MAT4540/9540: EXERCISES 3

1. Cohomology, Ext and the universal coefficient theorem

Exercise 1. Show that $\operatorname{Ext}^1_{\mathbf{Z}}(\mathbf{Z}/m,\mathbf{Z}) \cong \mathbf{Z}/m$, and, more generally, $\operatorname{Ext}^1_{\mathbf{Z}}(\mathbf{Z}/m,B) \cong B/mB$.

Exercise 2. $\operatorname{Ext}_{\mathbf{Z}}^n(\bigoplus_{\alpha} A_{\alpha}, B) \cong \prod_{\alpha} \operatorname{Ext}_{\mathbf{Z}}^n(A_{\alpha}, B)$ and $\operatorname{Ext}_{\mathbf{Z}}^n(A, \prod_{\beta} B_{\beta}) \cong \prod_{\beta} \operatorname{Ext}_{\mathbf{Z}}^n(A, B_{\beta})$.

Exercise 3. If F is a free abelian group, prove that $\operatorname{Ext}^1_{\mathbf{Z}}(F,A) = 0$ for any A.

Exercise 4. Let A and B be abelian groups. Recall that an extension ξ of A by B is an exact sequence $0 \to B \to E \to A \to 0$. Two extensions ξ , ξ' are equivalent if there is an isomorphism $E \cong E'$ which fits in a commutative diagram

- (a) Show that if $\operatorname{Ext}^1(A,B)=0$, then every extension $0\to B\to E\to A\to 0$ of A by B is split.
- (b) Show that there is a bijection between $\operatorname{Ext}^1(A,B)$ and equivalence classes of extensions of A by B.

From Hatcher:

- Chapter 3.1: 3.1.2, 3.1.3, 3.1.6, 3.1.11 (a).
- Chapter 3.2: 3.2.1, 3.2.4.

2. Spectral sequences

Exercise 5. Compute the cohomology ring $H^*(\Omega S^3)$.

From the notes:

• 2.13.2, 2.13.7.