘fibers’ p−1(h) are the cosets of K in G . In a few fiber bundles F→E→B
the space E is actually a group, F is a subgroup (though seldom a normal subgroup),

and B is the space of left or right cosets. One of the nicest such examples is the Hopf

bundle S1→S3→S2 where S3 is the group of quaternions of unit norm and S1 is

the subgroup of unit complex numbers. For this bundle, the long exact sequence of

homotopy groups takes the form

··· -→πi(S
1) -→πi(S

3) -→πi(S
2) -→πi−1(S

1) -→πi−1(S
3) -→···

In particular, the exact sequence gives an isomorphism π2(S
2) ≈ π1(S

1) since the

two adjacent terms π2(S
3) and π1(S

3) are zero by cellular approximation. Thus we

have a direct homotopy-theoretic proof that π2(S
2) ≈ Z . Also, since πi(S

1) = 0 for

i > 1 by Proposition 4.1, the exact sequence implies that there are isomorphisms

πi(S
3) ≈ πi(S

2) for all i ≥ 3, so in particular π3(S
2) ≈ π3(S

3) , and by Corollary 4.25

the latter group is Z .

After these preliminary remarks, let us begin by defining the property that leads

to a long exact sequence of homotopy groups. A map p :E→B is said to have the

homotopy lifting property with respect to a space X if, given a homotopy gt :X→B
and a map g̃0 :X→E lifting g0 , so pg̃0 = g0 , then there exists a homotopy g̃t :X→E
lifting gt . From a formal point of view, this can be regarded as a special case of the

lift extension property for a pair (Z,A) , which asserts that every map Z→B has a

lift Z→E extending a given lift defined on the subspace A ⊂ Z . The case (Z,A) =

(X×I,X×{0}) is the homotopy lifting property.

A fibration is a map p :E→B having the homotopy lifting property with respect

to all spaces X . For example, a projection B×F→B is a fibration since we can choose

lifts of the form g̃t(x) = (gt(x),h(x)) where g̃0(x) = (g0(x),h(x)) .
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Theorem 4.41. Suppose p :E→B has the homotopy lifting property with respect to

disks Dk for all k ≥ 0 . Choose basepoints b0 ∈ B and x0 ∈ F = p
−1(b0) . Then

the map p∗ :πn(E, F,x0)→πn(B, b0) is an isomorphism for all n ≥ 1 . Hence if B is

path-connected, there is a long exact sequence

···→πn(F,x0)→πn(E,x0)
p∗
-----→πn(B, b0)→πn−1(F,x0)→ ···→π0(E,x0)→0

The proof will use a relative form of the homotopy lifting property. The map

p :E→B is said to have the homotopy lifting property for a pair (X,A) if each ho-

motopy ft :X→B lifts to a homotopy g̃t :X→E starting with a given lift g̃0 and

extending a given lift g̃t :A→E . In other words, the homotopy lifting property for

(X,A) is the lift extension property for (X×I,X×{0} ∪A×I) .

The homotopy lifting property for Dk is equivalent to the homotopy lifting prop-

erty for (Dk, ∂Dk) since the pairs (Dk×I,Dk×{0}) and (Dk×I,Dk×{0}∪∂Dk×I) are

homeomorphic. This implies that the homotopy lifting property for disks is equiva-

lent to the homotopy lifting property for all CW pairs (X,A) . For by induction over

the skeleta of X it suffices to construct a lifting g̃t one cell of X −A at a time. Com-

posing with the characteristic map Φ :Dk→X of a cell then gives a reduction to the

case (X,A) = (Dk, ∂Dk) . A map p :E→B satisfying the homotopy lifting property

for disks is sometimes called a Serre fibration.

Proof: First we show that p∗ is onto. Represent an element of πn(B, b0) by a map

f : (In, ∂In)→(B, b0) . The constant map to x0 provides a lift of f to E over the sub-

space Jn−1
⊂ In , so the relative homotopy lifting property for (In−1, ∂In−1) extends

this to a lift f̃ : In→E , and this lift satisfies f̃ (∂In) ⊂ F since f(∂In) = b0 . Then f̃

represents an element of πn(E, F,x0) with p∗([f̃ ]) = [f ] since pf̃ = f .

Injectivity of p∗ is similar. Given f̃0, f̃1 : (In, ∂In, Jn−1)→(E, F,x0) such that

p∗([f̃0]) = p∗([f̃1]) , let G : (In×I, ∂In×I)→(B, b0) be a homotopy from pf̃0 to pf̃1 .

We have a partial lift G̃ given by f̃0 on In×{0} , f̃1 on In×{1} , and the constant map

to x0 on Jn−1
×I . After permuting the last two coordinates of In×I , the relative ho-

motopy lifting property gives an extension of this partial lift to a full lift G̃ : In×I→E .

This is a homotopy f̃t : (In, ∂In, Jn−1)→(E, F,x0) from f̃0 to f̃1 . So p∗ is injective.

For the last statement of the theorem we plug πn(B, b0) in for πn(E, F,x0) in the

long exact sequence for the pair (E, F) . The map πn(E,x0)→πn(E, F,x0) in the ex-

act sequence then becomes the composition πn(E,x0)→πn(E, F,x0)
p∗
-----→πn(B, b0) ,

which is just p∗ :πn(E,x0)→πn(B, b0) . The 0 at the end of the sequence, surjectivity

of π0(F,x0)→π0(E,x0) , comes from the hypothesis that B is path-connected since

a path in E from an arbitrary point x ∈ E to F can be obtained by lifting a path in B

from p(x) to b0 . ⊔⊓

A fiber bundle structure on a space E , with fiber F , consists of a projection

map p :E→B such that each point of B has a neighborhood U for which there is a
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homeomorphism h :p−1(U)→U×F making the diagram at

the right commute, where the unlabeled map is projection

onto the first factor. Commutativity of the diagram means

that h carries each fiber Fb = p
−1(b) homeomorphically

onto the copy {b}×F of F . Thus the fibers Fb are arranged locally as in the product

B×F , though not necessarily globally. An h as above is called a local trivialization

of the bundle. Since the first coordinate of h is just p , h is determined by its second

coordinate, a map p−1(U)→F which is a homeomorphism on each fiber Fb .

The fiber bundle structure is determined by the projection map p :E→B , but to

indicate what the fiber is we sometimes write a fiber bundle as F→E→B , a ‘short

exact sequence of spaces’. The space B is called the base space of the bundle, and E

is the total space.

Example 4.42. A fiber bundle with fiber a discrete space is a covering space. Con-

versely, a covering space whose fibers all have the same cardinality, for example a

covering space over a connected base space, is a fiber bundle with discrete fiber.

Example 4.43. One of the simplest nontrivial fiber bundles is the Möbius band, which

is a bundle over S1 with fiber an interval. Specifically, take E to be the quotient of

I×[−1,1] under the identifications (0, v) ∼ (1,−v) , with p :E→S1 induced by the

projection I×[−1,1]→I , so the fiber is [−1,1] . Glueing two copies of E together

by the identity map between their boundary circles produces a Klein bottle, a bundle

over S1 with fiber S1 .

Example 4.44. Projective spaces yield interesting fiber bundles. In the real case we

have the familiar covering spaces Sn→RPn with fiber S0 . Over the complex num-

bers the analog of this is a fiber bundle S1→S2n+1→CPn . Here S2n+1 is the unit

sphere in C
n+1 and CPn is viewed as the quotient space of S2n+1 under the equiv-

alence relation (z0, ··· , zn) ∼ λ(z0, ··· , zn) for λ ∈ S1 , the unit circle in C . The

projection p :S2n+1→CPn sends (z0, ··· , zn) to its equivalence class [z0, ··· , zn] ,

so the fibers are copies of S1 . To see that the local triviality condition for fiber bun-

dles is satisfied, let Ui ⊂ CPn be the open set of equivalence classes [z0, ··· , zn]

with zi ≠ 0. Define hi :p
−1(Ui)→Ui×S

1 by hi(z0, ··· , zn) = ([z0, ··· , zn], zi/|zi|) .

This takes fibers to fibers, and is a homeomorphism since its inverse is the map

([z0, ··· , zn], λ)֏ λ|zi|z
−1
i (z0, ··· , zn) , as one checks by calculation.

The construction of the bundle S1→S2n+1→CPn also works when n = ∞ , so

there is a fiber bundle S1→S∞→CP∞ .

Example 4.45. The case n = 1 is particularly interesting since CP1
= S2 and the

bundle becomes S1→S3→S2 with fiber, total space, and base all spheres. This is

known as the Hopf bundle, and is of low enough dimension to be seen explicitly. The

projection S3→S2 can be taken to be (z0, z1)֏ z0/z1 ∈ C ∪ {∞} = S2 . In polar

coordinates we have p(r0e
iθ0 , r1e

iθ1) = (r0/r1)e
i(θ0−θ1) where r 2

0 + r
2
1 = 1. For a
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fixed ratio ρ = r0/r1 ∈ (0,∞) the angles θ0 and θ1 vary independently over S1 , so

the points (r0e
iθ0 , r1e

iθ1) form a torus Tρ ⊂ S
3 . Letting ρ vary, these disjoint tori

Tρ fill up S3 , if we include the limiting cases T0 and T∞ where the radii r0 and r1

are zero, making the tori T0 and T∞ degenerate to circles. These two circles are the

unit circles in the two C factors of C2 , so under stereographic projection of S3 from

the point (0,1) onto R3 they correspond to the unit circle in the xy plane and the

z axis. The concentric tori Tρ are then arranged as in the following figure.

Each torus Tρ is a union of circle fibers, the pairs (θ0, θ1) with θ0 − θ1 constant.

These fiber circles have slope 1 on the torus, winding around once longitudinally and

once meridionally. With respect to the ambient space it might be more accurate to say

they have slope ρ . As ρ goes to 0 or ∞ the fiber circles approach the circles T0 and

T∞ , which are also fibers. The figure shows four of the tori decomposed into fibers.

Example 4.46. Replacing the field C by the quaternions H , the same constructions

yield fiber bundles S3→S4n+3→HPn over quaternionic projective spaces HPn . Here

the fiber S3 is the unit quaternions, and S4n+3 is the unit sphere in H
n+1 . Taking

n = 1 gives a second Hopf bundle S3→S7→S4
= HP1 .

Example 4.47. Another Hopf bundle S7→S15→S8 can be defined using the octonion

algebra O . Elements of O are pairs of quaternions (a1, a2) with multiplication given

by (a1, a2)(b1, b2) = (a1b1 − b2a2, a2b1 + b2a1) . Regarding S15 as the unit sphere

in the 16 dimensional vector space O2 , the projection map p :S15→S8
= O∪{∞} is

(z0, z1)֏z0z
−1
1 , just as for the other Hopf bundles, but because O is not associative,

a little care is needed to show this is a fiber bundle with fiber S7 , the unit octonions.

Let U0 and U1 be the complements of ∞ and 0 in the base space O ∪ {∞} . Define

hi :p
−1(Ui)→Ui×S

7 and gi :Ui×S
7→p−1(Ui) by

h0(z0, z1) = (z0z
−1
1 , z1/|z1|), g0(z,w) = (zw,w)/|(zw,w)|

h1(z0, z1) = (z0z
−1
1 , z0/|z0|), g1(z,w) = (w, z

−1w)/|(w, z−1w)|
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If one assumes the known fact that any subalgebra of O generated by two elements

is associative, then it is a simple matter to check that gi and hi are inverse home-

omorphisms, so we have a fiber bundle S7→S15→S8 . Actually, the calculation that

gi and hi are inverses needs only the following more elementary facts about octo-

nions z,w , where the conjugate z of z = (a1, a2) is defined by the expected formula

z = (a1,−a2) :

(1) rz = zr for all r ∈ R and z ∈ O , where R ⊂ O as the pairs (r ,0) .

(2) |z|2 = zz = zz , hence z−1
= z/|z|2 .

(3) |zw| = |z||w| .

(4) zw =w z , hence (zw)−1
=w−1z−1 .

(5) z(zw) = (zz)w and (zw)w = z(ww) , hence z(z−1w) = w and (zw)w−1
= z .

These facts can be checked by somewhat tedious direct calculation. More elegant

derivations can be found in Chapter 8 of [Ebbinghaus 1991].

There is an octonion projective plane OP2 obtained by attaching a cell e16 to S8

via the Hopf map S15→S8 , just as CP2 and HP2 are obtained from the other Hopf

maps. However, there is no octonion analog of RPn , CPn , and HPn for n > 2 since

associativity of multiplication is needed for the relation (z0, ··· , zn) ∼ λ(z0, ··· , zn)

to be an equivalence relation.

There are no fiber bundles with fiber, total space, and base space spheres of other

dimensions than in these Hopf bundle examples. This is discussed in an exercise for

§4.D, which reduces the question to the famous ‘Hopf invariant one’ problem.

Proposition 4.48. A fiber bundle p :E→B has the homotopy lifting property with

respect to all CW pairs (X,A) .

A theorem of Huebsch and Hurewicz proved in §2.7 of [Spanier 1966] says that

fiber bundles over paracompact base spaces are fibrations, having the homotopy lift-

ing property with respect to all spaces. This stronger result is not often needed in

algebraic topology, however.

Proof: As noted earlier, the homotopy lifting property for CW pairs is equivalent

to the homotopy lifting property for disks, or equivalently, cubes. Let G : In×I→B ,

G(x, t) = gt(x) , be a homotopy we wish to lift, starting with a given lift g̃0 of g0 .

Choose an open cover {Uα} of B with local trivializations hα :p−1(Uα)→Uα×F . Us-

ing compactness of In×I , we may subdivide In into small cubes C and I into intervals

Ij = [tj , tj+1] so that each product C×Ij is mapped by G into a single Uα . We may

assume by induction on n that g̃t has already been constructed over ∂C for each of

the subcubes C . To extend this g̃t over a cube C we may proceed in stages, construct-

ing g̃t for t in each successive interval Ij . This in effect reduces us to the case that

no subdivision of In×I is necessary, so G maps all of In×I to a single Uα . Then we

have G̃(In×{0} ∪ ∂In×I) ⊂ p−1(Uα) , and composing G̃ with the local trivialization
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hα reduces us to the case of a product bundle Uα×F . In this case the first coordinate

of a lift g̃t is just the given gt , so only the second coordinate needs to be constructed.

This can be obtained as a composition In×I→In×{0} ∪ ∂In×I→F where the first

map is a retraction and the second map is what we are given. ⊔⊓

Example 4.49. Applying this theorem to a covering space p :E→B with E and B

path-connected, and discrete fiber F , the resulting long exact sequence of homotopy

groups yields Proposition 4.1 that p∗ :πn(E)→πn(B) is an isomorphism for n ≥ 2.

We also obtain a short exact sequence 0→π1(E)→π1(B)→π0(F)→0, consistent

with the covering space theory facts that p∗ :π1(E)→π1(B) is injective and that the

fiber F can be identified, via path-lifting, with the set of cosets of p∗π1(E) in π1(B) .

Example 4.50. From the bundle S1→S∞→CP∞ we obtain πi(CP∞) ≈ πi−1(S
1) for

all i since S∞ is contractible. Thus CP∞ is a K(Z,2) . In similar fashion the bundle

S3→S∞→HP∞ gives πi(HP∞) ≈ πi−1(S
3) for all i , but these homotopy groups are

far more complicated than for CP∞ and S1 . In particular, HP∞ is not a K(Z,4) .

Example 4.51. The long exact sequence for the Hopf bundle S1→S3→S2 gives iso-

morphisms π2(S
2) ≈ π1(S

1) and πn(S
3) ≈ πn(S

2) for all n ≥ 3. Taking n = 3, we

see that π3(S
2) is infinite cyclic, generated by the Hopf map S3→S2 .

From this example and the preceding one we see that S2 and S3
×CP∞ are simply-

connected CW complexes with isomorphic homotopy groups, though they are not

homotopy equivalent since they have quite different homology groups.

Example 4.52: Whitehead Products. Let us compute π3(
∨
αS

2
α) , showing that it is

free abelian with basis consisting of the Hopf maps S3→S2
α ⊂

∨
αS

2
α together with the

attaching maps S3→S2
α ∨ S

2
β ⊂

∨
αS

2
α of the cells e2

α×e
2
β in the products S2

α×S
2
β for

all unordered pairs α ≠ β .

Suppose first that there are only finitely many summands S2
α . For a finite prod-

uct
∏
αXα of path-connected spaces, the map πn(

∨
αXα)→πn(

∏
αXα) induced by

inclusion is surjective since the group πn(
∏
αXα) ≈

⊕
απn(Xα) is generated by the

subgroups πn(Xα) . Thus the long exact sequence of homotopy groups for the pair

(
∏
αXα,

∨
αXα) breaks up into short exact sequences

0 -→πn+1(
∏
αXα,

∨
αXα) -→πn(

∨
αXα) -→πn(

∏
αXα) -→0

These short exact sequences split since the inclusions Xα֓
∨
αXα induce maps

πn(Xα)→πn(
∨
αXα) and hence a splitting homomorphism

⊕
απn(Xα)→πn(

∨
αXα) .

Taking Xα = S
2
α and n = 3, we get an isomorphism

π3(
∨
αS

2
α) ≈ π4(

∏
αS

2
α,
∨
αS

2
α) ⊕

(⊕
απ3(S

2
α)
)

The factor
⊕
απ3(S

2
α) is free with basis the Hopf maps S3→S2

α by the preceding ex-

ample. For the other factor we have π4(
∏
αS

2
α,
∨
αS

2
α) ≈ π4(

∏
αS

2
α/
∨
αS

2
α) by Proposi-

tion 4.28. The quotient
∏
αS

2
α/
∨
αS

2
α has 5 skeleton a wedge of spheres S4

αβ for α ≠ β ,
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so π4(
∏
αS

2
α/
∨
αS

2
α) ≈ π4(

∨
αβS

4
αβ) is free with basis the inclusions S4

αβ֓
∨
αβS

4
αβ .

Hence π4(
∏
αS

2
α,
∨
αS

2
α) is free with basis the characteristic maps of the 4 cells e2

α×e
2
β .

Via the injection ∂ :π4(
∏
αS

2
α,
∨
αS

2
α)→π3(

∨
αS

2
α) this means that the attaching maps

of the cells e2
α×e

2
β form a basis for the summand Im ∂ of π3(

∨
αS

2
α) . This finishes the

proof for the case of finitely many summands S2
α . The case of infinitely many S2

α ’s

follows immediately since any map S3→
∨
αS

2
α has compact image, lying in a finite

union of summands, and similarly for any homotopy between such maps.

The maps S3→S2
α ∨ S

2
β in this example are expressible in terms of a product in

homotopy groups called the Whitehead product, defined as follows. Given basepoint-

preserving maps f :Sk→X and g :Sℓ→X , let [f , g] :Sk+ℓ−1→X be the composition

Sk+ℓ−1 -→Sk ∨ Sℓ
f∨g
------------→X where the first map is the attaching map of the (k+ ℓ) cell

of Sk×Sℓ with its usual CW structure. Since homotopies of f or g give rise to ho-

motopies of [f , g] , we have a well-defined product πk(X)×πℓ(X)→πk+ℓ−1(X) . The

notation [f , g] is used since for k = ℓ = 1 this is just the commutator product in

π1(X) . It is an exercise to show that when k = 1 and ℓ > 1, [f , g] is the difference

between g and its image under the π1 action of f .

In these terms the map S3→S2
α ∨ S

2
β in the preceding example is the Whitehead

product [iα, iβ] of the two inclusions of S2 into S2
α ∨ S

2
β . Another example of a

Whitehead product we have encountered previously is [11,11] :S2n−1→Sn , which is

the attaching map of the 2n cell of the space J(Sn) considered in §3.2.

The calculation of π3(
∨
αS

2
α) is the first nontrivial case of a more general theo-

rem of Hilton calculating all the homotopy groups of any wedge sum of spheres in

terms of homotopy groups of spheres, using Whitehead products. A further general-

ization by Milnor extends this to wedge sums of suspensions of arbitrary connected

CW complexes. See [Whitehead 1978] for an exposition of these results and further

information on Whitehead products.

Example 4.53: Stiefel and Grassmann Manifolds. The fiber bundles with total space

a sphere and base space a projective space considered above are the cases n = 1 of

families of fiber bundles in each of the real, complex, and quaternionic cases:

O(n) -→Vn(R
k) -→Gn(R

k) O(n) -→Vn(R
∞) -→Gn(R

∞)

U(n) -→Vn(C
k) -→Gn(C

k) U(n) -→Vn(C
∞) -→Gn(C

∞)

Sp(n) -→Vn(H
k) -→Gn(H

k) Sp(n) -→Vn(H
∞) -→Gn(H

∞)

Taking the real case first, the Stiefel manifold Vn(R
k) is the space of n frames in Rk ,

that is, n tuples of orthonormal vectors in Rk . This is topologized as a subspace of

the product of n copies of the unit sphere in Rk . The Grassmann manifold Gn(R
k)

is the space of n dimensional vector subspaces of Rk . There is a natural surjection

p :Vn(R
k)→Gn(R

k) sending an n frame to the subspace it spans, and Gn(R
k) is

topologized as a quotient space of Vn(R
k) via this projection. The fibers of the map
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p are the spaces of n frames in a fixed n plane in R
k and so are homeomorphic

to Vn(R
n) . An n frame in Rn is the same as an orthogonal n×n matrix, regarding

the columns of the matrix as an n frame, so the fiber can also be described as the

orthogonal group O(n) . There is no difficulty in allowing k = ∞ in these definitions,

and in fact Vn(R
∞) =

⋃
k Vn(R

k) and Gn(R
∞) =

⋃
kGn(R

k) .

The complex and quaternionic Stiefel manifolds and Grassmann manifolds are

defined in the same way using the usual Hermitian inner products in Ck and Hk . The

unitary group U(n) consists of n×n matrices whose columns form orthonormal

bases for Cn , and the symplectic group Sp(n) is the quaternionic analog of this.

We should explain why the various projection maps Vn→Gn are fiber bundles.

Let us take the real case for concreteness, though the argument is the same in all cases.

If we fix an n plane P ∈ Gn(R
k) and choose an orthonormal basis for P , then we ob-

tain continuously varying orthonormal bases for all n planes P ′ in a neighborhood

U of P by projecting the basis for P orthogonally onto P ′ to obtain a nonorthonor-

mal basis for P ′ , then applying the Gram–Schmidt process to this basis to make it

orthonormal. The formulas for the Gram–Schmidt process show that it is continuous.

Having orthonormal bases for all n planes in U , we can use these to identify these

n planes with Rn , hence n frames in these n planes are identified with n frames in

R
n , and so p−1(U) is identified with U×Vn(R

n) . This argument works for k = ∞ as

well as for finite k .

In the case n = 1 the total spaces V1 are spheres, which are highly connected,

and the same is true in general:

Vn(R
k) is (k−n− 1) connected.

Vn(C
k) is (2k− 2n) connected.

Vn(H
k) is (4k− 4n+ 2) connected.

Vn(R
∞) , Vn(C

∞) , and Vn(H
∞) are contractible.

The first three statements will be proved in the next example. For the last statement

the argument is the same in the three cases, so let us consider the real case. Define a

homotopy ht :R∞→R
∞ by ht(x1, x2, ···) = (1−t)(x1, x2, ···)+t(0, x1, x2, ···) . This

is linear for each t , and its kernel is easily checked to be trivial. So if we apply ht to an

n frame we get an n tuple of independent vectors, which can be made orthonormal

by the Gram–Schmidt formulas. Thus we have a deformation retraction, in the weak

sense, of Vn(R
∞) onto the subspace of n frames with first coordinate zero. Iterating

this n times, we deform into the subspace of n frames with first n coordinates zero.

For such an n frame (v1, ··· , vn) define a homotopy (1−t)(v1, ··· , vn)+t(e1, ··· , en)

where ei is the ith standard basis vector in R
∞ . This homotopy preserves linear

independence, so after again applying Gram–Schmidt we have a deformation through

n frames, which finishes the construction of a contraction of Vn(R
∞) .

Since Vn(R
∞) is contractible, we obtain isomorphisms πiO(n) ≈ πi+1Gn(R

∞)

for all i and n , and similarly in the complex and quaternionic cases.
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Example 4.54. For m < n ≤ k there are fiber bundles

Vn−m(R
k−m) -→Vn(R

k)
p
-----→Vm(R

k)

where the projection p sends an n frame onto the m frame formed by its first m

vectors, so the fiber consists of (n−m) frames in the (k−m) plane orthogonal to a

givenm frame. Local trivializations can be constructed as follows. For an m frame F ,

choose an orthonormal basis for the (k−m) plane orthogonal to F . This determines

orthonormal bases for the (k − m) planes orthogonal to all nearby m frames by

orthogonal projection and Gram–Schmidt, as in the preceding example. This allows

us to identify these (k−m) planes with Rk−m , and in particular the fibers near p−1(F)

are identified with Vn−m(R
k−m) , giving a local trivialization.

There are analogous bundles in the complex and quaternionic cases as well, with

local triviality shown in the same way.

Restricting to the case m = 1, we have bundles Vn−1(R
k−1)→Vn(R

k)→Sk−1

whose associated long exact sequence of homotopy groups allows us deduce that

Vn(R
k) is (k−n−1) connected by induction on n . In the complex and quaternionic

cases the same argument yields the other connectivity statements in the preceding

example.

Taking k = n we obtain fiber bundles O(k −m)→O(k)→Vm(R
k) . The fibers

are in fact just the cosets αO(k −m) for α ∈ O(k) , where O(k −m) is regarded

as the subgroup of O(k) fixing the first m standard basis vectors. So we see that

Vm(R
k) is identifiable with the coset space O(k)/O(k −m) , or in other words the

orbit space for the free action of O(k−m) on O(k) by right-multiplication. In similar

fashion one can see that Gm(R
k) is the coset space O(k)/

(
O(m)×O(k−m)

)
where

the subgroup O(m)×O(k −m) ⊂ O(k) consists of the orthogonal transformations

taking the m plane spanned by the first m standard basis vectors to itself. The

corresponding observations apply also in the complex and quaternionic cases, with

the unitary and symplectic groups.

Example 4.55: Bott Periodicity. Specializing the preceding example by taking m = 1

and k = n we obtain bundles

O(n− 1) -→O(n)
p
-----→Sn−1

U(n− 1) -→U(n)
p
-----→S2n−1

Sp(n− 1) -→Sp(n)
p
-----→S4n−1

The map p can be described as evaluation of an orthogonal, unitary, or symplectic

transformation on a fixed unit vector. These bundles show that computing homotopy

groups of O(n) , U(n) , and Sp(n) should be at least as difficult as computing homo-

topy groups of spheres. For example, if one knew the homotopy groups of O(n) and

O(n−1) , then from the long exact sequence of homotopy groups for the first bundle

one could say quite a bit about the homotopy groups of Sn−1 .
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The bundles above imply a very interesting stability property. In the real case, the

inclusion O(n−1)֓O(n) induces an isomorphism on πi for i < n−2, from the long

exact sequence of the first bundle. Hence the groups πiO(n) are independent of n if

n is sufficiently large, and the same is true for the groups πiU(n) and πiSp(n) via the

other two bundles. One of the most surprising results in all of algebraic topology is the

Bott Periodicity Theorem which asserts that these stable groups repeat periodically,

with a period of eight for O and Sp and a period of two for U . Their values are given

in the following table:

i mod 8 0 1 2 3 4 5 6 7

πiO(n) Z2 Z2 0 Z 0 0 0 Z

πiU(n) 0 Z 0 Z 0 Z 0 Z

πiSp(n) 0 0 0 Z Z2 Z2 0 Z

Stable Homotopy Groups

We showed in Corollary 4.24 that for an n connected CW complex X , the sus-

pension map πi(X)→πi+1(SX) is an isomorphism for i < 2n+ 1. In particular this

holds for i ≤ n so SX is (n + 1) connected. This implies that in the sequence of

iterated suspensions

πi(X) -→πi+1(SX) -→πi+2(S
2X) -→···

all maps are eventually isomorphisms, even without any connectivity assumption on

X itself. The resulting stable homotopy group is denoted π si (X) .

An especially interesting case is the group π si (S
0) , which equals πi+n(S

n) for

n > i + 1. This stable homotopy group is often abbreviated to π si and called the

stable i stem. It is a theorem of Serre which we prove in [SSAT] that π si is always

finite for i > 0.

These stable homotopy groups of spheres are among the most fundamental ob-

jects in topology, and much effort has gone into their calculation. At the present time,

complete calculations are known only for i up to around 60 or so. Here is a table for

i ≤ 19, taken from [Toda 1962]:

Patterns in this apparent chaos begin to emerge only when one projects π si onto its

p components, the quotient groups obtained by factoring out all elements of order

relatively prime to the prime p . For i > 0 the p component pπ
s
i is of course iso-

morphic to the subgroup of π si consisting of elements of order a power of p , but the

quotient viewpoint is in some ways preferable.
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The figure below is a schematic diagram of the 2 components of π si for i ≤ 60.

A vertical chain of n dots in the ith column represents a Z2n summand of π si . The

bottom dot of such a chain denotes a generator of this summand, and the vertical

segments denote multiplication by 2, so the second dot up is twice a generator, the

next dot is four times a generator, and so on. The three generators η , ν , and σ in

dimensions 1, 3, and 7 are represented by the Hopf bundle maps S3→S2 , S7→S4 ,

S15→S8 defined in Examples 4.45, 4.46, and 4.47. Some of the other elements also

have standard names indicated by the Greek letter labels.

The other line segments in the diagram provide some information about compo-

sitions of maps between spheres. Namely, there are products π si ×π
s
j→π

s
i+j defined

by compositions Si+j+k→Sj+k→Sk .

Proposition 4.56. The composition products π si ×π
s
j→π

s
i+j induce a graded ring

structure on π s∗ =
⊕
iπ

s
i satisfying the commutativity relation αβ = (−1)ijβα for

α ∈ π si and β ∈ π sj .

This will be proved at the end of this subsection. It follows that pπ
s
∗ , the direct sum

of the p components pπ
s
i , is also a graded ring satisfying the same commutativity

property. In 2π
s
∗ many of the compositions with suspensions of the Hopf maps η

and ν are nontrivial, and these nontrivial compositions are indicated in the diagram

by segments extending 1 unit to the right and diagonally upward for η or 3 units to

the right, usually horizontally, for ν . Thus for example we see the relation η3
= 4ν

in 2π
s
3 . Remember that 2π

s
3 ≈ Z8 is a quotient of π s3 ≈ Z24 , where the actual relation

is η3
= 12ν since 2η = 0 implies 2η3

= 0, so η3 is the unique element of order two

in this Z24 .

Across the bottom of the diagram there is a repeated pattern of pairs of ‘teeth’.

This pattern continues to infinity, though with the spikes in dimensions 8k−1 not all

of the same height, namely, the spike in dimension 2m(2n+1)−1 has height m+1.

The next diagram shows the 3 components of π si for i ≤ 100. Here vertical seg-

ments denote multiplication by 3 and the other solid segments denote composition

with elements α1 ∈ 3π
s
3 and β1 ∈ 3π

s
10 . The meaning of the dashed lines will be
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explained later. The most regular part of the diagram is the ‘triadic ruler’ across the

bottom. This continues in the same pattern forever, with spikes of height m + 1 in

dimension 4k − 1 for 3m the highest power of 3 dividing 4k . Looking back at the

p = 2 diagram, one can see that the vertical segments of the ‘teeth’ form a ‘dyadic

ruler’.

The case p = 5 is shown in the next diagram. Again one has the infinite ruler,

this time a ‘pentadic’ ruler. The four dots with question marks below them near the

right edge of the diagram are hypothetical since it is still undecided whether these

potential elements of 5π
s
i for i = 932, 933, 970, and 971 actually exist.

These three diagrams are based on calculations described in [Isaksen 2014] for

p = 2 and [Ravenel 1986] for p = 3,5.
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For each p there is a similar infinite ‘p adic ruler’, corresponding to cyclic sub-

groups of order pm+1 in pπ
s
2j(p−1)−1 for all j , where pm is the highest power of p

dividing j . These subgroups are the p components of a certain cyclic subgroup of

π s4k−1 known as Im J , the image of a homomorphism J :π4k−1(O)→π
s
4k−1 . There are

also Z2 subgroups of π si for i = 8k,8k+ 1 forming Im J in these dimensions. In the

diagram of 2π
s
∗ these are the parts of the teeth connected to the spike in dimension

8k− 1. The J homomorphism will be studied in some detail in [VBKT].

The other known infinite families in π s∗ include classes ηn ∈ 2π
s
2n for n ≥ 4,

βn ∈ pπ
s
2(p2−1)n−2p for p ≥ 5, and γn ∈ pπ

s
2(p3−1)n−2p2−2p+1 for p ≥ 7. The element

βn appears in the diagram for p = 5 as the dot in the upper part of the diagram

labeled by the number n . These βn ’s generate the strips along the upward diagonal,

except when n is a multiple of 5 and the strip is generated by β2βn−1 rather than

βn . There are also elements βn for certain fractional values of n . The element γ2

generates the long strip starting in dimension 437, but γ3 = 0. The element γ4 in

dimension 933 is one of the question marks.

In π s∗ there are many compositions which are zero. One can get some idea of

this from the diagrams above, where all sequences of edges break off after a short

time. As a special instance of the vanishing of products, the commutativity formula in

Proposition 4.56 implies that the square of an odd-dimensional element of odd order

is zero. More generally, a theorem of Nishida says that every positive-dimensional

element α ∈ π s∗ is nilpotent, with αn = 0 for some n . For example, for the element

β1 ∈ 5π
s
38 the smallest such n is 18.

The widespread vanishing of products in π s∗ can be seen as limiting their use-

fulness in describing the structure of π s∗ . But it can also be used to construct new

elements of π s∗ . Suppose one has maps W
f
-----→ X

g
-----→ Y

h
-----→ Z such that the com-

positions gf and hg are both homotopic to constant maps. A nullhomotopy of gf

gives an extension of gf to a map F :CW→Y , and a nullhomotopy of hg gives an

extension of hg to a map G :CX→Z . Regarding the suspension SW as the union

of two cones CW , define the Toda bracket 〈f ,g,h〉 :SW→Z to be the composition

G(Cf) on one cone and hF on the other.

The map 〈f ,g,h〉 is not uniquely determined by f , g , and h since it depends on

the choices of the nullhomotopies. In the case of π s∗ , the various choices of 〈f ,g,h〉

range over a coset of a certain subgroup, described in an exercise at the end of the

section.
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There are also higher-order Toda brackets 〈f1, ··· , fn〉 defined in somewhat sim-

ilar fashion. The dashed lines in the diagrams of 3π
s
∗ and 5π

s
∗ join an element x to

a bracket element 〈α1, ··· , α1, x〉 . Many of the elements in all three diagrams can be

expressed in terms of brackets. For example, in 2π
s
∗ the 8 dimensional element ν

is 〈ν,η, ν〉 . This element is also equal to ησ + ε where ε = 〈ν2,2, η〉 = 〈2, η, ν, η2
〉 .

Some other bracket formulas in 2π
s
∗ are η4 = 〈σ

2,2, η〉 , ν4 = 〈2σ,σ , ν〉 = −〈σ,ν,σ〉 ,

σ = 〈ν,σ ,ησ〉 , θ4 = 〈σ,2σ,σ ,2σ〉 , and η5 = 〈η,2, θ4〉 .

Proof of 4.56: Only distributivity and commutativity need to be checked. One dis-

tributivity law is easy: Given f ,g :Si+j+k→Sj+k and h :Sj+k→Sk , then h(f + g) =

hf +hg since both expressions equal hf and hg on the two hemispheres of Si+j+k .

The other distributivity law will follow from this one and the commutativity relation.

To prove the commutativity relation it will be convenient to express suspension

in terms of smash product. The smash product Sn ∧ S1 can be regarded as the quo-

tient space of Sn×I with Sn×∂I ∪ {x0}×I collapsed to a point. This is the same

as the quotient of the suspension Sn+1 of Sn obtained by collapsing to a point the

suspension of x0 . Collapsing this arc in Sn+1 to a point again yields Sn+1 , so we

obtain in this way a homeomorphism identifying Sn∧S1 with Sn+1 . Under this iden-

tification the suspension Sf of a basepoint-preserving map f :Sn→Sn becomes the

smash product f ∧11 :Sn∧S1→Sn∧S1 . By iteration, the k fold suspension Skf then

corresponds to f ∧ 11 :Sn ∧ Sk→Sn ∧ Sk .

Now we verify the commutativity relation. Let f :Si+k→Sk and g :Sj+k→Sk

be given. We may assume k is even. Consider the commutative diagram below,

where σ and τ transpose the two factors.

Thinking of Sj+k and Sk as smash prod-

ucts of circles, σ is the composition of

k(j + k) transpositions of adjacent circle

factors. Such a transposition has degree −1 since it is realized as a reflection of the

S2
= S1

∧ S1 involved. Hence σ has degree (−1)k(j+k) , which is +1 since k is even.

Thus σ is homotopic to the identity. Similarly, τ is homotopic to the identity. Hence

f∧g = (11∧g)(f ∧11) is homotopic to the composition (g∧11)(f ∧11) , which is stably

equivalent to the composition gf . Symmetrically, fg is stably homotopic to g ∧ f .

So it suffices to show f ∧ g ≃ (−1)ijg ∧ f . This we do

by the commutative diagram at the right, where σ and

τ are again the transpositions of the two factors. As

before, τ is homotopic to the identity, but now σ has

degree (−1)(i+k)(j+k) , which equals (−1)ij since k is even. The composition (g∧f)σ

is homotopic to (−1)ij(g∧f) since additive inverses in homotopy groups are obtained

by precomposing with a reflection, of degree −1. Thus from the commutativity of the

diagram we obtain the relation f ∧ g ≃ (−1)ijg ∧ f . ⊔⊓
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Exercises

1. Use homotopy groups to show there is no retraction RPn→RPk if n > k > 0.

2. Show the action of π1(RPn) on πn(RPn) ≈ Z is trivial for n odd and nontrivial for

n even.

3. Let X be obtained from a lens space of dimension 2n + 1 by deleting a point.

Compute π2n(X) as a module over Z[π1(X)] .

4. Let X ⊂ Rn+1 be the union of the infinite sequence of spheres Snk of radius 1/k and

center (1/k,0, ··· ,0). Show that πi(X) = 0 for i < n and construct a homomorphism

from πn(X) onto
∏
kπn(S

n
k ) .

5. Let f :S2
α ∨ S

2
β→S

2
α ∨ S

2
β be the map which is the identity on the S2

α summand

and which on the S2
β summand is the sum of the identity map and a homeomorphism

S2
β→S

2
α . Let X be the mapping torus of f , the quotient space of (S2

α ∨ S
2
β)× I under

the identifications (x,0) ∼ (f (x),1) . The mapping torus of the restriction of f to S2
α

forms a subspace A = S1
×S2

α ⊂ X . Show that the maps π2(A)→π2(X)→π2(X,A)

form a short exact sequence 0→Z→Z⊕Z→Z→0, and compute the action of π1(A)

on these three groups. In particular, show the action of π1(A) is trivial on π2(A) and

π2(X,A) but is nontrivial on π2(X) .

6. Show that the relative form of the Hurewicz theorem in dimension n implies the

absolute form in dimension n− 1 by considering the pair (CX,X) where CX is the

cone on X .

7. Construct a CW complex X with prescribed homotopy groups πi(X) and pre-

scribed actions of π1(X) on the πi(X) ’s.

8. Show the suspension of an acyclic CW complex is contractible.

9. Show that a map between simply-connected CW complexes is a homotopy equiva-

lence if its mapping cone is contractible. Use the preceding exercise to give an example

where this fails in the nonsimply-connected case.

10. Let the CW complex X be obtained from S1
∨ Sn , n ≥ 2, by attaching a cell

en+1 by a map representing the polynomial p(t) ∈ Z[t, t−1] ≈ πn(S
1
∨ Sn) , so

πn(X) ≈ Z[t, t−1]/
(
p(t)

)
. Show π ′n(X) is cyclic and compute its order in terms

of p(t) . Give examples showing that the group πn(X) can be finitely generated or

not, independently of whether π ′n(X) is finite or infinite.

11. Let X be a connected CW complex with 1 skeleton X1 . Show that π2(X,X
1) ≈

π2(X)×K where K is the kernel of π1(X
1)→π1(X) , a free group. Show also that the

map π ′2(X)→π
′
2(X,X

1) need not be injective by considering the case X = RP2 with

its standard CW structure.

12. Show that a map f :X→Y of connected CW complexes is a homotopy equivalence

if it induces an isomorphism on π1 and if a lift f̃ : X̃→Ỹ to the universal covers in-

duces an isomorphism on homology. [The latter condition can be restated in terms of
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homology with local coefficients as saying that f∗ :H∗(X;Z[π1X])→H∗(Y ;Z[π1Y])

is an isomorphism; see §3.H.]

13. Show that a map between connected n dimensional CW complexes is a homotopy

equivalence if it induces an isomorphism on πi for i ≤ n . [Pass to universal covers

and use homology.]

14. If an n dimensional CW complex X contains a subcomplex Y homotopy equiva-

lent to Sn , show that the map πn(Y )→πn(X) induced by inclusion is injective. [Use

the Hurewicz homomorphism.]

15. Show that a closed simply-connected 3 manifold is homotopy equivalent to S3 .

[Use Poincaré duality, and also the fact that closed manifolds are homotopy equiva-

lent to CW complexes, from Corollary A.12 in the Appendix. The stronger statement

that a closed simply-connected 3 manifold is homeomorphic to S3 is the Poincaré

conjecture, finally proved by Perelman. The higher-dimensional analog, that a closed

n manifold homotopy equivalent to Sn is homeomorphic to Sn , had been proved

earlier for all n ≥ 4.]

16. Show that the closed surfaces with infinite fundamental group are K(π,1) ’s by

showing that their universal covers are contractible, via the Hurewicz theorem and

results of §3.3.

17. Show that the map 〈X,Y 〉→Hom
(
πn(X),πn(Y )

)
, [f ]֏f∗ , is a bijection if X is

an (n−1) connected CW complex and Y is a path-connected space with πi(Y ) = 0 for

i > n . Deduce that CW complex K(G,n) ’s are uniquely determined, up to homotopy

type, by G and n .

18. If X and Y are simply-connected CW complexes such that H̃i(X) and H̃j(Y )

are finite and of relatively prime orders for all pairs (i, j) , show that the inclusion

X∨Y֓X×Y is a homotopy equivalence and X∧Y is contractible. [Use the Künneth

formula.]

19. If X is a K(G,1) CW complex, show that πn(X
n) is free abelian for n ≥ 2.

20. Let G be a group and X a simply-connected space. Show that for the product

K(G,1)×X the action of π1 on πn is trivial for all n > 1.

21. Given a sequence of CW complexes K(Gn, n) , n = 1,2, ··· , let Xn be the CW

complex formed by the product of the first n of these K(Gn, n) ’s. Via the inclusions

Xn−1 ⊂ Xn coming from regarding Xn−1 as the subcomplex of Xn with nth coordinate

equal to a basepoint 0 cell of K(Gn, n) , we can then form the union of all the Xn ’s,

a CW complex X . Show πn(X) ≈ Gn for all n .

22. Show that Hn+1(K(G,n);Z) = 0 if n > 1. [Build a K(G,n) from a Moore space

M(G,n) by attaching cells of dimension > n+ 1.]

23. Extend the Hurewicz theorem by showing that if X is an (n − 1) connected

CW complex, then the Hurewicz homomorphism h :πn+1(X)→Hn+1(X) is surjective
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when n > 1, and when n = 1 show there is an isomorphism H2(X)/h
(
π2(X)

)
≈

H2

(
K(π1(X),1)

)
. [Build a K(πn(X),n) from X by attaching cells of dimension n+2

and greater, and then consider the homology sequence of the pair (Y ,X) where Y

is X with the (n + 2) cells of K(πn(X),n) attached. Note that the image of the

boundary map Hn+2(Y ,X)→Hn+1(X) coincides with the image of h , and Hn+1(Y ) ≈

Hn+1

(
K(πn(X),n)

)
. The previous exercise is needed for the case n > 1.]

24. Show there is a Moore space M(G,1) with π1

(
M(G,1)

)
≈ G iff H2(K(G,1);Z) = 0.

[Use the preceding problem. Build such an M(G,1) from the 2 skeleton K2 of a

K(G,1) by attaching 3 cells according to a basis for the free group H2(K
2;Z) .] In

particular, there is no M(Zn,1) with fundamental group Z
n , free abelian of rank n ,

if n ≥ 2.

25. For X a connected CW complex with πi(X) = 0 for 1 < i < n for some n ≥ 2,

show that Hn(X)/h
(
πn(X)

)
≈ Hn

(
K(π1(X),1)

)
, where h is the Hurewicz map.

26. Generalizing the example of RP2 and S2
×RP∞ , show that if X is a connected

finite-dimensional CW complex with universal cover X̃ , then X and X̃×K(π1(X),1)

have isomorphic homotopy groups but are not homotopy equivalent if π1(X) contains

elements of finite order.

27. Show that the image of the map π2(X,x0)→π2(X,A,x0) lies in the center of

π2(X,A,x0) . (This exercise should be in §4.1.)

28. Show that the group Zp×Zp with p prime cannot act freely on any sphere Sn ,

by filling in details of the following argument. Such an action would define a covering

space Sn→M with M a closed manifold. When n > 1, build a K(Zp×Zp,1) from

M by attaching a single (n + 1) cell and then cells of higher dimension. Deduce

that Hn+1(K(Zp×Zp,1);Zp) is Zp or 0, a contradiction. (The case n = 1 is more

elementary.)

29. Finish the homotopy classification of lens spaces begun in Exercise 2 of §3.E

by showing that two lens spaces Lm(ℓ1, ··· , ℓn) and Lm(ℓ
′
1, ··· , ℓ

′
n) are homotopy

equivalent if ℓ1 ··· ℓn ≡ ±k
nℓ′1 ··· ℓ

′
n mod m for some integer k , via the following

steps:

(a) Reduce to the case k = 1 by showing that Lm(ℓ
′
1, ··· , ℓ

′
n) = Lm(kℓ

′
1, ··· , kℓ

′
n) if

k is relatively prime to m . [Rechoose the generator of the Zm action on S2n−1 .]

(b) Let f :L→L′ be a map constructed as in part (b) of the exercise in §3.E. Construct

a map g :L→L′ as a composition L -→L ∨ S2n−1 -→L ∨ S2n−1 -→ L′ where the

first map collapses the boundary of a small ball to a point, the second map is

the wedge of the identity on L and a map of some degree d on S2n−1 , and the

third map is f on L and the projection S2n−1→L′ on S2n−1 . Show that g has

degree k1 ···kn + dm , that is, g induces multiplication by k1 ···kn + dm on

H2n−1(−;Z) . [Show first that a lift of g to the universal cover S2n−1 has this

degree.]
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(c) If ℓ1 ··· ℓn ≡ ±ℓ
′
1 ··· ℓ

′
n mod m , choose d so that k1 ···kn+dm = ±1 and show

this implies that g induces an isomorphism on all homotopy groups, hence is a

homotopy equivalence. [For πi with i > 1, consider a lift of g to the universal

cover.]

30. Let E be a subspace of R2 obtained by deleting a subspace of {0}×R . For which

such spaces E is the projection E→R , (x,y)֏ x , a fiber bundle?

31. For a fiber bundle F→E→B such that the inclusion F֓E is homotopic to a con-

stant map, show that the long exact sequence of homotopy groups breaks up into split

short exact sequences giving isomorphisms πn(B) ≈ πn(E)⊕πn−1(F) . In particular,

for the Hopf bundles S3→S7→S4 and S7→S15→S8 this yields isomorphisms

πn(S
4) ≈ πn(S

7)⊕πn−1(S
3)

πn(S
8) ≈ πn(S

15)⊕πn−1(S
7)

Thus π7(S
4) and π15(S

8) contain Z summands.

32. Show that if Sk→Sm→Sn is a fiber bundle, then k = n − 1 and m = 2n − 1.

[Look at the long exact sequence of homotopy groups.]

33. Show that if there were fiber bundles Sn−1→S2n−1→Sn for all n , then the groups

πi(S
n) would be finitely generated free abelian groups computable by induction, and

nonzero for i ≥ n ≥ 2.

34. Let p :S3→S2 be the Hopf bundle and let q :T 3→S3 be the quotient map collaps-

ing the complement of a ball in the 3 dimensional torus T 3
= S1

×S1
×S1 to a point.

Show that pq :T 3→S2 induces the trivial map on π∗ and H̃∗ , but is not homotopic

to a constant map.

35. Show that the fiber bundle S3→S4n+3→HPn gives rise to a quotient fiber bundle

S2→CP2n+1→HPn by factoring out the action of S1 on S4n+3 by complex scalar

multiplication.

36. For basepoint-preserving maps f :S1→X and g :Sn→X with n > 1, show that

the Whitehead product [f , g] is ±(g− fg) , where fg denotes the action of f on g .

37. Show that all Whitehead products in a path-connected H–space are trivial.

38. Show π3(S
1
∨S2) is not finitely generated as a module over Z[π1(S

1
∨S2)] by con-

sidering Whitehead products in the universal cover, using the results in Example 4.52.

Generalize this to πi+j−1(S
1
∨ Si ∨ Sj) for i, j > 1.

39. Show that the indeterminacy of a Toda bracket 〈f ,g,h〉 with f ∈ π si , g ∈ π sj ,

h ∈ π sk is the subgroup f π sj+k+1 + h π
s
i+j+1 of π si+j+k+1 .
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The Hurewicz theorem provides a strong link between homotopy groups and ho-

mology, and hence also an indirect relation with cohomology. But there is a more di-

rect connection with cohomology of a quite different sort. We will show that for every

CW complex X there is a natural bijection between Hn(X;G) and the set 〈X,K(G,n)〉

of basepoint-preserving homotopy classes of maps from X to a K(G,n) . We will also

define a natural group structure on 〈X,K(G,n)〉 that makes the bijection a group iso-

morphism. The mere fact that there is any connection at all between cohomology and

homotopy classes of maps is the first surprise here, and the second is that Eilenberg–

MacLane spaces are involved, since their definition is entirely in terms of homotopy

groups, which on the face of it have nothing to do with cohomology.

After proving this basic isomorphism Hn(X;G) ≈ 〈X,K(G,n)〉 and describing a

few of its immediate applications, the later parts of this section aim toward a further

study of Postnikov towers, which were introduced briefly in §4.1. These provide a

general theoretical method for realizing an arbitrary CW complex as a sort of twisted

product of Eilenberg–MacLane spaces, up to homotopy equivalence. The most ge-

ometric interpretation of the phrase ‘twisted product’ is the notion of fiber bundle

introduced in the previous section, but here we need the more homotopy-theoretic

notion of a fibration, so before we begin the discussion of Postnikov towers we first

take a few pages to present some basic constructions and results about fibrations.

As we shall see, Postnikov towers can be expressed as sequences of fibrations

with fibers Eilenberg–MacLane spaces, so we can again expect close connections with

cohomology. One such connection is provided by k invariants, which describe, at

least in principle, how Postnikov towers for a broad class of spaces are determined

by a sequence of cohomology classes. Another application of these ideas, described

at the end of the section, is a technique for factoring basic extension and lifting prob-

lems in homotopy theory into a sequence of smaller problems whose solutions are

equivalent to the vanishing of certain cohomology classes. This technique goes under

the somewhat grandiose title of Obstruction Theory, though it is really quite a simple

idea when expressed in terms of Postnikov towers.

The Homotopy Construction of Cohomology

The main result of this subsection is the following fundamental relationship be-

tween singular cohomology and Eilenberg–MacLane spaces:

Theorem 4.57. There are natural bijections T : 〈X,K(G,n)〉→Hn(X;G) for all CW

complexes X and all n > 0 , with G any abelian group. Such a T has the form

T([f]) = f∗(α) for a certain distinguished class α ∈ Hn(K(G,n);G) .
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In the course of the proof we will define a natural group structure on 〈X,K(G,n)〉

such that the transformation T is an isomorphism.

A class α ∈ Hn(K(G,n);G) with the property stated in the theorem is called a

fundamental class. The proof of the theorem will yield an explicit fundamental class,

namely the element of Hn(K(G,n);G) ≈ Hom(Hn(K;Z),G) given by the inverse of

the Hurewicz isomorphism G = πn(K(G,n))→Hn(K;Z) . Concretely, if we choose

K(G,n) to be a CW complex with (n− 1) skeleton a point, then a fundamental class

is represented by the cellular cochain assigning to each n cell of K(G,n) the element

of πn(K(G,n)) defined by a characteristic map for the n cell.

The theorem also holds with 〈X,K(G,n)〉 replaced by [X,K(G,n)] , the non-

basepointed homotopy classes. This is easy to see when n > 1 since every map

X→K(G,n) can be homotoped to take basepoint to basepoint, and every homotopy

between basepoint-preserving maps can be homotoped to be basepoint-preserving

since the target space K(G,n) is simply-connected. When n = 1 it is still true that

[X,K(G,n)] = 〈X,K(G,n)〉 for abelian G according to an exercise for §4.A. For n = 0

it is elementary that H0(X;G) = [X,K(G,0)] and H̃0(X;G) = 〈X,K(G,0)〉 .

It is possible to give a direct proof of the theorem, constructing maps and ho-

motopies cell by cell. This provides geometric insight into why the result is true, but

unfortunately the technical details of this proof are rather tedious. So we shall take

a different approach, one that has the advantage of placing the result in its natural

context via general machinery that turns out to be quite useful in other situations as

well. The two main steps will be the following assertions.

(1) The functors hn(X) = 〈X,K(G,n)〉 define a reduced cohomology theory on the

category of basepointed CW complexes.

(2) If a reduced cohomology theory h∗ defined on CW complexes has coefficient

groups hn(S0) which are zero for n ≠ 0, then there are natural isomorphisms

hn(X) ≈ H̃n(X;h0(S0)) for all CW complexes X and all n .

Towards proving (1) we will study a more general question: When does a sequence of

spaces Kn define a cohomology theory by setting hn(X) = 〈X,Kn〉? Note that this

will be a reduced cohomology theory since 〈X,Kn〉 is trivial when X is a point.

The first question to address is putting a group structure on the set 〈X,K〉 . This

requires that either X or K have some special structure. When X = Sn we have

〈Sn, K〉 = πn(K) , which has a group structure when n > 0. The definition of this

group structure works more generally whenever Sn is replaced by a suspension SX ,

with the sum of maps f ,g :SX→K defined as the composition SX→SX ∨ SX→K
where the first map collapses an ‘equatorial’ X ⊂ SX to a point and the second map

consists of f and g on the two summands. However, for this to make sense we must

be talking about basepoint-preserving maps, and there is a problem with where to

choose the basepoint in SX . If x0 is a basepoint of X , the basepoint of SX should

be somewhere along the segment {x0}×I ⊂ SX , most likely either an endpoint or the
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midpoint, but no single choice of such a basepoint gives a well-defined sum. The sum

would be well-defined if we restricted attention to maps sending the whole segment

{x0}×I to the basepoint. This is equivalent to considering basepoint-preserving maps

ΣX→K where ΣX = SX/({x0}×I) and the image of {x0}×I in ΣX is taken to be

the basepoint. If X is a CW complex with x0 a 0 cell, the quotient map SX→ΣX
is a homotopy equivalence since it collapses a contractible subcomplex of SX to a

point, so we can identify 〈SX,K〉 with 〈ΣX,K〉 . The space ΣX is called the reduced

suspension of X when we want to distinguish it from the ordinary suspension SX .

It is easy to check that 〈ΣX,K〉 is a group with respect to the sum defined above,

inverses being obtained by reflecting the I coordinate in the suspension. However,

what we would really like to have is a group structure on 〈X,K〉 arising from a special

structure on K rather than on X . This can be obtained using the following basic

adjoint relation:

〈ΣX,K〉 = 〈X,ΩK〉 where ΩK is the space of loops in K at its chosen basepoint

and the constant loop is taken as the basepoint of ΩK .

The space ΩK , called the loopspace of K , is topologized as a subspace of the space KI

of all maps I→K , where KI is given the compact-open topology; see the Appendix for

the definition and basic properties of this topology. The adjoint relation 〈ΣX,K〉 =
〈X,ΩK〉 holds because basepoint-preserving maps ΣX→K are exactly the same as

basepoint-preserving maps X→ΩK , the correspondence being given by associating to

f :ΣX→K the family of loops obtained by restricting f to the images of the segments

{x}×I in ΣX .

Taking X = Sn in the adjoint relation, we see that πn+1(K) = πn(ΩK) for all

n ≥ 0. Thus passing from a space to its loopspace has the effect of shifting homotopy

groups down a dimension. In particular we see that ΩK(G,n) is a K(G,n− 1) . This

fact will turn out to be important in what follows.

Note that the association X֏ ΩX is a functor: A basepoint-preserving map

f :X→Y induces a map Ωf :ΩX→ΩY by composition with f . A homotopy f ≃ g

induces a homotopy Ωf ≃ Ωg , so it follows formally that X ≃ Y implies ΩX ≃ ΩY .

It is a theorem of [Milnor 1959] that the loopspace of a CW complex has the

homotopy type of a CW complex. This may be a bit surprising since loopspaces are

usually quite large spaces, though of course CW complexes can be quite large too, in

terms of the number of cells. What often happens in practice is that if a CW complex

X has only finitely many cells in each dimension, then ΩX is homotopy equivalent

to a CW complex with the same property. We will see explicitly how this happens for

X = Sn in §4.J.

Composition of loops defines a map ΩK×ΩK→ΩK , and this gives a sum oper-

ation in 〈X,ΩK〉 by setting (f + g)(x) = f(x) g(x) , the composition of the loops

f(x) and g(x) . Under the adjoint relation this is the same as the sum in 〈ΣX,K〉
defined previously. If we take the composition of loops as the sum operation then it
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is perhaps somewhat easier to see that 〈X,ΩK〉 is a group since the same reasoning

which shows that π1(K) is a group can be applied.

Since cohomology groups are abelian, we would like the group 〈X,ΩK〉 to be

abelian. This can be achieved by iterating the operation of forming loopspaces. One

has a double loopspace Ω2K = Ω(ΩK) and inductively an n fold loopspace ΩnK =
Ω(Ωn−1K) . The evident bijection KY×Z ≈ (KY )Z is a homeomorphism for locally

compact Hausdorff spaces Y and Z , as shown in Proposition A.16 in the Appendix,

and from this it follows by induction that ΩnK can be regarded as the space of maps

In→K sending ∂In to the basepoint. Taking n = 2, we see that the argument that

π2(K) is abelian shows more generally that 〈X,Ω2K〉 is an abelian group. Iterating

the adjoint relation gives 〈ΣnX,K〉 = 〈X,ΩnK〉 , so this is an abelian group for all

n ≥ 2.

Thus for a sequence of spaces Kn to define a cohomology theory hn(X) = 〈X,Kn〉

we have been led to the assumption that each Kn should be a loopspace and in fact

a double loopspace. Actually we do not need Kn to be literally a loopspace since it

would suffice for it to be homotopy equivalent to a loopspace, as 〈X,Kn〉 depends

only on the homotopy type of Kn . In fact it would suffice to have just a weak homo-

topy equivalence Kn→ΩLn for some space Ln since this would induce a bijection

〈X,Kn〉 = 〈X,ΩLn〉 by Proposition 4.22. In the special case that Kn = K(G,n) for all

n , we can take Ln = Kn+1 = K(G,n+ 1) by the earlier observation that ΩK(G,n+ 1)

is a K(G,n) . Thus if we take the K(G,n) ’s to be CW complexes, the map Kn→ΩKn+1

is just a CW approximation K(G,n)→ΩK(G,n+ 1) .

There is another reason to look for weak homotopy equivalences Kn→ΩKn+1 .

For a reduced cohomology theory hn(X) there are natural isomorphisms hn(X) ≈

hn+1(ΣX) coming from the long exact sequence of the pair (CX,X) with CX the

cone on X , so if hn(X) = 〈X,Kn〉 for all n then the isomorphism hn(X) ≈ hn+1(ΣX)
translates into a bijection 〈X,Kn〉 ≈ 〈ΣX,Kn+1〉 = 〈X,ΩKn+1〉 and the most natural

thing would be for this to come from a weak equivalence Kn→ΩKn+1 . Weak equiva-

lences of this form would give also weak equivalences Kn→ΩKn+1→Ω2Kn+2 and so

we would automatically obtain an abelian group structure on 〈X,Kn〉 ≈ 〈X,Ω2Kn+2〉 .

These observations lead to the following definition. An W spectrum is a sequence

of CW complexes K1, K2, ··· together with weak homotopy equivalences Kn→ΩKn+1

for all n . By using the theorem of Milnor mentioned above it would be possible to

replace ‘weak homotopy equivalence’ by ‘homotopy equivalence’ in this definition.

However it does not noticeably simplify matters to do this, except perhaps psycho-

logically.

Notice that if we discard a finite number of spaces Kn from the beginning of

an Ω spectrum K1, K2, ··· , then these omitted terms can be reconstructed from the

remaining Kn ’s since each Kn determines Kn−1 as a CW approximation to ΩKn . So

it is not important that the sequence start with K1 . By the same token, this allows us
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to extend the sequence of Kn ’s to all negative values of n . This is significant because

a general cohomology theory hn(X) need not vanish for negative n .

Theorem 4.58. If {Kn} is an Ω spectrum, then the functors X֏hn(X) = 〈X,Kn〉 ,

n ∈ Z , define a reduced cohomology theory on the category of basepointed CW com-

plexes and basepoint-preserving maps.

Rather amazingly, the converse is also true: Every reduced cohomology theory

on CW complexes arises from an Ω spectrum in this way. This is the Brown repre-

sentability theorem which will be proved in §4.E.

A space Kn in an Ω spectrum is sometimes called an infinite loopspace since there

are weak homotopy equivalences Kn→ΩkKn+k for all k . A number of important

spaces in algebraic topology turn out to be infinite loopspaces. Besides Eilenberg–

MacLane spaces, two other examples are the infinite-dimensional orthogonal and uni-

tary groups O and U , for which there are weak homotopy equivalences O→Ω8O and

U→Ω2U by a strong form of the Bott periodicity theorem, as we will show in [VBKT].

So O and U give periodic Ω spectra, hence periodic cohomology theories known as

real and complex K–theory. For a more in-depth introduction to the theory of infinite

loopspaces, the book [Adams 1978] can be much recommended.

Proof: Two of the three axioms for a cohomology theory, the homotopy axiom and

the wedge sum axiom, are quite easy to check. For the homotopy axiom, a basepoint-

preserving map f :X→Y induces f∗ : 〈Y ,Kn〉→〈X,Kn〉 by composition, sending a

map Y→Kn to X
f
-----→Y→Kn . Clearly f∗ depends only on the basepoint-preserving

homotopy class of f , and it is obvious that f∗ is a homomorphism if we replace Kn
by ΩKn+1 and use the composition of loops to define the group structure. The wedge

sum axiom holds since in the realm of basepoint-preserving maps, a map
∨
αXα→Kn

is the same as a collection of maps Xα→Kn .

The bulk of the proof involves associating a long exact sequence to each CW pair

(X,A) . As a first step we build the following diagram:

The first row is obtained from the inclusion A֓ X by iterating the rule, ‘attach a

cone on the preceding subspace’, as shown in the pictures below.

The three downward arrows in the diagram (1) are quotient maps collapsing the most

recently attached cone to a point. Since cones are contractible, these downward maps
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are homotopy equivalences. The second and third of them have homotopy inverses

the evident inclusion maps, indicated by the upward arrows. In the lower row of

the diagram the maps are the obvious ones, except for the map X/A→SA which is

the composition of a homotopy inverse of the quotient map X ∪CA→X/A followed

by the maps X ∪ CA→(X ∪ CA) ∪ CX→SA . Thus the square containing this map

commutes up to homotopy. It is easy to check that the same is true of the right-hand

square as well.

The whole construction can now be repeated with SA֓ SX in place of A֓X ,

then with double suspensions, and so on. The resulting infinite sequence can be

written in either of the following two forms:

A→X→X ∪ CA→SA→SX→S(X ∪ CA)→S2A→S2X→ ···

A→X→X/A→SA→SX→SX/SA→S2A→S2X→ ···

In the first version we use the obvious equality SX ∪ CSA = S(X ∪ CA) . The first

version has the advantage that the map X∪CA→SA is easily described and canonical,

whereas in the second version the corresponding map X/A→SA is only defined up

to homotopy since it depends on choosing a homotopy inverse to the quotient map

X∪CA→X/A . The second version does have the advantage of conciseness, however.

When basepoints are important it is generally more convenient to use reduced

cones and reduced suspensions, obtained from ordinary cones and suspensions by

collapsing the segment {x0}×I where x0 is the basepoint. The image point of this

segment in the reduced cone or suspension then serves as a natural basepoint in the

quotient. Assuming x0 is a 0 cell, these collapses of {x0}×I are homotopy equiva-

lences. Using reduced cones and suspensions in the preceding construction yields a

sequence

(2) A֓X→X/A→ΣA֓ ΣX→Σ(X/A)→Σ2A֓ Σ2X→ ···

where we identify ΣX/ΣA with Σ(X/A) , and all the later maps in the sequence are sus-

pensions of the first three maps. This sequence, or its unreduced version, is called the

cofibration sequence or Puppe sequence of the pair (X,A) . It has an evident natu-

rality property, namely, a map (X,A)→(Y , B) induces a map between the cofibration

sequences of these two pairs, with homotopy-commutative squares:

Taking basepoint-preserving homotopy classes of maps from the spaces in (2) to

a fixed space K gives a sequence

(3) 〈A,K〉←〈X,K〉←〈X/A,K〉←〈ΣA,K〉←〈ΣX,K〉← ···

whose maps are defined by composition with those in (2). For example, the map

〈X,K〉→〈A,K〉 sends a map X→K to A→X→K . The sets in (3) are groups starting
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with 〈ΣA,K〉 , and abelian groups from 〈Σ2A,K〉 onward. It is easy to see that the maps

between these groups are homomorphisms since the maps in (2) are suspensions from

ΣA→ΣX onward. In general the first three terms of (3) are only sets with distinguished

‘zero’ elements, the constant maps.

A key observation is that the sequence (3) is exact. To see this, note first that the

diagram (1) shows that, up to homotopy equivalence, each term in (2) is obtained from

its two predecessors by the same procedure of forming a mapping cone, so it suffices

to show that 〈A,K〉←〈X,K〉←〈X ∪ CA,K〉 is exact. This is easy: A map f :X→K
goes to zero in 〈A,K〉 iff its restriction to A is nullhomotopic, fixing the basepoint,

and this is equivalent to f extending to a map X ∪ CA→K .

If we have a weak homotopy equivalence K→ΩK′ for some space K′ , then the

sequence (3) can be continued three steps to the left via the commutative diagram

Thus if we have a sequence of spaces Kn together with weak homotopy equivalences

Kn→ΩKn+1 , we can extend the sequence (3) to the left indefinitely, producing a long

exact sequence

···←〈A,Kn〉←〈X,Kn〉←〈X/A,Kn〉←〈A,Kn−1〉←〈X,Kn−1〉← ···

All the terms here are abelian groups and the maps homomorphisms. This long exact

sequence is natural with respect to maps (X,A)→(Y , B) since cofibration sequences

are natural. ⊔⊓

There is no essential difference between cohomology theories on basepointed

CW complexes and cohomology theories on nonbasepointed CW complexes. Given a

reduced basepointed cohomology theory h̃∗ , one gets an unreduced theory by setting

hn(X,A) = h̃n(X/A) , where X/∅ = X+ , the union of X with a disjoint basepoint.

This is a nonbasepointed theory since an arbitrary map X→Y induces a basepoint-

preserving map X+→Y+ . Furthermore, a nonbasepointed unreduced theory h∗ gives

a nonbasepointed reduced theory by setting h̃n(X) = Coker
(
hn(point)→hn(X)

)
,

where the map is induced by the constant map X→point . One could also give an

argument using suspension, which is always an isomorphism for reduced theories,

and which takes one from the nonbasepointed to the basepointed category.

Theorem 4.59. If h∗ is an unreduced cohomology theory on the category of CW

pairs and hn(point) = 0 for n ≠ 0 , then there are natural isomorphisms hn(X,A) ≈

Hn
(
X,A;h0(point)

)
for all CW pairs (X,A) and all n . The corresponding statement

for homology theories is also true.
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Proof: The case of homology is slightly simpler, so let us consider this first. For CW

complexes, relative homology groups reduce to absolute groups, so it suffices to deal

with the latter. For a CW complex X the long exact sequences of h∗ homology groups

for the pairs (Xn, Xn−1) give rise to a cellular chain complex

··· --------→hn+1(X
n+1, Xn)

dn+1-----------------→hn(X
n, Xn−1)

dn-------------→hn−1(X
n−1, Xn−2) --------→ ···

just as for ordinary homology. The hypothesis that hn(point) = 0 for n ≠ 0 implies

that this chain complex has homology groups hn(X) by the same argument as for

ordinary homology. The main thing to verify now is that this cellular chain complex

is isomorphic to the cellular chain complex in ordinary homology with coefficients in

the group G = h0(point) . Certainly the cellular chain groups in the two cases are

isomorphic, being direct sums of copies of G with one copy for each cell, so we have

only to check that the cellular boundary maps are the same.

It is not really necessary to treat the cellular boundary map d1 from 1 chains

to 0 chains since one can always pass from X to ΣX , suspension being a natural

isomorphism in any homology theory, and the double suspension Σ2X has no 1 cells.

The calculation of cellular boundary maps dn for n > 1 in terms of degrees of

certain maps between spheres works equally well for the homology theory h∗ , where

‘degree’ now means degree with respect to the h∗ theory, so what is needed is the

fact that a map Sn→Sn of degree m in the usual sense induces multiplication by m

on hn(S
n) ≈ G . This is obviously true for degrees 0 and 1, represented by a constant

map and the identity map. Since πn(S
n) ≈ Z , every map Sn→Sn is homotopic to

some multiple of the identity, so the general case will follow if we know that degree

in the h∗ theory is additive with respect to the sum operation in πn(S
n) . This is a

special case of the following more general assertion:

Lemma 4.60. If a functor h from basepointed CW complexes to abelian groups sat-

isfies the homotopy and wedge axioms, then for any two basepoint-preserving maps

f ,g :ΣX→K , we have (f +g)∗ = f∗+g∗ if h is covariant and (f +g)∗ = f∗+g∗

if h is contravariant.

Proof: The map f + g is the composition ΣX c
-----→ ΣX ∨ ΣX f∨g

------------------→ K where c is the

quotient map collapsing an equatorial copy of X . In the covariant case consider the

diagram at the right, where i1 and i2
are the inclusions ΣX֓ΣX ∨ΣX . Let

q1, q2 :ΣX ∨ΣX -→ΣX be the quotient

maps restricting to the identity on the

summand indicated by the subscript and collapsing the other summand to a point.

Then q1∗⊕q2∗ is an inverse to i1∗⊕ i2∗ since qjik is the identity map for j = k and

the constant map for j ≠ k .

An element x in the left-hand group h(ΣX) in the diagram is sent by the compo-

sition (q1∗ ⊕ q2∗)c∗ to the element (x,x) in the lower group h(ΣX)⊕h(ΣX) since
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q1c and q2c are homotopic to the identity. The composition (f∨g)∗(i1∗⊕i2∗) sends

(x,0) to f∗(x) and (0, y) to g∗(y) since (f ∨ g)i1 = f and (f ∨ g)i2 = g . Hence

(x,y) is sent to f∗(x)+g∗(y) . Combining these facts, we see that the composition

across the top of the diagram is x֏ f∗(x) + g∗(x) . But this composition is also

(f + g)∗ since f + g = (f ∨ g)c . This finishes the proof in the covariant case.

The contravariant case is similar, using the corresponding diagram with arrows

reversed. The inverse of i∗1 ⊕ i
∗
2 is q∗1 ⊕ q

∗
2 by the same reasoning. An element u in

the right-hand group h(K) maps to the element (f∗(u), g∗(u)) in the lower group

h(ΣX)⊕h(ΣX) since (f ∨ g)i1 = f and (f ∨ g)i2 = g . An element (x,0) in the

lower group in the diagram maps to the element x in the left-hand group since q1c

is homotopic to the identity, and similarly (0, y) maps to y . Hence (x,y) maps to

x + y in the left-hand group. We conclude that u ∈ h(K) maps by the composition

across the top of the diagram to f∗(u) + g∗(u) in h(ΣX) . But this composition is

(f + g)∗ by definition. ⊔⊓

Returning to the proof of the theorem, we see that the cellular chain complexes for

h∗(X) and H∗(X;G) are isomorphic, so we obtain isomorphisms hn(X) ≈ Hn(X;G)

for all n . To verify that these isomorphisms are natural with respect to maps f :X→Y
we may first deform such a map f to be cellular. Then f takes each pair (Xn, Xn−1)

to the pair (Yn, Yn−1) , hence f induces a chain map of cellular chain complexes in

the h∗ theory, as well as for H∗(−;G) . To compute these chain maps we may pass to

the quotient maps Xn/Xn−1→Yn/Yn−1 . These are maps of the form
∨
αS

n
α→

∨
βS

n
β ,

so the induced maps f∗ on hn are determined by their component maps f∗ :Snα→S
n
β .

This is exactly the same situation as with the cellular boundary maps before, where

we saw that the degree of a map Sn→Sn determines the induced map on hn . We

conclude that the cellular chain map induced by f in the h∗ theory agrees exactly

with the cellular chain map for H∗(−;G) . This implies that the isomorphism between

the two theories is natural.

The situation for cohomology is quite similar, but there is one point in the ar-

gument where a few more words are needed. For cohomology theories the cellular

cochain groups are the direct product, rather than the direct sum, of copies of the

coefficient group G = h0(point) , with one copy per cell. This means that when there

are infinitely many cells in a given dimension, it is not automatically true that the

cellular coboundary maps are uniquely determined by how they map factors of one

direct product to factors of the other direct product. To be precise, consider the cel-

lular coboundary map dn :hn(Xn, Xn−1)→hn+1(Xn+1, Xn) . Decomposing the latter

group as a product of copies of G for the (n+1) cells, we see that dn is determined

by the maps hn(Xn/Xn−1)→hn(Snα) associated to the attaching maps ϕα of the cells

en+1
α . The thing to observe is that since ϕα has compact image, meeting only finitely

many n cells, this map hn(Xn/Xn−1)→hn(Snα) is finitely supported in the sense that
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there is a splitting of the domain into a product of finitely many factors and a product

of the remaining possibly infinite number of factors, such that the map is zero on the

latter product. Finitely supported maps have the good property that they are deter-

mined by their restrictions to the G factors of hn(Xn/Xn−1) . From this we deduce,

using the lemma, that the cellular coboundary maps in the h∗ theory agree with those

in ordinary cohomology with G coefficients. This extra argument is also needed to

prove naturality of the isomorphisms hn(X) ≈ Hn(X;G) .

This completes the proof of Theorem 4.59. ⊔⊓

Proof of Theorem 4.57: The functors hn(X) = 〈X,K(G,n)〉 define a reduced co-

homology theory, and the coefficient groups hn(Si) = πi(K(G,n)) are the same as

H̃n(Si;G) , so Theorem 4.59, translated into reduced cohomology, gives natural iso-

morphisms T : 〈X,K(G,n)〉→H̃n(X;G) for all CW complexes X .

It remains to see that T([f]) = f∗(α) for some α ∈ H̃n(K(G,n);G) , independent

of f . This is purely formal: Take α = T(11) for 11 the identity map of K(G,n) , and

then naturality gives T([f]) = T(f∗(11)) = f∗T(11) = f∗(α) , where the first f∗

refers to induced homomorphisms for the functor hn , which means composition

with f . ⊔⊓

The fundamental class α = T(11) can be made more explicit if we choose for

K(G,n) a CW complex K with (n − 1) skeleton a point. Denoting 〈X,K(G,n)〉 by

hn(X) , then we have

hn(K) ≈ hn(Kn+1) ≈ Kerd :hn(Kn)→hn+1(Kn+1, Kn)

The map d is the cellular coboundary in h∗ cohomology since we have hn(Kn) =

hn(Kn, Kn−1) because Kn−1 is a point and h∗ is a reduced theory. The isomorphism

of hn(K) with Kerd is given by restriction of maps K→K to Kn , so the element

11 ∈ hn(K) defining the fundamental class T(11) corresponds, under the isomorphism

hn(K) ≈ Kerd , to the inclusion Kn֓K viewed as an element of hn(Kn) . As a cellular

cocycle this element assigns to each n cell of K the element of the coefficient group

G = πn(K) given by the inclusion of the closure of this cell into K . This means that

the fundamental class α ∈ Hn(K;G) is represented by the cellular cocycle assigning

to each n cell the element of πn(K) given by a characteristic map for the cell.

By naturality of T it follows that for a cellular map f :X→K , the corresponding

element of Hn(X;G) is represented by the cellular cocycle sending each n cell of X to

the element of G = πn(K) represented by the composition of f with a characteristic

map for the cell.

The natural isomorphism Hn(X;G) ≈ 〈X,K(G,n)〉 leads to a basic principle

which reappears many places in algebraic topology, the idea that the occurrence or

nonoccurrence of a certain phenomenon is governed by what happens in a single spe-

cial case, the universal example. To illustrate, let us prove the following special fact:
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The map H1(X;Z)→H2(X;Z) , α֏α2 , is identically zero for all spaces X .

By taking a CW approximation to X we are reduced to the case that X is a CW complex.

Then every element of H1(X;Z) has the form f∗(α) for some f :X→K(Z,1) , with

α a fundamental class in H1(K(Z,1);Z) , further reducing us to verifying the result

for this single α , the ‘universal example’. And for this universal α it is evident that

α2
= 0 since S1 is a K(Z,1) and H2(S1;Z) = 0.

Does this fact generalize? It certainly does not hold if we replace the coeffi-

cient ring Z by Z2 since H∗(RP∞;Z2) = Z2[x] . Indeed, the example of RP∞ shows

more generally that the fundamental class α ∈ Hn(K(Z2, n);Z2) generates a poly-

nomial subalgebra Z2[α] ⊂ H
∗(K(Z2, n);Z2) for each n ≥ 1, since there is a map

f :RP∞→K(Z2, n) with f∗(α) = xn and all the powers of xn are nonzero, hence

also all the powers of α . By the same reasoning, the example of CP∞ shows that the

fundamental class α ∈ H2n(K(Z,2n);Z) generates a polynomial subalgebra Z[α] in

H∗(K(Z,2n);Z) . As we shall see in [SSAT], H∗(K(Z,2n);Z)/torsion is exactly this

polynomial algebra Z[α] .

A little more subtle is the question of identifying the subalgebra of H∗(K(Z, n);Z)

generated by the fundamental class α for odd n ≥ 3. By the commutativity prop-

erty of cup products we know that α2 is either zero or of order two. To see that

α2 is nonzero it suffices to find a single space X with an element γ ∈ Hn(X;Z)

such that γ2
≠ 0. The first place to look might be RP∞ , but its cohomology with Z

coefficients is concentrated in even dimensions. Instead, consider X = RP∞×RP∞ .

This has Z2 cohomology Z2[x,y] and Example 3E.5 shows that its Z cohomology

is the Z2[x
2, y2] submodule generated by 1 and x2y + xy2 , except in dimension

zero of course, where 1 generates a Z rather than a Z2 . In particular we can take

γ = x2k(x2y +xy2) for any k ≥ 0, and then all powers γm are nonzero since we are

inside the polynomial ring Z2[x,y] . It follows that the subalgebra of H∗(K(Z, n);Z)

generated by α is Z[α]/(2α2) for odd n ≥ 3.

These examples lead one to wonder just how complicated the cohomology of

K(G,n) ’s is. The general construction of a K(G,n) is not very helpful in answering

this question. Consider the case G = Z for example. Here one would start with Sn and

attach (n+ 2) cells to kill πn+1(S
n) . Since πn+1(S

n) happens to be cyclic, only one

(n+ 2) cell is needed. To continue, one would have to compute generators for πn+2

of the resulting space Sn ∪ en+2 , use these to attach (n+ 3) cells, then compute the

resulting πn+3 , and so on for each successive dimension. When n = 2 this procedure

happens to work out very neatly, and the resulting K(Z,2) is CP∞ with its usual CW

structure having one cell in each even dimension, according to an exercise at the end

of the section. However, for larger n it quickly becomes impractical to make this

procedure explicit since homotopy groups are so hard to compute. One can get some

idea of the difficulties of the next case n = 3 by considering the homology groups of

K(Z,3) . Using techniques in [SSAT], the groups Hi(K(Z,3);Z) for 0 ≤ i ≤ 12 can be
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computed to be

Z, 0, 0, Z, 0, Z2, 0, Z3, Z2, Z2, Z3, Z10, Z2

To get this sequence of homology groups would require quite a few cells, and the

situation only gets worse in higher dimensions, where the homology groups are not

always cyclic.

Indeed, one might guess that computing the homology groups of K(Z, n) ’s would

be of the same order of difficulty as computing the homotopy groups of spheres, but

by some miracle this is not the case. The calculations are indeed complicated, but

they were completely done by Serre and Cartan in the 1950s, not just for K(Z, n) ’s,

but for all K(G,n) ’s with G finitely generated abelian. For example, H∗(K(Z,3);Z2)

is the polynomial algebra Z2[x3, x5, x9, x17, x33, ···] with generators of dimensions

2i + 1, indicated by the subscripts. And in general, for G finitely generated abelian,

H∗(K(G,n);Zp) is a polynomial algebra on generators of specified dimensions if p

is 2, while for p an odd prime one gets the tensor product of a polynomial ring

on generators of specified even dimensions and an exterior algebra on generators of

specified odd dimensions. With Z coefficients the description of the cohomology is

not nearly so neat, however. We will study these questions in some detail in [SSAT].

There is a good reason for being interested in the cohomology of K(G,n) ’s, aris-

ing from the equivalence Hn(X;G) ≈ 〈X,K(G,n)〉 . Taking Z coefficients for simplic-

ity, an element of Hm(K(Z, n);Z) corresponds to a map θ :K(Z, n)→K(Z,m) . We

can compose θ with any map f :X→K(Z, n) to get a map θf :X→K(Z,m) . Letting

f vary and keeping θ fixed, this gives a function Hn(X;Z)→Hm(X;Z) , depending

only on θ . This is the idea of cohomology operations, which we study in more detail

in §4.L.

The equivalence Hn(X;G) ≈ 〈X,K(G,n)〉 also leads to a new viewpoint toward

cup products. Taking G to be a ring R and setting Kn = K(R,n) , then if we are given

maps f :X→Km and g :Y→Kn , we can define the cross product of the corresponding

cohomology classes by the composition

X×Y
f×g
-----------------→Km×Kn ------→Km ∧Kn

µ
------------→Km+n

where the middle map is the quotient map and µ can be defined in the following way.

The space Km ∧ Kn is (m + n− 1) connected, so by the Hurewicz theorem and the

Künneth formula for reduced homology we have isomorphisms πm+n(Km ∧ Kn) ≈

Hm+n(Km ∧ Kn) ≈ Hm(Km)⊗Hn(Kn) ≈ R⊗R . By Lemmas 4.7 and 4.31 there is then

a map µ :Km ∧ Kn→Km+n inducing the multiplication map R⊗R→R on πm+n . Or

we could use the isomorphism Hm+n(Km ∧ Kn;R) ≈ Hom(Hm+n(Km ∧ Kn), R) and

let µ be the map corresponding to the cohomology class given by the multiplication

homomorphism R⊗R→R .
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The case R = Z is particularly simple. We can take Sm as the (m + 1) skeleton

of Km , and similarly for Kn , so Km ∧ Kn has Sm ∧ Sn as its (m + n + 1) skeleton

and we can obtain µ by extending the inclusion Sm ∧ Sn = Sm+n֓Km+n .

It is not hard to prove the basic properties of cup product using this definition,

and in particular the commutativity property becomes somewhat more transparent

from this viewpoint. For example, when R = Z , commutativity just comes down to

the fact that the map Sm ∧ Sn→Sn ∧ Sm switching the factors has degree (−1)mn

when regarded as a map of Sm+n .

Fibrations

Recall from §4.2 that a fibration is a map p :E→B having the homotopy lifting

property with respect to all spaces. In a fiber bundle all the fibers are homeomorphic

by definition, but this need not be true for fibrations. An example is the linear projec-

tion of a 2 simplex onto one of its edges, which is a fibration according to an exercise

at the end of the section. The following result gives some evidence that fibrations

should be thought of as a homotopy-theoretic analog of fiber bundles:

Proposition 4.61. For a fibration p :E→B , the fibers Fb = p
−1(b) over each path

component of B are all homotopy equivalent.

Proof: A path γ : I→B gives rise to a homotopy gt :Fγ(0)→B with gt(Fγ(0)) = γ(t) .

The inclusion Fγ(0)֓ E provides a lift g̃0 , so by the homotopy lifting property we

have a homotopy g̃t :Fγ(0)→E with g̃t(Fγ(0)) ⊂ Fγ(t) for all t . In particular, g̃1 gives

a map Lγ :Fγ(0)→Fγ(1) . The association γ֏ Lγ has the following basic properties:

(a) If γ ≃ γ′ rel ∂I , then Lγ ≃ Lγ′ . In particular the homotopy class of Lγ is inde-

pendent of the choice of the lifting g̃t of gt .

(b) For a composition of paths γγ′ , Lγγ′ is homotopic to the composition Lγ′Lγ .

From these statements it follows that Lγ is a homotopy equivalence with homotopy

inverse Lγ , where γ is the inverse path of γ .

Before proving (a), note that a fibration has the homotopy lifting property for

pairs (X×I,X×∂I) since the pairs (I×I, I×{0}∪∂I×I) and (I×I, I×{0}) are homeo-

morphic, hence the same is true after taking products with X .

To prove (a), let γ(s, t) be a homotopy from γ(t) to γ′(t) , (s, t) ∈ I×I . This

determines a family gst :Fγ(0)→B with gst(Fγ(0)) = γ(s, t) . Let g̃0,t and g̃1,t be lifts

defining Lγ and Lγ′ , and let g̃s,0 be the inclusion Fγ(0)֓ E for all s . Using the

homotopy lifting property for the pair (Fγ(0)×I, Fγ(0)×∂I) , we can extend these lifts

to lifts g̃st for (s, t) ∈ I×I . Restricting to t = 1 then gives a homotopy Lγ ≃ Lγ′ .

Property (b) holds since for lifts g̃t and g̃′t defining Lγ and Lγ′ we obtain a lift

defining Lγγ′ by taking g̃2t for 0 ≤ t ≤ 1/2 and g̃′2t−1Lγ for 1/2 ≤ t ≤ 1. ⊔⊓

One may ask whether fibrations satisfy a homotopy analog of the local triviality

property of fiber bundles. Observe first that for a fibration p :E→B , the restriction
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p :p−1(A)→A is a fibration for any subspace A ⊂ B . So we can ask whether every

point of B has a neighborhood U for which the fibration p−1(U)→U is equivalent

in some homotopy-theoretic sense to a projection U×F→U . The natural notion of

equivalence for fibrations is defined in the following way. Given fibrations p1 :E1→B
and p2 :E2→B , a map f :E1→E2 is called fiber-preserving if p1 = p2f , or in other

words, f(p−1
1 (b)) ⊂ p

−1
2 (b) for all b ∈ B . A fiber-preserving map f :E1→E2 is a

fiber homotopy equivalence if there is a fiber-preserving map g :E2→E1 such that

both compositions fg and gf are homotopic to the identity through fiber-preserving

maps. A fiber homotopy equivalence can be thought of as a family of homotopy

equivalences between corresponding fibers of E1 and E2 . An interesting fact is that a

fiber-preserving map that is a homotopy equivalence is a fiber homotopy equivalence;

this is an exercise for §4.H.

We will show that a fibration p :E→B is locally fiber-homotopically trivial in the

sense described above if B is locally contractible. In order to do this we first digress

to introduce another basic concept.

Given a fibration p :E→B and a map f :A→B , there is a pullback or induced

fibration f∗(E)→A obtained by setting f∗(E) = {(a, e) ∈ A×E ||f(a) = p(e)} , with

the projections of f∗(E) onto A and E giving a commutative

diagram as shown at the right. The homotopy lifting property

holds for f∗(E)→A since a homotopy gt :X→A gives the first

coordinate of a lift g̃t :X→f∗(E) , the second coordinate being

a lifting to E of the composed homotopy fgt .

Proposition 4.62. Given a fibration p :E→B and a homotopy ft :A→B , the pull-

back fibrations f∗0 (E)→A and f∗1 (E)→A are fiber homotopy equivalent.

Proof: Let F :A×I→B be the homotopy ft . The fibration F∗(E)→A×I contains

f∗0 (E) and f∗1 (E) over A×{0} and A×{1} . So it suffices to prove the following: For

a fibration p :E→B×I , the restricted fibrations Es = p
−1(B×{s})→B are all fiber

homotopy equivalent for s ∈ [0,1] .

To prove this assertion the idea is to imitate the construction of the homotopy

equivalences Lγ in the proof of Proposition 4.61. A path γ : [0,1]→I gives rise

to a fiber-preserving map Lγ :Eγ(0)→Eγ(1) by lifting the homotopy gt :Eγ(0)→B×I ,
gt(x) = (p(x), γ(t)) , starting with the inclusion Eγ(0)֓ E . As before, one shows

the two basic properties (a) and (b), noting that in (a) the homotopy Lγ ≃ Lγ′ is fiber-

preserving since it is obtained by lifting a homotopy ht :Eγ(0)×[0,1]→B×I of the

form ht(x,u) = (p(x),−) . From (a) and (b) it follows that Lγ is a fiber homotopy

equivalence with inverse Lγ . ⊔⊓

Corollary 4.63. A fibration E→B over a contractible base B is fiber homotopy equiv-

alent to a product fibration B×F→B .
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Proof: The pullback of E by the identity map B→B is E itself, while the pullback by

a constant map B→B is a product B×F . ⊔⊓

Thus we see that if B is locally contractible then any fibration over B is locally

fiber homotopy equivalent to a product fibration.

Pathspace Constructions

There is a simple but extremely useful way to turn arbitrary mappings into fi-

brations. Given a map f :A→B , let Ef be the space of pairs (a, γ) where a ∈ A

and γ : I→B is a path in B with γ(0) = f(a) . We topologize Ef as a subspace of

A×BI , where BI is the space of mappings I→B with the compact-open topology; see

the Appendix for the definition and basic properties of this topology, in particular

Proposition A.14 which we will be using shortly.

Proposition 4.64. The map p :Ef→B , p(a,γ) = γ(1) , is a fibration.

Proof: Continuity of p follows from (a) of Proposition A.14 in the Appendix which

says that the evaluation map BI×I→B , (γ, s)֏ γ(s) , is continuous.

To verify the fibration property, let a homotopy gt :X→B and a lift g̃0 :X→Ef
of g0 be given. Write g̃0(x) = (h(x), γx) for h :X→A and γx : I→B . Define a lift

g̃t :X→Ef by g̃t(x) = (h(x), γx g[0,t](x)) , the second coordinate being the path γx
followed by the path traced out by gs(x) for 0 ≤ s ≤ t . This composition of paths is

defined since g0(x) = pg̃0(x) = γx(1) . To check that g̃t is a continuous homotopy

we regard it as a map X×I→Ef ⊂ A×B
I and then apply (b) of Proposition A.14 which

in the current context asserts that continuity of a map X×I→A×BI is equivalent to

continuity of the associated map X×I×I→A×B . ⊔⊓

We can regard A as the subspace of Ef consisting of pairs (a, γ) with γ the

constant path at f(a) , and Ef deformation retracts onto this subspace by restricting

all the paths γ to shorter and shorter initial segments. The map p :Ef→B restricts

to f on the subspace A , so we have factored an arbitrary map f :A→B as the com-

position A֓ Ef→B of a homotopy equivalence and a fibration. We can also think

of this construction as extending f to a fibration Ef→B by enlarging its domain to

a homotopy equivalent space. The fiber Ff of Ef→B is called the homotopy fiber

of f . It consists of all pairs (a, γ) with a ∈ A and γ a path in B from f(a) to a

basepoint b0 ∈ B .

If f :A→B is the inclusion of a subspace, then Ef is the space of paths in B

starting at points of A . In this case a map (Ii+1, ∂Ii+1, Ji)→(B,A,x0) is the same as

a map (Ii, ∂Ii)→(Ff , γ0) where γ0 is the constant path at x0 and Ff is the fiber of

Ef over x0 . This means that πi+1(B,A,x0) can be identified with πi(Ff , γ0) , hence

the long exact sequences of homotopy groups of the pair (B,A) and of the fibration

Ef→B can be identified.
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An important special case is when f is the inclusion of the basepoint b0 into B .

Then Ef is the space PB of paths in B starting at b0 , and p :PB→B sends each path

to its endpoint. The fiber p−1(b0) is the loopspace ΩB consisting of all loops in B

based at b0 . Since PB is contractible by progressively truncating paths, the long exact

sequence of homotopy groups for the path fibration PB→B yields another proof that

πn(X,x0) ≈ πn−1(ΩX,x0) for all n .

As we mentioned in the discussion of loopspaces earlier in this section, it is a

theorem of [Milnor 1959] that the loopspace of a CW complex is homotopy equivalent

to a CW complex. Milnor’s theorem is actually quite a bit more general than this,

and implies in particular that the homotopy fiber of an arbitrary map between CW

complexes has the homotopy type of a CW complex. One can usually avoid quoting

these results by using CW approximations, though it is reassuring to know they are

available if needed, or if one does not want to bother with CW approximations.

If the fibration construction f֏ Ef is applied to a map p :E→B that is already

a fibration, one might expect the resulting fibration Ep→B to be closely related to

the original fibration E→B . This is indeed the case:

Proposition 4.65. If p :E→B is a fibration, then the inclusion E֓ Ep is a fiber ho-

motopy equivalence. In particular, the homotopy fibers of p are homotopy equivalent

to the actual fibers.

Proof: We apply the homotopy lifting property to the homotopy gt :Ep→B , gt(e, γ) =

γ(t) , with initial lift g̃0 :Ep→E , g̃0(e, γ) = e . The lifting g̃t :Ep→E is then the first

coordinate of a homotopy ht :Ep→Ep whose second coordinate is the restriction of

the paths γ to the interval [t,1] . Since the endpoints of the paths γ are unchanged,

ht is fiber-preserving. We have h0 = 11, h1(Ep) ⊂ E , and ht(E) ⊂ E for all t . If we let

i denote the inclusion E֓ Ep , then ih1 ≃ 11 via ht and h1i ≃ 11 via ht ||E , so i is a

fiber homotopy equivalence. ⊔⊓

We have seen that loopspaces occur as fibers of fibrations PB→B with con-

tractible total space PB . Here is something of a converse:

Proposition 4.66. If F→E→B is a fibration or fiber bundle with E contractible,

then there is a weak homotopy equivalence F→ΩB .

Proof: If we compose a contraction of E with the projection p :E→B then we have

for each point x ∈ E a path γx in B from p(x) to a basepoint b0 = p(x0) , where

x0 is the point to which E contracts. This yields a map E→PB , x֏ γx , whose

composition with the fibration PB→B is p . By restriction this

gives a map F→ΩB where F = p−1(b0) , and the long exact

sequence of homotopy groups for F→E→B maps to the long

exact sequence for ΩB→PB→B . Since E and PB are contractible, the five-lemma

implies that the map F→ΩB is a weak homotopy equivalence. ⊔⊓
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Examples arising from fiber bundles constructed earlier in the chapter are O(n) ≃

ΩGn(R∞) , U(n) ≃ ΩGn(C∞) , and Sp(n) ≃ ΩGn(H∞) . In particular, taking n = 1

in the latter two examples, we have S1
≃ ΩCP∞ and S3

≃ ΩHP∞ . Note that in all

these examples it is a topological group that is homotopy equivalent to a loopspace.

In [Milnor 1956] this is shown to hold in general: For each topological group G there

is a fiber bundle G→EG→BG with EG contractible, hence by the proposition there

is a weak equivalence G ≃ ΩBG . There is also a converse statement: The loopspace

of a CW complex is homotopy equivalent to a topological group.

The relationship between X and ΩX has been much studied, particularly the case

that ΩX has the homotopy type of a finite CW complex, which is of special interest

because of the examples of the classical Lie groups such as O(n) , U(n) , and Sp(n) .

See [Kane 1988] for an introduction to this subject.

It is interesting to see what happens when the process of forming homotopy

fibers is iterated. Given a fibration p :E→B with fiber F = p−1(b0) , we know that the

inclusion of F into the homotopy fiber Fp is a homotopy equivalence. Recall that Fp
consists of pairs (e, γ) with e ∈ E and γ a path in B from p(e) to b0 . The inclusion

F֓ E extends to a map i :Fp→E , i(e, γ) = e , and this map is obviously a fibration.

In fact it is the pullback via p of the path fibration PB→B . This allows us to iterate,

taking the homotopy fiber Fi with its map to Fp , and so on, as in the first row of the

following diagram:

The actual fiber of i over a point e0 ∈ p
−1(b0) consists of pairs (e0, γ) with γ a

loop in B at the basepoint b0 , so this fiber is just ΩB , and the inclusion ΩB֓ Fi
is a homotopy equivalence. In the second row of the diagram the map ΩB→F is

the composition ΩB֓ Fi→Fp→F where the last map is a homotopy inverse to the

inclusion F֓ Fp , so the square in the diagram containing these maps commutes up

to homotopy. The homotopy fiber Fi consists of pairs (γ, η) where η is a path in E

ending at e0 and γ is a path in B from p(η(0)) to b0 . A homotopy inverse to the

inclusion ΩB֓ Fi is the retraction Fi→ΩB sending (γ, η) to the loop obtained by

composing the inverse path of pη with γ .

These constructions can now be iterated to produce a fibration sequence, also

known as a Puppe sequence,

···→Ω2B→ΩF→ΩE→ΩB→F→E→B

Here any two consecutive maps form a fibration, up to homotopy equivalence, and

all the maps to the left of ΩB are obtained by applying the functor Ω to the later

maps. The long exact sequence of homotopy groups for any fibration in the sequence

coincides with the long exact sequence for F→E→B , as the reader can check.
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Postnikov Towers

A Postnikov tower for a path-connected space X is a commutative

diagram as at the right, such that:

(1) The map X→Xn induces an isomorphism on πi for i ≤ n .

(2) πi(Xn) = 0 for i > n .

As we saw in Example 4.16, every connected CW complex X has a

Postnikov tower, and this is unique up to homotopy equivalence by

Corollary 4.19.

If we convert the map Xn→Xn−1 into a fibration, its fiber Fn is a K(πnX,n) , as

is apparent from a brief inspection of the long exact sequence of homotopy groups

for the fibration:

πi+1(Xn)→πi+1(Xn−1)→πi(Fn)→πi(Xn)→πi(Xn−1)

We can replace each map Xn→Xn−1 by a fibration X′n→X
′
n−1 in succession, starting

with X2→X1 and working upward. For the inductive step we con-

vert the composition Xn→Xn−1֓X′n−1 into a fibration X′n→X
′
n−1

fitting into the commutative diagram at the right. Thus we obtain a

Postnikov tower satisfying also the condition

(3) The map Xn→Xn−1 is a fibration with fiber a K(πnX,n) .

To the extent that fibrations can be regarded as twisted products, up to homotopy

equivalence, the spaces Xn in a Postnikov tower for X can be thought of as twisted

products of Eilenberg-MacLane spaces K(πnX,n) .

For many purposes, a CW complex X can be replaced by one of the stages Xn in

a Postnikov tower for X , for example if one is interested in homotopy or homology

groups in only a finite range of dimensions. However, to determine the full homotopy

type of X from its Postnikov tower, some sort of limit process is needed. Let us

investigate this question is somewhat greater generality.

Given a sequence of maps ···→X2→X1 , define their inverse limit lim
←--

Xn to be

the subspace of the product
∏
nXn consisting of sequences of points xn ∈ Xn with

xn mapping to xn−1 under the map Xn→Xn−1 . The corresponding algebraic notion

is the inverse limit lim
←--

Gn of a sequence of group homomorphisms ···→G2→G1 ,

which is the subgroup of
∏
nGn consisting of sequences of elements gn ∈ Gn with

gn mapping to gn−1 under the homomorphism Gn→Gn−1 .

Proposition 4.67. For an arbitrary sequence of fibrations ···→X2→X1 the nat-

ural map λ :πi(lim←-- Xn)→ lim
←--

πi(Xn) is surjective, and λ is injective if the maps

πi+1(Xn)→πi+1(Xn−1) are surjective for n sufficiently large.

Proof: Represent an element of lim
←-- πi(Xn) by maps fn : (Si, s0)→(Xn, xn) . Since

the projection pn :Xn→Xn−1 takes [fn] to [fn−1] , by applying the homotopy lifting
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property for the pair (Si, s0) we can homotope fn , fixing s0 , so that pnfn = fn−1 .

Doing this inductively for n = 2,3, ··· , we get pnfn = fn−1 for all n simultaneously,

which gives surjectivity of λ .

For injectivity, note first that inverse limits are unaffected by throwing away

a finite number of terms at the end of the sequence of spaces or groups, so we

may assume the maps πi+1(Xn)→πi+1(Xn−1) are surjective for all n . Given a map

f :Si→ lim
←--

Xn , suppose we have nullhomotopies Fn :Di+1→Xn of the coordinate

functions fn :Si→Xn of f . We have pnFn = Fn−1 on Si , so pnFn and Fn−1 are

the restrictions to the two hemispheres of Si+1 of a map gn−1 :Si+1→Xn−1 . If the

map πi+1(Xn)→πi+1(Xn−1) is surjective, we can rechoose Fn so that the new gn−1

is nullhomotopic, that is, so that pnFn ≃ Fn−1 rel Si . Applying the homotopy lift-

ing property for (Di+1, Si) , we can make pnFn = Fn−1 . Doing this inductively for

n = 2,3, ··· , we see that f :Si→ lim
←--

Xn is nullhomotopic and λ is injective. ⊔⊓

One might wish to have a description of the kernel of λ in the case of an arbitrary

sequence of fibrations ···→X2→X1 , though for our present purposes this question

is not relevant. In fact, Kerλ is naturally isomorphic to lim
←--

1πi+1(Xn) , where lim
←--

1

is the functor defined in §3.F. Namely, if f :Si→ lim
←--

Xn determines an element of

Kerλ , then the sequence of maps gn :Si+1→Xn constructed above gives an element

of
∏
nπi+1(Xn) , well-defined up to the choice of the nullhomotopies Fn . Any new

choice of Fn is obtained by adding a map Gn :Si+1→Xn to Fn . The effect of this is to

change gn to gn+Gn and gn−1 to gn−1−pnGn . Since lim
←--

1πi+1(Xn) is the quotient of∏
nπi+1(Xn) under exactly these identifications, we get Kerλ ≈ lim

←--
1πi+1(Xn) . Thus

for each i > 0 there is a natural exact sequence

0 -→ lim
←--

1πi+1(Xn) -→πi(lim←-- Xn) -→ lim
←--

πi(Xn) -→0

The proposition says that the lim
←--

1 term vanishes if the maps πi+1(Xn)→πi+1(Xn−1)

are surjective for sufficiently large n .

Corollary 4.68. For the Postnikov tower of a connected CW complex X the natural

map X→ lim
←--

Xn is a weak homotopy equivalence, so X is a CW approximation to

lim
←--

Xn .

Proof: The composition πi(X) -→πi(lim←-- Xn)
λ
-----→ lim
←--

πi(Xn) is an isomorphism since

πi(X)→πi(Xn) is an isomorphism for large n . ⊔⊓

Having seen how to decompose a space X into the terms in its Postnikov tower,

we consider now the inverse process of building a Postnikov tower, starting with X1

as a K(π,1) and inductively constructing Xn from Xn−1 . It would be very nice if the

fibration K(π,n)→Xn→Xn−1 could be extended another term to the right, to form

a fibration sequence

K(π,n)→Xn→Xn−1→K(π,n+ 1)
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for this would say that Xn is the homotopy fiber of a map Xn−1→K(π,n + 1) , and

homotopy classes of such maps are in one-to-one correspondence with elements of

Hn+1(Xn−1;π) by Theorem 4.57. Since the homotopy fiber of Xn−1→K(π,n + 1)

is the same as the pullback of the path fibration PK(π,n + 1)→K(π,n + 1) , its

homotopy type depends only on the homotopy class of the map Xn−1→K(π,n+ 1) ,

by Proposition 4.62. Note that the last term K(π,n + 1) in the fibration sequence

above cannot be anything else but a K(π,n+1) since its loopspace must be homotopy

equivalent to the first term in the sequence, a K(π,n) .

In general, a fibration F→E→B is called principal if there is a commutative

diagram

where the second row is a fibration sequence and the vertical maps are weak ho-

motopy equivalences. Thus if all the fibrations in a Postnikov tower for X happen

to be principal, we have a diagram as at the

right, where each Xn+1 is, up to weak homo-

topy equivalence, the homotopy fiber of the

map kn :Xn→K(πn+1X,n + 2) . The map kn
is equivalent to a class in Hn+2(Xn;πn+1X

)

called the nth k invariant of X . These classes

specify how to construct X inductively from

Eilenberg–MacLane spaces. For example, if all the kn ’s are zero, X is just the product

of the spaces K(πnX,n) , and in the general case X is some sort of twisted product

of K(πnX,n) ’s.

To actually build a space from its k invariants is usually too unwieldy a procedure

to be carried out in practice, but as a theoretical tool this procedure can be quite useful.

The next result tells us when this tool is available:

Theorem 4.69. A connected CW complex X has a Postnikov tower of principal fibra-

tions iff π1(X) acts trivially on πn(X) for all n > 1 .

Notice that in the definition of a principal fibration, the map F→ΩB′ automati-

cally exists and is a homotopy weak equivalence once one has the right-hand square of

the commutative diagram with its vertical maps weak homotopy equivalences. Thus

the question of whether a fibration is principal can be rephrased in the following

way: Given a map A→X , which one can always replace by an equivalent fibration

if one likes, does there exist a fibration F→E→B and a commuta-

tive square as at the right, with the vertical maps weak homotopy

equivalences? By replacing A and X with CW approximations and

converting the resulting map A→X into an inclusion via a mapping cylinder, the ques-

tion becomes whether a CW pair (X,A) is equivalent to a fibration pair (E, F) , that
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is, whether there is a fibration F→E→B and a map (X,A)→(E, F) for which both

X→E and A→F are weak homotopy equivalences. In general the answer will rarely

be yes, since the homotopy fiber of A֓ X would have to have the weak homotopy

type of a loopspace, which is a rather severe restriction. However, in the situation of

Postnikov towers, the homotopy fiber is a K(π,n) with π abelian since n ≥ 2, so it

is a loopspace. But there is another requirement: The action of π1(A) on πn(X,A)

must be trivial for all n ≥ 1. This is equivalent to the action of π1(F) on πn(E, F)

being trivial, which is always the case in a fibration since under the isomorphism

p∗ :πn(E, F)→πn(B,x0) an element γα−α , with γ ∈ π1(F) and α ∈ πn(E, F) , maps

to p∗(γ)p∗(α)− p∗(α) which is zero since p∗(γ) lies in the trivial group π1(x0) .

The relative group πn(X,A) is always isomorphic to πn−1 of the homotopy fiber

of the inclusion A֓X , so in the case at hand when the homotopy fiber is a K(π,n) ,

the only nontrivial relative homotopy group is πn+1(X,A) ≈ π . In this case the

necessary condition of trivial action is also sufficient:

Lemma 4.70. Let (X,A) be a CW pair with both X and A connected, such that the

homotopy fiber of the inclusion A֓ X is a K(π,n) , n ≥ 1 . Then there exists a fi-

bration F→E→B and a map (X,A)→(E, F) inducing weak homotopy equivalences

X→E and A→F iff the action of π1(A) on πn+1(X,A) is trivial.

Proof: It remains only to prove the ‘if’ implication. As we noted just before the

statement of the lemma, the groups πi(X,A) are zero except for πn+1(X,A) ≈ π .

If the action of π1(A) on πn+1(X,A) is trivial, the relative Hurewicz theorem gives

an isomorphism πn+1(X,A) ≈ Hn+1(X,A) . Since (X,A) is n connected, we may

assume A contains the n skeleton of X , so X/A is n connected and the absolute

Hurewicz theorem gives πn+1(X/A) ≈ Hn+1(X/A) . Hence the quotient map X→X/A
induces an isomorphism πn+1(X,A) ≈ πn+1(X/A) since the analogous statement for

homology is certainly true.

Since πn+1(X/A) ≈ π , we can build a K(π,n + 1) from X/A by attaching cells

of dimension n + 3 and greater. This leads to the

commutative diagram at the right, where the vertical

maps are inclusions and the lower row is obtained by

converting the map k into a fibration. The map A→Fk
is a weak homotopy equivalence by the five-lemma applied to the map between the

long exact sequences of homotopy groups for the pairs (X,A) and (Ek, Fk) , since

the only nontrivial relative groups are πn+1 , both of which map isomorphically to

πn+1(K(π,n+ 1)) . ⊔⊓

Proof of 4.69: In view of the lemma, all that needs to be done is identify the action of

π1(X) on πn(X) with the action of π1(Xn) on πn+1(Xn−1, Xn) for n ≥ 2, thinking

of the map Xn→Xn−1 as an inclusion. From the exact sequence

0 = πn+1(Xn−1) -→πn+1(Xn−1, Xn)
∂
-----→πn(Xn) -→πn(Xn−1) = 0
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we have an isomorphism πn+1(Xn−1, Xn) ≈ πn(Xn) respecting the action of π1(Xn) .

And the map X→Xn induces isomorphisms on π1 and πn , so we are done. ⊔⊓

Let us consider now a natural generalization of Postnikov towers, in which one

starts with a map f :X→Y between path-connected spaces rather than just a single

space X . A Moore–Postnikov tower for f is a commutative diagram

as shown at the right, with each composition X→Zn→Y homotopic

to f , and such that:

(1) The map X→Zn induces an isomorphism on πi for

i < n and a surjection for i = n .

(2) The map Zn→Y induces an isomorphism on πi for

i > n and an injection for i = n .

(3) The map Zn+1→Zn is a fibration with fiber a K(πnF,n) where F is the homo-

topy fiber of f .

A Moore–Postnikov tower specializes to a Postnikov tower by taking Y to be a point

and then setting Xn = Zn+1 , discarding the space Z1 which has trivial homotopy

groups.

Theorem 4.71. Every map f :X→Y between connected CW complexes has a Moore–

Postnikov tower, which is unique up to homotopy equivalence. A Moore–Postnikov

tower of principal fibrations exists iff π1(X) acts trivially on πn(Mf , X) for all n > 1 ,

where Mf is the mapping cylinder of f .

Proof: The existence and uniqueness of a diagram satisfying (1) and (2) and com-

mutative at least up to homotopy follows from Propositions 4.17 and 4.18 applied

to the pair (Mf , X) with Mf the mapping cylinder of f . Having such a diagram, we

proceed as in the earlier case of Postnikov towers, replacing each map Zn→Zn−1 by

a homotopy equivalent fibration, starting with Z2→Z1 and working upward. We can

then apply the homotopy lifting property to make all the triangles in the left half of

the tower strictly commutative. After these steps the triangles in the right half of the

diagram commute up to homotopy, and to make them strictly commute we can just

replace each map to Y by the composition through Z1 .

To see that the fibers of the maps Zn+1→Zn are Eilenberg–MacLane spaces as

in condition (3), consider two successive levels of the tower.

We may arrange that the maps X→Zn+1→Zn→Y are inclu-

sions by taking mapping cylinders, first of X→Zn+1 , then

of the new Zn+1→Zn , and then of the new Zn→Y . From the left-hand triangle we

see that Zn+1→Zn induces an isomorphism on πi for i < n and a surjection for

i = n , hence πi(Zn, Zn+1) = 0 for i < n + 1. Similarly, the other triangle gives

πi(Zn, Zn+1) = 0 for i > n + 1. To show that πn+1(Zn, Zn+1) ≈ πn+1(Y ,X) we use

the following diagram:
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The upper-right vertical map is injective and the lower-left vertical map is surjective,

so the five-lemma implies that the two middle vertical maps are isomorphisms. Since

the homotopy fiber of an inclusion A֓ B has πi equal to πi+1(B,A) , we see that

condition (3) is satisfied.

The statement about a tower of principal fibrations can be obtained as an appli-

cation of Lemma 4.70. As we saw in the previous paragraph, there are isomorphisms

πn+1(Y ,X) ≈ πn+1(Zn, Zn+1) , and these respect the action of π1(X) ≈ π1(Zn+1) , so

Lemma 4.70 gives the result. ⊔⊓

Besides the case that Y is a point, which yields Postnikov towers, another in-

teresting special case of Moore–Postnikov towers is when X is a

point. In this case the space Zn is an n connected covering of

Y , as in Example 4.20. The n connected covering of Y can also

be obtained as the homotopy fiber of the nth stage Y→Yn of

a Postnikov tower for Y . The tower of n connected coverings

of Y can be realized by principal fibrations by taking Zn to be

the homotopy fiber of the map Zn−1→K(πnY ,n) that is the first

nontrivial stage in a Postnikov tower for Zn−1 .

A generalization of the preceding theory allowing nontrivial actions of π1 can be

found in [Robinson 1972].

Obstruction Theory

It is very common in algebraic topology to encounter situations where one would

like to extend or lift a given map. Obvious examples are the homotopy extension and

homotopy lifting properties. In their simplest forms, extension and lifting questions

can often be phrased in one of the following two ways:

The Extension Problem. Given a CW pair (W,A) and a map

A→X , does this extend to a map W→X ?

The Lifting Problem. Given a fibration X→Y and a map

W→Y , is there a lift W→X ?

In order for the lifting problem to include things like the homotopy lifting property,

it should be generalized to a relative form:
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The Relative Lifting Problem. Given a CW pair (W,A) , a fibra-

tion X→Y , and a map W→Y , does there exist a lift W→X
extending a given lift on A?

Besides reducing to the absolute lifting problem when A = ∅ , this includes the exten-

sion problem by taking Y to be a point. Of course, one could broaden these questions

by dropping the requirements that (W,A) be a CW pair and that the map X→Y be a

fibration. However, these conditions are often satisfied in cases of interest, and they

make the task of finding solutions much easier.

The term ‘obstruction theory’ refers to a procedure for defining a sequence of

cohomology classes that are the obstructions to finding a solution to the extension,

lifting, or relative lifting problem. In the most favorable cases these obstructions lie

in cohomology groups that are all zero, so the problem has a solution. But even when

the obstructions are nonzero it can be very useful to have the problem expressed in

cohomological terms.

There are two ways of developing obstruction theory, which produce essentially

the same result in the end. In the more elementary approach one tries to construct

the extension or lifting one cell of W at a time, proceeding inductively over skeleta of

W . This approach has an appealing directness, but the technical details of working at

the level of cochains are perhaps a little tedious. Instead of pursuing this direct line

we shall follow the second approach, which is slightly more sophisticated but has the

advantage that the theory becomes an almost trivial application of Postnikov towers

for the extension problem, or Moore–Postnikov towers for the lifting problem. The

cellular viewpoint is explained in [VBKT], where it appears in the study of characteristic

classes of vector bundles.

Let us consider the extension problem first, where we wish to extend a map A→X
to the larger complex W . Suppose that X has a Postnikov tower of principal fibrations.

Then we have a commutative diagram as shown below, where we have enlarged the

tower by adjoining the space X0 , which is just a point, at the

bottom. The map X1→X0 is then a fibration, and to say it is

principal says that X1 , which in any case is a K(π1X,1) ,

is the loopspace of K(π1X,2) , hence π1(X) must be

abelian. Conversely, if π1(X) is abelian and acts triv-

ially on all the higher homotopy groups of X ,

then there is an extended Postnikov tower of

principal fibrations as shown.

Our strategy will be to try to lift the constant map W→X0 to maps W→Xn for

n = 1,2, ··· in succession, extending the given maps A→Xn . If we are able to find

all these lifts W→Xn , there will then be no difficulty in constructing the desired

extension W→X .
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For the inductive step we have a com-

mutative diagram as at the right. Since Xn
is the pullback, its points are pairs consist-

ing of a point in Xn−1 and a path from its image in K to the basepoint. A lift W→Xn
therefore amounts to a nullhomotopy of the composition W→Xn−1→K . We already

have such a lift defined on A , hence a nullhomotopy of A→K , and we want a nullho-

motopy of W→K extending this nullhomotopy on A .

The map W→K together with the nullhomotopy on A gives a map W ∪CA→K ,

where CA is the cone on A . Since K is a K(πnX,n + 1) , the map W ∪ CA→K
determines an obstruction class ωn ∈ H

n+1(W ∪ CA;πnX) ≈ H
n+1(W,A;πnX) .

Proposition 4.72. A lift W→Xn extending the given A→Xn exists iff ωn = 0 .

Proof: We need to show that the map W ∪ CA→K extends to a map CW→K iff

ωn = 0, or in other words, iff W ∪ CA→K is homotopic to a constant map.

Suppose that gt :W ∪ CA→K is such a homotopy. The constant map g1 then

extends to the constant map g1 :CW→K , so by the homotopy extension property for

the pair (CW,W ∪CA) , applied to the reversed homotopy g1−t , we have a homotopy

gt :CW→K extending the previous homotopy gt :W ∪CA→K . The map g0 :CW→K
then extends the given map W ∪ CA→K .

Conversely, if we have an extension CW→K , then this is nullhomotopic since the

cone CW is contractible, and we may restrict such a nullhomotopy to W ∪ CA . ⊔⊓

If we succeed in extending the lifts A→Xn to lifts W→Xn for all n , then we ob-

tain a map W→ lim
←--

Xn extending the given A→X→ lim
←--

Xn . Let M be the mapping

cylinder of X→ lim
←--

Xn . Since the restriction of W→ lim
←--

Xn ⊂ M to A factors through

X , this gives a homotopy of this restriction to the map A→X ⊂ M . Extend this to a

homotopy of W→M , producing a map (W,A)→(M,X) . Since the map X→ lim
←--

Xn is

a weak homotopy equivalence, πi(M,X) = 0 for all i , so by Lemma 4.6, the compres-

sion lemma, the map (W,A)→(M,X) can be homotoped to a map W→X extending

the given A→X , and we have solved the extension problem.

Thus if it happens that at each stage of the inductive process of constructing

lifts W→Xn the obstruction ωn ∈ H
n+1(W,A;πnX) vanishes, then the extension

problem has a solution. In particular, this yields:

Corollary 4.73. If X is a connected abelian CW complex and (W,A) is a CW pair

such that Hn+1(W,A;πnX) = 0 for all n , then every map A→X can be extended to

a map W→X . ⊔⊓

This is a considerable improvement on the more elementary result that extensions

exist if πn(X) = 0 for all n such that W − A has cells of dimension n+ 1, which is

Lemma 4.7.



418 Chapter 4 Homotopy Theory

We can apply the Hurewicz theorem and obstruction theory to extend the homol-

ogy version of Whitehead’s theorem to CW complexes with trivial action of π1 on all

homotopy groups:

Proposition 4.74. If X and Y are connected abelian CW complexes, then a map

f :X→Y inducing isomorphisms on all homology groups is a homotopy equivalence.

Proof: Taking the mapping cylinder of f reduces us to the case of an inclusion X֓Y

of a subcomplex. If we can show that π1(X) acts trivially on πn(Y ,X) for all n , then

the relative Hurewicz theorem will imply that πn(Y ,X) = 0 for all n , so X→Y will

be a weak homotopy equivalence. The assumptions guarantee that π1(X)→π1(Y ) is

an isomorphism, so we know at least that π1(Y ,X) = 0.

We can use obstruction theory to extend the identity map X→X to a retraction

Y→X . To apply the theory we need π1(X) acting trivially on πn(X) , which holds by

hypothesis. Since the inclusion X֓Y induces isomorphisms on homology, we have

H∗(Y ,X) = 0, hence Hn+1(Y ,X;πn(X)) = 0 for all n by the universal coefficient

theorem. So there are no obstructions, and a retraction Y→X exists. This implies

that the maps πn(Y )→πn(Y ,X) are onto, so trivial action of π1(X) on πn(Y ) implies

trivial action on πn(Y ,X) by naturality of the action. ⊔⊓

The generalization of the preceding analysis of the extension problem to the rela-

tive lifting problem is straightforward. Assuming the fibration

p :X→Y in the statement of the relative lifting problem has a

Moore–Postnikov tower of principal fibrations, we have the

diagram at the right, where F is the fiber of the

fibration X→Y . The first step is to lift the map

W→Y to Z1 , extending the given lift on A . We

may take Z1 to be the covering space of Y corresponding to the subgroup p∗(π1(X))

of π1(Y ) , so covering space theory tells us when we can lift W→Y to Z1 , and the

unique lifting property for covering spaces can be used to see whether a lift can be

chosen to agree with the lift on A given by the diagram; this could only be a problem

when A has more than one component.

Having a lift to Z1 , the analysis proceeds exactly as before. One finds a sequence

of obstructions ωn ∈ H
n+1(W,A;πnF) , assuming π1F is abelian in the case n = 1.

A lift to X exists, extending the given lift on A , if each successive ωn is zero.

One can ask the converse question: If a lift exists, must the obstructions ωn
all be zero? Since Proposition 4.72 is an if and only if statement, one might expect

the answer to be yes, but upon closer inspection the matter becomes less clear. The

difficulty is that, even if at some stage the obstruction ωn is zero, so a lift to Zn+1

exists, there may be many choices of such a lift, and different choices could lead

to different ωn+1 ’s, some zero and others nonzero. Examples of such ambiguities

are not hard to produce, for both the lifting and the extension problems, and the
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ambiguities only become worse with each subsequent choice of a lift. So it is only

in rather special circumstances that one can say that

there are well-defined obstructions. A simple case

is when πi(F) = 0 for i < n , so the Moore–

Postnikov factorization begins with Zn
as in the diagram at the right. In this

case the composition across the bottom

of the diagram gives a well-defined primary obstruction ωn ∈ H
n+1(W,A;πnF) .

Exercises

1. Show there is a map RP∞→CP∞ = K(Z,2) which induces the trivial map on

H̃∗(−;Z) but a nontrivial map on H̃∗(−;Z) . How is this consistent with the universal

coefficient theorem?

2. Show that the group structure on S1 coming from multiplication in C induces a

group structure on 〈X,S1
〉 such that the bijection 〈X,S1

〉→H1(X;Z) of Theorem 4.57

is an isomorphism.

3. Suppose that a CW complex X contains a subcomplex S1 such that the inclusion

S1֓ X induces an injection H1(S
1;Z)→H1(X;Z) with image a direct summand of

H1(X;Z) . Show that S1 is a retract of X .

4. Given abelian groups G and H and CW complexes K(G,n) and K(H,n) , show

that the map 〈K(G,n),K(H,n)〉→Hom(G,H) sending a homotopy class [f ] to the

induced homomorphism f∗ :πn(K(G,n))→πn(K(H,n)) is a bijection.

5. Show that [X, Sn] ≈ Hn(X;Z) if X is an n dimensional CW complex. [Build a

K(Z, n) from Sn by attaching cells of dimension ≥ n+ 2.]

6. Use Exercise 4 to construct a multiplication map µ :K(G,n)×K(G,n)→K(G,n) for

any abelian group G , making a CW complex K(G,n) into an H–space whose multipli-

cation is commutative and associative up to homotopy and has a homotopy inverse.

Show also that the H–space multiplication µ is unique up to homotopy.

7. Using an H–space multiplication µ on K(G,n) , define an addition in 〈X,K(G,n)〉

by [f ]+ [g] = [µ(f , g)] and show that under the bijection Hn(X;G) ≈ 〈X,K(G,n)〉

this addition corresponds to the usual addition in cohomology.

8. Show that a map p :E→B is a fibration iff the map π :EI→Ep , π(γ) = (γ(0), pγ) ,

has a section, that is, a map s :Ep→E
I such that πs = 11.

9. Show that a linear projection of a 2 simplex onto one of its edges is a fibration but

not a fiber bundle. [Use the preceding problem.]

10. Given a fibration F→E→B , use the homotopy lifting property to define an action

of π1(E) on πn(F) , a homomorphism π1(E)→Aut
(
πn(F)

)
, such that the composi-

tion π1(F)→π1(E)→Aut
(
πn(F)

)
is the usual action of π1(F) on πn(F) . Deduce

that if π1(E) = 0, then the action of π1(F) on πn(F) is trivial.
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11. For a space B , let F(B) be the set of fiber homotopy equivalence classes of fibra-

tions E→B . Show that a map f :B1→B2 induces f∗ :F(B2)→F(B1) depending only

on the homotopy class of f , with f∗ a bijection if f is a homotopy equivalence.

12. Show that for homotopic maps f ,g :A→B the fibrations Ef→B and Eg→B are

fiber homotopy equivalent.

13. Given a map f :A→B and a homotopy equivalence g :C→A , show that the fi-

brations Ef→B and Efg→B are fiber homotopy equivalent. [One approach is to use

Corollary 0.21 to reduce to the case of deformation retractions.]

14. For a space B , let M(B) denote the set of equivalence classes of maps f :A→B
where f1 :A1→B is equivalent to f2 :A2→B if there exists a homotopy equivalence

g :A1→A2 such that f1 ≃ f2g . Show the natural map F(B)→M(B) is a bijection.

[See Exercises 11 and 13.]

15. If the fibration p :E→B is a homotopy equivalence, show that p is a fiber homo-

topy equivalence of E with the trivial fibration 11 :B→B .

16. Show that a map f :X→Y of connected CW complexes is a homotopy equivalence

if it induces an isomorphism on π1 and its homotopy fiber Ff has H̃∗(Ff ;Z) = 0.

17. Show that ΩX is an H–space with multiplication the composition of loops.

18. Show that a fibration sequence ···→ΩB→F→E→B induces a long exact se-

quence ···→〈X,ΩB〉→〈X,F〉→〈X,E〉→〈X,B〉 , with groups and group homomor-

phisms except for the last three terms, abelian groups except for the last six terms.

19. Given a fibration F -→ E
p
-----→ B , define a natural action of ΩB on the homotopy

fiber Fp and use this to show that exactness at 〈X,F〉 in the long exact sequence in

the preceding problem can be improved to the statement that two elements of 〈X,F〉

have the same image in 〈X,E〉 iff they are in the same orbit of the induced action of

〈X,ΩB〉 on 〈X,F〉 .

20. Show that by applying the loopspace functor to a Postnikov tower for X one

obtains a Postnikov tower of principal fibrations for ΩX .

21. Show that in the Postnikov tower of an H–space, all the spaces are H–spaces and

the maps are H–maps, commuting with the multiplication, up to homotopy.

22. Show that a principal fibration ΩC -→E
p
-----→B is fiber homotopy equivalent to the

product ΩC×B iff it has a section, a map s :B→E with ps = 11.

23. Prove the following uniqueness result for the Quillen plus construction: Given

a connected CW complex X , if there is an abelian CW complex Y and a map X→Y
inducing an isomorphism H∗(X;Z) ≈ H∗(Y ;Z) , then such a Y is unique up to homo-

topy equivalence. [Use Corollary 4.73 with W the mapping cylinder of X→Y .]

24. In the situation of the relative lifting problem, suppose one has two different lifts

W→X that agree on the subspace A ⊂ W . Show that the obstructions to finding a

homotopy rel A between these two lifts lie in the groups Hn(W,A;πnF) .


