MANDATORY ASSIGNMENT FOR MAT4540 FALL 2017

JOHN ROGNES

Return to John Rognes by Thursday November 9th 2017. Each of the nine problem parts carry equal weight. A score over 50% is sufficient to pass. A near-pass may qualify for a second attempt. You may cooperate with other students, but your answers should reflect your own understanding.

Problem 1

For abelian groups A and B let $\operatorname{Ext}(A, B) = \operatorname{Ext}_{\mathbb{Z}}^{1}(A, B)$.

- (a) If A is free, show that Ext(A, B) = 0 for any B.
- (b) If A is finitely generated, and $\operatorname{Ext}(A,\mathbb{Z})=0$, show that A is free.
- (c) Let A be a general abelian group. Show that if Ext(A, B) = 0 for each B, then A is free. Hint: Consider a free resolution of A, and use this to choose a suitable B.

Problem 2

Consider an analog clock with an hour hand and a minute hand, pointing at points h and m on the perimeter, which we identify with the circle S^1 . The pair of hands thus specifies a point $(h, m) \in S^1 \times S^1 = T^2$. Let $[a] \in H_1(T^2)$ be the homology class of the cycle representing a simple closed loop by the hour hand, in the clockwise direction, keeping the minute hand fixed. Similarly, let $[b] \in H_1(T^2)$ be the class representing a simple closed loop by the minute hand, keeping the hour hand fixed. Let x and $y \in H^1(T^2)$ be dual to [a] and [b]. Take as known that $H^*(T^2) = \Lambda_{\mathbb{Z}}(x,y)$, with $x \cup y = z$ generating $H^2(T^2)$.

- (a) Let $\Delta \subset T^2$ be the simple closed loop described by letting the hour and minute hands move once around the clock face, always overlapping. Let $E \subset T^2$ be the simple closed loop described by regular motion of the hour and minute hands, showing time from 6 a.m. to 6 p.m. Express the homology classes $[\Delta]$ and [E] of these cycles as linear combinations of [a] and [b].

 (b) Poincaré duality for T^2 gives an isomorphism $D: H^1(T^2) \to H_1(T^2)$, mapping x and y to D(x) = 1
- (b) Poincaré duality for T^2 gives an isomorphism $D: H^1(T^2) \to H_1(T^2)$, mapping x and y to D(x) = [b] and D(y) = -[a], respectively. Find the cohomology classes δ and $\epsilon \in H^1(T^2)$ that are Poincaré dual to $[\Delta]$ and [E], respectively, and calculate the cup product $\delta \cup \epsilon$.
- (c) Poincaré duality also gives an isomorphism $D \colon H^2(T^2) \to H_0(T^2)$, mapping z to the homology class of a point. Calculate the Poincaré dual of $\delta \cup \epsilon$. Take as known that this class in $H_0(T^2)$ is the class of the intersection $\Delta \cap E$, interpreted as a 0-chain in T^2 :

$$[\Delta \cap E] = D(D^{-1}([\Delta]) \cup D^{-1}([E]))$$

What does your answer for $D(\delta \cup \epsilon)$ say about the motion of the clock hands in the time from 6 a.m. to 6 p.m.?

PROBLEM 3

Let $T^2 = S^1 \times S^1 \cong \mathbb{R}^2/\mathbb{Z}^2$ be the torus surface. Take as known that $H^*(T^2) = \Lambda_{\mathbb{Z}}(x, y)$, as in Problem 2.

- (a) Show that it is impossible to cover T^2 with only two coordinate charts U_1 and U_2 . Here we assume that the U_i are open subsets of T^2 , each homeomorphic to \mathbb{R}^2 , with $U_1 \cup U_2 = T^2$.
- (b) Find three coordinate charts U_1 , U_2 and U_3 that cover T^2 . Hint: Let U_1 be the homeomorphic image of $(0,1)^2 \subset \mathbb{R}^2$, and give similar descriptions of U_2 and U_3 .
- (c) Let M_g be a closed, connected, orientable surface of genus $g \ge 2$. What is the minimal number of coordinate charts needed to cover M_g ?