MAT4540 EXERCISES 1

Exercise 1. Show that $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}/m,\mathbb{Z}) \cong \mathbb{Z}/m$, and, more generally, $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}/m,B) \cong B/mB$ for any abelian group B.

Exercise 2. $\operatorname{Ext}^n_{\mathbb{Z}}(\bigoplus_{\alpha} A_{\alpha}, B) \cong \prod_{\alpha} \operatorname{Ext}^n_{\mathbb{Z}}(A_{\alpha}, B) \text{ and } \operatorname{Ext}^n_{\mathbb{Z}}(A, \prod_{\beta} B_{\beta}) \cong \prod_{\beta} \operatorname{Ext}^n_{\mathbb{Z}}(A, B_{\beta}).$

Exercise 3. If F is a free abelian group, prove that $\operatorname{Ext}_{\mathbb{Z}}^{1}(F, A) = 0$ for any A.

Exercise 4. Let A and B be abelian groups. Recall that an extension ξ of A by B is an exact sequence $0 \to B \to E \to A \to 0$. Two extensions ξ , ξ' are equivalent if there is an isomorphism $E \cong E'$ which fits in a commutative diagram

- (a) Show that if $\text{Ext}^1(A, B) = 0$, then every extension $0 \to B \to E \to A \to 0$ of A by B is split.
- (b) Show that there is a bijection between $\text{Ext}^1(A, B)$ and equivalence classes of extensions of A by B.

From Hatcher:

• Chapter 3.1: 2, 3, 6, 11 (a).