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Chapter 1

Introduction

1.1 Integration, chains and cochains

One of the origins of (co-)homology lies in multivariable calculus, where one
might consider an open domain Ω ⊆ R2, a continuously differentiable path
γ : [a, b] → Ω with γ(t) = (γ1(t), γ2(t)), and a pair of continuous functions
P,Q : Ω→ R. The path integral∫

γ

P dx+Qdy

is then defined to be equal to the integral∫ b

a

(
γ′1(t)P (γ(t)) + γ′2(t)Q(γ(t))

)
dt .

In more advanced calculus, one can consider a smooth manifold M , a smooth
map γ : [0, 1]k → M parametrizing a singular k-dimensional cube in M , and a
differential k-form ω on M , and define the integral∫

γ

ω

to be the k-fold iterated integral∫
[0,1]k

γ∗ω =

∫ 1

0

· · ·
∫ 1

0

f(t1, . . . , tk) dt1 · · · dtk

where γ∗ω = f(t1, . . . , tk) dt1 · · · dtk in the standard coordinates on [0, 1]k.
If α : [a, b]→ Ω and β : [b, c]→ Ω are differentiable paths that can be joined

to a single differentiable path γ : [a, c] → Ω, meaning that α(b) = β(b) and
α′(b) = β′(b), then we have the relation (for the 1-form ω = P dx+Qdy)∫

α

ω +

∫
β

ω =

∫
γ

ω ,

and it is convenient to define the integral∫
α+β

ω

1



CHAPTER 1. INTRODUCTION 2

to be equal to the left hand side. Note that the left hand side also makes sense,
even if α and β cannot be joined to a single differentiable path, either because
they do not meet up (so that α(b) 6= β(b), or because there is a corner at the
meeting point (so that α′(b) 6= β′(b)). The expression α+ β is then no longer a
path in Ω, so we instead call it a chain (of paths) in Ω.

More generally, if
∑
i niγi is a formal sum of k-cubes γi : [0, 1]k →M , where

i runs over some finite indexing set, and ω is a k-form, we can define the integral∫
∑
i niγi

ω

to be equal to the linear combination∑
i

ni

∫
γi

ω .

We call the finite formal sum
∑
i niγi a k-chain (of singular cells) in M . We

would usually assume that the coefficients ni are integers, but the definition also
makes sense if they are real numbers. In this way we extend the generality of
the definition of an integral, by allowing chains instead of cells as the geometric
integration domains.

This added generality can be useful in the context of Green’s theorem (for
Ω ⊆ R2) and the more general Stokes’ theorem (for general M). Recall that if
R ⊆ Ω is a closed region bounded by a simple closed curve γ = ∂R, positively
oriented, then Green’s theorem asserts that there is an identity∫

∂R

P dx+Qdy =

∫∫
R

(∂Q
∂x
− ∂P

∂y

)
dxdy .

However, the theorem also holds true if ∂R is not a simple closed curve, but a
finite union

∂R =
⋃
i

γi

of simple closed curves. If not all of the curves γi are oriented in the same way
as ∂R, we can compensate for this by working with formal negatives, so as to
write

∂R =
∑
i

niγi

where each coefficient ni is +1 if γi is oriented like ∂R, and it is −1 otherwise.
In this case ∂R is no longer a (simple closed) curve by a chain in Ω. The point of
working with integrals over chains is that now the identity of Green’s theorem
also works for regions R bounded by a chain of simple closed curves, not just
for a single curve.

In the same way Stokes’ theorem gives an identity∫
∂R

ω =

∫
R

dω

for (k+1)-cells R and k-forms ω on a smooth manifold M . Here ∂R can usually
be parametrized as a k-cell, but it is more natural to think of it as a k-chain
(with one summand for each k-dimensional face of the (k+1)-cube parametrizing
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R), and now it is straightforward to deduce that Stokes’ theorem also holds for
(k + 1)-chains R and k-forms ω, as above.

To compare Green’s and Stokes’ theorems, note that for the 1-form ω =
P dx+Qdy the exterior derivative is

dω =
∂Q

∂x
− ∂P

∂y
.

An interesting special case of Stokes’ theorem arises for closed k-forms ω, i.e.,
those with dω = 0. In the case of Green’s theorem, this means that ∂P

∂y = ∂Q
∂x ,

so that the vector field (P,Q) has no curl. Then Stokes’ theorem tells us that∫
∂R

ω =

∫
R

dω =

∫
R

0 = 0

vanishes, so that the integral of a closed form along any k-chain that is a bound-
ary is zero. We call such k-chains k-boundaries. Hence the integrals over two
k-chains α and β that differ by a k-boundary

β − α = ∂R

will be equal ∫
α

ω =

∫
β

ω

for closed ω, since their difference is
∫
∂R
ω = 0. We say that such k-chains α and

β are homologous. This defines an equivalence relation on the set of k-chains,
and the equivalence class [α] of a k-chain is its homology class. The conclusion
is that for closed ω the integral

∫
α
ω only depends on the homology class of α,

not on the particular k-chain α itself.
Another interesting special case of Stokes’ theorem arises for exact k-forms,

i.e., those of the form ω = dη. In the case of Green’s theorem, this means that
P = ∂g

∂x and Q = ∂g
∂y for some g : Ω→ R, so that (P,Q) is a gradient field. Then

Stokes’ theorem tells us that∫
γ

ω =

∫
γ

dη =

∫
∂γ

η =

∫
0

η = 0

vanishes for k-cycles γ, i.e., those k-chains with ∂γ = 0. This means that each
(k − 1)-cell in the boundary of γ occurs algebraically zero times, i.e., as often
with one orientation as with the opposite orientation.

It is known that each k-boundary γ = ∂R is a k-cycle, since ∂γ = ∂∂R = 0.
It is an interesting geometric question about chains in the manifold M whether
the converse holds true, and if not, to what extent it fails. This leads to the
study of the quotient of the abelian group of k-cycles by the subgroup of k-
boundaries, which is called the (cubical) k-th homology group of M , denoted
Hk(M).

It is also known that each exact k-form ω = dη is closed, since dω = ddη = 0.
Again it is an interesting analytic question about forms on the manifold M
whether the converse holds true, and if not, how to measure its failure. This
leads to the study of the quotient of the real vector space of closed k-forms by
the subspace of exact k-forms, which is called the k-th (de Rham) cohomology
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group of M , here denoted Hk
dR(M). We say that two closed k-forms that differ

by an exact k-form are cohomologous, and write [ω] for the equivalence class in
Hk
dR(M) of a closed k-form, i.e., its cohomology class.

These questions are closely related. Integration defines a rule

(ω, γ) 7−→
∫
γ

ω

that takes a closed k-form ω and a k-cycle γ to the integral of the latter over
the former. By the first special case of Stokes’ theorem, for closed ω, we see
that the value of

∫
γ
ω only depends on the cubical homology class [γ] of γ. By

the second special case of Stokes’ theorem, for cycles γ, the value of
∫
γ
ω only

depends on the de Rham cohomology class [ω] of ω. Hence integration does in
fact define a rule

Hk
dR(M)×Hk(M) −→ R

([ω], [γ]) 7−→
∫
γ

ω

which is a bilinear pairing. Keeping [ω] momentarily fixed we get a homomor-
phism

h : Hk
dR(M) −→ Hom(Hk(M),R)

taking [ω] to the homomorphism Hk(M)→ R that takes [γ] to
∫
γ
ω.

By combining two theorems, known as de Rham’s theorem and the universal
coefficient theorem, we can state:

Theorem 1.1.1. The homomorphism h : Hk
dR(M) → Hom(Hk(M),R) is an

isomorphism for every smooth manifold M .

Hence if every k-cycle in M is a k-boundary, so that Hk(M) = 0, we deduce
that Hk

dR(M) = 0, so that every closed k-form on M is exact. This is, for
instance, the case when M = Ω ⊆ R2 is simply-connected and k = 1. There is
also a converse, but one needs to take into account that Hom(Hk(M),R) = 0
does not in general imply that Hk(M) = 0.

The theorem is even more interesting in the case when it establishes an
isomorphism between two nontrivial groups, since it then provides a correspon-
dence between the cohomology classes of closed k-forms and functionals on the
homology classes of k-cycles.

The point of this discussion has been to emphasize the role of chains, cycles
and boundaries on the geometric side, and forms, closed forms and exact forms
on the analytical side, and to introduce homology and cohomology as related
invariants of smooth manifolds.

1.2 Homology and cohomology theories

There are various ways of associating to each topological object, like a topo-
logical space or a differentiable manifold, an algebraic object, like a group or
a graded commutative ring. This can be interesting because of what the re-
sulting algebraic object tells us about the topological object, or because known
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topological examples can produce novel algebraic examples. This is often the
general framework of algebraic topology.

Usually the algebraic objects are constructed by comparing the given topo-
logical object, say a topological space X, with familiar topological objects, like
the standard simplices ∆n or the complex plane/line C, or specially designed
topological spaces, like the Eilenberg–Mac Lane spaces K(G,n).

For example, to study singular homology, one considers the continuous maps
σ : ∆n → X for all n ≥ 0, assembles these into the singular chain complex
(C∗(X), ∂), and passes to homology, to obtain the singular homology groups
Hn(X) for n ≥ 0. This is a standard approach in algebraic topology. The
construction involves maps into X, and is covariant in X, in the sense that for
a map f : X → Y there is an induced homomorphism f∗ : Hn(X) → Hn(Y ) in
the same direction.

As another example, one may consider the commutative ring C(X) of con-
tinuous maps ϕ : X → C under pointwise addition and multiplication. These
are the global sections in a sheaf of rings that to each open subset U ⊆ X asso-
ciates the ring C(U) of continuous functions on U . Under suitable assumptions
on X one may consider refined versions of this: if X is a complex variety one
can consider the ring O(X) of holomorphic maps ϕ : X → C. Using sheaf co-
homology one can associate cohomology groups Hn(X) to these ringed spaces.
This is a standard approach in algebraic geometry. The construction involves
maps out of X, and is contravariant in X, in the sense that for a (regular) map
f : X → Y there is an induced homomorphism f∗ : Hn(Y ) → Hn(X) in the
opposite direction.

If X is a smooth (infinitely differentiable) manifold one can consider the ring
C∞(X) of smooth maps ϕ : X → R. Each point p ∈ X determines a maximal
ideal mp, and the rule ϕ 7→ dϕ(p) induces an isomorphism mp/m

2
p
∼= T ∗pX to

the cotangent space at p, dual to the tangent space. Gluing these vector spaces
together one can view each differential n-form ω on X as a section in a vector
bundle over X. These can be assembled into the de Rham complex (Ω∗X, d),
whose cohomology defines the de Rham cohomology H∗dR(X). This is a standard
approach in differential topology. The differential forms on X are again maps
out of X, and the construction is contravariant in X.

There is a variant of singular homology, called singular cohomology, which
is also contravariant. Its construction is of somewhat mixed variance, since
it is given in terms of functions out of things given by maps into X. More
precisely, one considers functions ϕ : {n-simplices in X} → G from the set of
singular n-simplices σ : ∆n → X to a fixed abelian group G. This is equivalent
to considering homomorphisms ϕ : Cn(X) → G from the free abelian group of
singular n-chains on X. From these functions or homomorphisms one forms a
cochain complex C∗(X;G), whose cohomology groups are the singular cohomo-
logy groups Hn(X;G).

There is also a more directly contravariant construction, valid for all topo-
logical spaces X. For each abelian group G and each n ≥ 0 there exists a
topological space K(G,n), well-defined up to homotopy equivalence, such that
the group πiK(G,n) = [Si,K(G,n)] of homotopy classes of maps Si → K(G,n)
is trivial for i 6= n, and is identified with G for i = n. Such a space is called
an Eilenberg–Mac Lane complex of type (G,n). The group [X,K(G,n)] of ho-
motopy classes of maps X → K(G,n) defines a cohomology theory in X, which
is isomorphic to the singular cohomology group Hn(X;G) for a large class of



CHAPTER 1. INTRODUCTION 6

spaces X.
Given this wealth of possible constructions, the good news is that there are

interesting uniqueness theorems: For large classes of “reasonable” topological
spaces the various constructions agree. The formulation and proof of these
theorems is best done in the language of category theory, in terms of functors
and natural transformations, which was originally developed by Eilenberg and
Mac Lane, largely for this purpose. The result is in some sense surprising, since
it is not so clear that an abelian group built out of the continuous maps ∆n → X
should have much to do with another abelian group built out of the continuous
maps X → C or X → K(G,n).

Consider for example the space X = Q of rational numbers, with the sub-
space topology from R. Any continuous map ∆n → Q is constant, so to the
eyes of singular homology and cohomology, Q could equally well have had the
discrete topology. On the other hand, not every map Q → C is continuous, so
to the eyes of sheaf cohomology, the choice of topology on Q makes an essential
difference. This example shows that for general (“unreasonable”) topological
spaces, the various constructions of cohomology do not agree.

The standard techniques of singular (co-)homology, like homotopy invari-
ance, the long exact sequence of a pair, excision, behavior on sums, and the
dimension axiom, suffice to prove uniqueness results for the homology and co-
homology of CW spaces, i.e., spaces that can be given the structure of a CW
complex, and more generally for all spaces that are of the homotopy type of a
CW complex. These are then the “reasonable” spaces in the sense above. Any
manifold or complex variety is a CW space, so for geometric purposes, this class
of spaces is usually fully adequate for topological work. On the other hand,
the space of rational numbers mentioned above is not of the homotopy type
of a CW complex. When going outside of this class of spaces, there are many
variant (co-)homology theories, often with special properties that may be useful
in particular settings.

These constructions are discussed in Section 3.1 and 3.A of Hatcher [1].

1.3 Cup product and the Künneth theorem

The (co-)homology groups of a topological space are useful in classification of
general classes of spaces, and in answering questions about special classes of
spaces. The classification problem concerns questions like: “what are the pos-
sible spaces of this type?” and “given a space, which one is it?” Since the
(co-)homology groups of a space are usually quite easy to compute, and two
abelian groups can usually quite easily be compared to each other, it is useful
to try to answer these questions in terms of the (co-)homology groups of the
space.

As a first step towards determining what possibilities there are for a class of
topological objects, one should then determine what possibilities there are for
the corresponding class of algebraic objects. Here it turns out to be fruitful to
consider the (co-)homology groups as examples of a richer algebraic structure
than just a sequence of abelian groups.

One extra structure comes from the same source as the commutative ring
structure on the set C(X) of continuous functions on a space X. This was given
by the pointwise sum and product of functions, so given two maps ϕ,ψ : X → C,
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we can form the sum given by (ϕ+ ψ)(p) = ϕ(p) + ψ(p) and the product given
by (ϕ · ψ)(p) = ϕ(p)ψ(p). To make it clearer what structures are involved, we
might express these formulas in terms of diagrams. Since the right hand sides in
these expressions involve evaluation at p two times, we need to make two copies
of that point. This is done using the diagonal map

∆: X → X ×X

that takes p ∈ X to (p, p) ∈ X. The sum of ϕ and ψ is then given by the
composite map

X
∆−→ X ×X ϕ×ψ−→ C× C +−→ C ,

where the last map is the addition in C, and similarly for the product. The
commutativity of the product is derived from the fact that the composite

τ∆: X
∆−→ X ×X τ−→ X ×X

is equal to ∆, where τ : X×X → X×X is the twist homeomorphism that takes
(p, q) to (q, p).

What is the associated structure in (co-)homology? The diagonal map in-
duces a homomorphism

∆∗ : Hn(X) −→ Hn(X ×X) ,

but this lands in the homology of X ×X, not the homology of X. With a little
care it is possible to define a homology cross product map

× : Hi(X)⊗Hj(X) −→ Hi+j(X ×X)

for all i, j ≥ 0, and these assemble to a map⊕
i+j=n

Hi(X)⊗Hj(X) −→ Hn(X ×X) .

In general this map is not an isomorphism. If it were, we could have composed
∆∗ with the inverse isomorphism, and obtained a homomorphism

Hn(X) −→
⊕
i+j=n

Hi(X)⊗Hj(X)

for all n. As a convention, the tensor product of two graded abelian groups is
defined so that the collection of all of these maps could be written as a coproduct

H∗(X) −→ H∗(X)⊗H∗(X) ,

which would make the homology groups H∗(X) into a graded coring.
The combined cross product map

H∗(X;F )⊗F H∗(X;F ) −→ H∗(X ×X;F )

is an isomorphism if we work with homology with coefficients in a field F , and
this is one reason to consider homology groups with coefficients. This is a special
case of the Künneth theorem for homology.
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However, the algebraic structures of corings or coalgebras are unfamiliar
ones. It is therefore most often more convenient to dualize, and to consider
cohomology instead of homology.

Let R be a commutative ring, for instance the ring of integers Z. The
diagonal map induces a homomorphism

∆∗ : H∗(X ×X;R) −→ H∗(X;R)

and there is a cohomology cross product map

× : Hi(X;R)⊗Hj(X;R) −→ Hi+j(X ×X;R)

for all i, j ≥ 0. The composite is a homomorphism

∪ = × ◦∆∗ : Hi(X;R)×Hj(X;R)→ Hi+j(X;R)

for all i, j ≥ 0, called the cup product. We may assemble these cup product
maps to a pairing

∪ : H∗(X;R)⊗H∗(X;R) −→ H∗(X;R) ,

which makes H∗(X;R) a graded ring, or more precisely, a graded R-algebra. In
fact, the cohomology cross product map, taking a⊗b to a×b, is compatible with
the twist homeomorphism τ , in the graded sense that τ∗(a× b) = (−1)ijb× a,
where i and j are the degrees of a and b, respectively, so that the cohomology
ring H∗(X;R) becomes graded commutative.

In much work in algebraic topology, it is therefore standard to consider the
cohomology H∗(X;R) of a space X, not as a graded abelian group, but as a
graded commutative ring or algebra. This enriched algebraic structure is still
manageable, but often carries much more useful information than the plain
group structure.

These constructions are discussed in Section 3.2 and 3.B of Hatcher [1].

1.4 Poincaré duality

Much geometric work is concerned with manifolds, or smooth varieties, rather
than general topological spaces. In an n-dimensional manifold there is a cer-
tain duality between k-dimensional subobjects and suitable (n−k)-dimensional
subobjects. For example, each compact, convex polyhedron in R3 determines a
cell structure on its boundary, a topological 2-sphere, dividing it into vertices
(0-cells), edges (1-cells) and faces (2-cells). There is also a dual cell structure,
with a 0-cell for each of the old faces, a 1-cell for each of the old edges, and a
2-cell for each of the old vertices. We can superimpose these cell structures, so
that each of the old k-cells meets one of the new (2− k)-cells, in a single point.

Algebraically, this is reflected in a certain duality in the homology, or co-
homology, of a manifold. It says that for suitable n-manifolds X (closed, con-
nected and oriented) there is a preferred isomorphism Hn(X;R) ∼= R, and the
cup product pairing

Hk(X;R)⊗Hn−k(X;R)
∪−→ Hn(X;R) ∼= R
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defines a perfect pairing modulo torsion. This is the Poincaré duality theorem.
If R = F is a field this means that the corresponding homomorphisms

Hk(X;F ) −→ Hom(Hn−k(X;F ), F ) = Hn−k(X;F )∗

are isomorphisms, for all k. This homomorphism takes a ∈ Hk(X;F ) to the
homomorphism Hn−k(X;F )→ F that takes b to the image of a∪b ∈ Hn(X;F )
in F , under the preferred isomorphism. In particular

dimF H
k(X;F ) = dimF H

n−k(X;F )

for all k.
This kind of symmetry, between dimension k and codimension k phenomena

in the (co-)homology of an n-manifold, is the key feature taken as the starting
point for the classification of manifolds, as a special class of topological objects
among all topological spaces.

These constructions are discussed in Section 3.3 and 3.H of Hatcher [1].

1.5 Lie groups, H-spaces and Hopf algebras

A second interesting kind of topological spaces are the topological groups, i.e.,
topological spaces G equipped with a continuous multiplication m : G×G→ G,
a unit element e ∈ G and a continuous group inverse i : G → G such that the
usual group axioms are satisfied. In the case where G is also a manifold we get
the notion of a Lie group. Examples of these include the matrix groups GLn(R)
and GLn(C) of n × n invertible matrices with real and complex entries, and
their subgroups O(n) and U(n) of orthogonal and unitary matrices, respectively.
These play an important role in Riemannian geometry, representation theory
and mathematical physics.

In the cases n = 1 we get well-known Lie group structures on the spheres
O(1) = {±1} = S0 and U(1) = S1. The division algebra structure on R4 = H
given by the Hamiltonian quaternions restricts to a (non-commutative) group
structure on the unit sphere S3 ⊂ H, and the division algebra structure on
R8 = O due to Graves and Cayley restricts to a (non-associative) multiplication
on the unit sphere S7 ⊂ O.

To the eyes of homology with field coefficients, a topological group G gives
rise to a graded F -vector spaceH∗(G;F ) that is both a coalgebra and an algebra.
The coalgebra structure comes from the diagonal map ∆: G→ G×G and the
Künneth isomorphism

H∗(G;F )
∆∗−→ H∗(G×G;F ) ∼= H∗(G;F )⊗F H∗(G;F )

while the algebra structure comes from the multiplication map m : G×G→ G
and the Künneth isomorphism

H∗(G;F )⊗F H∗(G;F ) ∼= H∗(G×G;F )
m∗−→ H∗(G;F ) .

These are compatible in the sense that the coproduct is an algebra map and the
product is a coalgebra map. There is also a compatibility with the homomor-
phism i∗ : H∗(G;F ) → H∗(G;F ) induced by the inverse map. The combined
structure is called a Hopf algebra.
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The full strength of the group axioms is not needed to obtain this algebraic
structure on H∗(G;F ), so Hopf also considered the more flexible notion of an
H-space G, with comes with a pairing m : G×G→ G that only needs to satisfy
the group axioms up to homotopy, and the role of the inverse map becomes
negotiable.

Under suitable finiteness hypotheses, there is also a dual Hopf algebra struc-
ture in cohomology, with product

∆∗ : H∗(G;F )⊗F H∗(G;F ) −→ H∗(G;F )

given by the cup product, and coproduct

m∗ : H∗(G;F ) −→ H∗(G;F )⊗F H∗(G;F )

induced by the H-space pairing. (Here we suppress the required cohomology
Künneth isomorphisms from the notation.)

There are interesting theorems of Hopf and Borel on the possible algebraic
structures that can be realized by Hopf algebras, and a famous theorem of Frank
Adams saying that the only spheres Sn that admit H-space structures are those
mentioned above, i.e., for n = 0, 1, 3 and 7. This is related to the result that
the only real vector spaces Rn that admit division algebra structures are those
for n = 1, 2, 4 and 8.

These results are discussed in Section 3.C of Hatcher [1].



Chapter 2

Singular homology and
cohomology

We first review the definition of singular homology, and then introduce singular
homology with coefficients and singular cohomology.

2.1 Chain complexes

A chain complex is a diagram

· · · → Cn+1
∂−→ Cn

∂−→ Cn−1 → . . .

of abelian groups (or R-modules, or objects in a more general abelian category),
such that the composite

∂2 = ∂∂ : Cn+1 −→ Cn−1

is the zero homomorphism, for each integer n. We also use the abbreviated
notation (C∗, ∂), or just C∗, for the diagram above. The elements of Cn are
called n-chains. We think of C∗ as a graded abelian group, with Cn in degree n
and ∂ of degree −1. This is the standard convention in algebraic topology.

Let
Bn = Bn(C∗, ∂) = im(∂ : Cn+1 → Cn)

be the group of n-boundaries, and let

Zn = Zn(C∗, ∂) = ker(∂ : Cn → Cn−1) .

be the group of n-cycles. Then

Bn ⊆ Zn ⊆ Cn

since any element of Bn has the form x = ∂y, and then ∂x = ∂2y = 0. In
general, the inclusion Bn ⊆ Zn may be a proper inclusion. To detect the
possible difference, we form the quotient group

Hn(C∗, ∂) = Zn/Bn ,

11
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called the n-th homology group of (C∗, ∂). A necessary and sufficient condition
for an n-cycle x ∈ Zn to be an n-boundary is then that its equivalence class (=
coset) [x] ∈ Zn/Bn = Hn(C∗, ∂) is zero. We call the equivalence class [x] the
homology class of the cycle x.

If there is no difference between cycles and boundaries, so that Bn = im(∂)
is equal to Zn = ker(∂), as subgroups of Cn, then we say that the chain complex
is exact at Cn. This is equivalent to the vanishing Hn(C∗, ∂) = 0 of the n-th
homology group. A chain complex is exact if it is exact at each object in the
diagram.

An exact chain complex is also called a long exact sequence. An exact chain
complex of the form

0→ A
i−→ B

j−→ C → 0

(extended by 0’s in both directions) is called a short exact sequence. Exactness
at A means that i is injective, exactness at B means that im(i) = ker(j), and
exactness at C means that j is surjective.

Let (C∗, ∂) and (D∗, ∂) be two chain complexes. A chain map f# : C∗ → D∗
is a commutative diagram

. . . // Cn+1
∂ //

fn+1

��

Cn
∂ //

fn

��

Cn−1
//

fn−1

��

. . .

. . . // Dn+1
∂ // Dn

∂ // Dn−1
// . . .

of abelian groups. In other words, it is a sequence of group homomorphisms
fn : Cn → Dn such that ∂fn = fn−1∂ : Cn → Dn−1, for all n. A chain
map f# : C∗ → D∗ restricts to homomorphisms Bn(C∗, ∂) → Bn(D∗, ∂) and
Zn(C∗, ∂)→ Zn(D∗, ∂), hence induces a homomorphism of quotient groups:

f∗ : Hn(C∗, ∂)→ Hn(D∗, ∂)

for each n. If g# : D∗ → E∗ is another chain map, then we have the relation

(gf)∗ = g∗f∗ : Hn(C∗, ∂)→ Hn(E∗, ∂)

for each n, saying that the homology groups Hn(C∗, ∂) are (covariant) functors
of the chain complex (C∗, ∂). (We omit to mention the identity condition.)

If the groups are reindexed by superscripts:

Cm = C−m

we obtain a diagram

· · · → Cm−1 δ−→ Cm
δ−→ Cm+1 → . . .

such that the composite

δ2 = δδ : Cm−1 −→ Cm+1

is the zero homomorphism, for each m. This is called a cochain complex. We
abbreviate this to (C∗, δ), or just C∗. The elements of Cm are called m-cochains.
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Again C∗ is a graded abelian group, with Cm in degree m and δ of degree +1.
This is the standard convention in algebraic geometry.

Let Bm = im(δ : Cm−1 → Cm) and Zm = ker(δ : Cm → Cm+1) be the
groups of m-coboundaries and m-cocycles, respectively. Then

Bm ⊆ Zm ⊆ Cm

as before, and the quotient group

Hm(C∗, δ) =
Zm

Bm

is called the m-th cohomology group of (C∗, δ). If C∗ is obtained from C∗ by
the reindexing Cm = C−m, then Bm = B−m, Zm = Z−m and Hm(C∗, δ) =
H−m(C∗, ∂).

Exercise 2.1.1. (a) Let R be a ring (associative, with unit), and let

0→ A
i−→ B

j−→ C → 0

be a short exact sequence of left R-modules, meaning that i and j are R-module
homomorphisms, i is injective, the image of i equals the kernel of j, and j is
surjective. We may think of i as an inclusion and j as a projection. Prove that
j induces an isomorphism of R-modules from B/i(A) to C.

(b) By a section to j we mean an R-module homomorphism s : C → B
such that js = 1C is the identity homomorphism of C. By a retraction of i we
mean an R-module homomorphism r : B → A such that ri = 1A is the identity
homomorphism of A. Prove that j admits a section s if and only if i admits a
retraction r. In this case we say that the short exact sequence is split.

(c) Prove that if the short exact sequence is split, then the homomorphisms
i+ s : A⊕ C → B and (r, j) : B → A× C are isomorphisms of R-modules.

(d) Give an example of a short exact sequence that is not split.
(e) Let M be another left R-module, and let the Hom-group HomR(A,M)

denote the abelian group of R-module homomorphisms f : A→M . Let

i∗ : HomR(B,M) −→ HomR(A,M)

be the group homomorphism that takes g : B →M to the composite gi : A→M .
Prove that

0→ HomR(C,M)
j∗−→ HomR(B,M)

i∗−→ HomR(A,M)

is an exact sequence of abelian groups, meaning that j∗ is injective, and the
image of j∗ equals the kernel of i∗.

(f) Provide an example of a case where i∗ is not surjective.
(g) Prove that if the short exact sequence 0 → A → B → C → 0 is split,

then i∗ is surjective, so that the exact sequence in (e) can be extended by a 0
at the right hand side to become a short exact sequence.

(h) Let N be a right R-module, and let the tensor product N ⊗R A denote
the abelian group generated by symbols n⊗ a, with n ∈ N and a ∈ A, subject
to the bilinearity relations

(n1 + n2)⊗ a = n1 ⊗ a+ n2 ⊗ a
n⊗ (a1 + a2) = n⊗ a1 + n⊗ a2

nr ⊗ a = n⊗ ra
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for n, n1, n2 ∈ N , r ∈ R and a, a1, a2 ∈ A. Let i∗ : N ⊗R A → N ⊗R B be the
group homomorphism that takes n⊗ a to n⊗ i(a). Prove that

N ⊗R A
i∗−→ N ⊗R B

j∗−→ N ⊗R C → 0

is exact, meaning that the image of i∗ equals the kernel of j∗, and j∗ is surjective.
[Hint: See Lemma 3A.1 of Hatcher [1].]

(i) Give an example where i∗ is not injective.
(j) Prove that if 0→ A→ B → C → 0 splits, then i∗ is injective, so that the

exact sequence in (h) can be extended by a 0 at the left hand side to become a
short exact sequence.

2.2 Some homological algebra

A short exact sequence of chain complexes is a diagram

0→ A∗
i#−→ B∗

j#−→ C∗ → 0 ,

where (A∗, ∂), (B∗, ∂) and (C∗, ∂) are chain complexes, i# : A∗ → B∗ and
j# : B∗ → C∗ are chain maps, and

0→ An
in−→ Bn

jn−→ Cn → 0

is a short exact sequence (of abelian groups, or R-modules) in each degree n.
Alternatively, such a diagram can be drawn as a commutative diagram

...

��

...

��

...

��

0 // An+1

in+1
//

∂

��

Bn+1

jn+1
//

∂

��

Cn+1
//

∂

��

0

0 // An
in //

∂

��

Bn
jn //

∂

��

Cn //

∂

��

0

0 // An−1

in−1
//

∂

��

Bn−1

jn−1
//

∂

��

Cn−1
//

∂

��

0

0 // An−2

in−2
//

��

Bn−2

jn−2
//

��

Cn−2
//

��

0

...
...

...

of abelian groups (or R-modules), where each column is a chain complex and
each row is a short exact sequence.

The chain maps i# : A∗ → B∗ and j# : B∗ → C∗ induce homomorphisms of
homology groups i∗ : Hn(A∗, ∂) → Hn(B∗, ∂) and j∗ : Hn(B∗, ∂) → Hn(C∗, ∂)
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in all degrees n, as discussed above. We usually omit the boundary map from
the notation, and write i∗ : Hn(A∗)→ Hn(B∗) and j∗ : Hn(B∗)→ Hn(C∗).

Furthermore, to each short exact sequence of chain complexes as above, we
can associate a connecting homomorphism

∂ : Hn(C∗, ∂) −→ Hn−1(A∗, ∂) .

Again, we usually omit the boundary map from the notation.

Definition 2.2.1. The connecting homomorphism ∂ : Hn(C∗) → Hn−1(A∗)
takes the homology class [c] of an n-cycle c ∈ Zn(C∗, ∂) to the homology class
[a] of the (n − 1)-cycle a ∈ Zn−1(A∗, ∂) that satisfies in−1(a) = ∂(b) in Bn−1,
where b ∈ Bn is any choice of n-chain satisfying jn(b) = c.

b � jn //
_

∂

��

c

a
� in−1

// ∂(b)

Lemma 2.2.2. The connecting homomorphism ∂ : Hn(C∗) → Hn−1(A∗) is a
well-defined homomorphism.

Proof. Given c, a choice of b exists because jn is surjective. Then ∂(b) satisfies
jn−1∂(b) = ∂jn(b) = ∂(c) = 0, since j# is a chain map and c is an n-cycle. Thus
∂(b) is in ker(jn−1), which equals im(in−1) by horizontal exactness at Bn−1, so
there exists an a with in−1(a) = ∂(b). This a is unique, given b, since in−1 is
injective. Now in−2∂(a) = ∂in−1(a) = ∂∂(b) = 0, since i# is a chain map and
(B∗, ∂) is a chain complex. Using that in−2 is injective we deduce that ∂(a) = 0,
so that a is an (n− 1)-cycle.

A second choice b′ of lift of a differs from b by an element in ker(jn), hence
can be written b′ = b+ in(a′) for some n-chain a′ ∈ An, by horizontal exactness
at Bn. Then ∂(b′) = ∂(b) + ∂in(a′) = in−1(a) + in−1∂(a′) = in−1(a+ ∂(a′)), so
that the (n− 1)-cycle a is replaced by the (n− 1)-cycle a+∂(a′). This does not
alter the homology class of a in Hn−1(A∗).

Another choice c′ of n-cycle representing the homology class of c has the
form c′ = c + ∂(c′′) for some (n + 1)-chain c′′ in Cn+1. Let b′′ be a lift of c′′,
with jn+1(b′′) = c′′. Then b′ = b + ∂(b′′) is a lift of c′, since j∗ is a chain map,
and ∂(b′) = ∂(b), since B∗ is a chain complex, so the same (n − 1)-cycle a as
before satisfies in−1 = ∂(b′).

Hence the choices involved in representing a homology class x in Hn(C∗) by
an n-cycle in C∗, or in lifting that n-cycle to an n-chain in B∗, do not affect the
value of the homology class ∂(x), so ∂ is well-defined.

To see that it is a homomorphism, consider a sum x + x′ in Hn(C∗). If c
and c′ are n-cycles representing x and x′, respectively, then c + c′ represents
x + x′. If b and b′ are n-chains lifting c and c′, respectively, then b + b′ is an
n-chain lifting c+ c′. If a and a′ map to ∂(b) and ∂(b′), respectively, then a+a′

maps to ∂(b+ b′). Hence ∂(x+ x′) is the homology class of a+ a′, which equals
∂(x) + ∂(x′). (Similarly for R-linearity.)

Theorem 2.2.3 (Long exact sequence in homology). To each short exact se-
quence

0→ A∗
i#−→ B∗

j#−→ C∗ → 0
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of chain complexes there is associated a long exact sequence

· · · → Hn+1(C∗)
∂−→ Hn(A∗)

i∗−→ Hn(B∗)
j∗−→ Hn(C∗)

∂−→ Hn−1(A∗)→ . . .

of homology groups, where i∗ and j∗ are the induced homomorphisms, and ∂ is
the connective homomorphism.

By a map of short exact sequences of chain complexes, we mean a commu-
tative diagram

0 // A∗
i#
//

α#

��

B∗
j#
//

β#

��

C∗ //

γ#

��

0

0 // A′∗
i#
// B′∗

j#
// C ′∗ // 0

of chain complexes and chain maps, such that each row is a short exact sequence
of chain complexes.

Theorem 2.2.4 (Naturality). The connecting homomorphism and long exact
sequence in homology associated to a short exact sequence of chain complexes is
natural, in the sense that the diagram

Hn+1(C∗)
∂ //

γ∗

��

Hn(A∗)
i∗ //

α∗

��

Hn(B∗)
j∗ //

β∗

��

Hn(C∗)
∂ //

γ∗

��

Hn−1(A∗)

α∗

��

Hn+1(C ′∗)
∂ // Hn(A′∗)

i∗ // Hn(B′∗)
j∗ // Hn(C ′∗)

∂ // Hn−1(A′∗)

commutes in all degrees n.

Proof. Commutation of the two central squares follows from the commutativity
of the two squares in the map of short exact sequences of chain complexes, com-
bined with naturality of the homology of a chain complex: β∗i∗ = Hn(β#i#) =
Hn(i#α#) = i∗α∗ and γ∗j∗ = Hn(γ#j#) = Hn(j#β#) = j∗β∗.

The commutation of the outer squares amounts to the naturality of the
connecting homomorphism. Consider a class x = [c] ∈ Hn(C∗) with c ∈ Zn(C∗).
Choose a lift b ∈ Bn with jn(b) = c, and let a ∈ Zn−1(A∗) be given by in−1(a) =
∂(b). Then αn−1(a) ∈ Zn−1(A′∗) represents α∗∂(x).

On the other hand, γn(c) ∈ Zn(C ′∗) represents γ∗(x) ∈ Hn(C ′∗), and βn(b) ∈
B′n is a lift of γn(c), while αn−1(a) satisfies in−1(αn−1(a)) = ∂βn(b). Hence
∂γ∗(x) is also represented by αn−1(a) ∈ Zn−1(A′∗).

The following lemma is useful for arguing about maps of (quite) long exact
sequences.

Lemma 2.2.5 (Five-lemma). Let

A
i //

α

��

B
j
//

β

��

C
k //

γ

��

D
` //

δ

��

E

ε

��

A′
i // B′

j
// C ′

k // D′
` // E′

be a commutative diagram with exact rows.
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(a) If α is surjective, β is injective and δ is injective, then γ is injective.
(b) If β is surjective, δ is surjective and ε is injective, then γ is surjective.
(c) If α is surjective, β and δ are isomorphisms and ε is injective, then γ is

an isomorphism. In particular, if α, β, δ and ε are isomorphisms, then so is γ.

Proof. ((Diagram chases. Case (c) follows from (a) and (b).))

Example 2.2.6. Consider a map of short exact sequences of chain complexes as
above. If α∗ and γ∗ are isomorphisms in all degrees, then β∗ is an isomorphism in
all degrees, by the five-lemma applied to the diagram displayed in the naturality
theorem above.

Similarly, if α∗ and β∗ are isomorphisms is all degrees, then so is γ∗, by the
five-lemma applied to the diagram shifted one step to the right.

Finally, if β∗ and γ∗ are isomorphisms in all degrees, then so is α∗, by the
five-lemma applied to the diagram shifted one step to the left.

Definition 2.2.7. A chain homotopy P# between two chain maps f# : A∗ → B∗
and g# : A∗ → B∗ is a sequence of homomorphisms Pn : An → Bn+1 in all
degrees n, satisfying the condition that

∂Pn + Pn−1∂ = gn − fn

for all n. In this case we write P# : f# ' g# for this chain homotopy.

. . .
∂ // An

Pn

||

gn−fn
��

∂ // An+2

Pn−1||

Bn−1
∂
// Bn

∂
// . . .

Lemma 2.2.8. Any two chain homotopic chain maps f#, g# : A∗ → B∗ in-
duce the same homomorphism f∗ = g∗ : Hn(A∗) → Hn(B∗) in homology, in all
degrees n.

Proof. For each n-cycle c ∈ Zn(A∗) representing x = [c] ∈ Hn(A∗), the relation

∂Pn(c) + Pn−1∂(c) = gn(c)− fn(c)

tells us that fn(c) and gn(c) = fn(c) + ∂Pn(c) are homologous. Hence f∗(x) =
[fn(c)] equals [gn(c)] = g∗(x).

Lemma 2.2.9. Chain homotopy defines an (additive) equivalence relation on
the abelian group of chain maps A∗ → B∗.

((Easy.))

Definition 2.2.10. A chain map f# : A∗ → B∗ is called a chain homotopy
equivalence if there exists a chain map g# : B∗ → A∗ such that the composite
g#f# : A∗ → A∗ is chain homotopic to the identity map ofA∗, and the composite
f#g# : B∗ → B∗ is chain homotopic to the identity map of B∗. In this case, g#

is called a chain homotopy inverse to f#.

Lemma 2.2.11. A chain homotopy equivalence f# : A∗ → B∗ induces an iso-
morphism f∗ : Hn(A∗)→ Hn(B∗) in homology, in all degrees n.

((Easy.))
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2.3 The definition of singular homology

For each n ≥ 0, let the standard n-simplex ∆n be the subspace

∆n = {(t0, t1, . . . , tn) ∈ Rn+1 | each ti ≥ 0,

n∑
i=0

ti = 1}

of Rn+1 consisting of all convex linear combinations

(t0, t1, . . . , tn) =

n∑
i=0

tivi

of the (n+ 1) unit vectors v0, v1, . . . , vn, where

vi = (0, . . . , 0, 1, 0, . . . , 0)

has a single 1 in the i-th position, counting from 0. We call ti the i-th barycentric
coordinate of the point (t0, t1, . . . , tn). We call vi the i-th vertex of ∆n. Note
that ∆n has (n+ 1) vertices.

For each 0 ≤ i ≤ n, with n ≥ 1, there is an affine linear embedding

δin : ∆n−1 → ∆n ,

called the i-th face map, that takes (t0, . . . , tn−1) ∈ ∆n−1 to

δin(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1) .

In other words, it takes the j-th vertex of ∆n−1 to the j-th vertex of ∆n for
0 ≤ j < i, and to the (j + 1)-th vertex of ∆n for i ≤ j ≤ n − 1. In this
way it omits the i-th vertex of ∆n, and induces the unique order-preserving
correspondence between the n vertices of ∆n−1 with the remaining n vertices
of ∆n+1.

The image of δin is the subspace of ∆n where the i-th barycentric coordinate
ti is zero:

δin(∆n−1) = {(t0, . . . , tn) ∈ ∆ | ti = 0}

We call this part of the boundary of ∆n the i-th face. The topological boundary
of ∆n, as a subspace of the hyperplane in Rn+1 where

∑n
i=0 ti = 1, is the union

of these faces:

∂∆n =

n⋃
i=0

δin(∆n−1) .

Let X be any topological space. A map (= a continuous function) σ : ∆n →
X is called a singular n-simplex in X. Let the singular n-chains

Cn(X) = Z{σ : ∆n → X}

be the free abelian group generated by the set of singular n-simplices in X. Its
elements are finite formal sums ∑

σ

nσ σ ,
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where σ ranges over the maps ∆n → X, each nσ is an integer, and only finitely
many of the nσ are different from zero. This abelian group can also be written
as the direct sum

Cn(X) =
⊕

σ : ∆n→X
Z

of one copy of the integers for each singular n-simplex.
For each singular n-simplex σ : ∆n → X, and each face map δin : ∆n−1 → ∆n,

the composite map
σδin = σ ◦ δin : ∆n−1 → X

is a singular (n − 1)-simplex in X. Under the identification of ∆n−1 with the
i-th face in the boundary of ∆n, we can think of σδin as the restriction of σ to
that subspace. We call this (n − 1)-simplex the i-th face of σ, and use one of
the notations

σ|[v0, . . . , vi−1, vi+1, . . . , vn] = σ|[v0, . . . , v̂i, . . . , vn] ,

where the “hat” indicates a term to be omitted.
The restriction of σ to the boundary of ∆n is not itself a simplex, but ∂∆n

is covered by the (n+ 1) faces δin(∆n−1), and we define the boundary of σ as a
sum of the corresponding faces σδin. For reasons having to do with the ordering
of the vertices of a simplex, or more precisely, with the orientation of a simplex,
it turns out to be best to make this an alternating sum, with the i-th face taken
with the sign (−1)i.

For each singular n-simplex σ : ∆n → X in X, with n ≥ 1, let the boundary
∂σ be the singular (n− 1)-chain

∂σ =

n∑
i=0

(−1)iσδin =

n∑
i=0

(−1)iσ|[v0, . . . , v̂i, . . . , vn] .

More generally, define the boundary homomorphism

∂ : Cn(X)→ Cn−1(X)

to be the additive extension of this rule, so that

∂(
∑
σ

nσ σ) =
∑
σ

nσ ∂σ .

It is then a consequence of the relation

δjn+1 ◦ δin = δin+1 ◦ δj−1
n : ∆n−1 → ∆n+1

for 0 ≤ i < j ≤ n + 1 (both maps omit the i-th and j-th vertices), that
∂2 = 0: Cn+1(X)→ Cn−1(X). Hence the diagram

· · · → Cn+1(X)
∂−→ Cn(X)

∂−→ Cn−1(X)→ · · · → C0(X)→ 0→ . . .

is a chain complex, called the singular chain complex of X. By convention,
Cn(X) = 0 for n < 0.

We consider the group

Bn(X) = im(∂ : Cn+1(X)→ Cn(X))
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of singular n-boundaries, and the group

Zn(X) = ker(∂ : Cn(X)→ Cn−1(X))

of singular n-cycles, both of which are subgroups of Cn(X), and call the quotient
group

Hn(X) =
Zn(X)

Bn(X)

the n-th singular homology group of X.

2.4 Tensor product and Hom-groups

Let G and A be abelian groups. The tensor product G⊗A is the abelian group
generated by symbols g ⊗ a, with g ∈ G and a ∈ A, subject to the bilinearity
relations

(g + g′)⊗ a = g ⊗ a+ g′ ⊗ a

and
g ⊗ (a+ a′) = g ⊗ a+ g ⊗ a′

for g, g′ ∈ G and a, a′ ∈ A. The Hom-group Hom(A,G) is the abelian group of
group homomorphisms f : A→ G, with the group operation given by pointwise
addition:

(ϕ+ ϕ′)(a) = ϕ(a) + ϕ′(a)

for ϕ,ϕ′ : A→ G, a ∈ A. The sum ϕ+ ϕ′ is a group homomorphism since G is
abelian.

If f : A → B is a homomorphism of abelian groups, then there are induced
homomorphisms

f∗ = 1⊗ f : G⊗A→ G⊗A

given by f∗(g ⊗ a) = g ⊗ f(a) for g ∈ G, a ∈ A, and

f∗ = Hom(f, 1) : Hom(B,G)→ Hom(A,G)

given by f∗(ψ)(a) = ψ(f(a)) for ψ : B → G, a ∈ A. Note how the direction of
the map f∗ is reversed, compared to that of f and f∗. If g : B → C is a second
homomorphism, then we have the relations

(gf)∗ = g∗f∗ : G⊗A→ G⊗A

and
(gf)∗ = f∗g∗ : Hom(C,G)→ Hom(A,G) ,

saying that G ⊗ (−) is a covariant functor and Hom(−, G) is a contravariant
functor (in the indicated variable).

If A = Z, then there is a natural isomorphism G⊗Z ∼= G, taking g⊗n to the
multiple ng formed in the group G. (This is the sum of n copies of g if n ≥ 0,
and of −n copies of −g if n ≤ 0.) More generally, if A = Z{S} =

⊕
S Z is the

free abelian group generated by a set S, then

G× Z{S} ∼= G{S} ∼=
⊕
S

G
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is the direct sum of one copy of G for each element of S.
If A = Z, then there is a natural isomorphism Hom(Z, G) ∼= G, taking

ϕ : Z→ G to the value ϕ(1) at 1 ∈ Z. If A = Z{S} =
⊕

S Z then

Hom(Z{S}, G) ∼=
∏
S

G

is the product of one copy of G for each element of S. A homomorphism
ϕ : Z{S} → G corresponds to the sequence (ϕ(s))s∈S in G, of values of ϕ at the
generators s ∈ S viewed as elements of Z{S}.

2.5 Homology with coefficients

Let X be any topological space and G any abelian group. The singular chain
complex of X with coefficients in G is the diagram

· · · → G⊗ Cn+1(X)
1⊗∂−→ G⊗ Cn(X)

1⊗∂−→ G⊗ Cn−1(X)→ . . . .

Here (1 ⊗ ∂)(1 ⊗ ∂) = 1 ⊗ ∂2 = 0, by functoriality, so this is indeed a chain
complex. Note that

G⊗ Cn(X) ∼= G{σ : ∆n → X} ∼=
⊕

σ : ∆n→X
G

is the direct sum of one copy of the group G for each singular n-simplex. Its
elements are finite formal sums ∑

σ

gσ σ ,

where σ ranges over the singular n-simplices in X, each gσ is an element of G,
and only finitely many of them are nonzero.

We also use the notations Cn(X;G) = G⊗ Cn(X),

Bn(X;G) = im(1⊗ ∂ : Cn+1(X;G)→ Cn(X;G))

and
Zn(X;G) = ker(1⊗ ∂ : Cn(X;G)→ Cn−1(X;G))

for the singular n-chains, n-boundaries and n-cycles in X with coefficients in
G, respectively. We often abbreviate 1⊗∂ to ∂. By definition, the n-th singular
homology group of X with coefficients in G is the quotient group

Hn(X;G) =
Zn(X;G)

Bn(X;G)
= Hn(C∗(X;G), ∂) .

For example, let X = ? be a single point. Then there is a unique singular
n-simplex σn : ∆n → ? for each n ≥ 0, so Cn(?) = Z{σn} and Cn(?;G) =
G{σn} for each n ≥ 0. We have σnδ

i
n = σn−1 for each 0 ≤ i ≤ n, n ≥ 1, so

∂σn =
∑n
i=0(−1)iσn−1 equals σn−1 for n ≥ 2 even, and equals 0 for n ≥ 1 odd.

Hence C∗(?;G) appears as follows:

. . .
1−→ G{σ3}

0−→ G{σ2}
1−→ G{σ1}

0−→ G{σ0} → 0
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The boundary homomorphisms labeled 1 are isomorphisms and the ones labeled
0 are trivial. Hence Bn(?;G) equals G{σn} for n ≥ 1 odd, and is zero otherwise,
while Zn(?;G) equals G{σn} for n ≥ 1 odd, or for n = 0, and is zero otherwise.
Thus for n 6= 0 we have Bn(?;G) = Zn(?;G) and Hn(?;G) = 0. In the case
n = 0 we have

H0(?;G) = Z0(?;G)/B0(?;G) = G{σ0}/0 ∼= G .

Let f : X → Y be any map of topological spaces. There is an induced chain
map

f# = C∗(f ;G) : C∗(X;G)→ C∗(Y ;G)

given by the formula

f#(
∑
σ

gσ σ) =
∑
σ

gσ fσ .

Here σ : ∆n → X ranges over the singular n-simplices of X, and the composite

fσ : ∆n σ−→ X
f−→ Y

is an n-simplex of Y . This is a chain map because the associativity of composi-
tion, (fσ)δin = f(σδin), implies that ∂(fσ) = f(∂σ). Hence there is an induced
homomorphism of homology groups,

f∗ = Hn(f ;G) : Hn(X;G)→ Hn(Y ;G)

for all n. If g : Y → Z is a second map, then the relation

(gf)∗ = g∗f∗ : Hn(X;G)→ Hn(Z;G)

holds.
((Discuss augmentations and reduced homology.))

Remark 2.5.1. When G = Z is the group of all integers, we usually omit it
from the notation. Hence C∗(X) = C∗(X;Z) and H∗(X) = H∗(X;Z). We may
refer to these as integral chains and homology groups. Notice that C∗(X;G) =
G ⊗ C∗(X). It is not true in general that H∗(X;G) = G ⊗ H∗(X). We shall
return to this in the context of the universal coefficient theorem for homology.

Remark 2.5.2. It is more common to define Cn(X;G) as the tensor product
Cn(X) ⊗ G, with G on the right hand side. The two tensor products are iso-
morphic, so this is only a matter of conventions. If we think of Cn(X) as a left
Z-module, it is a little more natural to form the tensor product G ⊗ Cn(X),
where G is thought of as a right Z-module, than to convert the left module
structure on Cn(X) into a right module structure. Since Z is commutative,
there is no real difference, but our convention generalizes more easily to the
case of modules over non-commutative rings R, where we can make an iden-
tification Cn(X;N) ∼= N ⊗R Cn(X;R) for right R-modules N . The homology
group H̃n(X;G) can also be presented as the homotopy group πn(HG ∧X) of
the Eilenberg–Mac Lane spectrum HG smashed with the space X, and here it
is common to place HG on the left hand side.
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2.6 Relative homology

Let A ⊆ X be any subspace. Write i : A → X for the inclusion map. The
chain map i# : C∗(A;G) → C∗(X;G) is injective in each degree, identifying
each simplex σ : ∆n → A with the composite iσ : ∆n → X. Let the group of
relative n-chains in (X,A) with coefficients in G be the quotient group

Cn(X,A;G) =
Cn(X;G)

Cn(A;G)

of n-chains in X modulo the n-chains in A. Since i# is a chain map, there is an
induced boundary homomorphism

∂ : Cn(X,A;G)→ Cn−1(X,A;G)

given by taking the equivalence class of an n-chain x in X modulo n-chains in
A to the equivalence class of the (n − 1)-chain ∂x in X modulo (n − 1)-chains
in A. Since ∂2 = 0 in C∗(X;G), we must have ∂2 = 0 in C∗(X,A;G), so
(C∗(X,A;G), ∂) is a chain complex. We write

Bn(X,A;G) = im(∂ : Cn+1(X,A;G)→ Cn(X,A;G))

and
Zn(X,A;G) = ker(∂ : Cn(X,A;G)→ Cn−1(X,A;G))

like before, and define the n-th singular homology group of the pair (X,A) with
coefficients in G to be the quotient group

Hn(X,A;G) =
Zn(X,A;G)

Bn(X,A;G)
= Hn(C∗(X,A;G), ∂) .

Let j# : Cn(X;G)→ Cn(X,A;G) be the canonical quotient homomorphism.
Then j# is a chain map. Drawing the chain complexes vertically and the chain
maps horizontally, we have a commutative diagram

...

∂

��

...

∂

��

...

∂

��

0 // Cn(A;G)
i#

//

∂

��

Cn(X;G)
j#
//

∂

��

Cn(X,A;G) //

∂

��

0

0 // Cn−1(A;G)
i#
//

∂ ��

Cn−1(X;G)
j#
//

∂ ��

Cn−1(X,A;G) //

∂ ��

0

...
...

...

with exact rows. We usually draw this more compactly as the following short
exact sequence of chain complexes:

0→ C∗(A;G)
i#−→ C∗(X;G)

j#−→ C∗(X,A;G)→ 0
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Note that if A = ∅ is empty, then j# is an isomorphism of chain complexes
C∗(X;G) ∼= C∗(X,∅;G), and j∗ is an isomorphism Hn(X;G) ∼= Hn(X,∅;G)
for all n, so (absolute) homology is a special case of relative homology.

There is a connecting homomorphism in homology

∂ : Hn(X,A;G)→ Hn−1(A;G)

defined by taking the homology class [x] of a relative n-cycle x ∈ Zn(X,A;G)
to the homology class [∂x̃] of the unique lift to Cn−1(A;G) of the boundary in
Cn−1(X;G) of a representative x̃ in Cn(X;G) of x. Here j#(x̃) = x, so the lift
exists because j#(∂x̃) = ∂x = 0 in Cn−1(X,A;G). It is an (n − 1)-cycle, since
its boundary in Cn−2(A;G) maps to ∂2x̃ = 0 in Cn−2(X;G) under the injective
homomorphism i#. As we proved earlier, ∂ is well-defined and additive.

Exercise 2.6.1. Express the group of relative n-cycles Zn(X,A;G) as a quo-
tient of the group {x ∈ Cn(X;G) | ∂x ∈ Cn−1(A;G)} of n-chains in X with
boundary in A.

Similarly, express the group of relative n-boundaries Bn(X,A;G) as a quo-
tient of the group {∂y ∈ Cn(X;G) | y ∈ Cn+1(X;G)} of n-chains in X that are
boundaries of chains in X.

We refer to the pair (X,A), with A a subspace of X, as a pair of spaces. Let
f : (X,A) → (Y,B) be any map of pairs of spaces. This is a map f : X → Y ,
subject to the condition that f(A) ⊆ B, so that we have a commutative diagram

A
i //

f ′

��

X

f

��

B
i // Y

where f ′ denotes the restriction of f of A, corestricted to B. Then we have a
commutative diagram of chain complexes and chain maps

0 // C∗(A;G)
i#
//

f ′#
��

C∗(X;G)
j#
//

f#

��

C∗(X,A;G) //

f ′′#
��

0

0 // C∗(B;G)
i#
// C∗(Y ;G)

j#
// C∗(Y,B;G) // 0

where the left hand square is induced by the square above, and the rows are
short exact sequences of chain complexes. The chain map f ′′# on the right hand
side is then determined by f# by the passage to a quotient.

In particular, we have an induced homomorphism

f∗ = Hn(f ;G) : Hn(X,A;G)→ Hn(Y,B;G)

for each n. If g : (Y,B) → (Z,C) is a second map of pairs of spaces, then
(gf)∗ = g∗f∗. Under the isomorphism C∗(X;G) ∼= C∗(X,∅;G) we can identify
j# : C∗(X;G)→ C∗(X,A;G) with the chain map j′′# for j equal to the map of
pairs (X,∅)→ (X,A) given by the identity on X.
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The connecting homomorphism ∂ : Hn(X,A;G) → Hn−1(A;G) is natural,
in the sense that for any map of pairs f : (X,A)→ (Y,B) the diagram

Hn(X,A;G)
∂ //

f∗

��

Hn−1(A;G)

f ′∗
��

Hn(Y,B;G)
∂ // Hn−1(B;G)

commutes.

Remark 2.6.2. We briefly write C∗(X,A) and H∗(X,A) for the relative chains
and homology groups with integral coefficients. Each short exact sequence

0→ Cn(A)
in−→ Cn(X)→ Cn(X,A)→ 0

admits a splitting, since Cn(X,A) is the free abelian group on the set of n-
simplices in X that do not lie in A, hence there is a short exact sequence

0→ G⊗ Cn(A)
1⊗in−→ G⊗ Cn(X)→ G⊗ Cn(X,A)→ 0

and we have an isomorphism Cn(X,A;G) ∼= G ⊗ Cn(X,A). It is compatible
with the boundary maps, so that G⊗C∗(X,A) ∼= C∗(X,A;G). Again, this does
not generally imply that G⊗H∗(X,A) ∼= H∗(X,A;G).

2.7 Some categorical language

Definition 2.7.1. A category C consists of

(a) a class of objects, denoted obj C ,

(b) for each pair of objects X and Y , a set of morphisms from X to Y , denoted
C (X,Y ),

(c) for each triple of objects X, Y and Z, a composition rule

◦ : C (Y,Z)× C (X,Y ) −→ C (X,Y )

taking (g, f) to g ◦ f , for each g ∈ C (Y,Z) and f ∈ C (X,Y ), and

(d) for each object X, an identity morphism

1X ∈ C (X,X) .

The composition rule is supposed to satisfy the associative law

h ◦ (g ◦ f) = (h ◦ g) ◦ f

in C (X,W ), for X, Y , Z, f and g as above, W another object in C , and
h ∈ C (Z,W ) another morphism in C , and the left and right unital laws

1Y ◦ f = f = f ◦ 1X

in C (X,Y ), for X, Y and f as above.
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We often write f : X → Y to denote a morphism f ∈ C (X,Y ) from X to
Y , when the category C is implicitly understood. We often abbreviate g ◦ f to
gf , and expressions like hgf are meaningful, by the associative law.

A category is a context where it is meaningful to talk about commutative
diagrams, like the following:

X
f
//

gf
  

Y

g

��

hg

  

Z
h
// W

Definition 2.7.2. A morphism f : X → Y in a category C is an isomorphism
if there exists a morphism g : Y → X in C with gf = 1X and fg = 1Y . In this
case we say that g is an inverse of f , and that X and Y are isomorphic. Any
morphism has at most one inverse, so we can talk about “the inverse”, when
one exists. We often label an isomorphism with the symbol ∼=, as in

f : X
∼=−→ Y .

A category in which the class of objects obj C is a set (in the interpretation
of set theory that is used) is called a small category. A category where each
morphism is an isomorphism is called a groupoid.

Example 2.7.3. The category Ab has the collection of all abelian groups as
its class of objects, and the set Ab(A,B) of group homomorphisms f : A → B
as the set of morphisms from A to B. Composition and identity morphisms are
defined as for sets and functions. An isomorphism f : A → B in this category
is the same as a group isomorphism.

Example 2.7.4. The category GrAb has the collection of all graded abelian
groups as its class of objects, and the set GrAb(A∗, B∗) of degree-preserving
group homomorphisms f# : A∗ → B∗ as the set of morphisms from A∗ to B∗.
More explicitly, a graded abelian group A∗ is a sequence (An)n∈Z of abelian
groups, and a degree-preserving group homomorphism f# : A∗ → B∗ is a se-
quence (fn : An → Bn)n∈Z of group homomorphisms.

Example 2.7.5. The category Top has the collection of all topological spaces
as its class of objects, and the set Top(X,Y ) of continuous functions f : X → Y
as the set of morphisms from X to Y . Composition and identity morphisms are
defined as for sets and functions.

Example 2.7.6. The category TopPair has the collection of all pairs of topo-
logical spaces as its class of objects, and the set TopPair((X,A), (Y,B)) of maps
of pairs f : (X,A)→ (Y,B) as the set of morphisms from (X,A) to (Y,B). An
isomorphism in this category is the same as a homeomorphism f : X → Y that
restricts to a homeomorphism f ′ : A→ B.

Definition 2.7.7. A (covariant) functor F from a category C to a category D
consists of

(a) a rule that to each object X of C assigns an object F (X) of D , and
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(b) a rule that to each morphism f : X → Y in C assigns a morphism
F (f) : F (X)→ F (Y ) in D .

The rule on morphisms is supposed to satisfy the covariant composition law

F (g ◦ f) = F (g) ◦ F (f)

in D(F (X), F (Z)), for each composable pair of morphisms f : X → Y and
g : Y → Z in C , and the identity law

F (1X) = 1F (X)

in D(F (X), F (X)), for each object X in C .

We often write F : C → D to denote a functor F from C to D . When
the functor is understood, we often abbreviate F (f) to f∗, in which case the
composition law appears as follows:

(gf)∗ = g∗f∗

A functor is a rule that can be applied to commutative diagrams, producing
new commutative diagrams. ((Elaborate?))

Example 2.7.8. Let G be an abelian group. There is a (covariant) functor
G⊗ (−) from Ab to Ab, denoted

G⊗ (−) : Ab −→ Ab ,

that takes an abelian group A to the tensor productG⊗A, and takes a homomor-
phism f : A→ B of abelian groups to the homomorphism f∗ = 1⊗ f : G⊗A→
G⊗B.

Example 2.7.9. Let G be an abelian group. There is a (covariant) functor
H∗(−,−;G) from TopPair to GrAb, denoted

H∗(−,−;G) : TopPair −→ GrAb

or
(X,A) 7−→ H∗(X,A;G) ,

that takes a pair of spaces (X,A) to the graded abelian group H∗(X,A;G), with
Hn(X,A;G) in degree n for each integer n, and takes a map f : (X,A)→ (Y,B)
of pairs of spaces to the induced homomorphism f∗ = H∗(f ;G) : H∗(X,A;G)→
H∗(Y,B;G) of graded abelian groups.

Example 2.7.10. Let G be an abelian group. There is a second (covariant)
functor from TopPair to GrAb, denoted

(X,A) 7−→ H∗−1(A;G) ,

that takes a pair of spaces (X,A) to the graded abelian group H∗−1(A;G), with
Hn−1(A;G) in degree n for each integer n, and takes a map f : (X,A)→ (Y,B)
of pairs of spaces to the induced homomorphism

f∗ = H∗−1(f ′;G) : H∗−1(A;G)→ H∗−1(B;G)

of graded abelian groups. Here f ′ : A→ B denotes the restriction of f to A, as
before.
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Definition 2.7.11. A contravariant functor F from a category C to a category
D consists of

(a) a rule that to each object X of C assigns an object F (X) of D , and

(b) a rule that to each morphism f : X → Y in C assigns a morphism
F (f) : F (Y )→ F (X) in D .

The rule on morphisms is supposed to satisfy the contravariant composition law

F (g ◦ f) = F (f) ◦ F (g)

in D(F (Z), F (X)), for each composable pair of morphisms f : X → Y and
g : Y → Z in C , and the identity law

F (1X) = 1F (X)

in D(F (X), F (X)), for each object X in C .

Note that F changes the direction of the arrows. When the contravariant
functor is understood, we often abbreviate F (f) to f∗, in which case the com-
position law appears as follows:

(gf)∗ = f∗g∗

Definition 2.7.12. To each category C , we can associate the opposite category
C op, that consists of

(a) the same class of objects as in C , so that obj C op = obj C ,

(b) for each pair of objects X and Y , a set of morphisms in C op from X
to Y that equals the set of morphisms C (Y,X) from Y to X in C , so
C op(X,Y ) = C (Y,X),

(c) a composition rule in C op

◦ : C op(Y, Z)× C op(X,Y ) −→ C op(X,Y )

that equals the composite

C (Z, Y )× C (Y,X) ∼= C (Y,X)× C (Z, Y ) −→ C (Z,X) ,

where the first bijection interchanges the two factors, and the second func-
tion is given by the composition rule in C , and

(d) identity morphisms
1X ∈ C op(X,X)

that equal the identity morphisms 1X ∈ C (X,X) in C .

With this definition, there is then a one-to-one correspondence between con-
travariant functors F from C to D and covariant functors G from C op to D .
At the level of objects we have G(X) = F (X) for all objects X of C and C op,
while at the level of morphisms we have G(f) = F (f) in C (X,Y ) = C op(Y,X)
for all morphisms f : X → Y in C , which are morphisms from Y to X in C op.
Hence we usually display a contravariant functor F from C to D as a (covariant)
functor F : C op → D .
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Example 2.7.13. Let G be an abelian group. There is a contravariant functor
Hom(−, G) from Ab to Ab, denoted

Hom(−, G) : Abop −→ Ab ,

that takes an abelian group A to the Hom-group Hom(A,G), and takes a
homomorphism f : A → B of abelian groups to the homomorphism f∗ =
Hom(f,G) : Hom(B,G)→ Hom(A,G).

Example 2.7.14. Let G be an abelian group. There is a contravariant functor
H∗(−,−;G) from TopPair to GrAb, denoted

H∗(−,−;G) : TopPairop −→ GrAb

or
(X,A) 7−→ H∗(X,A;G) ,

that takes a pair of spaces (X,A) to the graded abelian group H∗(X,A;G), with
Hn(X,A;G) in degree n for each integer n, and takes a map f : (X,A)→ (Y,B)
of pairs of spaces to the induced homomorphism f∗ = H∗(f ;G) : H∗(Y,B;G)→
H∗(X,A;G) of graded abelian groups.

Example 2.7.15. Let G be an abelian group. There is a second contravariant
functor from TopPair to GrAb, denoted

(X,A) 7−→ H∗+1(A;G) ,

that takes a pair of spaces (X,A) to the graded abelian group H∗+1(A;G), with
Hn+1(A;G) in degree n for each integer n, and takes a map f : (X,A)→ (Y,B)
of pairs of spaces to the induced homomorphism

f∗ = H∗+1(f ′;G) : H∗+1(B;G)→ H∗+1(A;G)

of graded abelian groups. Here f ′ : A→ B denotes the restriction of f to A, as
before.

((Discuss product categories and bifunctors.))

Definition 2.7.16. Let C ,D be categories, and let F,G : C → D be functors
from C to D . A natural transformation θ : F → G consists of a rule that to
each object X of C assigns a morphism

θX : F (X)→ G(X)

in D . This rule is supposed to satisfy the naturality law, that the square

F (X)
θX //

F (f)

��

G(X)

G(f)

��

F (Y )
θY // G(Y )

commutes for each morphism f : X → Y in C .
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Sometimes a natural transformation is denoted θ : F
·→ G or θ : F ⇒ G.

In abbreviated notation, the naturality law can appear as f∗θX = θY f∗ for
f : X → Y . A natural transformation is a rule that can compare two functors.
((Elaborate?))

Example 2.7.17. The connecting homomorphism

∂ = ∂(X,A) : H∗(X,A;G) −→ H∗−1(A;G)

defines a natural transformation between the functors (X,A) 7→ H∗(X,A;G)
and (X,A) 7→ H∗−1(A;G) from TopPair to GrAb.

Example 2.7.18. The connecting homomorphism

δ = δ(X,A) : H∗(X,A;G) −→ H∗+1(A;G)

defines a natural transformation between the functors (X,A) 7→ H∗(X,A;G)
and (X,A) 7→ H∗+1(A;G) from TopPairop to GrAb.

Definition 2.7.19. Given categories C ,D , functors F,G,H : C → D and nat-
ural transformations θ : F → G and η : G → H, there is a composite natural
transformation ηθ : F → H that takes each object X in C to the composite
morphism

(ηθ)X = ηXθX : F (X)→ G(X)→ H(X)

in D .
There is an obvious identity transformation 1F : F → F for each functor

F : C → D . A natural transformation θ admits a left and right inverse under
composition if and only if each morphism

θX : F (X)
∼=−→ G(X)

is an isomorphism in D . Such θ are called natural equivalences or natural iso-
morphisms.

Example 2.7.20. There is a contravariant functor (−)∗ = Hom(−,Z) : Abop →
Ab, taking each abelian group A to A∗ = Hom(A,Z). When A is finitely gener-
ated and free, say A ∼= Z{S} for some finite set S, there are group isomorphisms

A∗ = Hom(A,Z) ∼=
∏
S

Z ∼=
⊕
S

Z ∼= A .

However, these isomorphisms depend on the choice of basis S for A, and there
is no way to extend these isomorphisms to preferred homomorphisms for gen-
eral abelian groups A. In particular, there is no natural transformation con-
necting the contravariant functor Hom(−,Z) to the (covariant) identity functor
1Ab : Ab→ Ab. ((We have not even defined such a notion of natural transfor-
mation.)) On the other hand, the composite functor

(−)∗∗ = Hom(Hom((−),Z),Z) : Ab→ Ab ,

taking A to A∗∗ = Hom(Hom(A,Z),Z), is a (covariant) functor. In this case
there is a natural transformation

ρ : 1Ab → (−)∗∗
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of functors Ab→ Ab, taking A to ρA : A→ A∗∗, where ρA takes x ∈ A to the
homomorphism ρ(x) : Hom(A,Z)→ Z in A∗∗ that maps ϕ : A→ Z to ϕ(x) ∈ Z.
When restricted to the subcategory of abelian groups that are finitely generated
and free, ρ becomes a natural isomorphism.

Definition 2.7.21. Let C and D be categories. A functor F : C → D is called
an isomorphism of categories if there exists a functor G : D → C such that
GF = 1C and FG = 1D . We then call G an inverse isomorphism of categories,
and say that F and G are isomorphic categories.

An isomorphism of categories F : C
∼=−→ G induces, in particular, a one-to-

one correspondence between the class of objects of C and the class of objects of
D . This is a rare occurrence. The following more flexible notion of equivalence
occurs more commonly.

Definition 2.7.22. Let C and D be categories. A functor F : C → D is called

an equivalence of categories if there exists a 1C
∼=−→ GF of functors C → C ,

and a natural isomorphism 1D
∼=−→ FG of functors D → D . We then call G an

inverse equivalence of categories, and say that F and G are equivalent categories.

An equivalence of categories F : C
'−→ D induces bijections of morphism

sets C (X,Y )
∼=−→ D(F (X), F (Y )), for all objects X,Y in C . Furthermore, each

object of D is isomorphic to one of the form F (X), for some object X in C . We
say that F is faithfully full and essentially surjective, and this is equivalent to
F being an equivalence of categories.

((Relevant example?))

2.8 The Eilenberg–Steenrod axioms for homo-
logy

We take the following theorem as known, at least in the case G = Z, from the
first course in algebraic topology.

Theorem 2.8.1 (Eilenberg–Steenrod axioms). Let G be a fixed abelian group
and let n range over all integers. We abbreviate Hn(X,∅;G) to Hn(X;G).

(Functoriality) The rule that takes a pair of spaces (X,A) to Hn(X,A;G),
and a map f : (X,A) → (Y,B) to the homomorphism f∗ : Hn(X,A;G) →
Hn(Y,B;G), defines a covariant functor from pairs of spaces to graded abelian
groups.

(Naturality) The rule that takes a pair of spaces (X,A) to the connecting
homomorphism ∂ : Hn(X,A;G)→ Hn−1(A;G) is a natural transformation.

(Long exact sequence) The natural diagram

. . .
∂−→ Hn(A;G)

i∗−→ Hn(X;G)
j∗−→ Hn(X,A;G)

∂−→ Hn−1(A;G)
i∗−→ . . .

is a long exact sequence, where i∗ is induced by the inclusion i : A→ X and j∗
is induced by the inclusion j : (X,∅)→ (X,A).

(Homotopy invariance) If f ' g : (X,A)→ (Y,B) are homotopic as maps of
pairs, then f∗ = g∗ : Hn(X,A;G)→ Hn(Y,B;G).
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(Excision) If Z ⊆ A ⊆ X are subspaces, such that the closure of Z is con-
tained in the interior of A, then the inclusion (X −Z,A−Z)→ (X,A) induces
isomorphisms

Hn(X − Z,A− Z;G)
∼=−→ Hn(X,A;G) .

(Sum) If (X,A) =
∐
α(Xα, Aα) is a disjoint union of pairs of subspaces,

then the inclusion maps (Xα, Aα)→ (X,A) induce isomorphisms⊕
α

Hn(Xα, Aα;G)
∼=−→ Hn(X,A;G) .

(Dimension) Let ? be a one-point space. Then H0(?;G) = G and Hn(?;G) =
0 for n ∈ Z.

The sum axiom is only interesting for infinite indexing sets, since the case
of finite disjoint unions follows from the long exact sequence and excision. The
dimension axiom implies that the homology of an n-dimensional disc, relative
to its boundary, is concentrated in degree n. Hence for (X,A) = (Dn, ∂Dn)
the dimension n can be recovered from the homology groups H∗(X,A;G) (for
G 6= 0!).

((Motivate the definition of chain homotopy by a comparison with space level
homotopies I×X → Y and chain maps C∗(I)⊗C∗(X)→ C∗(I×X)→ C∗(Y );
maybe here, but probably better later.))

Definition 2.8.2. A functor (X,A) 7→ h∗(X,A) and natural transformation
∂ : h∗(X,A) → h∗−1(A) satisfying all of the Eilenberg–Steenrod axioms for
homology, except the dimension axiom, is called a generalized homology theory.

Remark 2.8.3. A (generalized) homology theory is determined for all pairs of
spaces (X,A) of the homotopy type of a CW pair, in a sense to be made precise,
by these axioms and its values hn(?) = hn(?,∅) for n ∈ Z at the one-point space.
If one adds the additional axiom that each weak homotopy equivalence induces
an isomorphism of homology groups, as is true for the singular homology groups,
then the axioms and the value at a point determine the value at all (pairs of)
topological spaces.

((Examples: Bordism, oriented bordism, framed bordism and unreduced
stable homotopy, etc.))

2.9 The definition of singular cohomology

Let X be any topological space and G any abelian group. The singular cochain
complex of X with coefficients in G is the diagram

· · · → Hom(Cn−1(X), G)
δ−→ Hom(Cn(X), G)

δ−→ Hom(Cn+1(X), G)→ . . .

where δ = Hom(∂, 1) is called the coboundary homomorphism. Here δ2 =
Hom(∂2, 1) = 0, by contravariant functoriality, so this is indeed a cochain com-
plex. Note that

Hom(Cn(X), G) ∼=
∏

σ : ∆n→X
G
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is the product of one copy of the group G for each singular n-simplex. Its
elements are functions

ϕ : {σ : ∆n → X} −→ G

where σ ranges over the singular n-simplices in X, and each value ϕ(σ) lies in
G. Note that for ϕ ∈ Cn−1(X;G), δϕ ∈ Cn(X;G) corresponds to the function
given by the alternating sum

(δϕ)(σ) = ϕ(δσ) =

n∑
i=0

(−1)iϕ(σδin) =

n∑
i=0

(−1)iϕ(σ|[v0, . . . , v̂i, . . . , vn]) .

We also use the notations Cn(X;G) = Hom(Cn(X), G),

Bn(X;G) = im(δ : Cn−1(X;G)→ Cn(X;G))

and
Zn(X;G) = ker(δ : Cn(X;G)→ Cn+1(X;G))

for the singular n-cochains, n-coboundaries and n-cocycles in X with coefficients
in G, respectively. By definition, the n-th singular cohomology group of X with
coefficients in G is the quotient group

Hn(X;G) =
Zn(X;G)

Bn(X;G)
= Hn(C∗(X;G), δ) .

For example, let X = ? be a single point. Then there is a unique singular n-
simplex σn : ∆n → ? for each n ≥ 0, so Cn(?) = Z{σn} and Cn(?;G) = G{ϕn}
for each n ≥ 0, where (gϕn)(σn) = g. We have σnδ

i
n = σn−1 for each 0 ≤ i ≤ n,

n ≥ 1, so ∂σn =
∑n
i=0(−1)iσn−1 equals σn−1 for n ≥ 2 even, and equals 0 for

n ≥ 1 odd. Hence δϕn equals ϕn+1 for n ≥ 1 odd, and equals 0 for n ≥ 0 even.
Hence C∗(?;G) appears as follows:

0→ G{ϕ0} 0−→ G{ϕ1} 1−→ G{ϕ2} 0−→ G{ϕ3} → . . .

The boundary homomorphisms labeled 1 are isomorphisms and the ones labeled
0 are trivial. Hence Bn(?;G) equals G{ϕn} for n ≥ 2 even, and is zero otherwise,
while Zn(?;G) equals G{ϕn} for n ≥ 0 even, and is zero otherwise. Thus for
n 6= 0 we have Bn(?;G) = Zn(?;G) and Hn(?;G) = 0. In the case n = 0 we
have

H0(?;G) = Z0(?;G)/B0(?;G) = G{ϕ0}/0 ∼= G .

Let f : X → Y be any map of topological spaces. There is an induced
cochain map

f# = C∗(f ;G) : C∗(Y ;G)→ C∗(X;G)

given by the formula
(f#ϕ)(σ) = ϕ(fσ) .

Here σ : ∆n → X ranges over the singular n-simplices of X, and the composite

fσ : ∆n σ−→ X
f−→ Y

is an n-simplex of Y , so that ϕ(fσ) takes values in G. This is a cochain
map because the associativity of composition, (fσ)δin = f(σδin), implies that
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δ(f#σ) = f#(δσ). Hence there is an induced homomorphism of cohomology
groups,

f∗ = Hn(f ;G) : Hn(Y ;G)→ Hn(X;G)

for all n. If g : Y → Z is a second map, then the relation

(gf)∗ = f∗g∗ : Hn(Z;G)→ Hn(X;G)

holds, showing that H∗(X;G) is a contravariant functor of X.
((Discuss coaugmentations and reduced cohomology.))

Remark 2.9.1. WhenG = Z is the group of all integers, we usually omit it from
the notation. Hence C∗(X) = C∗(X;Z) and H∗(X) = H∗(X;Z). We may refer
to these as integral cochains and cohomology groups. Notice that C∗(X;G) =
Hom(C∗(X), G). It is not true in general that H∗(X;G) = Hom(H∗(X), G).
We shall return to this in the context of the universal coefficient theorem for
cohomology.

2.10 Relative cohomology

Let A ⊆ X be any subspace. Write i : A → X for the inclusion map. The
cochain map i# : C∗(X;G)→ C∗(A;G) is surjective in each degree, restricting
each homomorphism ϕ : Cn(X)→ G on n-chains in X to the n-chains that hap-
pen to lie in A. Let the group of relative n-cochains in (X,A) with coefficients
in G be the subgroup

Cn(X,A;G) = ker(i# : Cn(X;G)→ Cn(A;G)) ⊆ Cn(X;G)

of n-cochains in X that are zero on all n-chains that lie in A. Since i# is a
cochain map, there is an induced coboundary homomorphism

δ : Cn−1(X,A;G)→ Cn(X,A;G)

given by taking an (n− 1)-cochain ϕ on X that vanishes on A to the n-cochain
δϕ, which vanishes on A since the boundary of a chain in A still lies in A. Since
δ2 = 0 in C∗(X;G), we must have δ2 = 0 in C∗(X,A;G), so (C∗(X,A;G), δ) is
a cochain complex. We write

Bn(X,A;G) = im(δ : Cn−1(X,A;G)→ Cn(X,A;G))

and
Zn(X,A;G) = ker(δ : Cn(X,A;G)→ Cn+1(X,A;G))

like before, and define the n-th singular cohomology group of the pair (X,A)
with coefficients in G to be the quotient group

Hn(X,A;G) =
Zn(X,A;G)

Bn(X,A;G)
= Hn(C∗(X,A;G), δ) .

Let j# : Cn(X,A;G) → Cn(X;G) be the canonical inclusion homomor-
phism. Then j# is a cochain map. Drawing the cochain complexes vertically
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and the cochain maps horizontally, we have a commutative diagram

...

δ

��

...

δ

��

...

δ

��

0 // Cn−1(X,A;G)
j#
//

δ

��

Cn−1(X;G)
i# //

δ

��

Cn−1(A;G) //

δ

��

0

0 // Cn(X,A;G)
j#

//

δ ��

Cn(X;G)
i# //

δ ��

Cn(A;G) //

δ ��

0

...
...

...

with exact rows. We usually draw this more compactly as the following short
exact sequence of cochain complexes:

0→ C∗(X,A;G)
j#−→ C∗(X;G)

i#−→ C∗(A;G)→ 0

Note that if A = ∅ is empty, then j# is an isomorphism of chain complexes
C∗(X,∅;G) ∼= C∗(X;G), and j∗ is an isomorphism Hn(X,∅;G) ∼= Hn(X;G)
for all n, so (absolute) cohomology is a special case of relative cohomology.

There is a connecting homomorphism in cohomology

δ : Hn−1(A;G)→ Hn(X,A;G)

associated, as usual, to the short exact sequence of cochain complexes above.
It is defined by taking the cohomology class [ϕ] of an (n − 1)-cocycle ϕ ∈
Zn−1(A;G) to the cohomology class [δϕ̃] of the unique lift to Cn(X,A;G) of
the coboundary in Cn(X;G) of an extension ϕ̃ in Cn−1(X;G) of ϕ. Here
i#(ϕ̃) = ϕ, so the lift exists because i#(δϕ̃) = δϕ = 0 in Cn(A;G). It is an n-
cocycle, since its coboundary in Cn+1(X,A;G) maps to δ2ϕ̃ = 0 in Cn+1(X;G)
under the inclusion j#. As we proved before, δ is well-defined and additive.

Exercise 2.10.1. Express the relative n-cocycles Zn(X,A;G) as a subgroup of
the group {ϕ ∈ Cn(X;G) | δϕ = 0 ∈ Cn+1(X;G)} of n-cochains in X that are
zero on boundaries from Cn+1(X).

Similarly, express the relative n-coboundaries Bn(X,A;G) as a subgroup of
the group {δψ ∈ Cn(X;G) | ψ ∈ Cn−1(X;G)} of n-cochains in X whose value
on an n-chain only depends on its boundary in Cn−1(X).

Let (X,A) and (Y,B) be pairs of spaces, and f : (X,A) → (Y,B) a map of
pairs of spaces. Write f ′ : A → B for the restriction of f to A, corestricted to
B. Then we have a commutative diagram of cochain complexes and chain maps

0 // C∗(Y,B;G)
j#

//

f ′′#

��

C∗(Y ;G)
i# //

f#

��

C∗(B;G) //

f ′#

��

0

0 // C∗(X,A;G)
j#
// C∗(X;G)

i# // C∗(A;G) // 0
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where the right hand square is induced by f , f ′ and the inclusions A ⊆ X
and B ⊆ Y , and the rows are short exact sequences of chain complexes. The
cochain map f ′′# on the left hand side is then determined by f# by passage to
subcomplexes.

In particular, we have an induced homomorphism

f∗ = Hn(f ;G) : Hn(Y,B;G)→ Hn(X,A;G)

for each n. If g : (Y,B) → (Z,C) is a second map of pairs of spaces, then
(gf)∗ = f∗g∗. Under the isomorphism C∗(X,∅;G) ∼= C∗(X;G) we can identify
j# : C∗(X,A;G) → C∗(X;G) with the chain map j′′# for j equal to the map
of pairs (X,∅)→ (X,A) given by the identity on X.

The connecting homomorphism δ : Hn−1(A;G) → Hn(X,A;G) is natural,
in the sense that for any map of pairs f : (X,A)→ (Y,B) the diagram

Hn−1(B;G)
δ //

f∗

��

Hn(Y,B;G)

f ′′∗

��

Hn−1(A;G)
δ // Hn(X,A;G)

commutes.

Remark 2.10.2. We briefly write C∗(X,A) and H∗(X,A) for the relative
cochains and cohomology groups with integral coefficients. Each short exact
sequence

0→ Cn(A)
in−→ Cn(X)→ Cn(X,A)→ 0

admits a splitting, since Cn(X,A) is the free abelian group on the set of n-
simplices in X that do not lie in A, hence there is a short exact sequence

0→ Hom(Cn(X,A), G)→ Hom(Cn(X), G)
Hom(in,1)−→ Hom(Cn(A), G)→ 0

and we have an isomorphism Cn(X,A;G) ∼= Hom(Cn(X,A), G). It is compati-
ble with the boundary maps, so that C∗(X,A;G) ∼= Hom(C∗(X,A), G). Again,
this does not generally imply that H∗(X,A;G) ∼= Hom(H∗(X,A), G).

2.11 The Eilenberg–Steenrod axioms for coho-
mology

Theorem 2.11.1 (Eilenberg–Steenrod axioms). Let G be a fixed abelian group
and let n range over all integers. We abbreviate Hn(X,∅;G) to Hn(X;G).

(Functoriality) The rule that takes a pair of spaces (X,A) to Hn(X,A;G),
and a map f : (X,A) → (Y,B) to the homomorphism f∗ : Hn(Y,B;G) →
Hn(X,A;G), defines a contravariant functor from pairs of spaces to graded
abelian groups.

(Naturality) The rule that takes a pair of spaces (X,A) to the connecting
homomorphism δ : Hn−1(A;G)→ Hn(X,A;G) is a natural transformation.

(Long exact sequence) The natural diagram

. . .
i∗−→ Hn−1(A;G)

δ−→ Hn(X,A;G)
j∗−→ Hn(X;G)

i∗−→ Hn(A;G)
δ−→ . . .
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is a long exact sequence, where i∗ is induced by the inclusion i : A→ X and j∗

is induced by the inclusion j : (X,∅)→ (X,A).
(Homotopy invariance) If f ' g : (X,A)→ (Y,B) are homotopic as maps of

pairs, then f∗ = g∗ : Hn(Y,B;G)→ Hn(X,A;G).
(Excision) If Z ⊆ A ⊆ X are subspaces, such that the closure of Z is con-

tained in the interior of A, then the inclusion (X −Z,A−Z)→ (X,A) induces
isomorphisms

Hn(X,A;G)
∼=−→ Hn(X − Z,A− Z;G) .

(Product) If (X,A) =
∐
α(Xα, Aα) is a disjoint union of pairs of subspaces,

then the inclusion maps (Xα, Aα)→ (X,A) induce isomorphisms

Hn(X,A;G)
∼=−→
∏
α

Hn(Xα, Aα;G)

(Dimension) Let ? be a one-point space. Then H0(?;G) = G and Hn(?;G) =
0 for n ∈ Z.

Definition 2.11.2. A functor (X,A) 7→ h∗(X,A) and natural transformation
δ : h∗−1(A)→ h∗(X,A) satisfying all of the Eilenberg–Steenrod axioms for coho-
mology, except the dimension axiom, is called a generalized cohomology theory.

Proof. Contravariant functoriality of the cohomology groups, naturality of the
connecting homomorphism and exactness of the long exact sequence are clear
from the contravariant functoriality of the short exact sequence

0→ C∗(X,A;G)
j#−→ C∗(X;G)

i#−→ C∗(A;G)→ 0

of cochain complexes, together with the standard construction of the connect-
ing homomorphism and exactness of the long exact sequence for short exact
sequences of chain complexes.

Homotopy invariance for singular cohomology follows from the proof of ho-
motopy invariance for singular homology. Let

F : (X,A)× I = (X × I, A× I)→ (Y,B)

be a homotopy of pairs from f : (X,A)→ (Y,B) to g : (X,A)→ (Y,B). For each
n-simplex ∆n there is a triangulation of the cylinder ∆n × I, where I = [0, 1],
which gives rise to a prism operator

P : Cn(X,A)→ Cn+1(Y,B)

such that
∂P + P∂ = g# − f# : Cn(X,A)→ Cn(Y,B)

for each n ≥ 0. Applying Hom(−, G), we get the dual prism operator

P ∗ = Hom(P, 1) : Cn+1(Y,B;G)→ Cn(X,A;G)

such that

P ∗δ + δP ∗ = g# − f# : Cn(Y,B;G)→ Cn(X,A;G) .
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For each n-cocycle ϕ ∈ Zn(Y,B;G) we have δϕ = 0, so δP ∗(ϕ) = g#(ϕ)−f#(ϕ),
which implies that f#(ϕ) and g#(ϕ) are cohomologous, i.e., they represent the
same cohomology class:

f∗[ϕ] = [f#(ϕ)] = [g#(ϕ)] = g∗[ϕ] .

Thus f∗ = g∗ : Hn(Y,B;G)→ Hn(X,A;G).
Excision for singular cohomology also follows from the proof of excision for

singular homology. Let B = X − Z, so that Int(A) and Int(B) cover X. Let

ι : C∗(A+B) ⊆ C∗(X)

be the inclusion of the subcomplex of simplices in A or B. Using barycentric
subdivision, there is a chain map

ρ : C∗(X) −→ C∗(A+B)

such that ρι = 1 and 1 − ιρ = ∂D + D∂ for a chain homotopy D. Applying
Hom(−, G), we get dual cochain maps

ι∗ : C∗(X;G) −→ C∗(A+B;G) = Hom(C∗(A+B), G)

and
ρ∗ : C∗(A+B;G) −→ C∗(X;G)

such that ι∗ρ∗ = 1 and 1−ρ∗ι∗ = D∗δ+δD∗. Hence ι∗ induces an isomorphism
in cohomology. By the five-lemma for the map of long exact sequences induced
by the map of short exact sequences of cochain complexes

0 // C∗(A+B,A;G) //

ι′′

��

C∗(A+B;G) //

ι∗

��

C∗(A;G) //

=

��

0

0 // C∗(X,A;G)
j#

// C∗(X;G)
i# // C∗(A;G) // 0

it follows that also the left hand map ι∗ induces an isomorphism in cohomology.
There is a natural identification C∗(A + B,A;G) ∼= C∗(B,A ∩ B;G), and the
composite of the induced isomorphism H∗(A+B,A;G) ∼= H∗(B,A∩B;G) with
ι∗ is the excision isomorphism.

The product axiom is only interesting for infinite indexing sets, since the
case of finite disjoint unions follows from the long exact sequence and excision.
Since any simplex σ : ∆n →

∐
αXα lands in precisely one of the Xα’s, there is

a direct sum decomposition C∗(X,A) ∼=
⊕

α C∗(Xα, Aα). Applying Hom(−, G)
we get a product factorization

C∗(X,A;G) ∼=
∏
α

C∗(X,A;G) .

Since each coface map δ factors as the product
∏
α δα, we also get product fac-

torizations of B∗(X,A;G) and Z∗(X,A;G), which induce the claimed product
factorization of H∗(X,A;G).

We discussed the dimension axiom for cohomology above.
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2.12 Triples and triads

By a triple of spaces (X,A,B) we mean a topological space X, a subspace
A ⊆ X, and a further subspace B ⊆ A, more briefly expressed as B ⊆ A ⊆ X.
By the Noether isomorphism theorem

Cn(X,B;G)

Cn(A,B;G)
∼= Cn(X,A;G)

there is a short exact sequence of chain complexes

0→ C∗(A,B;G)
i#−→ C∗(X,B;G)

j#−→ C∗(X,A;G)→ 0

where i# is induced by the map of pairs i : (A,B)→ (X,B), and j# is induced
by the map of pairs j : (X,B)→ (X,A).

Theorem 2.12.1. Let (X,A,B) be a triple and G any abelian group. There is
a long exact sequence

· · · → Hn(A,B;G)
i∗→ Hn(X,B;G)

j∗→ Hn(X,A;G)
∂→ Hn−1(A,B;G)→ . . .

where i∗ and j∗ are induced by i : (A,B) → (X,B) and j : (X,B) → (X,A),
respectively, and ∂ is the composite

Hn(X,A;G) −→ Hn−1(A;G) −→ Hn−1(A,B;G)

of the connecting homomorphism of the pair (X,A) and the homomorphism
induced by the map (A,∅)→ (A,B).

Proof. We only need to identify ∂ with the given composite. There is a vertical
map of short exact sequences

0 // C∗(A;G)
i#

//

��

C∗(X;G)
j#
//

��

C∗(X,A;G) // 0

0 // C∗(A,B;G)
i#
// C∗(X,B;G)

j#
// C∗(X,A;G) // 0 ,

where the left hand vertical map is induced by the map (A,∅) → (A,B), and
naturality of the connecting homomorphism gives the commutative square

Hn(X,A;G) // Hn−1(A;G)

��

Hn(X,A;G)
∂ // Hn−1(A,B;G)

Definition 2.12.2. Let Dm
+ and Dm

− be the upper and lower hemispheres, re-
spectively, of the m-sphere Sm = ∂Dm+1, meeting along the equatorial (m−1)-
sphere ∂Dm

+ = ∂Dm
− = Sm−1. Projection to the equatorial hyperplane induces

homeomorphisms Dm
+
∼= Dm ∼= Dm

− .
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Theorem 2.12.3.

Hn(Dm, Sm−1;G) ∼=

{
G for n = m,

0 otherwise.

Proof. This is clear for m = 0, when D0 ∼= ? and ∂D0 = S−1 = ∅. Suppose
by induction that the theorem holds for one m ≥ 0. Consider the long exact
sequence

· · · → Hn+1(Dm+1, Dm
− ;G)→ Hn+1(Dm+1, Sm;G)

∂−→ Hn(Sm, Dm
− ;G)→ Hn(Dm+1, Dm

− ;G) .→ . . .

of the triple (Dm+1, Sm, Dm
− ). The inclusion Dm

− ⊂ Dm+1 is a homotopy equiv-
alence, so H∗(D

m+1, Dm
− ;G) = 0 in all degrees, and the connecting homomor-

phism ∂ is an isomorphism for all n. Furthermore, the inclusion (Dm
+ , S

m−1) ⊂
(Sm, Dm

− ) induces an isomorphism

Hn(Dm
+ , S

m−1;G)
∼=−→ Hn(Sm, Dm

− ;G)

by the excision theorem, combined with homotopy invariance. Finally, we have
the isomorphism Hn(Dm

+ , S
m−1;G) ∼= Hn(Dm, Sm−1;G) induced by the homeo-

morphism Dm
+
∼= Dm. Combining these three isomorphisms we deduce that the

theorem holds for m+ 1.

Corollary 2.12.4.

H̃n(Sm;G) ∼=

{
G for n = m,

0 otherwise.

Proof. This is clear from the long exact sequence

· · · → H̃n+1(Dm+1;G)→ Hn+1(Dm+1, Sm;G)

∂−→ H̃n(Sm;G)→ H̃n(Dm+1;G)→ . . .

and the fact that H̃∗(D
m+1;G) = 0 since Dm+1 is contractible, which implies

that ∂ is an isomorphism for all n.

Theorem 2.12.5. There is a short exact sequence of cochain complexes

0→ C∗(X,A;G)
j#−→ C∗(X,B;G)

i#−→ C∗(A,B;G)→ 0

and a long exact sequence in cohomology

. . .
i∗−→ Hn−1(A,B;G)

δ−→ Hn(X,A;G)

j∗−→ Hn(X,B;G)
i∗−→ Hn(A,B;G)

δ−→ . . .

associated to each triple (X,A,B). There are isomorphisms

Hn(Dm, Sm−1;G) ∼= H̃n(Sm;G) ∼=

{
G for n = m,

0 otherwise,

for all integers n and m and abelian groups G.
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Proof. This is dual to the homological proof.

By a triad of spaces (X;U, V ) we mean a topological space X together with
two subspaces U ⊆ X and V ⊆ X. We can then form the subspaces U ∩ V and
U ∪ V of X, which fit together in a diagram of inclusion maps

U ∩ V u //

v

��

U

u′

��
u′′

��

V
v′ //

v′′ //

U ∪ V

##

X .

We are principally interested in the case where U and V are open subsets of X,
and U ∪ V = X, but other cases are also relevant.

Definition 2.12.6. Let C∗(U + V ;G) = C∗(U ;G) + C∗(V ;G) ⊆ C∗(X) be
the subcomplex consisting of chains that are sums of chains in (the image of)
C∗(U ;G) and C∗(V ;G). We say that the triad (X;U, V ) is G-excisive if the
chain map C∗(U + V ;G) → C∗(X;G) is a quasi-isomorphism, meaning that it
induces an isomorphism in homology. By the excision theorem, this holds, for
instance, if U and V are open and X = U ∪ V .

Lemma 2.12.7. There is a short exact sequence of chain complexes

0→ C∗(U ∩ V ;G)
ϕ−→ C∗(U ;G)⊕ C∗(V ;G)

ψ′−→ C∗(U + V ;G)→ 0

where ϕ(w) = (u#(w),−v#(w)) and ψ′(y, z) = u′#(y) + v′#(z).

(The sign conventions in ϕ and ψ are negotiable.)

Proof. The homomorphism ψ′ is surjective by the definition of C∗(U+V ;G). Its
kernel in degree n consists of pairs (y, z) with u′#(y) + v′#(z) = 0 in Cn(X;G),
meaning that y is a chain in U , z is a chain in V , and y is equal to −z as chains
in X. This means that y and z are chains in U ∩ V , so (y, z) = ϕ(w) for a
(unique) chain w in U ∩ V .

Theorem 2.12.8 (Mayer–Vietoris). Let (X;U, V ) be a G-excisive pair. Then
there is a long exact sequence

· · · → Hn(U ∩ V ;G)
ϕ−→ Hn(U ;G)⊕Hn(V ;G)

ψ−→ Hn(X;G)
χ−→ Hn−1(U ∩ V ;G)→ . . .

where ϕ(w) = (u∗(w),−v∗(w)), ψ(y, z) = u′′∗(y) + v′′∗ (z) and χ is the composite

Hn(X;G)
j∗−→ Hn(X,V ;G)

∼=←− Hn(U,U ∩ V ;G)
∂−→ Hn−1(U ∩ V ;G) .

Proof. It is clear that Hn(C∗(U ;G)⊕C∗(V ;G)) ∼= Hn(U ;G)⊕Hn(V ;G), so we
get the following long exact sequence in homology associated to the short exact
sequence of the lemma.

· · · → Hn(U ∩ V ;G)
ϕ∗−→ Hn(U ;G)⊕Hn(V ;G)

ψ′∗−→ Hn(C∗(U + V ;G))

∂′−→ Hn−1(U ∩ V ;G)→ . . .
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By construction, the connecting homomorphism ∂′ takes an n-cycle y+ z, with
y in U and z in V , to the (n− 1)-cycle ∂y = −∂z in U ∩ V .

Using the G-excision hypothesis, we can reroute part of the exact sequence
as follows

Hn(U ;G)⊕Hn(V ;G)
ψ′∗ //

ψ∗ **

Hn(C∗(U + V ;G))
∂′ //

∼=
��

Hn−1(U ∩ V ;G)

Hn(X;G)

χ

55

where ψ∗ is as in the statement of the theorem.
It only remains to give the formula for the Mayer–Vietoris connecting ho-

momorphism χ. We have a diagram of vertical maps of short exact sequences
of chain complexes.

0 // C∗(U ∩ V ;G) //

��

C∗(U ;G) //

��

C∗(U,U ∩ V ;G) //

∼=
��

0

0 // C∗(V ;G) // C∗(U + V ;G) //

'
��

C∗(U + V, V ;G) //

'
��

0

0 // C∗(V ;G) // C∗(X;G)
j#

// C∗(X,V ;G) // 0

The chain map C∗(U,U ∩ V ;G) → C∗(U + V, V ;G) is always an isomorphism,
essentially by the lemma above. By assumption, the chain map C∗(U+V ;G)→
C∗(X;G) is a quasi-isomorphism. By the five-lemma, this is equivalent to
the property that the chain map C∗(U + V, V ;G) → C∗(X,V ;G) is a quasi-
isomorphism.

The connecting map χ now takes an n-cycle x in X to a homologous n-cycle
of the form y + z, with y in U and z in V , thinks of y as a relative n-cycle in
(U,U ∩ V ), and computes its boundary ∂y as an (n − 1)-cycle in U ∩ V . By
chasing the diagram above, this is the same as passing to the relative n-cycle
jn(x) in (X,V ), lifting this to a homologous relative n-cycle y in (U,U ∩V ), and
computing its boundary ∂y as an (n − 1)-cycle in U ∩ V . This is the asserted
description of χ.

Notice that this long exact sequence only involves absolute homology groups.
There is also a Mayer–Vietoris sequence in reduced homology, and in relative
homology.

Another way to proceed is to pass to homology from the diagram above, to
get the following diagram of vertical maps of long exact sequences

· · · // Hn(U ∩ V )
u∗ //

v∗

��

Hn(U) //

u′∗
��

Hn(U,U ∩ V )
∂ //

∼=
��

Hn−1(U ∩ V ) //

��

· · ·

· · · // Hn(V ) //

=

��

Hn(U + V ) //

∼=
��

Hn(U + V, V ) //

∼=
��

Hn−1(V ) //

=

��

· · ·

· · · // Hn(V )
v′′∗ // Hn(X)

j∗ // Hn(X,V ) // Hn−1(V ) // · · ·
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(coefficients in G omitted for space reasons), and to appeal to the following
lemma.

Lemma 2.12.9 (Barratt–Whitehead). Let

. . . // An
i //

α

��

Bn
j
//

β

��

Cn
∂ //

γ ∼=
��

An−1
//

α

��

. . .

. . . // A′n
i // B′n

j
// C ′n

∂ // A′n−1
// . . .

be a vertical map of long exact sequences, where the maps γ : Cn → C ′n are
isomorphisms for all n. Then the diagram

· · · → An
ϕ−→ Bn ⊕A′n

ψ−→ B′n
χ−→ An−1 → . . .

is a long exact sequence, where ϕ(a) = (i(a),−α(a)), ψ(b, a′) = β(b) + i(a′) and
χ(b′) = ∂γ−1j(b′).

Exercise 2.12.10. Prove the Barratt–Whitehead lemma.

((A third way to proceed is to form the double mapping cylinder

M = U × {0} ∪ (U ∩ V × I) ∪ V × {1}

as a subspace of X × I, which comes equipped with a map M → X. We can
embed the disjoint union U tV as U ×{0}∪V ×{1} ⊂M . The Mayer–Vietoris
sequence for (X;U, V ) is identified with the long exact sequence of the pair
(M,U t V ).))

Theorem 2.12.11.

H̃n(Sm;G) ∼=

{
G for n = m,

0 otherwise.

Proof. This is clear for m = 0, when S0 ∼= ?+. Let m ≥ 1 and suppose
by induction that the theorem holds for m − 1. Consider the Mayer–Vietoris
sequence

· · · → H̃n(Dm
+ ;G)⊕ H̃n(Dm

− ;G) −→

H̃n(Sm;G)
χ−→ H̃n−1(Sm−1;G) −→ H̃n−1(Dm

+ ;G)⊕ H̃n−1(Dm
− ;G)→ . . .

of the triad (Sm;Dm
+ , D

m
− ), with Dm

+ ∩ Dm
− = Sm−1. This pair is excisive by

homotopy invariance and excision. The groups H̃∗(D
m
+ ;G) and H̃∗(D

m
− ;G) are

zero since Dm
+ and Dm

− are contractible, so χ is an isomorphism for all n. This
proves the statement for m.

Corollary 2.12.12.

Hn(Dm, Sm−1;G) ∼=

{
G for n = m,

0 otherwise.
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This follows from the theorem, by the long exact sequence we used in the
triple case.

Theorem 2.12.13. There is a short exact sequence of cochain complexes

0→ C∗(U + V ;G) −→ C∗(U ;G)× C∗(V ;G) −→ C∗(U ∩ V ;G)→ 0

and a long exact Mayer–Vietoris sequence

· · · → Hn−1(U ∩ V ;G)
χ−→

Hn(X;G)
ψ∗−→ Hn(U ;G)×Hn(V ;G)

ϕ∗−→ Hn(U ∩ V ;G)
χ−→ . . .

in cohomology for excisive triads (X;U, V ).

Proof. This is dual to the proof in homology. Note that C∗(U + V ;G) is the
coimage of C∗(X;G)→ C∗(U ;G)×C∗(V ;G), meaning the quotient of C∗(X;G)
that is isomorphic to the image of the pair of restriction homomorphisms induced
by U ⊆ X and V ⊆ X.

2.13 Cellular homology and cohomology

If X is a CW complex, and A ⊆ X a subcomplex, then the cellular complexes
CCW∗ (X,A;G) and C∗CW (X,A;G) are smaller complexes than the singular ones,
which can be used to compute the homology and cohomology groups.

Let
∅ = X(−1) ⊆ X(0) ⊆ · · · ⊆ X(n−1) ⊆ X(n) ⊆ · · · ⊆ X

be the skeleton filtration of X, so that there is a pushout square∐
α ∂D

n // //

ϕ

��

∐
αD

n

Φ
��

X(n−1) // // X(n)

for each n ≥ 0, and X =
⋃
n≥0X

(n) has the weak (colimit) topology. The
index α runs over the set of n-cells in X, and we decompose ϕ =

∐
α ϕα and

Φ =
∐
α Φα, where ϕα : ∂Dn → X(n−1) is the attaching map and Φα : Dn →

X(n) ⊆ X is the characteristic map of the α-th n-cell.

Example 2.13.1. A ∆-complex in Hatcher’s sense is a CW complex where each
CW-characteristic map Φα : Dn → X factors as a homeomorphism Dn ∼= ∆n

followed by a ∆-characteristic map

σα : ∆n → X ,

and each CW-attaching map ϕα : ∂Dn → X factors as the restricted homeo-
morphism ∂Dn ∼= ∂∆n followed by a map

σα| : ∂∆n → X

whose restriction σαδ
i
n = σα|[v0, . . . , v̂i, . . . , vn] to the i-th (n− 1)-face of ∆n is

the ∆-characteristic map σβ of some (n − 1)-cell β, for each 0 ≤ i ≤ n. (This
involves the usual identification of ∆n−1 with δin(∆n−1) ⊂ ∆n.)



CHAPTER 2. SINGULAR HOMOLOGY AND COHOMOLOGY 45

For each n ≥ 0, let

CCWn (X) = Hn(X(n), X(n−1)) .

By excision, homotopy invariance and the sum axiom, there is an isomorphism

CCWn (X) ∼=
⊕
α

Hn(Dn, ∂Dn) ∼= Z{enα} ,

where α runs over the set of n-cells in X, and enα denotes the generator of the
corresponding copy of Hn(Dn, ∂Dn) ∼= Z.

Let
dn : CCWn (X) −→ CCWn−1(X)

be the connecting homomorphism in the long exact sequence

· · · → Hn(X(n), X(n−2))
j∗−→ Hn(X(n), X(n−1))

dn−→ Hn−1(X(n−1), X(n−2))

i∗−→ Hn−1(X(n), X(n−2))→ . . .

of the triple (X(n), X(n−1), X(n−2)). This equals the composite homomorphism

Hn(X(n), X(n−1))
∂−→ Hn−1(X(n−1))

j∗−→ Hn−1(X(n−1), X(n−2)) .

It follows that dndn+1 = j∗∂j∗∂ = 0, since the composite ∂j∗ is zero.
We call (CCW∗ (X), d) the cellular chain complex of X, and define the cellular

homology groups of X to be its homology groups

HCW
n (X) =

ker(dn)

im(dn+1)
= Hn(CCW∗ (X), d) .

Proposition 2.13.2. Under the identifications

CCWn (X) = Hn(X(n), X(n−1)) ∼= Z{enα}
CCWn−1(X) = Hn−1(X(n−1), X(n−2)) ∼= Z{en−1

β } ,

where α and β range over the sets of n-cells and (n−1)-cells of X, respectively,
the homomorphism dn is given by the formula

dn(enα) =
∑
β

mαβe
n−1
β

where the integer mαβ is the degree of the composite map

Sn−1 ϕα−→ X(n−1) j−→ X(n−1)/X(n−2) ∼=←−
∨
β

Sn−1 pβ−→ Sn−1 .

Here the homeomorphism is induced by the characteristic map Φ:
∐
β D

n−1 →
X(n−1) by passage to a quotient, and pβ denotes the projection to the summand
indexed by β.
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Proof. Consider the commutative diagrams

Hn(Dn, Sn−1)
∂
∼=

//

Φα∗

��

H̃n−1(Sn−1)

ϕα∗

��

Hn(X(n), X(n−1))
∂ // H̃n−1(X(n−1))

j∗ // Hn−1(X(n−1), X(n−2))

and

Hn−1(Dn−1, Sn−2)

Φβ∗

��

∼= // H̃n−1(Sn−1)

Φβ∗

��

= //

iβ∗

))

H̃n−1(Sn−1)

Hn−1(X(n−1), X(n−2)) ∼=
// H̃n−1(X(n−1)/X(n−2)) H̃n−1(

∨
β S

n−1)
Φ∗
∼=
oo

pβ∗

OO

where iβ and pβ denote inclusion and projection maps. We are looking for
the coefficient mαβ of en−1

β in dn(enα) = j∗∂(enα). Here enα is the image of the

preferred generator of Hn(Dn, Sn−1) ∼= Z under Φα∗. Since that generator
maps to the preferred generator of H̃n−1(Sn−1) under ∂, we see from the upper
diagram that dn(enα) is the image under j∗ϕα∗ of the latter generator. We can
recover the coefficient of en−1

β in the direct sum decomposition

Hn−1(X(n−1), X(n−2)) ∼= H̃n−1(
∨
β

Sn−1) ∼=
⊕
β

H̃n−1(Sn−1)

by composing with pβ∗, as we can see from the lower diagram.

Corollary 2.13.3. The cellular complex CCW∗ (X) of a ∆-complex X is iso-
morphic to the simplicial chain complex ∆∗(X), with

∆n(X) = Z{enα} ,

where α runs over the set of n-simplices in X, and ∂n : ∆n(X) → ∆n−1(X) is
given by

∂n(enα) =

n∑
i=0

(−1)ien−1
βi

where βi is the (n−1)-simplex of X attached to the i-th face of α, for 0 ≤ i ≤ n.
Hence the cellular homology of X is isomorphic to the simplicial homology

HCW
n (X) = Hn(CCW∗ (X), d) ∼= Hn(∆∗(X), ∂) = H∆

n (X)

in all degrees n.

Proof. ((The sign (−1)i comes from comparing the orientations of ∆n−1 and
∂∆n under δin. ETC.))

If f : X → Y is a cellular map of CW complexes, so that f(X(n)) ⊆ Y (n) for
all n, we get a homomorphism

f# = CCWn (f) = Hn(f) : Hn(X(n), X(n−1))→ Hn(Y (n), Y (n−1)) ,
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which defines a chain map f# : CCW∗ (X) → CCW∗ (Y ) and an induced homo-
morphism f∗ : HCW

n (X) → HCW
n (Y ). Hence the cellular complex and cellular

homology groups are covariant functors from the category of CW complexes and
cellular maps.

Let A ⊆ X be a subcomplex, with skeleton filtration {A(n)}n, such that A(n)

is built from A(n−1) by attaching a subset of the n-cells of X, with attaching
maps landing in A(n−1) ⊆ X(n−1).

The inclusion i : A→ X is cellular, and identifies the cellular chain complex
CCW∗ (A) with a subcomplex of CCW∗ (X). Let the relative cellular n-chains

CCWn (X,A) =
CCWn (X)

CCWn (A)
∼= Hn(X(n), X(n−1) ∪A(n))

be the quotient group. It is the free abelian group generated by the n-cells of
X that are not cells in A. There is a relative boundary homomorphism

dn : CCWn (X,A) −→ CCWn−1(X,A)

and a short exact sequence of cellular chain complexes

0→ CCW∗ (A)
i#−→ CCW∗ (X)

j#−→ CCW∗ (X,A)→ 0 .

Exercise 2.13.4. Give an explicit description of the relative boundary homo-
morphism dn in terms of the maps i∗, j∗ and/or ∂ of various pairs.

Introducing coefficients, let

CCWn (X,A;G) = G⊗ CCWn (X,A) ∼=
⊕
α

G

and
CnCW (X,A;G) = Hom(CCWn (X,A), G) ∼=

∏
α

G ,

where α runs over the set of n-cells in X that are not cells in A. Using the
boundary homomorphisms ∂ = 1 ⊗ ∂ and δ = Hom(∂, 1) we get the cellular
homology and cohomology groups

HCW
n (X,A;G) = Hn(CCW∗ (X,A;G), ∂)

and
Hn
CW (X,A;G) = Hn(C∗CW (X,A;G), δ) .

Lemma 2.13.5. There are isomorphisms

CCWn (X,A;G) ∼= Hn(X(n), X(n−1) ∪A(n);G)

and
CnCW (X,A;G) ∼= Hn(X(n), X(n−1) ∪A(n);G) ,

compatible with the boundary and coboundary homomorphisms, respectively.

Proof. This follows by excision, homotopy invariance and the sum axiom, since
X(n) is built from X(n−1) ∪ A(n) by attaching one copy of Dn along ∂Dn for
each n-cell of X that is not contained in A.
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The following exercises illustrate these definitions. The simplicial chain com-
plex is sometimes easier to compute, while the passage to homology is sometimes
easier for the cellular chain complex. See also Exercise 6 in Section 3.1 of Hatcher
[1].

Exercise 2.13.6. Give the circle S1 a ∆-complex structure with one 0-simplex
v and one 1-simplex a. (This a special case of a CW-complex structure.) Deter-
mine the simplicial chain complex ∆∗(S

1) and compute the simplicial homology
groups H∆

∗ (S1). Similarly, determine the chain complex G ⊗ ∆∗(S
1) and the

cochain complex Hom(∆∗(S
1), G), and compute the simplicial homology and

cohomology groups H∆
∗ (S1;G) and H∗∆(S1;G).

Exercise 2.13.7. Give the torus T 2 a ∆-complex structure with one 0-simplex
v, three 1-simplices a, b and c, and two 2-simplices U and L, as in Section 2.1
of Hatcher [1]. Determine the simplicial chain complex ∆∗(T

2) and compute
the simplicial homology groups H∆

∗ (T 2). Similarly, determine the chain com-
plex G ⊗∆∗(T

2) and the cochain complex Hom(∆∗(T
2), G), and compute the

simplicial homology and cohomology groups H∆
∗ (T 2;G) and H∗∆(T 2;G).

Exercise 2.13.8. Give T 2 a CW-complex structure with one 0-cell v, two 1-
cells a and b, and one 2-cell T . Under the homeomorphism S1 × S1 ∼= T 2, the
cartesian product of each i-cell in the first S1 and each j-cell in the second S1 is
an (i+j)-cell in T 2. Determine the cellular complex CCW∗ (T 2) and compute the
simplicial homology groups HCW

∗ (T 2). Similarly, determine the chain complex
CCW∗ (T 2;G) and the cochain complex C∗CW (T 2;G), and compute the cellular
homology and cohomology groups HCW

∗ (T 2;G) and H∗CW (T 2;G).

Exercise 2.13.9. Give the real projective plane RP 2 a ∆-complex structure
with two 0-simplices v and w, three 1-simplices a, b and c, and two 2-simplices
U and L, as in Section 2.1 of Hatcher [1]. Determine the simplicial chain com-
plex ∆∗(RP 2), and compute the simplicial homology and cohomology groups
H∆
∗ (RP 2;G) and H∗∆(RP 2;G) for G = Z and G = Z/2.

Exercise 2.13.10. Give RP 2 a CW-complex structure with one 0-cell v, one
1-cell a, and one 2-cell P . Determine the cellular chain complex CCW∗ (RP 2),
and compute the cellular homology and cohomology groups HCW

∗ (RP 2;G) and
H∗CW (RP 2;G) for G = Z and G = Z/2.

Theorem 2.13.11 (Cellular (co-)homology). For all CW pairs (X,A) there
are isomorphisms

Hn(X,A;G) ∼= HCW
n (X,A;G)

and
Hn(X,A;G) ∼= Hn

CW (X,A;G) ,

that are natural with respect to cellular maps of pairs.

If X is a CW complex of finite type, meaning that it has only a finite number
of n-cells for each n (but may be infinite-dimensional), then the cellular com-
plex CCW∗ (X) is finitely generated in each degree. It follows that the cellular
homology groups HCW

∗ (X) are finitely generated in each degree, hence this is
also the case for the (isomorphic) singular homology groups H∗(X). Similarly
for CW pairs of (relatively) finite type.
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Proof. We prove the theorem in the special case of absolute integral homology,
saying that there are natural isomorphisms

Hn(X) ∼= HCW
n (X)

for all CW complexes X. We first show that Hn(X(m)) = 0 for m < n. Next we
prove that Hn(X(n)) ∼= ker(dn), where dn : CCWn (X) → CCWn−1(X). Thereafter

we prove that Hn(X(n+1)) ∼= ker(dn)/ im(dn+1) = HCW
n (X). Finally we show

that Hn(X(m)) ∼= HCW
n (X) for all m > n, and deduce that Hn(X) ∼= HCW

n (X).
It is clear that Hn(X(−1)) = 0, since X(−1) = ∅. Suppose inductively that

Hn(X(m−1)) = 0 for some m < n. The long exact sequence in homology for the
pair (X(m), X(m−1)) contains the part

Hn(X(m−1))
i∗−→ Hn(X(m))→ 0 ,

where the term at the right hand end is Hn(X(m), X(m−1)) ∼= H̃n(
∨
α S

m) =⊕
α H̃n(Sm) = 0, and α runs over the m-cells in X. Hence i∗ is surjective, and

the inductive hypothesis implies that Hn(X(m)) = 0.
Next consider the part

0→ Hn(X(n))
j∗−→ CCWn (X)

∂−→ Hn−1(X(n−1))

of the long exact sequence for (X(n), X(n−1)). The term at the left hand end is
Hn(X(n−1)) = 0, and we use the notation CCWn (X) = Hn(X(n), X(n−1)). By
exactness, j∗ : Hn(X(n)) → CCWn (X) is injective. Since n is arbitrary, we also
have that j∗ : Hn−1(X(n−1)) → CCWn−1(X) is injective. Hence we have isomor-
phisms

Hn(X(n)) ∼= im(j∗) = ker(∂) = ker(j∗∂) = ker(dn)

where dn = j∗∂ is the composite

CCWn (X)
∂−→ Hn−1(X(n−1))

j∗−→ CCWn−1(X) .

Thereafter consider the part

CCWn+1(X)
∂−→ Hn(X(n))

i∗−→ Hn(X(n+1))→ 0

of the long exact sequence for (X(n+1), X(n)). The term at the right hand end
is Hn(X(n+1), X(n)) = 0, so i∗ is surjective. Hence we have isomorphisms

Hn(X(n+1)) ∼= Hn(X(n))/ ker(i∗) = Hn(X(n))/ im(∂) ∼= ker(dn)/ im(dn+1) .

The last isomorphism is induced by j∗ Hn(X(n)) → CCWn (X), which takes
Hn(X(n)) isomorphically to im(j∗) = ker(dn), and takes im(∂) isomorphically
to im(j∗∂) = im(dn+1).



CHAPTER 2. SINGULAR HOMOLOGY AND COHOMOLOGY 50

It may be helpful to combine these two steps in one diagram

0

��

CCWn+1(X)
∂ //

dn+1 ''

Hn(X(n))
i∗ //

j∗

��

Hn(X(n+1)) // 0

CCWn (X)

∂

��

dn

''

0 // Hn−1(X(n−1))
j∗ // CCWn−1(X)

with exact rows and columns.
Finally we consider m > n and suppose that Hn(X(m)) ∼= HCW

n (X). The
part

0→ Hn(X(m))
i∗−→ Hn(X(m+1))→ 0

of the long exact sequence for (X(m+1), X(m)), where the groups at the end
are Hn+1(X(m+1), X(m)) = 0 and Hn(X(m+1), X(m)) = 0, shows that i∗ is an
isomorphism. Hence Hn(X(m+1)) ∼= HCW

n (X), and by induction this holds for
all m > n.

To conclude the argument, we use the fact that

colim
m

C∗(X
(m)) ∼= C∗(X)

(each simplex σ : ∆n → X factors uniquely through some X(m) by compactness)
to deduce that

colim
m

H∗(X
(m)) ∼= H∗(X) .

(See the definition, lemma and exercise below.) Since the bonding homomor-
phisms i∗ in degree n of the direct limit system on the left are isomorphisms for
all m > n, it follows that Hn(X(n+1)) ∼= Hn(X), which concludes the proof.

Definition 2.13.12. The colimit of a sequence

. . . −→ Am
fm−→ Am+1 −→ . . .

of abelian groups, with m ≥ 0, is the abelian group

colim
m

Am = (
⊕
m

Am)/ ∼

where ∼ is the equivalence relation on
⊕

mAm that identifies x ∈ Am ⊂
⊕

mAm
with its image fm(x) ∈ Am+1 ⊂

⊕
mAm, for all m ≥ 0. Let im : Am →

colimmAm be the homomorphism that takes x ∈ Am to the equivalence class
of its image in

⊕
mAm. Then the diagram

. . . // Am
fm //

im
**

Am+1
//

im+1

&&

. . .

colimmAm
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commutes.

The first part of the following lemma says that colimmAm is the categorical
colimit of the displayed sequence of abelian groups.

Lemma 2.13.13. Given any abelian group B, and homomorphisms jm : Am →
B for m ≥ 0 that make the diagram

. . . // Am
fm //

jm
))

Am+1
//

jm+1

""

. . .

B

commute, there exists a unique homomorphism g : colimmAm → B such that
the diagram

Am
im

((

jm

""

colimmAm

g

��

B

commutes for each m ≥ 0. For each element y ∈ colimmAm there exists an
m ≥ 0 and an x ∈ Am such that im(x) = y. If x ∈ Am is such that im(x) = 0
in colimmAm, then there exists an n ≥ m such that (fn−1 ◦ · · · ◦ fm)(x) = 0 in
An.

Proof. The homomorphism g is uniquely determined by the rule that the image
im(x) of x ∈ Am in colimmAm must be mapped to jm(x) ∈ B.

Let us use the notation

fnm = fn−1 ◦ · · · ◦ fm : Am → An

for the composite homomorphism, for n ≥ m. Any element y of colimmAm is in
the image from

⊕
mAm, hence is a finite sum of terms im1(x1) + · · ·+ imk(xk)

in the images of Am1 , . . . , Amk for some m1 < · · · < mk. Let m = mk, and let

x =

k∑
s=1

fmms(xs)

be the sum of the images of these classes in Am. Then im(x) = y in colimmAm.
Let x ∈ Am be such that im(x) = 0. Then the image of x in

⊕
mAm is in

equivalence class of 0 for the equivalence relation ∼. Hence it is the (signed) sum
of a finite number of terms xs − fms(xs) in

⊕
mAm, for some m1 < · · · < mk,

where xs denotes the image in
⊕

mAm of an element xs ∈ Ams , and fms(xs)
denotes the image in

⊕
mAm of fms(xs) ∈ Ams+1. Let n = mk + 1. Then

fnm(x) in An is the (signed) sum of the terms fnms(xs)− f
n
ms+1(fms)(xs) in An.

Here each term is 0, so fnm(x) = 0 in An, as claimed.
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Exercise 2.13.14. Consider a diagram

· · · → Cm∗
i#−→ Cm+1

∗ → . . .

of chain complexes (Cm∗ , ∂) and chain maps, for all m ≥ 0. There is an induced
diagram

· · · → Hn(Cm∗ )
i∗−→ Hn(Cm+1

∗ )→ . . .

of homology groups, in all degrees n. Prove that there is an isomorphism

colim
m

Hn(Cm∗ ) ∼= Hn(colim
m

Cm∗ )

in all degrees n.

Exercise 2.13.15. Prove the cellular (co-)homology theorem for relative ho-
mology and cohomology groups with coefficients.

((Warning: For the cohomology of infinite-dimensional CW complexes X,
one must replace the passage to colimits in the homological case to a comparison
of Hn(X;G) with limmH

n(X(m);G). This can be done with a Milnor lim-lim1

sequence, but using the universal coefficient theorem is easier.))

Exercise 2.13.16. Let k ≥ 1 and consider the CW structure on the unit
sphere Sk ⊂ Rk+1, with n-skeleton Sn for n ≤ k, and two n-cells en+ and en−
for each 0 ≤ n ≤ k. Determine the cellular complex CCW∗ (Sk), and compute
the cellular homology groups HCW

∗ (Sk;G) and the cellular cohomology groups
H∗CW (Sk;G). Be careful with orientations and signs.

Exercise 2.13.17. Let S∞ =
⋃
k S

k be the union of these CW complexes.
Determine CCW∗ (S∞) and compute HCW

∗ (S∞;G) and H∗CW (S∞;G). Can you
prove that S∞ is contractible?

Exercise 2.13.18. Let k ≥ 1 and consider the CW structure on the real pro-
jective space RP k = Sk/∼, where x ∼ −x for x ∈ Sk, with n-skeleton RPn for
n ≤ k, and one n-cell en for each 0 ≤ n ≤ k. Use naturality for the cellular
map f : Sk → RP k to determine the cellular complex CCW∗ (RP k), and com-
pute the cellular homology groups HCW

∗ (RP k;G) and the cellular cohomology
groups H∗CW (RP k;G). You may concentrate on the cases G = Z, G = Z/2 and
G = Z/p with p an odd prime.

Exercise 2.13.19. Let RP∞ =
⋃
k RP k be the union of these CW complexes.

Determine CCW∗ (RP∞) and compute HCW
∗ (RP∞;G) and H∗CW (RP∞;G). You

may concentrate on the cases G = Z, G = Z/2 and G = Z/p with p an odd
prime.

Topologists often write Z/m where algebraists might write Z/mZ or Z/(m).
Hatcher [1] writes Zm, as topologists used to do, but this is easily confused with
the ring of p-adic integers, especially when m = p.

((Do CP k and CP∞ too.))
((Do surfaces, products of CW complexes.))
((Compare Hatcher’s notations with other notations like S∗(X), ∆∗(X) for

singular chains, and C∗(X) for cellular chains.))



Chapter 3

The universal coefficient
theorems

There is a natural homomorphism

G⊗Hn(X) −→ Hn(X;G)

taking a tensor product g ⊗ [x], where x is a singular n-cycle in X, to the
homology class [g ⊗ x] of the n-cycle g ⊗ x in the complex C∗(X;G). This
homomorphism is injective, but is not an isomorphism in general.

Similarly, there is a natural homomorphism

Hn(X;G) −→ Hom(Hn(X), G)

taking the cohomology class [ϕ] of an n-cocycle ϕ : Cn(X)→ G to the homomor-
phism ϕ∗ : Hn(X)→ G, taking [x] to ϕ(x), where x is an n-cycle inX. Note that
if x is changed by a boundary ∂y, then ϕ(x) changes by ϕ(∂y) = (δϕ)(y) = 0,
since ϕ was assumed to be a cocycle. This homomorphism is surjective, but is
not an isomorphism in general.

For each pair of spaces (X,A), the tensor product of the abelian group G
with the long exact sequence in homology is a chain complex

· · · → G⊗Hn(A) −→ G⊗Hn(X) −→ G⊗Hn(X,A)→ . . . .

but in general this is not an exact complex. On the other hand, the chain
complex

· · · → Hn(A;G) −→ Hn(X;G) −→ Hn(X,A;G)→ . . . .

is exact. In this sense, the functor Hn(X;G) is better behaved than the functor
G⊗Hn(X).

Similarly, applying Hom(−, G) to the long exact sequence in homology we
get a cochain complex

· · · → Hom(Hn(X,A), G) −→ Hom(Hn(X), G) −→ Hom(Hn(A), G)→ . . . .

but in general this is not an exact complex. On the other hand, the cochain
complex

· · · → Hn(X,A;G) −→ Hn(X;G) −→ Hn(A,G)→ . . . .

53
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is exact. In this sense, the functor Hn(X;G) is better behaved than the functor
Hom(Hn(X), G).

3.1 Half-exactness

Let R be a ring (associative, with unit), and let

0→ A
i−→ B

j−→ C → 0

be a short exact sequence of left R-modules. The case R = Z is of particular
interest, since Z-modules are the same as abelian groups. For commutative rings
R we do not need to distinguish between left and right R-modules.

Lemma 3.1.1. Let M and N be left and right R-modules, respectively. Then

(a)

N ⊗R A
1⊗i−→ N ⊗R B

1⊗j−→ N ⊗R C → 0

is exact, but 1⊗ i might not be injective;

(b)

0→ HomR(C,M)
Hom(j,1)−→ HomR(B,M)

Hom(i,1)−→ HomR(A,M)

is exact, but Hom(i, 1) might not be surjective;

(c)

0→ HomR(M,A)
Hom(1,i)−→ HomR(M,B)

Hom(1,j)−→ HomR(M,C)

is exact, but Hom(1, j) might not be surjective.

We say that N⊗R(−) is right exact and that HomR(−,M) and HomR(M,−)
are left exact. A functor that preserves short exact sequences will also preserve
long exact sequences, and will be called an exact functor.

Proof. (a) and (b) were treated in an earlier exercise. Case (c) is an easy
exercise.

Definition 3.1.2. (a) A (right) R-module N is said to be flat if

1⊗ i : N ⊗R A→ N ⊗R B

is injective for each R-linear injection i : A → B. This is equivalent to
asking that the functor N ⊗R (−) is exact, in the sense that it preserves
exact sequences.

(b) A (left) R-module M is said to be injective if Hom(i, 1) : HomR(B,M)→
HomR(A,M) is surjective for each R-linear injection i : A → B. This
means that any R-module homomorphism A→M extends over B:

0 // A
i //

��

B

~~

M

and is equivalent to asking that the functor HomR(−,M) is exact.
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(c) A (left) R-module M is said to be projective if

Hom(1, j) : HomR(M,B)→ HomR(M,C)

is surjective for each R-linear surjection j : B → C. This means that any
R-module homomorphism M → C lifts through B:

M

��~~

B
j
// C // 0

and is equivalent to asking that the functor HomR(M,−) is exact.

Exercise 3.1.3. Prove that an abelian group (viewed as a Z-module) is flat if
and only if it is torsion-free, injective if and only if it is divisible, and projective
if and only if it is free.

Lemma 3.1.4. The following are equivalent:

(a) There is a homomorphism r : B → A with ri = 1: A→ A.

(b) There is a homomorphism s : C → B with js = 1: C → C.

Proof. Given r we may choose s so that ir+sj = 1: B → B, and conversely.

In this case, we say that 0 → A → B → C → 0 is a split (short) exact
sequence. We call r a retraction and s a section. There are then preferred
isomorphisms

i+ s : A⊕ C
∼=−→ B

and
(j, r) : B

∼=−→ A× C .

Lemma 3.1.5. If 0 → A → B → C → 0 is split, then 1 ⊗ i : N ⊗R A →
N ⊗R B is split injective, while Hom(i, 1) : HomR(B,M) → HomR(A,M) and
Hom(1, j) : HomR(M,B)→ HomR(M,C) are split surjective.

Proof. If r : B → A is a retraction, then (r⊗1)(i⊗1) = 1 shows that i⊗1 is split
injective, and Hom(i, 1) Hom(r, 1) = 1 shows that Hom(i, 1) is split surjective.
If s : C → B is the associated section, then Hom(1, j) Hom(1, s) = 1 shows that
Hom(1, j) is split surjective.

Lemma 3.1.6. If C = R{T} is a free R-module, then any surjection j : B → C
admits a section. Hence any short exact sequence 0 → A → B → C → 0 with
C free is split.

Proof. For each basis element t ∈ T , use surjectivity to choose an element
s(t) ∈ B with js(t) = t. Since C is free, we can extend s R-linearly to obtain
the desired homomorphism s : C → B with js = 1.

Lemma 3.1.7. Any free module is projective. Conversely, any projective mod-
ule is a direct summand of a free module.

((Proof.))
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3.2 Free resolutions

The previous lemmas show that when applied to short exact sequences 0→ A→
B → C → 0 with C a free R-module, the functors N ⊗R (−) and HomR(−,M)
are exact. To control the failure of exactness for general R-modules C, we can
choose to resolve C by free R-modules. This means that we replace C by a
chain complex

· · · → F2
∂2−→ F1

∂1−→ F0 → 0

of free R-modules Fn = R{Tn}, such that H0(F∗, ∂) ∼= C and Hn(F∗, ∂) =
0 for n 6= 0. An isomorphism H0(F∗, ∂) ∼= C corresponds to a choice of a
homomorphism ε : F0 → C that makes the R-module diagram

· · · → F2
∂2−→ F1

∂1−→ F0
ε−→ C → 0

exact at all points. In other words, ε is surjective and im(∂1) = ker(ε). Such a
diagram is called an augmented chain complex. We call the complex (F∗, ∂) a
free resolution of the R-module C.

If we think of C is a chain complex concentrated in degree 0, then ε can also
be viewed as a chain map

ε : F∗ → C

that induces an isomorphism in homology. A free resolution of C is thus a chain
complex F∗ of free R-modules, with a quasi-isomorphism ε to C concentrated
in degree 0.

Lemma 3.2.1 (Existence of free resolutions). Any R-module C admits a free
resolution.

Proof. We construct the free R-modules Fn by induction on n ≥ 0. First choose
any set T0 ⊆ C that generates C as an R-module, let F0 = R{T0} be the free R-
module generated by that set, and let ε : F0 → C be the R-linear homomorphism
given by sending each generator t ∈ T0 of F0 to its image in C. Suppose
inductively that we have constructed an exact diagram

Fn
∂n−→ . . .

∂1−→ F0
ε−→ C → 0 ,

for some n ≥ 0. Consider ker(∂n) (interpreted as ker(ε) when n = 0), and
choose any set Tn+1 ⊂ ker(∂n) that generates ker(∂n) as an R-module. Let
Fn+1 = R{Tn+1} be the free R-module generated by that set, and let the R-
linear homomorphism ∂n+1 : Fn+1 → Fn be given by sending each generator t ∈
Tn+1 of Fn+1 to its image in ker(∂n) ⊂ Fn. Then im(∂n+1) is the R-submodule
of Fn generated by Tn+1, which equals ker(∂n). Hence we have extended the
exact diagram above one step to the left. Continuing by induction, we obtain a
free chain complex (F∗, ∂) with a quasi-isomorphism to C, as desired.

A short free resolution of C is a resolution by a free chain complex (F∗, ∂)
concentrated in degrees 0 and 1, giving a short exact sequence

0→ F1
∂1−→ F0

ε−→ C → 0 .

More generally, a free resolution of length k is a resolution by a free chain
complex F∗ with Fn = 0 for n > k:

0→ Fk
∂k−→ . . .

∂1−→ F0
ε−→ C → 0
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Lemma 3.2.2. Any abelian group C admits a short free resolution.

Proof. Define ε : F0 = Z{T0} → C as before, by choosing a set of abelian group
generators T0 ⊆ C. Then ker(ε) ⊆ F0 is a subgroup of a free abelian group. It
is an algebraic fact that any subgroup of a free abelian group is again a free
group. This is easily seen for finitely generated free abelian groups, and the
general case can be proved by an application of Zorn’s lemma. Hence there is
a set T1 ⊂ ker(ε) and an isomorphism Z{T1} ∼= ker(ε). We let F1 = Z{T1} as
before. Then

0→ F1
∂1−→ F0

ε−→ C → 0

(extended by 0’s to the left) is a free resolution of C of length 1, i.e., a short
free resolution.

For example, the free group C = Z has a (very) short free resolution

0→ Z ε−→ Z→ 0

with F0 = Z and F1 = 0. A finite cyclic group C = Z/m has a short free
resolution

0→ Z m−→ Z ε−→ Z/m→ 0

with F0 = F1 = Z, where ∂1 multiplies by m.

Theorem 3.2.3. Let ε : F∗ → C and ε : G∗ → D be augmented chain complexes
of R-modules, and let ϕ : C → D be an R-linear homomorphism. Suppose
that Fn is a free R-module for each n ≥ 0, and that ε : G∗ → D is a quasi-
isomorphism. (For example, ε : F∗ → C and ε : G∗ → D might both be free
R-module resolutions.) Then there exists an R-linear chain map f# : F∗ → G∗
covering ϕ, in the sense that the diagram

. . . // F1
∂1 //

f1

��

F0
ε //

f0

��

C

ϕ

��

// 0

. . . // G1
∂1 // G0

ε // D // 0

commutes. Moreover, if g# : F∗ → G∗ is a second R-linear chain map covering
ϕ, then there exists an R-linear chain homotopy P : F∗ → G∗+1 from f# to g#.

Proof. We construct the components fn : Fn → Gn of the chain map f# by
induction on n ≥ 0. To start the induction, consider the homomorphism
ϕε : F0 → D and the surjection ε : G0 → D. Since F0 is free, we can find a
lift f0 : F0 → G0, with εf0 = ϕε, by choosing a basis for F0 and defining f0(t)
to be a lift of (ϕε)(t) for each basis element t.

Suppose inductively that we have constructed a chain map f# : F∗ → G∗ in
degrees ∗ ≤ n, meaning a finite sequence of homomorphisms fm : Fm → Gm for
0 ≤ m ≤ n, such that εf0 = ϕε and ∂mfm = fm−1∂m for 1 ≤ m ≤ n. We wish
to construct a homomorphism fn+1 : Fn+1 → Gn+1 so that ∂n+1fn+1 = fn∂n+1:

Fn+1

∂n+1
//

fn+1

��

Fn
∂n //

fn

��

Fn−1
//

fn−1

��

. . . // F0
ε //

f0

��

C

ϕ

��

Gn+1

∂n+1
// Gn

∂n // Gn−1
// . . . // G0

ε // D



CHAPTER 3. THE UNIVERSAL COEFFICIENT THEOREMS 58

Consider the homomorphism fn∂n+1 : Fn+1 → Gn. The composite

∂nfn∂n+1 : Fn+1 → Gn−1

equals the composite fn−1∂n∂n+1 = 0 (suitably interpreted for n = 0), hence
fn∂n+1 factors through ker(∂n) = im(∂n+1) in Gn. Since Fn+1 is free and
∂n+1 : Gn+1 → im(∂n+1) is surjective, we can find a lift fn+1 : Fn+1 → Gn+1

with ∂n+1fn+1 = fn∂n+1, by fixing a basis Tn+1 for Fn+1, defining the lift fn+1

on each basis element by appealing to the necessary surjectivity, and extending
fn+1 linearly, as before. This completes the inductive step. Hence there exists
a chain map f# : F∗ → G∗ (in all degrees) covering ϕ, as desired.

Suppose now that g# : F∗ → G∗ is a second such chain map. We construct
the components Pn : Fn → Gn+1 of a chain homotopy P from f# to g#, by
induction on n ≥ 0. For n = 0 we know that εf0 = ϕε = εg0, so g0−f0 : F0 → G0

lands in ker(ε) = im(∂1) ⊆ G0. Since F0 is free, this means that we can find a
homomorphism P0 : F0 → G1 with ∂1P0 = g0 − f0.

Suppose inductively that we have constructed a homomorphisms Pm : Fm →
Gm+1 for 0 ≤ m ≤ n, such that ∂1P0 = g0−f0, and ∂m+1Pm+Pm−1∂m = gm−
fm for 1 ≤ m ≤ n. We wish to construct a homomorphism Pn+1 : Fn+1 → Gn+2

such that ∂n+2Pn+1 + Pn∂n+1 = gn+1 − fn+1:

Fn+1

∂n+1
//

gn+1−fn+1

��

Pn+1

{{

Fn
Pn

||

gn−fn
��

∂n // Fn−1

Pn−1||

Gn+2
∂n+2

// Gn+1
∂n+1

// Gn

We know that ∂n+ 1Pn + Pn−1∂n = gn − fn, so

∂n+1Pn∂n+1 + Pn−1∂n∂n+1 = gn∂n+1 − fn∂n+1 ,

which implies that

∂n+1Pn∂n+1 = ∂n+1gn+1 − ∂n+1fn+1

since ∂n∂n+1 = 0 and f# and g# are chain maps. Pence gn+1 − fn+1 −
Pn∂n+1 : Fn+1 → Gn+1 lands in ker(∂n+1) = im(∂n+2). Since Fn+1 is free,
this means that we can find a homomorphism Pn+1 : Fn+1 → Gn+2 with

∂n+2Pn+1 = gn+1 − fn+1 − Pn∂n+1

which gives the desired relation ∂n+2Pn+1 +Pn∂n+1 = gn+1−fn+1. Continuing
by induction, we obtain the full chain homotopy P .

Proposition 3.2.4 (Essential uniqueness of free resolutions). Let ε : F∗ → C
and ε : G∗ → C be any two free resolutions of the same R-module C.

(a) There exist chain maps f# : F∗ → G∗ and g# : G∗ → F∗, both covering
the identity map of C, and chain homotopies from g#f# : F∗ → F∗ to the
identity of F∗, and from f#G# : G∗ → G∗ to the identity of G∗. In other
words, the two resolutions are chain homotopy equivalent over C.

(b) Any two chain homotopy equivalences f# : F∗ → G∗ and g# : F∗ → G∗
covering the identity map of C are chain homotopic.
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Proof. (a) We apply the first part of the theorem to the free resolutions F∗ and
G∗ of C and the identity homomorphism ϕ = 1C : C → C, to get the chain
map f# : F∗ → G∗ covering 1C . Switching the roles of F∗ and G∗, we get the
chain map g# : G∗ → F∗ covering 1C . The composite g#f# and the identity 1F∗
are both chain maps F∗ → F∗ that cover the identity on C, so by the second
part of the theorem there exists a chain homotopy from g#f# to 1F∗ . Likewise,
the composite f#g# and the identity 1G∗ are both chain maps G∗ → G∗ that
cover the identity on C, so by the second part once more there exists a chain
homotopy from f#g# to 1G∗ .

(b) Chain homotopy equivalences are chain maps, so this follows from the
second part of the theorem.

3.3 Tor and Ext

The failure of exactness of the tensor product N ⊗R C is measured by the
homology of the chain complex N ⊗R F∗ obtained by replacing C by a free
resolution F∗. Similarly, the failure of exactness of HomR(C,M) is measured
by the cohomology of the cochain complex HomR(F∗,M). These homology and
cohomology groups are called Tor- and Ext-groups.

Definition 3.3.1. Let C and M be left R-modules, and let N be a right R-
module. Choose any free resolution ε : F∗ → C of C. The Tor-groups of N and
C are the homology groups

TorRn (N,C) = Hn(N ⊗R F∗)

of the complex (N ⊗R F∗, 1 ⊗ ∂), for n ≥ 0. The Ext-groups of C and M are
the cohomology groups

ExtnR(C,M) = Hn(HomR(F∗,M))

of the cochain complex (HomR(F∗,M),Hom(∂, 1)), for n ≥ 0.

We shall soon discuss the mild dependence of the Tor- and Ext-groups on
the choice of free resolution, and their resulting functoriality, but first we make
some sample calculations.

Example 3.3.2. Consider the case R = Z. A Z-module is the same as an
abelian group. Each abelian group C admits a short free resolution

0→ F1
∂1−→ F0

ε−→ C → 0

with Fn = 0 for n ≥ 2. Consider any abelian group G. By definition, TorZn(G,C)
is the n-th homology group of the complex

0→ G⊗ F1
1⊗∂1−→ G⊗ F0 → 0

and ExtnZ(C,G) is the n-th cohomology group of the cochain complex

0→ Hom(F0, G)
Hom(∂1,1)−→ Hom(F1, G)→ 0 .

By right exactness of G⊗ (−) we deduce that TorZ0 (G,C) ∼= G⊗C. By left ex-
actness of Hom(−, G) we deduce that Ext0

Z(C,G) = Hom(C,G). The vanishing
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of Fn for n ≥ 2 implies that TorZn(G,C) = 0 and ExtnZ(C,G) = 0 for these n.
Hence the only new Tor-group for Z-modules is

Tor(G,C) = TorZ1 (G,C) = ker(1⊗ ∂1)

and the only new Ext-group for Z-modules is

Ext(C,G) = Ext1
Z(C,G) = cok(Hom(∂1, 1)) .

We have exact sequences

0→ Tor(G,C)→ G⊗ F1
1⊗∂1−→ G⊗ F0 → G⊗ C → 0

and

0→ Ext(C,G)→ Hom(F0, G)
Hom(∂1,1)−→ Hom(F1, G)→ Hom(C,G)→ 0 .

For C = Z, we can take F0 = Z and F1 = 0. Then

Tor(G,Z) = Ext(Z, G) = 0

for any G. For C = Z/m with m ≥ 1, we can take F0 = F1 = Z and ∂1

multiplies by m. Then G⊗ Z ∼= G and

Tor(G,Z/m) ∼= ker(G
m−→ G) = G[m]

is the subgroup of elements of order dividingm inG. Furthermore, Hom(Z, G) ∼=
G and

Ext(Z/m,G) ∼= cok(G
m−→ G) = G/mG

is the quotient by elements divisible by m in G.
A general finitely generated abelian group C =

⊕
α Cα can be written as a

(finite) direct sum of cyclic abelian groups of the form Z or Z/m for m ≥ 1.
(The case m = 1 is trivial.) Then

Tor(G,C) ∼=
⊕
α

Tor(G,Cα)

and
Ext(C,G) ∼=

∏
α

Ext(Cα, G)

are determined by the special cases we already considered.

Remark 3.3.3. The Tor-group Tor(G,C) only depends on the torsion sub-
groups of G and C, and is sometimes called the torsion product of G and C.
The Ext-group Ext(C,G) classifies the abelian group extensions of C by G, up
to isomorphism.

Lemma 3.3.4. There are natural isomorphisms

TorR0 (N,C) ∼= N ⊗R C

and
Ext0

R(C,M) ∼= HomR(C,M) .



CHAPTER 3. THE UNIVERSAL COEFFICIENT THEOREMS 61

Proof. There are exact sequences

N ⊗R F1
1⊗∂1−→ N ⊗R F0

1⊗ε−→ N ⊗R C → 0

and

0→ HomR(C,M)
Hom(ε,1)−→ HomR(F0,M)

Hom(∂1,1)−→ HomR(F1,M)

by the right exactness of N ⊗R (−) and the left exactness of HomR(−,M).

Lemma 3.3.5. (a) If N is flat then TorRn (N,C) = 0 for all n ≥ 1.

(b) If M is injective then ExtnR(C,M) = 0 for all n ≥ 1.

(c) If C is free (or projective) then TorRn (N,C) = 0 and ExtnR(C,M) = 0 for
all n ≥ 1.

Proof. If N is flat then

N ⊗R Fn+1
1⊗∂n+1−→ N ⊗R Fn

1⊗∂n−→ N ⊗R Fn−1

is exact for all n ≥ 1.
If M is injective then

HomR(Fn−1,M)
Hom(∂n,1)−→ HomR(Fn,M)

Hom(∂n+1,1)−→ HomR(Fn+1,M)

is exact for all n ≥ 1.
If C is free, then we can take F0 = C and Fn = 0 for all n ≥ 1. If C is

projective, then it is a direct summand of a free module C ′, and TorRn (N,C)
and ExtnR(C,M) are direct summands of the trivial groups TorRn (N,C ′) and
ExtnR(C ′,M).

Proposition 3.3.6. The groups TorRn (N,C) and ExtRn (C,M) are well-defined,
up to a preferred isomorphism.

Proof. We must discuss the dependence of TorRn (N,C) on the choice of free
resolution of C.

Let ε : F∗ → C and ε : G∗ → C be two free resolutions of C. Then there
exists a chain homotopy equivalence f# : F∗ → G∗ covering the identity on C,
with chain homotopy inverse g# : G∗ → F∗, by the essential uniqueness of free
resolutions. Then

1⊗ f# : N ⊗R F∗ → N ⊗R G∗
is a chain homotopy equivalence, with chain homotopy inverse 1⊗g#. Hence the
induced homomorphism f∗ : Hn(N ⊗R F∗)→ Hn(N ⊗RG∗) is an isomorphism,
so TorRn (N,C) computed using F∗ is isomorphic to TorRn (N,C) computed using
G∗.

More precisely, any two chain homotopy equivalences f# : F∗ → G∗ and
g# : F∗ → G∗ (not related to the chain homotopy inverse above), there exists
a chain homotopy P : F∗ → G∗+1 from f# to g#. Then 1 ⊗ P : N ⊗R F∗ →
N⊗RG∗+1 is a chain homotopy from 1⊗f# to 1⊗g#, so the induced homomor-
phisms f∗ : Hn(N ⊗R F∗)→ Hn(N ⊗R G∗) and g∗ are equal. Hence the groups
TorRn (N,C) computed using F∗ are isomorphic to the ones computing G∗, by a
preferred isomorphism.
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The Ext-case is very similar. Any two resolutions F∗ and G∗ of C are
connected by a chain homotopy equivalence f# : F∗ → G∗ covering the identity
on C, which well-defined up to chain homotopy. Applying HomR(−,M) gives
a chain homotopy equivalence

Hom(f#, 1) : HomR(G∗,M)→ HomR(F∗,M) ,

which is also well-defined up to chain homotopy. Passing to (co-)homology, we
get an isomorphism f∗ : Hn(HomR(G∗,M))→ Hn(HomR(F∗,M)), well-defined
with no ambiguity. Hence ExtnR(C,M) computed using F∗ is isomorphic to
ExtnR(C,M) computed using G∗, by a preferred isomorphism.

Remark 3.3.7. One way to interpret this form of uniqueness is to say that
for each left R-module C we choose a free resolution F∗ → C, once and for
all, and use that for the definition of TorRn (N,C) and ExtnR(C,M). Any other
free resolution G∗ → C is then chain homotopy equivalent to the chosen resolu-
tion, by a chain homotopy equivalence that is well-defined up to chain homotopy.
Applying N⊗R (−) or HomR(−,M) we then get induced chain homotopy equiv-
alences that are well-defined up to chain homotopy. These induce isomorphisms
in homology that are well-defined, with no ambiguity.

Proposition 3.3.8. The Tor-groups are covariantly functorial in N and C,
defining a functor

TorRn : (Mod−R)× (R−Mod) −→ Ab .

The Ext-groups are contravariantly functorial in C and covariantly functorial
in M , defining a functor

ExtnR : (R−Mod)op × (R−Mod) −→ Ab .

Proof. Let ϕ : C → D and ν : N → N ′ be left and right R-module homomor-
phisms, respectively. Choose free resolutions ε : F∗ → C and ε : G∗ → D. There
is then chain map f# : F∗ → G∗ covering ϕ, unique up to chain homotopy.
Hence there is a chain map

ν ⊗ f# : N ⊗R F∗ → N ′ ⊗R G∗ ,

well-defined up to chain homotopy. The induced map in homology

(ν, ϕ)∗ : TorRn (N,C) −→ TorRn (N ′, D)

is well-defined. This specifies the functor TorRn on morphisms.
To check compatibility with compositions, let ψ : D → E and ν′ : N ′ → N ′′

be two more homomorphisms. Choose a free resolution ε : H∗ → E, and a chain
map g# : G∗ → H∗ covering ψ. Then the composite g#f# : F∗ → H∗ is a chain
map covering ψϕ : C → E, so the composite

(ν′ ⊗ g#)(ν ⊗ f#) = ν′ν ⊗ g#f# : N ⊗R F∗ → N ′′ ⊗R H∗

induces (ν′ν, ψϕ)∗ : TorRn (N,C) → TorRn (N ′′, E) in homology, and equals the
composite of (ν, ϕ)∗ and (ν′, ψ)∗ : TorRn (N ′, D)→ TorRn (N ′′, E).

Compatibility with identities is equally obvious, hence TorRn is covariantly
functorial in both variables. The Ext-case is very similar, replacing ⊗R by
HomR.
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Remark 3.3.9. We may say that TorRn is a bifunctor in Mod − R and R −
Mod. For each fixed right R-module N , the rule C 7→ TorRn (N,C) defines a
functor R−Mod→ Ab, taking ϕ : C → D to ϕ∗ : TorRn (N,C)→ TorRn (N,D).
Similarly, for each fixed left R-module C, the rule N 7→ TorRn (N,C) defines a
functor Mod−R→ Ab, taking ν : N → N ′ to ν∗ : TorRn (N,C)→ TorRn (N ′, C).
Having a bifunctor is more than just having a rule that is separately functorial
in each variable. The two functors must also be compatible in the sense that
the diagram

TorRn (N,C)
ϕ∗ //

ν∗

��

TorRn (N,D)

ν∗

��

TorRn (N ′, C)
ϕ∗ // TorRn (N ′, D)

commutes, since (ν, 1D)(1N , ϕ) = (ν, ϕ) = (1N ′ , ϕ)(ν, 1C). In briefer notation,
we must have ν∗ϕ∗ = ϕ∗ν∗. In fact, this condition is necessary and sufficient
for the rule (separately functorial in each variable) to constitute a bifunctor
(simultaneously functorial in both variables).

Similarly, ExtnR is a bifunctor in (R−Mod)op and R−Mod. The homomor-
phisms ϕ∗ : ExtnR(N,C) → ExtnR(N,D) (for each N) and ν∗ : ExtnR(N ′, C) →
ExtnR(N,C) (for each C) satisfy ν∗ϕ∗ = ϕ∗ν

∗.

Exercise 3.3.10. Do Exercises 2 and 3 from Section 3.1 of Hatcher [1].

The following long exact sequences are much better suited for inductive
arguments, e.g. by the five-lemma, than the half-exact sequences given only by
their lowest three terms.

Proposition 3.3.11. Let C be a left R-module, and let 0→ N ′ → N → N ′′ →
0 be a short exact sequence of right R-modules. Then there is a long exact
sequence of Tor-groups

· · · → TorRn (N ′, C)→ TorRn (N,C)→ TorRn (N ′′, C)
∂−→ TorRn−1(N ′, C)→ . . .

(natural in C and the short exact sequence), that ends

· · · → TorR1 (N ′′, C)
∂−→ N ′ ⊗R C → N ⊗R C → N ′′ ⊗R C → 0 .

In particular, for R = Z and 0→ G′ → G→ G′′ → 0 a short exact sequence of
abelian groups there is a six-term exact sequence

0→ Tor(G′, C)→ Tor(G,C)→ Tor(G′′, C)

∂−→ G′ ⊗ C → G⊗ C → G′′ ⊗ C → 0 .

Proof. Let F∗ be a free resolution of C. There is then a short exact sequence of
chain complexes

0→ N ′ ⊗R F∗ → N ⊗R F∗ → N ′′ ⊗R F∗ → 0 .

(In degree n it is a direct sum of copies of the short exact sequence 0→ N ′ →
N → N ′′ → 0.) The associated long exact sequence of homology groups is the
desired long exact sequence of Tor-groups.
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Proposition 3.3.12. Let C be a left R-module, and let 0 → M ′ → M →
M ′′ → 0 be a short exact sequence of left R-modules. Then there is a long exact
sequence of Ext-groups

· · · → ExtnR(C,M ′)→ ExtnR(C,M)→ ExtnR(C,M ′′)
δ−→ Extn+1

R (C,M ′)→ . . .

(natural in C and the short exact sequence), that begins

0→ HomR(C,M ′)→ HomR(C,M)→ HomR(C,M ′′)
δ−→ Ext1

R(C,M ′)→ . . .

In particular, for R = Z and 0→ G′ → G→ G′′ → 0 a short exact sequence of
abelian groups there is a six-term exact sequence

0→ Hom(C,G′)→ Hom(C,G)→ Hom(C,G′′)

δ−→ Ext(C,G′)→ Ext(C,G)→ Ext(C,G′′)→ 0 .

Proof. Let F∗ be a free resolution of C. There is then a short exact sequence of
cochain complexes

0→ HomR(F∗,M
′)→ HomR(F∗,M)→ HomR(F∗,M

′′)→ 0 .

(In degree n it is a product of copies of the short exact sequence 0 → M ′ →
M → M ′′ → 0.) The associated long exact sequence of cohomology groups is
the desired long exact sequence of Ext-groups.

((Exercises: Can compute Ext using projective and/or resolutions and Tor
using left and/or right flat resolutions. Balance Ext and Tor.))

3.4 The universal coefficient theorem in homo-
logy

We will prove the following theorem, expressing homology with arbitrary coef-
ficients in terms of integral homology.

Theorem 3.4.1 (Universal coefficient theorem). Let (X,A) be a pair of topo-
logical spaces, and let G be an abelian group. There is a natural short exact
sequence

0→ G⊗Hn(X,A)
α−→ Hn(X,A;G)→ Tor(G,Hn−1(X,A))→ 0

for each n. The sequence is split, but not naturally split.

Example 3.4.2. I particular, α is always an isomorphism if G is flat, i.e., a
torsion free abelian group. For example, we have isomorphisms Q ⊗H∗(X) ∼=
H∗(X;Q) and Z(p)⊗H∗(X) ∼= H∗(X;Z(p)) for any prime p, where Z(p) denotes
the integers localized at p.

More generally, let R be a ring, and N a right R-module. The chain com-
plex C∗(X,A;R) = R ⊗ C∗(X,A) is a complex of free left R-modules, so that
H∗(X,A;R) is a left R-module, and there is a natural isomorphism

C∗(X,A;N) ∼= N ⊗R C∗(X,A;R) .
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There is a natural homomorphism

α : N ⊗R H∗(X,A;R) −→ H∗(X,A;N)

taking n⊗ [x] to [n⊗ x], where n ∈ N and x is a cycle in C∗(X,A;R).

Definition 3.4.3. A commutative ring R is said to be a principal ideal domain
if it is an integral domain (any product of nonzero elements in nonzero) and
each ideal is principal (it can be generated by a single element).

The ring R = Z is a principal ideal domain, as is any field. When R is a
principal ideal domain, every submodule of a free R-module is free. This leads
to the vanishing of TorRn (N,C) and ExtnR(C,M) for all n ≥ 2, as in the case of
the integers. The theorem above is the special case R = Z and N = G of the
following result.

Theorem 3.4.4. Let (X,A) be a pair of topological spaces, let R be a principal
ideal domain, and let N be a right R-module. There is a natural short exact
sequence

0→ N ⊗R Hn(X,A;R)
α−→ Hn(X,A;N)→ TorR1 (N,Hn−1(X,A))→ 0

for each n. The sequence is split, but not naturally split.

This topological theorem is in turn the special case C∗ = C∗(X,A;R) of the
following algebraic proposition.

Proposition 3.4.5. Let R be a principal ideal domain, let (C∗, ∂) be a chain
complex of free left R-modules, and let N be a right R-module. There is a natural
short exact sequence

0→ N ⊗R Hn(C∗)
α−→ Hn(N ⊗R C∗)→ TorR1 (N,Hn−1(C∗))→ 0

for each n. The sequence is split, but not naturally split.

Proof. Let
Bn = im(∂) ⊆ Zn = ker(∂) ⊆ Cn ,

as usual. Each left R-module Cn is free, hence so is each submodule Bn and
Zn, since R is a PID. For each n there is a short exact sequence

0→ Zn → Cn
∂−→ Bn−1 → 0 .

Since Bn−1 is free, this sequence is split. Tensoring with N on the left, we get
a (split) short exact sequence

0→ N ⊗R Zn → N ⊗R Cn
∂−→ N ⊗R Bn−1 → 0

for each n, where we abbreviate 1⊗∂ to ∂. These fit together in a commutative
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diagram

...

��

...

��

...

��

0 // N ⊗R Zn+1
//

0

��

N ⊗R Cn+1
∂ //

∂

��

N ⊗R Bn //

0

��

0

0 // N ⊗R Zn //

0

��

N ⊗R Cn
∂ //

∂

��

N ⊗R Bn−1
//

0

��

0

0 // N ⊗R Zn−1
//

��

N ⊗R Cn−1
∂ //

��

N ⊗R Bn−2
//

��

0

...
...

...

which we view as a short exact sequence of chain complexes

0→ (N ⊗R Z∗, 0) −→ (N ⊗R C∗, ∂)
∂−→ (N ⊗R B∗−1, 0)→ 0 .

Here (N ⊗R Z∗, 0) denotes the chain complex with N ⊗R Zn in degree n and
zero maps as boundary homomorphisms, while (N⊗RB∗−1, 0) denotes the chain
complex with N ⊗R Bn−1 in degree n and zero boundaries.

The associated long exact sequence in homology contains the terms

N ⊗R Bn
kn−→ N ⊗R Zn −→ Hn(N ⊗R C∗) −→ N ⊗R Bn−1

kn−1−→ N ⊗R Zn−1 ,

where kn denotes the connecting homomorphism. Hence there is a natural short
exact sequence

0→ cok(kn)
α−→ Hn(N ⊗R C∗)→ ker(kn−1)→ 0 .

Chasing the definition of the connecting homomorphism, we see that kn = 1⊗ιn
is equal to the tensor product of N with the inclusion ιn : Bn ⊆ Zn, in each
degree n.

((Exercise: Make that chase.))
By the definition of homology, there is a short exact sequence

0→ Bn
ιn−→ Zn

εn−→ Hn(C∗)→ 0 .

Since Bn and Zn are free left R-modules, this is a short free resolution (F∗, ∂) of
the homology R-module Hn(C∗). In the notation used above, F1 = Bn, F0 = Zn
and ∂1 = ιn. Hence the Tor-groups of N and Hn(C∗) are the homology groups
of the complex N ⊗R F∗, so that there is an exact sequence

0→ TorR1 (N,Hn(C∗))→ N ⊗R Bn
1⊗ιn−→ N ⊗R Zn → N ⊗R Hn(C∗)→ 0 .

In other words, there are natural isomorphisms ker(kn) ∼= TorR1 (N,Hn(C∗))
and cok(kn) ∼= N ⊗R Hn(C∗), for all n. Hence we have a natural short exact
sequence

0→ N ⊗R Hn(C∗)
α−→ Hn(N ⊗R C∗) −→ TorR1 (N,Hn−1(C∗))→ 0 .
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By inspection of the definitions, the left hand homomorphism α takes n⊗ [x] in
N ⊗R Hn(C∗) to [n⊗ x] in Hn(N ⊗R C∗), for each n-cycle x ∈ Zn.

To see that the universal coefficient short exact sequence admits a splitting,
choose a retraction r : Cn → Zn in the split short exact sequence 0 → Zn →
Cn → Bn−1 → 0. The composite

εnr : Cn → Zn → Hn(C∗)

defines a chain map (C∗, ∂) → (H∗(C∗), 0), since r restricts to the identity on
Zn, so that εnr is zero on Bn. Tensoring with N on the left, we get a chain map

(N ⊗R C∗, ∂) −→ (N ⊗R H∗(C∗), 0)

and an induced map in homology

Hn(C∗;N)
ρ−→ N ⊗R Hn(C∗)

for each n. This is a retraction for the universal coefficient sequence, since ρα
takes n⊗ [x] via [n⊗ x] to n⊗ εnr(x), and εnr(x) = [x] for any x ∈ Zn.

Exercise 3.4.6. Adapt Exercise 11 from Section 3.1 of Hatcher [1] to prove
that the splitting in the universal coefficient theorem for homology cannot be
natural.

Exercise 3.4.7. Let R be a PID. Let f : (X,A)→ (Y,B) be a map of pairs such
that f∗ : H∗(X,A;R) → H∗(Y,B;R) is an isomorphism in all degrees. Prove
that f∗ : H∗(X,A;N)→ H∗(Y,B;N) is an isomorphism in all degrees, for every
right R-module N .

3.5 The universal coefficient theorem in coho-
mology

We now turn to the theorem expressing cohomology with arbitrary coefficients
in terms of integral homology.

Theorem 3.5.1 (Universal coefficient theorem). Let (X,A) be a pair of topo-
logical spaces, and let G be an abelian group. There is a natural short exact
sequence

0→ Ext(Hn−1(X,A), G)→ Hn(X,A;G)
β→ Hom(Hn(X,A), G)→ 0

for each n. The sequence is split, but not naturally split.

Example 3.5.2. In particular, β is always an isomorphism if G is injective,
i.e., a divisible abelian group. For example, we have isomorphisms Hn(X;Q) ∼=
Hom(Hn(X),Q) and Hn(X;Q/Z(p)) ∼= Hom(Hn(X),Q/Z(p)) for any prime p,

where Q/Z(p)
∼= Z[ 1

p ]/Z can be identified under the isomorphism R/Z ∼= S1

with the group of p-th power roots of unity in S1 ⊂ C∗.

More generally, let R be a ring and M a left R-module. There is a natural
isomorphism

C∗(X,A;M) = Hom(C∗(X,A),M) ∼= HomR(C∗(X,A;R),M) ,
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and a natural homomorphism

β : H∗(X,A;M) −→ HomR(H∗(X,A;R),M)

taking [ϕ] to [x] 7→ ϕ(x), where the group homomorphism ϕ : C∗(X,A) → M
extends R-linearly in a unique way to ϕ : C∗(X,A;R)→M and x is a cycle in
C∗(X,A;R). Here is a more general version of the theorem above.

Theorem 3.5.3. Let (X,A) be a pair of topological spaces, let R be a principal
ideal domain, and let M be a left R-module. There is a natural short exact
sequence

0→ Ext1
R(Hn−1(X,A;R),M)→ Hn(X,A;M)

β→ HomR(Hn(X,A;R),M)→ 0

for each n. The sequence is split, but not naturally split.

Again, this follows from the following result in the case C∗ = C∗(X,A;R).

Proposition 3.5.4. Let R be a principal ideal domain, let (C∗, ∂) be a chain
complex of free left R-modules, and let M be a left R-module. There is a natural
short exact sequence

0→ Ext1
R(Hn−1(C∗),M)→ Hn(HomR(C∗,M))

β−→ HomR(Hn(C∗),M)→ 0

for each n. The sequence is split, but not naturally split.

Proof. Let Bn = im(∂) ⊆ Zn = ker(∂) ⊆ Cn. These are free R-modules, since
R is a PID and Cn is assumed to be free. For each n there is a short exact
sequence

0→ Zn → Cn
∂−→ Bn−1 → 0 ,

which splits since Bn−1 is free. Applying HomR(−,M), we get a (split) short
exact sequence

0→ HomR(Bn−1,M)
δ−→ HomR(Cn,M) −→ HomR(Zn,M)→ 0

for each n, where we abbreviate Hom(∂, 1) to δ. These fit together in a com-
mutative diagram

...

��

...

��

...

��

0 // HomR(Bn−2,M)
δ //

0

��

HomR(Cn−1,M) //

δ

��

HomR(Zn−1,M) //

0

��

0

0 // HomR(Bn−1,M)
δ //

0

��

HomR(Cn,M) //

δ

��

HomR(Zn,M) //

0

��

0

0 // HomR(Bn,M)
δ //

��

HomR(Cn+1,M) //

��

HomR(Zn+1,M) //

��

0

...
...

...
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which we view as a short exact sequence of cochain complexes

0→ (HomR(B∗−1,M), 0)
δ−→ (HomR(C∗,M), δ) −→ (HomR(Z∗,M), 0)→ 0 .

Here (HomR(B∗−1,M), 0) denotes the cochain complex with HomR(Bn−1,M) in
degree n and zero maps as coboundary homomorphisms, and (HomR(Z∗,M), 0)
denotes the cochain complex with HomR(Zn,M) in degree n and zero cobound-
aries.

The associated long exact sequence in cohomology contains the terms

HomR(Zn−1,M)
kn−1

−→ HomR(Bn−1,M) −→ Hn(HomR(C∗,M))

−→ HomR(Zn,M)
kn−→ HomR(Bn,M) .

Hence there is a natural short exact sequence

0→ cok(kn−1)→ Hn(HomR(C∗,M))
β−→ ker(kn)→ 0 .

Chasing the definition of the connecting homomorphism, we see that kn =
Hom(ιn, 1) is Hom-dual to the inclusion ιn : Bn ⊆ Zn, in each degree n.

By the definition of homology, there is a short exact sequence

0→ Bn
ιn−→ Zn

εn−→ Hn(C∗)→ 0 .

Since Bn and Zn are free, this is a short free resolution (F∗, ∂) of the homology
R-module Hn(C∗). Hence the Ext-groups of Hn(C∗) and M are the cohomology
groups of the cochain complex HomR(F∗,M), so that there is an exact sequence

0→ HomR(Hn(C∗),M) −→ HomR(Zn,M)
Hom(ιn,1)−→ HomR(Bn,M)

−→ Ext1
R(Hn(C∗),M)→ 0 .

In other words, there are natural isomorphisms ker(kn) ∼= HomR(Hn(C∗),M)
and cok(kn) ∼= Ext1

R(Hn(C∗),M), for all n. Hence we have a natural short
exact sequence

0→ Ext1
R(Hn−1(C∗),M)→ Hn(HomR(C∗,M))

β−→ HomR(Hn(C∗),M)→ 0 .

By inspection of the definitions, the right hand homomorphism β takes [ϕ] in
Hn(HomR(C∗,M)) to the homomorphism mapping [x] in Hn(C∗) to ϕ(x) in
M .

To see that the universal coefficient short exact sequence admits a splitting,
choose a retraction r : Cn → Zn in the split short exact sequence 0 → Zn →
Cn → Bn−1 → 0. The composite εnr : Cn → Zn → Hn(C∗) defines a chain map
(C∗, ∂)→ (H∗(C∗), 0), since r restricts to the identity on Zn, so that εnr is zero
on Bn. Applying Hom into M we get a cochain map

(HomR(H∗(C∗),M), 0) −→ (HomR(C∗,M), δ)

and an induced map in cohomology

HomR(Hn(C∗),M)
σ−→ Hn(HomR(C∗,M))

for each n. This is a section for the universal coefficient sequence.
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Exercise 3.5.5. Do Exercise 11 from Section 3.1 in Hatcher [1], to see that the
splitting in the universal coefficient theorem for cohomology cannot be natural.

Exercise 3.5.6. Let R be a PID. Let f : (X,A)→ (Y,B) be a map of pairs such
that f∗ : H∗(X,A;R) → H∗(Y,B;R) is an isomorphism in all degrees. Prove
that f∗ : H∗(Y,B;M) → H∗(X,A;M) is an isomorphism in all degrees, for
every left R-module M .

Exercise 3.5.7. Let X be a CW complex. Recall from proof of the cellu-
lar homology theorem that the inclusion X(m) → X induces isomorphisms
Hn(X(m)) ∼= Hn(X) for all n < m. Deduce that there are isomorphisms
Hn(X;G) ∼= Hn(X(m);G) for all n < m, where G is any abelian group. Use
this to complete the proof of the cellular cohomology theorem, in the case of
infinite-dimensional X.

3.6 Some calculations

Example 3.6.1. Consider X = RP 3 with the minimal CW structure, having
one cell en in each dimension for 0 ≤ n ≤ 3. The cellular complex C∗ =
CCW∗ (RP 3) is

0→ Z{e3} 0−→ Z{e2} 2−→ Z{e1} 0−→ Z{e0} → 0 .

Hence the integral homology groups are

Hn(RP 3) =



Z for n = 0

Z/2 for n = 1

0 for n = 2

Z for n = 3

0 for n > 3.

It follows that

G⊗Hn(RP 3) =


G for n = 0, n = 3

G/2G for n = 1

0 for n = 2, n > 3

and

Tor(G,Hn(RP 3)) =

{
G[2] for n = 1

0 otherwise.

Hence

Hn(RP 3;G) ∼=



G for n = 0

G/2G for n = 1

G[2] for n = 2

G for n = 3

0 for n > 3.

Similarly,

Hom(Hn(RP 3), G) =


G for n = 0, n = 3

G[2] for n = 1, n > 3

0 for n = 2
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and

Ext(Hn(RP 3), G) =

{
G/2G for n = 1

0 otherwise.

Hence

Hn(RP 3;G) ∼=



G for n = 0

G[2] for n = 1

G/2G for n = 2

G for n = 3

0 for n > 3.

For instance,

Hn(RP 3;Z) ∼=



Z for n = 0

0 for n = 1

Z/2 for n = 2

Z for n = 3

0 for n > 3.

Notice how the torsion in Hn(X) is shifted up to Hn+1(X;Z), while the free
part of Hn(X) reappears in Hn(X;Z).

((State a proposition.)) Since H0(X) is always free, Tor(G,H0(X)) = 0 and
Ext(H0(X), G) = 0, so for n ≤ 1 there are isomorphisms

α : G⊗Hn(X)
∼=−→ Hn(X;G)

and
β : Hn(X;G)

∼=−→ Hom(Hn(X), G) .

Similarly for relative (co-)homology.

Exercise 3.6.2. Do Exercise 5 in Section 3.1 of Hatcher [1], proving that there
is an isomorphism

H1(X;G) ∼= Hom(π1(X), G)

for path-connected X.

((Handle as field case.)) The group Q is torsion free and divisible, so
Tor(Q, Hn−1(X)) = 0 and Ext(Hn−1(X),Q) = 0, and there are isomorphisms

α : Hn(X)⊗Q
∼=−→ Hn(X;Q)

and
β : Hn(X;Q)

∼=−→ Hom(Hn(X),Q)

for all n. It follows that there is an isomorphism

Hn(X;Q) ∼= HomQ(Hn(X;Q),Q)

identifying Hn(X;Q) with the dual Q-vector space of Hn(X;Q).
((Handle for PID’s.)) If H∗(X) is of finite type, meaning that Hn(X) is

finitely generated for each n, then we can write

Hn(X) = Tn ⊕ Fn
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where Tn is a finite abelian group, and Fn is a finitely generated free abelian
group. If Fn ∼= Zr we say that Hn(X) has rank r. Note that Q ⊗ Tn = 0
and Q ⊗ Zr = Qr, so the rank of Hn(X) equals the dimension of Hn(X;Q) ∼=
Q⊗Hn(X) as a Q-vector space. The rank of Hn(X) is also known as the n-th
Betti number of X.

3.7 Field coefficients

((Recall reduced homology.))

Proposition 3.7.1. Let X be any space. Then H̃∗(X) = 0 if and only if
H̃∗(X;Q) = 0 and H̃∗(X;Z/p) = 0 for all primes p.

Corollary 3.7.2. A map f : X → Y induces isomorphisms

f∗ : H∗(X)
∼=−→ H∗(Y )

in integral homology if and only if it induces isomorphisms

f∗ : H∗(X;F )
∼=−→ H∗(Y ;F )

with coefficients in the fields F = Q and F = Z/p, for all primes p.

This follows by passage to the mapping cone Cf , using the long exact se-
quence

· · · → Hn(X;G)
f∗−→ Hn(Y ;G) −→ H̃n(Cf ;G)→ . . .

for G = Z and G = F .

Proof. The forward implication is clear from the universal coefficient theorem
in homology. For the converse, assume that H̃∗(X;Q) = 0 and H̃∗(X;Z/p) for
all primes p. From the short exact sequence

0→ H̃n(X)/p→ H̃n(X;Z/p)→ H̃n−1(X)[p]→ 0

we deduce that H̃n(X)/p = 0 and H̃n−1(X)/[p] = 0, so multiplication by p on
H̃n(X) is an isomorphism. Hence H̃n(X) → H̃n(X) ⊗ Q, which inverts every
prime, is already an isomorphism. But

H̃n(X)⊗Q ∼= H̃n(X;Q)

is zero by assumption, so H̃n(X) = 0.

Lemma 3.7.3. Suppose that R = F is a field. Then TorFn (N,C) = 0 and
ExtnF (C,M) = 0 for all n ≥ 1.

Proof. Any module over a field is free, so C (concentrated in degree 0) is a very
short free resolution of itself.

Proposition 3.7.4. Let (X,A) be a pair of topological spaces, and let F be a
field. There is a natural isomorphism

β : Hn(X,A;F )
∼=−→ HomF (Hn(X,A;F ), F ) = Hn(X,A;F )∗
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There is a more general version of the universal coefficient theorems, for a
principal ideal domain R and an R-module M . Replacing C∗(X) by C∗(X;R)
one is led to work with a chain complex C∗ of free R-modules. The assumption
that R is a PID ensures that the submodules B∗ and Z∗ are still free. This leads
to the split short exact sequences

0→ Hn(X;R)⊗RM → Hn(X;M)→ TorR1 (Hn−1(X;R),M)→ 0

and

0→ Ext1
R(Hn−1(X;R),M)→ Hn(X;M)→ HomR(Hn(X;R),M)→ 0 ,

and similarly for relative (co-)homology. In the case where R is a field F the
derived functors TorF1 and Ext1

F vanish. This leads to the stated isomorphism.

Corollary 3.7.5. H̃∗(X) = 0 if and only if H̃∗(X;Q) = 0 and H̃∗(X;Z/p) = 0
for all primes p.

3.8 Bockstein homomorphisms

((Discuss β : Hn(X;C) → Hn−1(A) and β : Hn(X;C) → Hn+1(X;A) associ-
ated to a SES 0 → A → B → C → 0. How to recover H∗(X) from H∗(X;Q)
and H∗(X;Z/p) for all p?))



Chapter 4

Cup product

We turn to a method of introducing product structures

∪ : Ck(X;R)⊗R C`(X;R) −→ Ck+`(X;R)

and
∪ : Hk(X;R)⊗R H`(X;R) −→ Hk+`(X;R)

on the singular cochains and singular cohomology of a spaceX, whereR is a ring,
called the cochain cup product and the cohomology cup product, respectively.

The basic idea is to use the diagonal map ∆: X → X × X, taking x to
∆(x) = (x, x), and the induced cochain map

∆# : C∗(X ×X;R)→ C∗(X;R) .

This requires an understanding of the relationship between the tensor product
of cochains Ck(X;R) ⊗R C`(X;R) and the cochains of the cartesian product
Ck+`(X × X;R). This will be provided by an Alexander–Whitney homomor-
phism

AW : Ck(X;R)⊗R C`(Y ;R) −→ Ck+`(X × Y ;R)

in the special case X = Y . To motivate the introduction of this homomorphism
for singular cochains, we first take a closer look at the cellular and simplicial
cases.

4.1 Cellular diagonal approximations

Suppose first that X is a CW complex. Then the product X × X also has a
natural CW structure, and we can describe the cellular (co-)chain complex of
X×X in terms of the one for X. It is just as easy to describe the CW structure
on X ×Y , where Y is another CW complex. This added generality also has the
advantage of keeping the two factors apart in the following discussion.

Definition 4.1.1. Let X and Y be CW complexes. Then the product X × Y
has a CW structure with n-skeleton

(X × Y )(n) =
⋃

k+`=n

X(k) × Y (`) .

74
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For each k-cell ekα of X and each `-cell e`β of Y , there is a (k + `)-cell

ek+`
α,β = ekα × e`β

of X × Y , with characteristic map

Φα,β : Dk+` ∼= Dk ×D` Φα×Φβ−→ X(k) × Y (`) ⊂ (X × Y )(k+`) .

The attaching map of ekα × e`β is

ϕα,β : Sk+`−1 ∼= Sk−1 ×D` ∪Dk × S`

ϕα×Φβ∪Φα×ϕβ−→ X(k−1) × Y (`) ∪X(k) × Y (`−1) ⊂ X(k+`−1) .

Note that we have to choose a homeomorphism Dk+` ∼= Dk ×D`. We can
do this in a systematic way, by fixing homeomorphisms Dn ∼= In = I × · · · × I
for all n ≥ 0, and then use the composite isomorphism

Dk+` ∼= Ik+` ∼= Ik × I` ∼= Dk ×D` .

Its restriction to the boundary then gives the homeomorphism

Sk+`−1 ∼= Sk−1 ×D` ∪Dk × S`−1 ,

where
Sk−1 ×D` ∩Dk × S`−1 = Sk−1 × S`−1 .

Since the set of n-cells of X×Y is in one-to-one correspondence with the pairs
of k-cells of X and `-cells of Y , as k and ` range over the pairs of non-negative
integers with k + ` = n, we get an isomorphism

× :
⊕
k+`=n

CCWk (X)⊗ CCW` (Y )
∼=−→ CCWn (X × Y )

that takes the generator ekα ⊗ e`β on the left to the generator ek+`
α,β = ekα × e`β on

the right.
Geometrically, this corresponds to the homeomorphisms∨
k+`=n

X(k)/X(k−1) ∧ Y (`)/Y (`−1) ∼=←−
∨

k+`=n

∨
α

Sk ∧
∨
β

S`

∼=
∨

α,β,k+`=n

Sk+` ∼=−→ (X × Y )(n)/(X × Y )(n−1)

under the identifications CCWk (X) = Hk(X(k), X(k−1)) ∼= H̃k(X(k)/X(k−1)),
etc.

Lemma 4.1.2. The cellular boundary operators in CCW∗ (X), CCW∗ (Y ) and
CCW∗ (X × Y ) are related by the formula

∂n(ekα × e`β) = ∂k(ekα)× e`β + (−1)kekα × ∂`(e`β) .

((ETC: Discuss proof!))
This leads us to make the following algebraic definition.



CHAPTER 4. CUP PRODUCT 76

Definition 4.1.3. Let (C∗, ∂) and (D∗, ∂) be chain complexes, of right and left
R-modules, respectively. Let the (C∗⊗RD∗, ∂) be the chain complex of abelian
groups with

(C∗ ⊗R D∗)n =
⊕
k+`=n

Ck ⊗R D`

and with boundary homomorphism

∂ : (C∗ ⊗R D∗)n −→ (C∗ ⊗R D∗)n−1

given by the formula

∂(a⊗ b) = ∂(a)⊗ b+ (−1)ka⊗ ∂(b)

for a ∈ Ck and b ∈ D`, with k + ` = n. This defines a chain complex, since

∂(∂(a⊗ b)) = ∂(∂(a)⊗ b) + (−1)k∂(a⊗ ∂(b))

= ∂2a⊗ b+ (−1)k−1∂a⊗ ∂b+ (−1)k∂a⊗ ∂b− a⊗ ∂2b = 0 .

Proposition 4.1.4. The cross product × defines an isomorphism of chain com-
plexes

× : CCW∗ (X)⊗ CCW∗ (Y )
∼=−→ CCW∗ (X × Y ) .

Returning to the case X = Y , the next step would be to consider the chain
map ∆# induced by the diagonal ∆: X → X×X. However, ∆ takes the interior
of an n-cell enγ in X to the interior of the 2n-cell enγ×enγ in X×X. Hence ∆ does
not preserve the skeleton filtration of the CW structures on X and X×X, so ∆
is not a cellular map, and it does not immediately induce a chain map of cellular
chain complexes. (It does induce a chain map of singular chain complexes, but
for the proposition above only concerns the cellular chain complexes.)

To sidestep this problem, we would like to use the cellular approximation
theorem, see [1, Thm. 4.8.].

Theorem 4.1.5 (Cellular approximation). Any map f : X → Y of CW com-
plexes is homotopic to a cellular map. If f is already cellular on a subcomplex
A ⊂ X, then the homotopy may be taken to be constant on that subcomplex.

Hence there exists a cellular map D : X → X × X that is homotopic to
∆, called a diagonal approximation. It induces a chain map D# : CCW∗ (X) →
CCW∗ (X ×X). Any other cellular map D′ : X → X ×X that is homotopic to
∆ is also homotopic to D. The homotopy H : X × I → X ×X from D to D′

need not be cellular, but it is cellular on the subcomplex X × {0, 1}, so it is
homotopic to another homotopy P : X × I → X ×X that is cellular. Then P
induces a chain homotopy from D# to D′#, so the chain homotopy class of D#

is well-defined.
Suppose then, that ϕ : CCWk (X) → R and ψ : CCW` (X) → R are given

cellular cochains on X with values in a ring R. Then their product ϕ · ψ, given
by the composite

CCWk (X)⊗ CCW` (X)
ϕ⊗ψ−→ R⊗R ·−→ R ,

can be extended by zero to the other summands of

CCW∗ (X)⊗ CCW∗ (X)
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in degree n = k + `. Using the cross product isomorphism to CCWn (X ×X) we
can form the composite homomorphism

CCWn (X)
Dn−→ CCWn (X ×X) ∼= [CCW∗ (X)⊗ CCW∗ (X)]n

ϕ·ψ−→ R

to get a cochain ϕ ∪ ψ in CnCW (X;R). In this way we get the desired pairing

CkCW (X;R)⊗ C`CW (X;R)
∪−→ Ck+`

CW (X;R) .

((Discuss when this induces a well-defined pairing in cohomology.)) The precise
cochain will depend on the choice of cellular diagonal approximation D, but any
two choices differ by a chain homotopy.

Exercise 4.1.6. Consider the CW structure on RP 2 = RP 1∪e2, with 1-skeleton
RP 1 and a single 2-cell attached by the double covering map ϕ : S1 → RP 1.
Construct a cellular approximation D : RP 2 → RP 2×RP 2 to the diagonal map
∆: RP 2 → RP 2 × RP 2. Hint: D takes RP 1 to

RP 1 ∨ RP 1 ⊂ RP 1 × RP 1 ⊂ RP 2 × RP 2

by first going around one of the 1-cells, and then the other one. The challenge is
how to extend D over the 2-cell of RP 2, i.e., to show that Dϕ is null-homotopic.

One difficulty with this approach, is that the choice of diagonal approxima-
tion D is not explicit. If we restrict further, to the case of ∆-complexes X, then
Alexander and Whitney (independently?) gave an explicit formula for a natural
choice of such a diagonal approximation.

Suppose, then, that X is a ∆-complex. Then the simplicial chain complex
∆∗(X) is isomorphic to the cellular chain complex CCW∗ (X). Note, however,
that the product CW structure on X ×X is not a ∆-complex, since the charac-
teristic map of a product of simplices σkα : ∆k → X and σ`β : ∆` → X is a map

∆k × ∆` → X × X from a product of simplices, rather than from a (k + `)-
simplex, and the attaching map of its boundary is not compatible with any
identification of ∆k ×∆` with ∆k+`.

We shall describe a chain map

Ψ# : ∆∗(X) = CCW∗ (X)

D#−→ CCW∗ (X ×X) ∼= CCW∗ (X)⊗ CCW∗ (X) = ∆∗(X)⊗∆∗(X)

induced by a cellular, but not simplicial, map D : X → X ×X.
We use the notation ∆n = [v0, . . . , vn], meaning that ∆n is the convex hull

of the points v0, . . . , vn.
In degree 0, the cellular map takes a 0-simplex ρ : ∆0 → X to the 0-cell

(ρ, ρ) : ∆0 → X×X in X×X, which corresponds to ρ⊗ρ in CCW0 (X)⊗CCW0 (X).
Hence

Ψ0(ρ) = ρ⊗ ρ

on cellular chains.
In degree 1, the cellular map takes a 1-simplex σ : ∆1 → X to the composite

map

∆1 ∼= [v0]× [v0, v1] ∪ [v0, v1]× [v1] ⊂ ∆1 ×∆1 σ×σ−→ X ×X .
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Hence
Ψ1(σ) = σ|[v0]⊗ σ + σ ⊗ σ|[v1]

on cellular chains. For instance,

a // b

maps to
a× b // b× b

a× a

OO

.

In degree 2, the cellular map takes a 2-simplex τ : ∆2 → X to the composite
map

∆2 ∼= [v0]×[v0, v1, v2]∪[v0, v1]×[v1, v2]∪[v0, v1, v2]×[v2] ⊂ ∆2×∆2 τ×τ−→ X×X .

Hence
Ψ2(τ) = τ |[v0]⊗ τ + τ |[v0, v1]⊗ τ |[v1, v2] + τ ⊗ τ |[v2]

on cellular chains. For instance,

c

b

__

a

OO

??

maps to
c× c

a× c //

55

b× c

;;

a× b

OO

// b× b

OO

a× a

::

DD

.

((Compatible with boundary. ETC.))
In hindsight, we may note that these formulas for Ψn make sense in a natural

way for arbitrary singular simplices in X, independent of its ∆-complex struc-
ture. This leads to the construction of the diagonal approximation in singular
(co-)homology, in the following section.
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4.2 The Alexander–Whitney diagonal approxi-
mation

Let k, ` ≥ 0. Inside the standard (k + `)-simplex

∆k+` = [v0, . . . , vk, . . . , vk+`]

there is a front k-simplex

∆k ∼= [v0, . . . , vk] ⊆ ∆k+`

where tk+1 = · · · = tk+` = 0, and a back `-simplex

∆` ∼= [vk, . . . , vk+`] ⊆ ∆k+`

where t0 = · · · = tk−1 = 0. These meet in the single vertex vk, where tk = 1. Let
λkk+` : ∆k → ∆k+` and ρ`k+` : ∆` → ∆k+` be the two affine linear embeddings.

To each singular (k + `)-simplex

σ : ∆k+` → X

in a topological space X, we can associate the front k-face

σλkk+` = σ|[v0, . . . , vk] : ∆k → X

and the back `-face

σρ`k+` = σ|[vk, . . . , vk+`] . : ∆` → X

Their tensor product defines a homomorphism

Ψk,` : Ck+`(X) −→ Ck(X)⊗ C`(X)

that takes σ to

σλkk+` ⊗ σρ`k+` = σ|[v0, . . . , vk]⊗ σ|[vk, . . . , vk+`] .

For k = ` = 0, the homomorphism Ψ0,0 : C0(X) → C0(X) ⊗ C0(X) corre-
sponds to the diagonal map ∆: X → X ×X taking a point p ∈ X to (p, p) ∈
X × X, under the correspondences C0(X) ∼= Z{X} and C0(X) ⊗ C0(X) ∼=
Z{X} ⊗ Z{X} ∼= Z{X ×X}.

For two chain complexes (C∗, ∂) and (D∗, ∂), we define the tensor product
chain complex (C∗ ⊗D∗, ∂) to be given in degree n by

(C ×D)n =
⊕
k+`=n

Ck ⊗D`

with boundary homomorphism given by

∂(x⊗ y) = ∂x⊗ y + (−1)kx⊗ ∂y

for x ∈ Ck and y ∈ D`. Note that

∂2(x⊗ y) = ∂(∂x⊗ y + (−1)kx⊗ ∂y)

= ∂2x⊗ y + (−1)k−1∂x⊗ ∂y + (−1)k∂x⊗ ∂y + (−1)2kx⊗ ∂2y

= 0
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so that (C∗⊗D∗, ∂) is a chain complex. The sign (−1)k can be justified geometri-
cally, since we are commuting the passage to a boundary past the k-dimensional
object k, or algebraically, to make sure that the two middle terms in the above
sum cancel.

For each n ≥ 0, we can form the sum over all (k, `) with k + ` = n of the
homomorphisms Ψk,`, to get the homomorphism

Ψn : Cn(X) −→
⊕
k+`=n

Ck(X)⊗ C`(X)

taking σ : ∆n → X to⊕
k+`=n

= σ|[v0, . . . , vk]⊗ σ|[vk, . . . , vk+`] .

Lemma 4.2.1. The identity

Ψk,` ◦ ∂ = (∂ ⊗ 1)Ψk+1,` + (−1)k(1⊗ ∂)Ψk,`+1

holds, so the homomorphisms (Ψn)n define a chain map

Ψ# : C∗(X) −→ C∗(X)⊗ C∗(X) .

Since Ψ0 is compatible with the diagonal map, we call Ψ# a diagonal ap-
proximation.

Proof. We must prove that the diagram

Cn+1(X)
∂ //

Ψn+1

��

Cn(X)

Ψn

��

(C∗(X)⊗ C∗(X))n+1
∂ // (C∗(X)⊗ C∗(X))n

commutes, for each n. We check that for each σ : ∆n+1 → X and each pair
(k, `) with k + ` = n, the images of σ under Ψn∂ and ∂Ψn+1 have the same
components in Ck(X)⊗ C`(X).

The (k, `)-th component of ∂Ψn+1(σ) is the sum of two contributions. One
comes from the composite

(∂ ⊗ 1)Ψk+1,` : Cn+1(X)→ Ck+1(X)⊗ C`(X)→ Ck(X)⊗ C`(X)

and the other comes from the composite

(−1)k(1⊗ ∂)Ψk,`+1 : Cn+1(X)→ Ck(X)⊗ C`+1(X)→ Ck(X)⊗ C`(X) .

The first takes σ : ∆n+1 → X to

(∂ ⊗ 1)σ|[v0, . . . , vk+1]⊗ σ|[vk+1, . . . , vn+1]

=

k+1∑
i=0

(−1)iσ|[v0, . . . , v̂i, . . . , vk+1]⊗ σ|[vk+1, . . . , vn+1]
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and the second takes σ to

(−1)k(1⊗ ∂)σ|[v0, . . . , vk]⊗ σ|[vk, . . . , vn+1]

= (−1)k
`+1∑
j=0

(−1)jσ|[v0, . . . , vk]⊗ σ|[vk, . . . , v̂k+j , . . . , vn+1]

=

n+1∑
i=k

(−1)iσ|[v0, . . . , vk]⊗ σ|[vk, . . . , v̂i, . . . , vn+1]

Notice that the term i = k + 1 in the first sum is equal to the term i = k in
the second sum, up to a sign. Hence these two terms cancel when we add the
expressions together, so that the (k, `)-th component of ∂Ψn(σ) is

k∑
i=0

(−1)iσ|[v0, . . . , v̂i, . . . , vk+1]⊗ σ|[vk+1, . . . , vn+1]

+

n+1∑
i=k+1

(−1)iσ|[v0, . . . , vk]⊗ σ|[vk, . . . , v̂i, . . . , vn+1] .

On the other hand, the (k, `)-th component of Ψn∂(σ) is

Ψk,`(

n+1∑
i=0

(−1)iσ|[v0, . . . , v̂i, . . . , vn+1])

=

k∑
i=0

(−1)iσ|[v0, . . . , v̂i, . . . , vk+1]⊗ σ|[vk+1, . . . , vn+1]

+

n+1∑
i=k+1

(−1)iσ|[v0, . . . , vk]⊗ σ|[vk, . . . , v̂i, . . . , vn+1] .

These expressions are the same, proving the claim.

4.3 The cochain cup product

Let R be a ring, and consider cochains and cohomology with coefficients in R.
The cochain cup product is a pairing

Ck(X;R)⊗R C`(X;R)
∪−→ Ck+`(X;R) .

For cochains ϕ : Ck(X) → R and ψ : C`(X) → R the cup product is defined to
be the (k + `)-cochain

ϕ ∪ ψ : Ck+`(X)→ R

given as the composite

Ck+`(X)
Ψk,`−→ Ck(X)⊗ C`(X)

ϕ⊗ψ−→ R⊗R ·−→ R

where Ψk,` is as in the previous subsection and · : R ⊗ R → R is the ring
multiplication.
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More explicitly, the cup product ϕ ∪ ψ takes the value

(ϕ ∪ ψ)(σ) = ϕ(σ|[v0, . . . , vk]) · ψ(σ|[vk, . . . , vk+`])

on a (k + `)-simplex σ : ∆k+` → X.

Lemma 4.3.1. The cochain cup product is unital and associative, with unit
element 1 ∈ C0(X;R) the cochain ε : C0(X) → R that sends each 0-simplex to
the ring unit 1 ∈ R.

A graded ring is a graded abelian group A∗ = (An)n with a unital and
associative pairing

Ak ⊗A` → Ak+`

for all k, `, which we can also write as a homomorphism

A∗ ⊗A∗ → A∗ .

By the lemma above the cochains C∗(X;R) constitute a graded ring.

4.4 The cohomology cup product

The cochain cup product satisfies a Leibniz formula.

Lemma 4.4.1. The identity

δ(ϕ ∪ ψ) = δϕ ∪ ψ + (−1)kϕ ∪ δψ

holds in Ck+`+1(X;R), for ϕ ∈ Ck(X;R) and C`(X;R), so the cup product
defines a cochain map

∪ : C∗(X;R)⊗R C∗(X;R) −→ C∗(X;R) .

Proof. Let n = k + `. For each (n+ 1)-simplex σ, we have

δ(ϕ ∪ ψ)(σ) = (ϕ ∪ ψ)(∂σ) = (ϕ⊗ ψ)(Ψk,` ◦ ∂)(σ)

which by the lemma of the previous subsection is the sum of

(ϕ⊗ ψ)(∂ ⊗ 1)Ψk+1,`(σ) = (δϕ⊗ ψ)Ψk+1,`(σ) = (δϕ ∪ ψ)(σ)

and

(−1)k(ϕ⊗ ψ)(1⊗ ∂)Ψk,`+1(σ) = (−1)k(ϕ⊗ δψ)Ψk,`+1(σ) = (−1)k(ϕ ∪ δψ)(σ) .

Corollary 4.4.2. If ϕ ∈ Ck(X;R) and ψ ∈ C`(X;R) are cocycles, then ϕ∪ψ ∈
Ck+`(X;R) is a cocycle. If furthermore ϕ is a coboundary, or ψ is a coboundary,
then ϕ ∪ ψ is a coboundary.

Proof. If δϕ = 0 and δψ = 0 then δ(ϕ ∪ ψ) = 0 ∪ ψ + (−1)kϕ ∪ 0 = 0. If
also ϕ = δξ then δ(ξ ∪ ψ) = ϕ ∪ ψ + ξ ∪ 0 = ϕ ∪ ψ. If instead ψ = δη then
δ(ϕ ∪ η) = 0 ∪ η + (−1)kϕ ∪ ψ = (−1)kϕ ∪ ψ.
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The cohomology cup product is the induced pairing

Hk(X;R)⊗R H`(X;R)
∪−→ Hk+`(X;R)

given by the formula
[ϕ] ∪ [ψ] = [ϕ ∪ ψ]

for each k-cocycle ϕ and each `-cocycle ψ. It is well-defined by the corollary
above. The cup product makes H∗(X;R) a graded ring.

Lemma 4.4.3. The cohomology cup product is unital and associative, with unit
element 1 ∈ H0(X;R) the cohomology class of the cocycle ε : C0(X) → R that
sends each 0-simplex to the ring unit 1 ∈ R.

A cup product for simplicial cohomology can be defined by the same formula
as for singular cohomology. Hence the isomorphism between singular cohomo-
logy and simplicial cohomology is compatible with the cup products, so that for
simplicial complexes, or more generally, for ∆-complexes, the cup products in
singular cohomology can be computed using simplicial cochains.

Example 4.4.4. The closed orientable surface Mg of genus g ≥ 1 has a trian-
gulation as a ∆-complex obtained by triangulating a regular 4g-gon by starring
with an interior point, and identifying the boundary edges pairwise according
to the pattern

a1, b1, a
−1
1 , b−1

1 , . . . , ag, bg, a
−1
g , b−1

g

The integral homology groups are H0(Mg) = Z,

H1(Mg) = Z{a1, b1, . . . , ag, bg}

and H2(Mg) ∼= Z. A generator of H2(Mg) is represented by the 2-cycle given
by the signed sum of all of the 2-simplices in the triangulation, with sign +1 for
the 2-simplices spanned by the center and one of the positively oriented edges
ai or bj , and sign −1 for the 2-simplices spanned by the center and one of the
negatively oriented edges a−1

i or b−1
j .

Dually, the integral cohomology groups are H0(Mg) = H0(Mg;Z) = Z{1},

H1(Mg) = H1(Mg;Z) = Z{α1, β1, . . . , αg, βg}

and H2(Mg) = H2(Mg;Z) ∼= Z{γ}, with αi dual to ai and βi dual to bi. ((Recall
what duality means for a basis.)) A generator γ ∈ H2(Mg) is represented by a 2-
cochain/cocycle that takes the value +1 on the 2-cycle representing a generator
of H2(Mg). The interesting cup product is the pairing

∪ : H1(Mg)⊗H1(Mg) −→ H2(Mg) .

To compute cup products, we must represent the cohomology classes αi and
βj by 1-cocycles, say ϕi and ψj .

The condition δϕi = 0 asserts that the alternating sum of values of ϕi on
the three edges of each 2-simplex in Mg must be 0. To represent αi, ϕi must
evaluate to 1 on the edge ai. By inspection, we can let ϕi evaluate to 1 on the
two edges leading from the center to the end-points of ai and a−1

i , and to 0 on
all other edges.
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Similarly, ψj evaluates to 1 on the edge bj , as well as on the two edges leading
from the center to the end-points of bj and b−1

j , and to 0 on all other edges.
The cup product of two 1-cocycles ϕ and ψ is the 2-cocycle whose value on

a 2-simplex σ is the product

(ϕ ∪ ψ)(σ) = ϕ(σ|[v0, v1]) · ψ(σ|[v1, v2]) .

The 2-simplices of Mg fall into g groups of four triangles each. The cocycles ϕi
and ψi are zero outside of the i-th group, so if i 6= j the cup product of ϕi or
ψi with ϕj or ψj is zero on all 2-simplices. Hence these cup products are zero
on the simplicial cochain level, and

ai ∪ aj = ai ∪ bj = bi ∪ aj = bi ∪ bj = 0

for i 6= j.
Fortunately, the case i = j is more interesting. The cup product ϕi ∪ ψi

takes the value
ϕi(ai) · ψi(bi) = 1 · 1 = 1

on the 2-simplex spanned by the center and the edge bi, and is zero on the other
2-simplices. Hence this cup product evaluates to +1 on the 2-cycle representing
the generator of H2(Mg), so the cohomology cup product

αi ∪ βi = γ

equals the dual generator of H2(Mg).
The cup product ψi ∪ ϕi takes the value

ψi(bi) · ϕi(ai) = 1 · 1 = 1

on the 2-simplex spanned by the center and the edge a−1
i , and is zero on the other

2-simplices. Hence this cup product evaluates to −1 on the 2-cycle representing
the generator of H2(Mg), so the cohomology cup product

βi ∪ αi = −γ

equals the negative of the dual generator of H2(Mg).
The cup products ϕi ∪ ϕi and ψi ∪ ψi are zero on all 2-simplices, so the

cohomology cup products αi ∪ αi and βi ∪ βi are both zero.
The bilinear pairing H1(Mg) × H1(Mg) → H2(Mg) is thus identified with

the bilinear pairing Z2g × Z2g → Z represented by the skew-symmetric 2g × 2g
matrix 

0 1 . . . 0 0
−1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . −1 0


with g copies of the hyperbolic form

[
0 1
−1 0

]
along the diagonal, and zeroes

elsewhere.
With a different choice of basis, the cup product pairing corresponds to a

different matrix. The natural choice made corresponds to a matrix that has as
many vanishing entries as is possible. We assumed that g ≥ 1. The conclusion
holds as stated in the case g = 0 with M0 = S2, in a somewhat trivial way.
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4.5 Relative cup products, naturality

Let A,B ⊆ X be subspaces. If ϕ ∈ Ck(X,A;R) vanishes on chains in A and
ψ ∈ C`(X,B;R) vanishes on chains in B, then

ϕ ∪ ψ ∈ Ck+`(X,A+B;R)

vanishes on chains in A or in B. Hence there is a relative cup product

Hk(X,A;R)⊗R H`(X,B;R)
∪−→ Hk+`(X,A+B;R) .

If {A,B} is excisive, so that H∗(A + B) → H∗(A ∪ B) is an isomorphism,
then H∗(X,A∪B;R)→ H∗(X,A+B;R) is an isomorphism by the long exact
sequence and universal coefficient theorem. (This applies, for instance, when A
and B are open subsets, or X is a CW complex and A and B are subcomplexes.)
Then the cup product lifts through the isomorphism to

Hk(X,A;R)⊗R H`(X,B;R)
∪−→ Hk+`(X,A ∪B;R) .

Some important special cases are the relative cup products

Hk(X,A;R)⊗R H`(X;R)
∪−→ Hk+`(X,A;R)

Hk(X;R)⊗R H`(X,A;R)
∪−→ Hk+`(X,A;R)

Hk(X,A;R)⊗R H`(X,A;R)
∪−→ Hk+`(X,A;R)

for all pairs (X,A). The first two make H∗(X,A;R) a graded bimodule over the
graded ring H∗(X;R). The last makes H∗(X,A;R) a non-unital graded ring.
(The unit 1 ∈ H0(X;R) does not lift to H0(X,A;R) when A is non-empty).

For each map f : X → Y the cup product satisfies

f#(ϕ ∪ ψ) = f#(ϕ) ∪ f#(ψ)

in Ck+`(X;R), for ϕ ∈ Ck(Y ;R) and ψ ∈ C`(Y ;R), so the cochain cup product
is natural in the sense that the diagram

Ck(Y ;R)⊗R C`(Y ;R)
∪ //

f#⊗f#

��

Ck+`(Y ;R)

f#

��

Ck(X;R)⊗R C`(X;R)
∪ // Ck+`(X;R)

commutes. It follows that the cohomology cup product satisfies

f∗(α ∪ β) = f∗(α) ∪ f∗(β)

in Hk+`(X;R), for α ∈ Hk(X;R) and β ∈ H`(X;R), so the cohomology cup
product is natural in the same way. Hence the graded ringH∗(X;R) is functorial
for all spaces X. Similarly, the non-unital graded ring H∗(X,A;R) is functorial
for all pairs (X,A).
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4.6 Cross product

For a pair of spaces X and Y , the natural projection maps

p1 : X × Y −→ X

p2 : X × Y −→ Y

induce cochain homomorphisms

p#
1 : C∗(X;R) −→ C∗(X × Y ;R)

p#
2 : C∗(Y ;R) −→ C∗(X × Y ;R) .

When combined with the cochain cup product for X × Y we get a pairing

× : Ck(X;R)⊗R C`(Y ;R)
p#1 ⊗p

#
2−→ Ck(X × Y ;R)⊗R C`(X × Y ;R)

∪−→ Ck+`(X × Y ;R)

called the cochain cross product, denoted ×. It takes a k-cocycle ϕ : Ck(X)→ R
on X and an `-cocycle ψ : C`(Y )→ R on Y to the cup product of their respective
pullbacks to X × Y :

ϕ× ψ = p#
1 (ϕ) ∪ p#

2 (ψ) .

Its value on a (k + `)-simplex (σ, τ) : ∆k+` → X × Y is, by definition,

(ϕ× ψ)(σ, τ) = ϕ(σ|[v0, . . . , vk]) · ψ(τ |[vk, . . . , vk+`]) .

Lemma 4.6.1. The identity

δ(ϕ× ψ) = δϕ× ψ + (−1)kϕ× δψ

holds in Ck+`+1(X×Y ;R), for ϕ ∈ Ck(X;R) and C`(Y ;R), so the cross product
defines a cochain map

× : C∗(X;R)⊗R C∗(Y ;R) −→ C∗(X × Y ;R) .

Proof. This follows from the cup product Leibniz formula by naturality:

δ(ϕ× ψ) = δ(p#
1 (ϕ) ∪ p#

2 (ψ))

= δp#
1 (ϕ) ∪ p#

2 (ψ) + (−1)kp#
1 (ϕ) ∪ δp#

2 (ψ)

= p#
1 (δϕ) ∪ p#

2 (ψ) + (−1)kp#
1 (ϕ) ∪ p#

2 (δψ)

= δϕ× ψ + (−1)kϕ ∪ δψ

The cohomology cross product is the induced pairing

Hk(X;R)⊗R H`(Y ;R)
×−→ Hk+`(X × Y ;R)

given by the formula
[ϕ]× [ψ] = [ϕ× ψ]
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for each k-cocycle ϕ in X and each `-cocycle ψ in Y . It is well-defined by the
cross product Leibniz formula.

The cross product can be computed in terms of the cup product by the
formula

α× β = p∗1(α) ∪ p∗2(β) .

Conversely, the cup product can be recovered from the cross product, by
pullback along the diagonal map ∆: X → X ×X. The composite

Hk(X;R)⊗R H`(X;R)
×−→ Hk+`(X ×X;R)

∆∗−→ Hk+`(X;R)

is equal to the cup product, since p1∆ = 1 = p2∆, so ∆∗p∗1 = 1 = ∆∗p∗2 and

∆∗(α× β) = ∆∗(p∗1(α) ∪ p∗2(β)) = ∆∗p∗1(α) ∪∆∗p∗2(β) = α ∪ β .

The same result holds at the cochain level.

4.7 Relative cross products, naturality

To compute the cross product in some interesting examples, we must first discuss
some of its formal properties.

Let (X,A) and (Y,B) be pairs. If ϕ ∈ Ck(X,A;R) vanishes on chains in A
and ψ ∈ C`(Y,B;R) vanishes on chains in B, then ϕ × ψ ∈ Ck+`(X × Y,A ×
Y +X×B;R) vanishes on chains in A×Y or in X×B. Hence there is a relative
cross product

Hk(X,A;R)⊗R H`(Y,B;R)
×−→ Hk+`(X × Y,A× Y +X ×B;R) .

If A and B are open, or if X and Y are CW complexes and A and B are
subcomplexes, then H∗(A×Y +X×B)→ H∗(A×Y ∪X×B) is an isomorphism,
so H∗(X × Y,A × Y ∪X × B;R) ∼= H∗(X × Y,A × Y + X × B;R). Then the
cross product lifts to

Hk(X,A;R)⊗R H`(Y,B;R)
×−→ Hk+`(X × Y,A× Y ∪X ×B;R) .

The target group is often written as Hk+`((X,A)×(Y,B);R), using the notation

(X,A)× (Y,B) = (X × Y,A× Y ∪X ×B) .

As regards naturality, for each pair of maps f : X → X ′ and g : Y → Y ′

there is a map f × g : X ×Y → X ′×Y ′, and the cochain cross product satisfies

(f × g)#(ϕ× ψ) = f#(ϕ)× g#(ψ)

in Ck+`(X × Y ;R), for ϕ ∈ Ck(X ′;R) and ψ ∈ C`(Y ′;R). Hence the cohomo-
logy cross product satisfies

(f × g)∗(α× β) = f∗(α)× g∗(β)

in Hk+`(X × Y ;R), for α ∈ Hk(X ′;R) and β ∈ H`(Y ′;R), and the diagram

Hk(X ′;R)⊗R H`(Y ′;R)
×
//

f∗⊗g∗

��

Hk+`(X ′ × Y ′;R)

(f×g)∗

��

Hk(X;R)⊗R H`(Y ;R)
×
// Hk+`(X × Y ;R)
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commutes. Similarly, the relative cross product is natural for all pairs (X,A)
and (Y,B).

Naturality with respect to the connecting homomorphisms is a bit more
subtle.

Lemma 4.7.1. For all pairs (X,A) and spaces Y the natural square

Hk(A;R)⊗R H`(Y ;R)
×

//

δ⊗1

��

Hk+`(A× Y ;R)

δ

��

Hk+1(X,A;R)⊗R H`(Y ;R)
×
// Hk+`+1(X × Y,A× Y ;R)

commutes, so
δ(α× η) = δα× η

for α ∈ Hk(A;R) and η ∈ H`(Y ;R).

See Hatcher [1, p. 210] for the proof. We instead give the details in the
following case.

Lemma 4.7.2. For all spaces X and pairs (Y,B) the natural square

Hk(X;R)⊗R H`(B;R)
×

//

1⊗δ
��

Hk+`(X ×B;R)

δ

��

Hk(X;R)⊗R H`+1(Y,B;R)
×
// Hk+`+1(X × Y,X ×B;R)

commutes up to the sign (−1)k, so

δ(ξ × β) = (−1)kξ × δβ

for ξ ∈ Hk(X;R) and β ∈ H`(B;R).

Proof. Let ϕ ∈ Ck(X;R) and ψ ∈ C`(B;R) be cocycles representing ξ and η,
respectively. Choose an extension ψ̃ ∈ C`(Y ;R) of ψ. Then ϕ× ψ̃ ∈ Ck+`(X ×
Y ;R) is an extension of ϕ × ψ ∈ Ck+`(X × B;R), and δ(ξ × β) is represented
by δ(ϕ× ψ̃) ∈ Ck+`+1(X × Y,X ×B;R). Since ϕ is a cocycle of degree k, this
equals (−1)kϕ× δψ̃ by the Leibniz formula, which represents (−1)kξ ⊗ δβ.

Recall that H1(I, ∂I;R) = R{α}, where α is dual to the generator of
H1(I, ∂I;R) represented by the 1-cycle ∆1 ∼= I. The other cohomology groups
Hm(I, ∂I;R) vanish.

Lemma 4.7.3. Let Y be any space. The cross product

H1(I, ∂I;R)⊗R Hn−1(Y ;R)
×−→ Hn(I × Y, ∂I × Y ;R)

is an isomorphism. Hence each element of Hn(I × Y, ∂I × Y ;R) can be written
uniquely as α× β, where β ∈ Hn−1(Y ;R). Similarly for pairs (Y,B).
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Proof. The long exact sequence in cohomology for the pair (I×Y, ∂I×Y ) breaks
up into short exact sequences, since the inclusion ∂I → I admits a section up
to homotopy. Similarly for the pair (I, ∂I). By naturality of the cross product,
and flatness of H1(I, ∂I;R) = R{α}, we have a map of vertical short exact
sequences

0

��

0

��

H0(I;R)⊗R Hn−1(Y ;R)
×

//

��

Hn−1(I × Y ;R)

��

H0(∂I;R)⊗R Hn−1(Y ;R)
×

//

δ⊗1

��

Hn−1(∂I × Y ;R)

δ

��

H1(I, ∂I;R)⊗R Hn−1(Y ;R)
×
//

��

Hn(I × Y, ∂I × Y ;R)

��

0 0

It is clear from unitality and a decomposition ∂I × Y ∼= Y t Y that the upper
and middle cross product maps are isomorphisms, hence so is the lower cross
product.

Let k, ` ≥ 0 and n = k+ `. Note that (Ik, ∂Ik)× (I`, ∂I l) = (In, ∂In), since
Ik × I` = In and ∂Ik × I` ∪ Ik × ∂I` = ∂In.

Corollary 4.7.4. For k, ` ≥ 0 and n = k + `, the cross product

Hk(Ik, ∂Ik;R)⊗R H`(I`, ∂I l;R)
×−→ Hn(In, ∂In;R)

is an isomorphism. Hence Hn(In, ∂In;R) is the free R-module generated by the
n-fold cross product

α× · · · × α

where α ∈ H1(I, ∂I;R) is the standard generator. The remaining cohomology
groups Hm(In, ∂In;R) are zero.

Recall that H0(S1;R) = R{1} and H1(S1;R) = R{α}, where α is dual to
the generator of H1(S1;R) represented by the 1-cycle ∆1 → ∆1/∂∆1 ∼= S1.
The other cohomology groups Hm(S1;R) vanish.

Proposition 4.7.5. Let Y be any space. The cross product

H∗(S1;R)⊗R H∗(Y ;R)
×−→ H∗(S1 × Y ;R)

is an isomorphism, and similarly for pairs (Y,B). Hence each element of
Hn(S1 × Y ;R) can be written uniquely as a sum α × β + 1 × γ, with β ∈
Hn−1(Y ;R) and γ ∈ Hn(Y ;R).
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Proof. We use the pushout square

∂I //

��

I

��

? // S1

where ? = {s0} is the base-point of S1. The map (I, ∂I) → (S1, ?) induces a
cohomology isomorphism, and similarly when multiplied by Y . In view of the
commutative square

H1(S1, ?;R)⊗R Hn−1(Y ;R)
×
//

��

Hn(S1 × Y, ?× Y ;R)

��

H1(I, ∂I;R)⊗R Hn−1(Y ;R)
×
// Hn(I × Y, ∂I × Y ;R)

and the previous lemma, it follows that the upper cross product is an isomor-
phism.

The long exact sequence for the pair (S1 × Y, ? × Y ) also breaks up, since
the inclusion ?→ S1 admits a retraction, and we have another map of vertical
short exact sequences

0

��

0

��

H1(S1, ?;R)⊗R Hn−1(Y ;R)
×
//

��

Hn(S1 × Y, ?× Y ;R)

��

[H∗(S1;R)⊗R H∗(Y ;R)]n
×

//

��

Hn(S1 × Y ;R)

��

H0(?;R)⊗R Hn(Y ;R)
×

//

��

Hn(?× Y ;R)

��

0 0

We have seen that the upper cross product is an isomorphism. Since the lower
one is obviously an isomorphism, it follows that the middle map is also an
isomorphism.

Example 4.7.6. Let Tn = S1×· · ·×S1 be the n-dimensional torus. The n-fold
cross product

H∗(S1;R)⊗R · · · ⊗R H∗(S1;R)
×−→ H∗(Tn;R)

is an isomorphism. Hence Hk(Tn;R) is a free R-module with basis the set of
k-fold cup products

αi1 ∪ · · · ∪ αik
for 1 ≤ i1 < · · · < ik ≤ n, where αi = p#

i (α) ∈ H1(Tn;R) is the pullback of the
generator α ∈ H1(S1;R) along the i-th projection map pi : T

n → S1.
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This is clear by induction on n, using the proposition above, which tells us
that a basis is given by the set of n-fold cross products

β1 × · · · × βn ∈ Hk(Tn;R)

where k of the classes βi are equal to α, and the remaining (n−k) of the classes
βi are equal to 1. Numbering the βi that are equal to α as βi1 , . . . , βik , we get
the asserted formula.

4.8 Projective spaces

Let RPn be the n-dimensional real projective space, and let RP∞ =
⋃
nRPn.

Recall that the cellular complex CCW∗ (RPn) has one generator ek in each degree
0 ≤ k ≤ n, with boundary homomorphism ∂(ek) = (1 + (−1)k)ek−1. Hence
C∗CW (RPn;Z/2) has trivial coboundary, so Hk(RPn;Z/2) ∼= Z/2 for each 0 ≤
k ≤ n, where the generator in degree k evaluates to 1 ∈ Z/2 on ek.

Proposition 4.8.1.

H∗(RPn;Z/2) ∼= Z/2[x]/(xn+1)

and
H∗(RP∞;Z/2) ∼= Z/2[x] ,

where |x| = 1.

Proof. We simplify notation by writing Pn for RPn and omitting the coefficient
ring Z/2. By induction on n and naturality with respect to the inclusions
Pn−1 → Pn → P∞, it suffices to prove that the cup product of a generator of
Hn−1(Pn) and a generator of H1(Pn) is a generator of Hn(Pn), for n ≥ 2. It
is no more difficult to prove that the cup product

Hi(Pn)⊗Hj(Pn)
∪−→ Hn(Pn)

is an isomorphism, for i+ j = n.
Consider the subspaces Ri+1+0 ⊂ Ri+1+j ⊃ R0+1+j , which meet in R0+1+0.

Passing to the spaces of lines through the origin we have the subspaces P i ⊂
Pn ⊃ P j meeting in a single point P i ∩ P j = {q}. Inside Pn we have an affine
n-space Rn ∼= U ⊂ Pn where the i-th coordinate is nonzero (counting from 0 to
i+ j = n), whose complement is a copy of Pn−1. The intersection U ∩ P i ∼= Ri
is an affine i-space, with complement P i−1 in P i. Similarly, the intersection
U ∩ P j ∼= Rj is an affine j-space, with complement P j−1 in P j .

We have a commutative diagram

Hi(Pn)⊗Hj(Pn)
∪ // Hn(Pn)

Hi(Pn, Pn − P j)⊗Hj(Pn, Pn − P i) ∪ //

OO

∼=
��

Hn(Pn, Pn − {q})

OO

∼=
��

Hi(Rn,Rn − Rj)⊗Hj(Rn,Rn − Ri) ∪ // Hn(Rn,Rn − {0})

Hi(Ri,Ri − {0})⊗Hj(Rj ,Rj − {0})
×

33

p∗1⊗p
∗
2

OO
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The downward arrows are isomorphisms by excision. The cross product is an
isomorphism by earlier calculations (replacing (Rn,Rn−{0}) by (In, ∂In), etc.).
The projection p1 : (Rn,Rn − Rj) → (Ri,Ri − {0}) away from a copy of Rj is
a homotopy equivalence, and similarly for p2, so p∗1 and p∗2 are isomorphisms.
This proves that the middle horizontal cup product is an isomorphism.

The rest is maneuvering from the relative to the absolute case. The com-
plement Pn − P j deformation retracts to P i−1, since it consists of points
[x0 : · · · : xn] where at least one of the homogeneous coordinates x0, . . . , xi−1

is nonzero, and a deformation retraction to the subspace P i−1, where all of the
homogeneous coordinates xi, . . . , xn are zero, is given by the formula

(t, [x0 : · · · : xn]) 7→ [x0 : · · · : xi−1 : txi : · · · : txn] .

Hence the homomorphism Hi(Pn, Pn−P j)→ Hi(Pn) factors as the composite

Hi(Pn, Pn − P j) −→ Hi(Pn, P i−1) −→ Hi(Pn)

where the first arrow is an isomorphism because of the deformation retraction,
and the second arrow is an isomorphism by consideration of the cellular com-
plexes. The same conclusion holds for i replaced by j or n. Hence the upper
vertical arrows in the big diagram are isomorphisms, so that the upper horizon-
tal cup product is an isomorphism.

Let x ∈ H1(Pn) be the generator. Let

xn = x ∪ · · · ∪ x ∈ Hn(Pn)

denote the n-th cup power. By induction on n, we know that xn−1 ∈ Hn−1(Pn)
restricts to the generator of Hn−1(Pn−1), hence is the generator of Hn−1(Pn).
By what we have just shown,

xn = x ∪ xn−1

is the generator of Hn(Pn).

We return to integer coefficients. Let CPn be the n-dimensional complex
projective space, of real dimension 2n, and let CP∞ =

⋃
nCPn. The cellular

complex CCW∗ (CPn) has one generator e2k in each even degree 0 ≤ 2k ≤ 2n,
with trivial boundary homomorphisms. Hence C∗CW (CPn) has trivial cobound-
ary, so H2k(CPn) ∼= Z for each 0 ≤ k ≤ n, and the other cohomology groups
are 0.

Proposition 4.8.2.
H∗(CPn) ∼= Z[y]/(yn+1)

and
H∗(CP∞) ∼= Z[y] ,

where |y| = 2.

Let HPn be the n-dimensional quaternionic projective space, of real dimen-
sion 4n, and let HP∞ =

⋃
nHPn. The cellular complex CCW∗ (HPn) has one

generator e4k in degree 4k, for 0 ≤ k ≤ n, and trivial boundary homomor-
phisms. Hence C∗CW (HPn) has trivial coboundary, so H4k(HPn) ∼= Z for each
0 ≤ k ≤ n, and the other cohomology groups are 0.
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Proposition 4.8.3.
H∗(HPn) ∼= Z[z]/(zn+1)

and
H∗(HP∞) ∼= Z[z] ,

where |z| = 2.

4.9 Hopf maps

One way to detect whether a map f : X → Y is null-homotopic or not is to
consider the cup product structure in the cohomology of the mapping cone
Cf = Y ∪ CX.

X
f
// Y

j
// Cf

r
ii

If f is null-homotopic, then there is a retraction r : Cf → Y , so that the ring
homomorphisms

H∗(Y )
r∗−→ H∗(Cf )

j∗−→ H∗(Y )

split off H∗(Y ) as a graded subring of H∗(Cf ). Therefore, if H∗(Y ) does not
split off from H∗(Cf ), then f cannot be null-homotopic, i.e., it must be an
essential map.

For example, in the CW structure on CP 2, the 4-cell is attached to the
2-skeleton CP 1 = S2 by the complex Hopf map

η : S3 → S2

taking a point in S3 ⊂ C2 to the complex line that goes though it. The mapping
cone is Cη = CP 2. Here

H∗(CP 2) = Z[y]/(y3) = Z{1, y, y2}

restricts by j∗ to
H∗(S2) = Z[y]/(y2) = Z{1, y} ,

but since y2 = 0 in H∗(S2) and y2 6= 0 in H∗(CP 2) there is no ring homomor-
phism r∗ : H∗(S2) → H∗(CP 2) that would be a section to j∗. Hence η cannot
be null-homotopic.

As a similar example, in the CW structure on HP 2, the 8-cell is attached to
the 4-skeleton HP 1 = S4 by the quaternionic Hopf map

ν : S7 → S4

taking a point in S7 ⊂ H2 to the quaternionic line that goes though it. The
mapping cone is Cν = HP 2. Here

H∗(HP 2) = Z[z]/(z3) = Z{1, z, z2}

restricts by j∗ to
H∗(S4) = Z[z]/(z2) = Z{1, z} ,
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but since z2 = 0 in H∗(S4) and z2 6= 0 in H∗(HP 2) there is no ring homomor-
phism r∗ : H∗(S4) → H∗(HP 2) that would be a section to j∗. Hence ν cannot
be null-homotopic.

There is also an octonionic plane, denoted OP 2, with cohomology ring
H∗(OP 2) ∼= Z[w]/(w3) with |w| = 8, and the attaching map

σ : S15 → S8

is an essential map known as the octonionic Hopf map.
A more careful argument shows that η has infinite order in π3(S2), ν has

infinite order in π7(S4) and σ has infinite order in π15(S8).

4.10 Graded commutativity

Recall that
H∗(T 2) = Z{1, α, β, γ}

with |α| = |β| = 1 and |γ| = 2, with α ∪ β = γ = −β ∪ α. This commutativity
up to a sign is typical.

Theorem 4.10.1. Let (X,A) be a pair of space and let R be a commutative
ring. Then

β ∪ α = (−1)k`α ∪ β

in Hk+`(X,A;R), for all α ∈ Hk(X,A;R) and β ∈ H`(X,A;R).

We say that H∗(X,A;R) is graded commutative. In the absolute case we
say that H∗(X;R) is a commutative graded ring. Note that if H∗(X,A;R) is
concentrated in even degrees, then the sign (−1)k` is always +1.

Proof. Let ρ : Cn(X)→ Cn(X) be the (natural) chain map that takes σ : ∆n →
X to

ρ(σ) = εnσ|[vn, . . . , v0] ,

where σ|[vn, . . . , v0] is the composite of the affine linear map ρn : ∆n → ∆n that
reverses the ordering of the vertices, and εn = (−1)n(n+1)/2 is the sign of the
associated permutation of the vertices of ∆n.

This is indeed a chain map, since

∂ρ(σ) = εn

n∑
i=0

(−1)nσ|[vn, . . . , v̂n−i, . . . , v0]

and

ρ∂(σ) = εn−1

n∑
j=0

(−1)jσ|[vn, . . . , v̂j , . . . , v0]

= εn−1

n∑
i=0

(−1)n−iσ|[vn, . . . , v̂n−i, . . . , v0] ,

are equal because εn = (−1)nεn−1.
There is a (natural) chain homotopy P : Cn(X)→ Cn+1(X) from the iden-

tity 1 to ρ. It arises from a subdivision of ∆n × I, with vertices v0, . . . , vn in
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∆n×{0} and vertices w0, . . . , wn in ∆n×{1}, as the union the (n+1)-simplices
[v0, . . . , vi, wn, . . . , wi], for 0 ≤ i ≤ n.

w0 w2
oo

ww
w1

aa

v0

OO

EE

!!

==

// v2

OO

v1

OO

77

GG

As subsets of ∆n × I, these are the same simplices [v0, . . . , vi, wi, . . . , wn] as
those used to show homotopy invariance of singular homology, but the ordering
of the last (n− i) vertices is reversed, which leads us to introduce the additional
sign εn−i. Let

P (σ) =

n∑
i=0

(−1)iεn−iσπ|[v0, . . . , vi, wn, . . . , wi]

for σ : ∆n → X any singular n-simplex, and π : ∆n × I → ∆n the projection.
Then P : Cn(X)→ Cn+1(X) satisfies

∂P + P∂ = ρ− 1 .

((See Hatcher [1, p. 217] for this calculation.))
We get an induced chain map ρ∗ : Cn(X;R) → Cn(X;R) and chain homo-

topy P ∗ from 1 to ρ∗.
Recall the definition of the cochain level cup product of ϕ : Ck(X)→ R and

ψ : C`(X)→ R:

(ϕ ∪ ψ)(σ) = ϕ(σ|[v0, . . . , vk]) · ψ(σ|[vk, . . . , vn])

for σ : ∆n → X as above, n = k + `. Then

ρ∗(ψ ∪ ϕ)(σ) = εn(ψ ∪ ϕ)(σ|[vn, . . . , v0])

= εnψ(σ|[vn, . . . , vk]) · ϕ(σ|[vk, . . . , v0])

while

(ρ∗ϕ ∪ ρ∗ψ)(σ) = ϕ(εkσ|[v0, . . . , vk]) · ψ(ε`σ|[vk, . . . , vn])

= εkε`ϕ(σ|[v0, . . . , vk]) · ψ(σ|[vk, . . . , vn]) .

Using the relation εn = (−1)k`εkε` and commutativity of R, we get that

ρ∗(ψ ∪ ϕ) = (−1)k`ρ∗ϕ ∪ ρ∗ψ .
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Hence, at the level of cohomology groups,

β ∪ α = [ψ ∪ ϕ] = [ρ∗(ψ ∪ ϕ)] = (−1)k`[ρ∗ϕ ∪ ρ∗ψ]

= (−1)k`[ρ∗ϕ] ∪ [ρ∗ψ] = (−1)k`[ϕ] ∪ [ψ] = (−1)k`α ∪ β

when ϕ and ψ are cocycles representing α and β.

4.11 Tensor products of graded rings

If A∗ and B∗ are graded rings, we define their tensor product A∗⊗B∗ to be the
tensor product of graded abelian groups, with

[A∗ ⊗B∗]n =
⊕
k+`=n

Ak ⊗B`

in degree n, with the graded multiplication

[A∗ ⊗B∗]n ⊗ [A∗ ⊗B∗]n′ −→ [A∗ ⊗B∗]n+n′

given by
(α⊗ β) · (α′ ⊗ β′) = (−1)k`

′
αα′ ⊗ ββ′

where |β| = k and |α′| = `′. In terms of diagrams, the multiplication on A∗⊗B∗
is the composite

A∗ ⊗B∗ ⊗A∗ ⊗B∗
1⊗τ⊗1−→ A∗ ⊗A∗ ⊗B∗ ⊗B∗

µ⊗µ−→ A∗ ⊗B∗ ,

where τ : B∗⊗A∗ → A∗⊗B∗ is the graded twist isomorphism that takes β⊗α′ to
(−1)k`

′
α′⊗β, with notation as above, and µ : A∗⊗A∗ → A∗ and µ : B∗⊗B∗ →

B∗ are the multiplications in A∗ and B∗.
((Example with products of spheres?))
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Künneth formulas

5.1 A Künneth formula in cohomology

Let (X,A) and (Y,B) be pairs of spaces, and let R be a commutative ring.
Recall the notation (X,A)× (Y,B) = (X × Y,A× Y ∪X ×B).

Theorem 5.1.1 (Künneth formula). The cross product

H∗(X,A;R)⊗R H∗(Y,B;R)
×−→ H∗((X,A)× (Y,B);R)

is an isomorphisms of graded rings, if (X,A) and (Y,B) are pairs of CW com-
plexes and H`(Y,B;R) is a finitely generated projective R-module, for each `.

5.2 The Künneth formula in homology

Let R be a PID, throughout this section.

Theorem 5.2.1 (Künneth formula). There is a natural short exact sequence

0→
⊕
k+`=n

Hk(X;R)⊗R H`(Y ;R)
×−→ Hk+`(X × Y ;R) −→

−→
⊕

k+`=n−1

TorR1 (Hk(X;R), H`(Y ;R))→ 0

for each n, and these sequences split.

The hypothesis of the following consequence is automatic if R is a field.

Corollary 5.2.2. Suppose that H`(Y ;R) is flat over R, for each `. There is a
natural isomorphism

× : H∗(X;R)⊗R H∗(Y ;R)
∼=−→ H∗(X × Y ;R) .

One proof of the theorem goes in two parts. One is the Eilenberg–Zilber
theorem, relating the chains on X × Y to the algebraic tensor product of the
chains on X and the chains on Y . The other is the algebraic Künneth theorem,
computing the homology of a tensor product of chain complexes.

97
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((Reference to Spanier’s “Algebraic topology” or Mac Lane’s “Homology”.))
Here is the external version of the Alexander–Whitney diagonal approxima-

tion.

Definition 5.2.3. The Alexander–Whitney homomorphism

AWn : Cn(X × Y ;R) −→
⊕
k+`=n

Ck(X;R)⊗R C`(Y ;R)

takes (σ, τ) : ∆n → X × Y to

σ|[v0, . . . , vk]⊗ τ |[vk, . . . , vn] .

Theorem 5.2.4 (Eilenberg–Zilber theorem). The Alexander–Whitney homo-
morphism is a chain homotopy equivalence

AW# : C∗(X × Y ;R)
'−→ C∗(X;R)⊗R C∗(Y ;R) .

To prove this, one can construct a chain homotopy inverse

EZ# : C∗(X;R)⊗R C∗(Y ;R)
'−→ C∗(X × Y ;R) .

This can either be done by the method of acyclic models, or by an explicit
formula, known as the Eilenberg–Zilber shuffle homomorphism. ((ETC))

Theorem 5.2.5 (Algebraic Künneth formula). Let (C∗, ∂) and (D∗, ∂) be chain
complexes of free R-modules. Then there is a natural short exact sequence

0→
⊕
k+`=n

Hk(C∗)⊗R H`(D∗) −→ Hn(C∗ ⊗D∗;R) −→

−→
⊕

k+`=n−1

TorR1 (Hk(C∗), H`(D∗))→ 0

for each n, and these sequences split.

The proof is similar to that of the universal coefficient theorem.
Under the assumption that Hk(X;R) and H`(Y ;R) are finitely generated

projective R-modules, for each k and `, we can dualize the homological Künneth
isomorphism

H∗(X;R)⊗R H∗(Y ;R)
∼=−→ H∗(X × Y ;R)

and use the universal coefficient theorem to get a cohomological Künneth iso-
morphism

H∗(X × Y ;R) ∼= HomR(H∗(X × Y ;R), R)
∼= HomR(H∗(X;R)⊗R H∗(Y ;R), R)
∼= HomR(H∗(X,R), R)⊗R HomR(H∗(Y ;R), R)
∼= H∗(X;R)⊗R H∗(Y ;R) .

Notice how finite generation is needed in the middle, using that the homo-
morphism

HomR(M,R)⊗R HomR(N,R) −→ HomR(M ⊗R N,R) ,

taking the tensor product of ϕ : M → R and ψ : N → R to the composite

M ⊗R N
ϕ⊗ψ−→ R⊗R R ∼= R ,

is an isomorphism when M and N are finitely generated projective R-modules.
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5.3 Proof of the cohomology Künneth formula

We will instead give a different proof of the cohomological Künneth isomor-
phism, based on the study of generalized cohomology theories, which leads more
directly to a result with weaker hypotheses.

The main part of the proof deals with the absolute case when B = ∅, saying
that the cross product

H∗(X,A;R)⊗R H∗(Y ;R)
×−→ H∗(X × Y,A× Y ;R)

is an isomorphism of graded rings, if (X,A) is a pair of CW complexes and
H`(Y ;R) is a finitely generated projective R-module, for each `. The relative
case, when (Y,B) is a pair of CW complexes and H`(Y,B;R) is a finitely gen-
erated projective R-module, for each `, follows by naturality with respect to the
map (Y,B)→ (Y/B,B/B) inducing isomorphisms

H`(Y/B,B/B;R)
∼=−→ H`(Y,B;R)

for all `, and the splittings

H∗(Y/B;R) ∼= H∗(Y/B,B/B;R)⊕H∗(B/B;R)

and

H∗((X,A)× Y/B;R) ∼= H∗((X,A)× (Y/B,B/B);R)⊕H∗((X,A)×B/B;R) .

Consider the functors of CW pairs (X,A) given by

hn(X,A) =
⊕
k+`=n

Hk(X,A;R)⊗R H`(Y ;R)

and
kn(X,A) = Hn(X × Y,A× Y ;R) .

The cross product defines a natural transformation

µ : hn(X,A) −→ kn(X,A)

for all n.
We prove that h∗ and k∗ are cohomology theories on the category of CW

pairs, and that µ is a map of cohomology theories, i.e., a natural transformation
that commutes with the connecting homomorphisms.

Proposition 5.3.1. If a map µ : h∗ → k∗ of cohomology theories on the category
of CW pairs is an isomorphism on the pair (?,∅), then it is an isomorphism
for all CW pairs.

Proof. By the map of long exact sequences

hn−1(X) //

µ

��

hn−1(A)
δ //

µ

��

hn(X,A) //

µ

��

hn(X) //

µ

��

hn(A)

µ

��

kn−1(X) // kn−1(A)
δ // kn(X,A) // kn(X) // kn(A)
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and the five-lemma, it suffices to prove the proposition in the case when A = ∅.
In this absolute case first we proceed by induction on the dimension m of X.

When X is 0-dimensional, it is the disjoint union X =
∐
α ? of a set of points,

so by the commutative diagram

h∗(
∐
α ?)

∼= //

µ

��

∏
α h
∗(?)

∏
α µ

��

k∗(
∐
α ?)

∼= //
∏
α k
∗(?)

and the hypothesis for X = ?, it follows that µ is an isomorphism for X =
∐
α ?.

Let m ≥ 1, assume that µ is an isomorphism for all X of dimension less than
m, and suppose that X = X(m) has dimension m. By the map of long exact
sequences above in the case (X,A) = (X(m), X(m−1)), the inductive hypothesis
and the five-lemma, it suffices to prove that µ is an isomorphism for this CW
pair. Let

Φ:
∐
α

(Dm, ∂Dm)→ (X(m), X(m−1))

be the characteristic maps of the m-cells of X. In the commutative diagram

h∗(X(m), X(m−1))
Φ∗ //

µ

��

h∗(
∐
α(Dm, ∂Dm))

∼= //

µ

��

∏
α h
∗(Dm, ∂Dm)

µ

��

k∗(X(m), X(m−1))
Φ∗ // k∗(

∐
α(Dm, ∂Dm))

∼= //
∏
α k
∗(Dm, ∂Dm)

the homomorphisms labeled Φ∗ are isomorphisms by excision, and the right-
hand horizontal arrows are isomorphisms by the product axiom. Hence it suffices
to prove that µ is an isomorphism for the CW pair (Dm, ∂Dm).

By the map of long exact sequences above, in the case (X,A) = (Dm, ∂Dm),
it suffices to know that µ is an isomorphism for X = Dm and for X = ∂Dm. The
first follows from the case X = ? naturality with respect to the map Dm → ?
and homotopy invariance. The second follows by induction, since the dimension
of ∂Dm is less than m.

The case of infinite-dimensional X remains. For this we use that X is the
colimit of its skeleta, in the sense that there is a sequence of cellular inclusions
of CW complexes

X(m−1) ⊂ X(m) ⊂ · · · ⊂ X =
⋃
m

X(m) .

There is a mapping telescope

T =
⋃
m

[m,m+ 1]×X(m) ⊂ R×X

and the composite projection T ⊂ R×X → X is a homotopy equivalence. See
Hatcher [1, Lemma 2.34].

We can write this mapping telescope as the homotopy coequalizer of two
maps

1, i :
∐
m

X(m) −→
∐
m

X(m)
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where 1 is the coproduct of the identity maps X(m) → X(m), while i is the
coproduct of the inclusion maps X(m−1) → X(m). Hence there is a natural long
exact sequence

hn−1(
∐
m

X(m))
1−i∗−→ hn−1(

∐
m

X(m)) −→ hn(T ) −→ hn(
∐
m

X(m))
1−i∗−→ hn(

∐
m

X(m))

which we can rewrite, using the product axiom and the homotopy equivalence
T ' X, as∏
m

hn−1(X(m))
1−i∗−→

∏
m

hn−1(X(m)) −→ hn(X) −→
∏
m

hn(X(m))
1−i∗−→

∏
m

hn(X(m))

The kernel of the right hand 1− i∗ consists of the compatible sequences (xm)m
with xm ∈ hn(X(m)) and i∗(xm) = xm−1 for all m, i.e., it equals the limit group

ker(1− i∗) = lim
m
hn(X(m)) .

By definition, the cokernel of the left hand 1− i∗ is the derived limit group

cok(1− i∗) = Rlim
m

hn−1(X(m)) .

It vanishes if the homomorphisms i∗ : hn(X(m) → hn(X(m−1) are surjective for
sufficiently large m.

These considerations are natural in the cohomology theory h, so there is a
map of short exact sequences

0 // Rlimm h
n−1(X(m)) //

µ

��

hn(X) //

µ

��

limm h
n(X(m)) //

µ

��

0

0 // Rlimm k
n−1(X(m)) // kn(X) // limm k

n(X(m)) // 0

We have already shown that µ is an isomorphism for each finite-dimensional
X(m), hence is induces an isomorphism of limits and derived limits. Thus µ is
also an isomorphism for the general CW complex X.

Proof of the cohomology Künneth formula. We must exhibit h∗ and k∗ as coho-
mology theories, check that µ is a map of such, and that µ is an isomorphism
for the one-point space ?.

The connecting homomorphism δ : hn−1(A) → hn(X,A) is defined as the
direct sum of the tensor products

δ ⊗ 1: Hk−1(A;R)⊗R H`(Y ;R) −→ Hk(X,A;R)⊗R H`(Y ;R)

as k ranges over the integers and ` = n− k.
The connecting homomorphism δ : kn−1(A) → kn(X,A) is the usual con-

necting homomorphism

δ : Hn−1(A× Y ;R) −→ Hn(X × Y,A× Y ;R)

of the pair (X × Y,A× Y ).



CHAPTER 5. KÜNNETH FORMULAS 102

The tensor product of the long exact sequence

Hk−1(X;R)
i∗−→ Hk−1(A;R)

δ−→ Hk(X,A;R)
j∗−→ Hk(X;R)

i∗−→ Hk(A;R)

with H`(Y ;R) over R is still exact, because H`(Y ;R) is projective, hence flat.
Summing over all k + ` = n we get the long exact sequence for h∗.

The long exact sequence for k∗ at (X,A) is just the usual long exact sequence
for Hn(−;R) at (X × Y,A× Y ).

Homotopy invariance for h∗ and k∗ follows immediately from homotopy in-
variance for ordinary cohomology.

Excision, either in the form for general topological pairs, or in the form for
subcomplexes of a CW complex, is also obvious for h∗. The case of k∗ is about
as easy, since if Z ⊆ A ⊆ X with the closure of Z contained in the interior of
A, the Z × Y ⊂ A × Y ⊂ X × Y with the closure of Z × Y contained in the
interior of A× Y , and similarly for products of subcomplexes of X with Y .

The product axiom is clear for k∗, since if X =
∐
αXα then X × Y =∐

α(Xα × Y ), and similarly in the relative case. The product axiom for h∗ is
more subtle. It amounts to the assertion that

(
∏
α

Hk(Xα, Aα;R))⊗R H`(Y ;R) −→
∏
α

(Hk(Xα, Aα;R)⊗R H`(Y ;R))

is an isomorphism, for all k and `. This is clear if H`(Y ;R) = R, hence also
if H`(Y ;R) is finitely generated and free, since finite sums of R-modules are
also finite products. By naturality in H`(Y ;R), it also follows when H`(Y ;R)
is finitely generated and projective.

The assertion that µ is a map of generalized cohomology theories is clear
from the naturality of the cross product, together with the previously proved
formula δ(α× η) = δα× η, relating the connecting homomorphism to the cross
product.

The assertion that µ is an isomorphism for (X,A) = (?,∅) is the assertion
that

× : H0(?;R)⊗R H`(Y ;R) −→ H`(?× Y ;R)

is an isomorphism for all `, which is clear.

Theorem 5.3.2 (Hopf). If there is a real division algebra structure on Rn then
n is a power of 2.

Proof. A division algebra structure on Rn is a bilinear pairing · : Rn×Rn → Rn
such that x · y = 0 only if x = 0 or y = 0. Given such a pairing, we have a map
g : Sn−1 × Sn−1 → Sn−1 given by g(x, y) = x · y/|x · y|, such that

g(−x, y) = −g(x, y) = g(x,−y) .

Passing to quotients we get a map h : RPn−1 × RPn−1 → RPn−1. We may as-
sume that n > 2, in which case π1(RPn−1) ∼= Z/2. The displayed formula, and a
consideration of covering spaces, implies that h induces the sum homomorphism
on π1(RPn−1).

Passing to cohomology, we have a graded ring isomorphism

H∗(RPn−1;Z/2) ∼= Z/2[γ]/(γn = 0) ,
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with deg(γ) = 1, and by the Künneth formula,

H∗(RPn−1 × RPn−1;Z/2) ∼= Z/2[α, β]/(αn = 0, βn = 0)

The formula for h on π1 implies that h∗(γ) = α+ β in H1, so

0 = h∗(γn) = (α+ β)n =

n−1∑
i=1

(
n

i

)
αiβn−i

in Hn. It is a number-theoretic fact that
(
n
i

)
≡ 0 mod 2 for all 0 < i < n (if

and) only if n is a power of 2.
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